SlideShare a Scribd company logo
1 of 2
Download to read offline
MODELING	
  MEIOSIS	
  LAB	
  
	
  
NAME_________________________________	
  
PERIOD________________________________	
  
	
  
MATERIALS:	
  
	
   blue	
  chromosome	
  cut	
  out	
   	
   	
   tape	
   	
   	
   scissors	
  
	
   pink	
  chromosome	
  cut	
  out	
   	
   	
   10	
  paperclips	
   	
   tape	
  
	
  
INTRODUCTION:	
  
The	
  body	
  cells	
  of	
  plant	
  and	
  animals	
  are	
  diploid.	
  A	
  diploid	
  (2n)	
  cell	
  has	
  two	
  sets	
  of	
  chromosomes	
  in	
  its	
  nucleus.	
  A	
  cell	
  with	
  
only	
  one	
  set	
  of	
  chromosomes	
  in	
  its	
  nucleus	
  is	
  termed	
  haploid	
  (n).	
  Gametes,	
  egg	
  and	
  sperm,	
  are	
  examples	
  of	
  haploid	
  
cells.	
  When	
  gametes	
  fuse	
  at	
  fertilization,	
  a	
  diploid	
  zygote	
  is	
  formed.	
  The	
  zygote	
  contains	
  one	
  set	
  of	
  chromosomes	
  from	
  
each	
  parent.	
  
	
  	
  
Meiosis	
  is	
  a	
  process	
  that	
  produces	
  haploid	
  (n)	
  cells,	
  such	
  as	
  gametes	
  from	
  diploid	
  (2n)	
  cells.	
  Before	
  meiosis	
  begins,	
  DNA	
  
replication	
  occurs.	
  Following	
  replication,	
  each	
  chromosome	
  consists	
  of	
  two	
  chromatids	
  that	
  are	
  joined	
  by	
  a	
  centromere.	
  
Meiosis	
  involves	
  two	
  successive	
  division	
  of	
  the	
  nucleus.	
  	
  
	
   	
  
VARIETY	
  LEADS	
  TO	
  MORE	
  FIT	
  INDIVIDUALS	
  	
  
	
  	
  
PROCEUDRE:	
  
Interphase:	
  
	
   1.	
  	
   Cut	
  out	
  each	
  strip	
  from	
  the	
  5	
  sets	
  of	
  chromosomes.	
  
	
   2.	
  	
   Start	
  with	
  the	
  original	
  cell	
  that	
  has	
  10	
  chromosomes	
  (5	
  blue	
  and	
  5	
  pink).	
  This	
  is	
  because	
  half	
  your	
  chromosomes	
  	
  
	
   	
   are	
  from	
  your	
  mom	
  and	
  half	
  are	
  from	
  your	
  dad.	
  
	
   3.	
   You	
  should	
  have	
  a	
  pink	
  and	
  blue	
  chromosome	
  1,	
  a	
  pink	
  and	
  blue	
  chromosome	
  2,	
  etc.	
  You	
  should	
  also	
  have	
  one	
  
	
   	
   X-­‐chromosome	
  and	
  one	
  y-­‐chromosome.	
  
	
   4.	
   Take	
  a	
  picture	
  of	
  your	
  chromosomes.	
  
	
  
DNA	
  Replication:	
  
	
   5.	
   Each	
  of	
  these	
  chromosomes	
  will	
  make	
  a	
  copy	
  of	
  themselves	
  and	
  attach	
  at	
  the	
  centromere.	
  The	
  centromere	
  is	
  	
  
	
   	
   represented	
  by	
  the	
  paperclip.	
  	
