SlideShare a Scribd company logo
1 of 1
Download to read offline
FORC differential dissection of soft biphase
magnetic ribbons
J.C. Martínez-García*, M. Rivas*, D. Lago-Cachón, J.A. García
Departamento de Física de la Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques,
33204 Gijón, España.
*Emails: jcmg@uniovi.es, rivas@uniovi.es
Unravelling the information contained in First Order Reversal Curves (FORC) is a hot topic. FORC
differential dissection leads to a simple physical interpretation of both the SFDs and the FORC di-
agrams, eluding the usual reference to the CPM which is not generally applicable. The technique
provides a systematic procedure of discriminating the magnetic phases as well as the dominant
interactions in multiphase systems.
 Soft Sample: Co69B12Si12Fe4Mo2Ni1 ribbon annealed
at 505C for 30 min with incipient precipitation of hcp
Co crystallites. The peak in the SFD comes from the soft
residual amorphous matrix.
The shift of the ascending side of the peak produces
the negative interaction spot (I-spot), due to a positive
coupling.
The disappearance of the hard-phase plateau produc-
es the extinction spot (E-spot) which emerges below
the H=-Hr axis due again to the positive coupling.
The scheme shows how the evolution of the SFD with
the reversal field is related to the sign of the interac-
tion.
Nano
Bio
Análisis
 Hard Sample: Annealed at
520C for 30 min producing total
disappearance of the soft amor-
phous matrix.
We observe as well the distinc-
tive features of positive cou-
pling.
 Biphase Sample: Annealed at
510C for 30 min producing a
hard-soft magnetic system.
Both peaks get closer respect to
their position in the monophase
SFDs, indicating positive mutual
interaction.
Soft Sample FORC diagram
Hard Sample FORC diagram
Biphase Sample FORC diagram
I-spot
E-spot
I-spot
E-spot
I-spots
E-spot

More Related Content

More from Montserrat Rivas

Detección ultrarrápida mediante marcaje magnético
Detección ultrarrápida mediante marcaje magnéticoDetección ultrarrápida mediante marcaje magnético
Detección ultrarrápida mediante marcaje magnéticoMontserrat Rivas
 
Meander-line structure for eddy-current sensing of magnetic nanoparticles
Meander-line structure for eddy-current sensing of magnetic nanoparticlesMeander-line structure for eddy-current sensing of magnetic nanoparticles
Meander-line structure for eddy-current sensing of magnetic nanoparticlesMontserrat Rivas
 
Poster 2010 IEEE Summer School
Poster 2010 IEEE Summer SchoolPoster 2010 IEEE Summer School
Poster 2010 IEEE Summer SchoolMontserrat Rivas
 
Conferencia Santiago de Cuba 2011
Conferencia Santiago