  
	
   6.	
   Attach	
  the	
  original	
  and	
  copy	
  of	
  each	
  chromosome	
  using	
  the	
  paperclip.	
  
	
  
MEIOSIS	
  I	
  -­‐	
  Prophase	
  I:	
  Crossing	
  Over	
  
	
   7.	
   During	
  Prophase	
  I,	
  pieces	
  of	
  homologous	
  chromosomes	
  break	
  off	
  and	
  switch	
  places	
  with	
  each	
  other.	
  Roll	
  the	
  	
  
	
   	
   dice	
  to	
  determine	
  how	
  many	
  squares	
  of	
  your	
  chromosome	
  will	
  cross	
  over.	
  NOTE:	
  The	
  number	
  cannot	
  be	
  greater	
  	
  
	
   	
   than	
  the	
  number	
  of	
  squares	
  to	
  the	
  centromere.	
  For	
  example,	
  on	
  chromosome	
  4,	
  there	
  are	
  only	
  3	
  squares	
  until	
  	
  
	
   	
   the	
  chromosome,	
  if	
  you	
  roll	
  a	
  4	
  or	
  higher,	
  re-­‐roll	
  until	
  you	
  get	
  a	
  3	
  or	
  lower.	
  
	
   8.	
   Cut	
  with	
  the	
  scissors	
  the	
  chromosome	
  at	
  the	
  determined	
  spot	
  on	
  both	
  chromosomes	
  and	
  switch	
  places.	
  Tape	
  	
  
	
   	
   the	
  pieces	
  of	
  chromosomes	
  together.	
  
	
  	
   9.	
   Repeat	
  with	
  chromosomes	
  1	
  through	
  4,	
  but	
  not	
  the	
  X	
  and	
  y	
  chromosomes	
  –	
  they	
  are	
  not	
  homologous.	
  
	
  
Telephase	
  I:	
  
	
   10.	
   Show	
  what	
  the	
  chromosomes	
  would	
  look	
  like	
  at	
  the	
  end	
  of	
  telophase	
  I.	
  Take	
  a	
  picture	
  of	
  your	
  chromosomes.	
  
	
  
MEIOSIS	
  II:	
  
	
   11.	
   Now	
  separate	
  each	
  numbered	
  chromosome	
  so	
  that	
  there	
  is	
  a	
  chromosome	
  1	
  –	
  4	
  in	
  each	
  gamete	
  and	
  on	
  sex	
  	
  
	
   	
   chromosome.	
  Take	
  a	
  picture	
  of	
  your	
  cells.	
  
	
   12.	
   Upload	
  your	
  pictures	
  to	
  google	
  classroom.	
  
	
   	
  	
  
	
  
DISCUSSION	
  QUESTIONS:	
  
1.	
  	
   What	
  was	
  the	
  diploid	
  number	
  of	
  chromosomes	
  in	
  your	
  original	
  cell?	
  
	
  
	
  
	
  
	
  
2.	
  	
   What	
  is	
  the	
  haploid	
  number	
  of	
  chromosomes	
  in	
  your	
  ending	
  cell?	
  
	
  
	
  
	
  
	
  
3.	
  	
   Are	
  the	
  chromosomes	
  in	
  your	
  gamete	
  cells	
  all	
  the	
  same?	
  Explain	
  why	
  or	
  why	
  not.	
  
	
  
	
  
	
  
	
  
	
  
	
  
4.	
   What	
  happens	
  to	
  the	
  chromosomes	
  during	
  crossing	
  over	
  in	
  Prophase	
  I?	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
5.	
   If	
  a	
  species	
  have	
  6	
  chromosomes	
  in	
  their	
  cells,	
  how	
  many	
  chromosomes	
  would	
  be	
  in	
  their	
  gametes?	
  Draw	
  what	
  the	
  
	
   cells	
  would	
  look	
  like	
  before	
  meiosis	
  and	
  after	
  meiosis	
  in	
  the	
  circles	
  below.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
6.	
   If	
  two	
  parents	
  have	
  4	
  children	
  (no	
  twins),	
  explain	
  how	
  it	
  is	
  not	
  possible	
  for	
  the	
  children	
  to	
  have	
  the	
  same	
  exact	
  
	
   genetic	
  make-­‐up?	
  
	
  

More Related Content

More from Kris Krautkremer

Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdf
Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdfPre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdf
Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdfKris Krautkremer
 
Meiosis - Student (17x11).pdf
Meiosis - Student (17x11).pdfMeiosis - Student (17x11).pdf
Meiosis - Student (17x11).pdfKris Krautkremer
 
Mitosis and Meiosis Identification Practice.pdf
Mitosis and Meiosis Identification Practice.pdfMitosis and Meiosis Identification Practice.pdf
Mitosis and Meiosis Identification Practice.pdfKris Krautkremer
 
OO-036 Mitosis & Meiosis Template 2023.pdf
OO-036 Mitosis & Meiosis Template 2023.pdfOO-036 Mitosis & Meiosis Template 2023.pdf
OO-036 Mitosis & Meiosis Template 2023.pdfKris Krautkremer
 
energy_through_an_ecosystem_worksheet_as.pdf
energy_through_an_ecosystem_worksheet_as.pdfenergy_through_an_ecosystem_worksheet_as.pdf
energy_through_an_ecosystem_worksheet_as.pdfKris Krautkremer
 
Lesson 7.1 - Meiosis Chromosomes (2).pdf
Lesson 7.1 - Meiosis Chromosomes (2).pdfLesson 7.1 - Meiosis Chromosomes (2).pdf
Lesson 7.1 - Meiosis Chromosomes (2).pdfKris Krautkremer
 
Unit 5_ Heredity LOs for glue ins.pdf
Unit 5_ Heredity LOs for glue ins.pdfUnit 5_ Heredity LOs for glue ins.pdf
Unit 5_ Heredity LOs for glue ins.pdfKris Krautkremer
 

More from Kris Krautkremer (9)

Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdf
Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdfPre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdf
Pre-AP_Biology_Unit_04_-_Genetics_Practice_Set (1).pdf
 
Meiosis - Student (17x11).pdf
Meiosis - Student (17x11).pdfMeiosis - Student (17x11).pdf
Meiosis - Student (17x11).pdf
 
DNA Coloring Activity.pdf
DNA Coloring Activity.pdfDNA Coloring Activity.pdf
DNA Coloring Activity.pdf
 
Mitosis and Meiosis Identification Practice.pdf
Mitosis and Meiosis Identification Practice.pdfMitosis and Meiosis Identification Practice.pdf
Mitosis and Meiosis Identification Practice.pdf
 
OO-036 Mitosis & Meiosis Template 2023.pdf
OO-036 Mitosis & Meiosis Template 2023.pdfOO-036 Mitosis & Meiosis Template 2023.pdf
OO-036 Mitosis & Meiosis Template 2023.pdf
 
energy_through_an_ecosystem_worksheet_as.pdf
energy_through_an_ecosystem_worksheet_as.pdfenergy_through_an_ecosystem_worksheet_as.pdf
energy_through_an_ecosystem_worksheet_as.pdf
 
Lesson 7.1 - Meiosis Chromosomes (2).pdf
Lesson 7.1 - Meiosis Chromosomes (2).pdfLesson 7.1 - Meiosis Chromosomes (2).pdf
Lesson 7.1 - Meiosis Chromosomes (2).pdf
 
Unit 5_ Heredity LOs for glue ins.pdf
Unit 5_ Heredity LOs for glue ins.pdfUnit 5_ Heredity LOs for glue ins.pdf
Unit 5_ Heredity LOs for glue ins.pdf
 
May pd 2012 gfs
May pd 2012 gfsMay pd 2012 gfs
May pd 2012 gfs
 

Lesson 7.1 - Modeling Meiosis Lab (1).pdf

  • 1. MODELING  MEIOSIS  LAB     NAME_________________________________   PERIOD________________________________     MATERIALS:     blue  chromosome  cut  out       tape       scissors     pink  chromosome  cut  out       10  paperclips     tape     INTRODUCTION:   The  body  cells  of  plant  and  animals  are  diploid.  A  diploid  (2n)  cell  has  two  sets  of  chromosomes  in  its  nucleus.  A  cell  with   only  one  set  of  chromosomes  in  its  nucleus  is  termed  haploid  (n).  Gametes,  egg  and  sperm,  are  examples  of  haploid   cells.  When  gametes  fuse  at  fertilization,  a  diploid  zygote  is  formed.  The  zygote  contains  one  set  of  chromosomes  from   each  parent.       Meiosis  is  a  process  that  produces  haploid  (n)  cells,  such  as  gametes  from  diploid  (2n)  cells.  Before  meiosis  begins,  DNA   replication  occurs.  Following  replication,  each  chromosome  consists  of  two  chromatids  that  are  joined  by  a  centromere.   Meiosis  involves  two  successive  division  of  the  nucleus.         VARIETY  LEADS  TO  MORE  FIT  INDIVIDUALS         PROCEUDRE:   Interphase:     1.     Cut  out  each  strip  from  the  5  sets  of  chromosomes.     2.     Start  with  the  original  cell  that  has  10  chromosomes  (5  blue  and  5  pink).  This  is  because  half  your  chromosomes         are  from  your  mom  and  half  are  from  your  dad.     3.   You  should  have  a  pink  and  blue  chromosome  1,  a  pink  and  blue  chromosome  2,  etc.  You  should  also  have  one       X-­‐chromosome  and  one  y-­‐chromosome.     4.   Take  a  picture  of  your  chromosomes.     DNA  Replication:     5.   Each  of  these  chromosomes  will  make  a  copy  of  themselves  and  attach  at  the  centromere.  The  centromere  is         represented  by  the  paperclip.       6.   Attach  the  original  and  copy  of  each  chromosome  using  the  paperclip.     MEIOSIS  I  -­‐  Prophase  I:  Crossing  Over     7.   During  Prophase  I,  pieces  of  homologous  chromosomes  break  off  and  switch  places  with  each  other.  Roll  the         dice  to  determine  how  many  squares  of  your  chromosome  will  cross  over.  NOTE:  The  number  cannot  be  greater         than  the  number  of  squares  to  the  centromere.  For  example,  on  chromosome  4,  there  are  only  3  squares  until         the  chromosome,  if  you  roll  a  4  or  higher,  re-­‐roll  until  you  get  a  3  or  lower.     8.   Cut  with  the  scissors  the  chromosome  at  the  determined  spot  on  both  chromosomes  and  switch  places.  Tape         the  pieces  of  chromosomes  together.       9.   Repeat  with  chromosomes  1  through  4,  but  not  the  X  and  y  chromosomes  –  they  are  not  homologous.     Telephase  I:     10.   Show  what  the  chromosomes  would  look  like  at  the  end  of  telophase  I.  Take  a  picture  of  your  chromosomes.     MEIOSIS  II:     11.   Now  separate  each  numbered  chromosome  so  that  there  is  a  chromosome  1  –  4  in  each  gamete  and  on  sex         chromosome.  Take  a  picture  of  your  cells.     12.   Upload  your  pictures  to  google  classroom.          
  • 2. DISCUSSION  QUESTIONS:   1.     What  was  the  diploid  number  of  chromosomes  in  your  original  cell?           2.     What  is  the  haploid  number  of  chromosomes  in  your  ending  cell?           3.     Are  the  chromosomes  in  your  gamete  cells  all  the  same?  Explain  why  or  why  not.               4.   What  happens  to  the  chromosomes  during  crossing  over  in  Prophase  I?                 5.   If  a  species  have  6  chromosomes  in  their  cells,  how  many  chromosomes  would  be  in  their  gametes?  Draw  what  the     cells  would  look  like  before  meiosis  and  after  meiosis  in  the  circles  below.                                       6.   If  two  parents  have  4  children  (no  twins),  explain  how  it  is  not  possible  for  the  children  to  have  the  same  exact     genetic  make-­‐up?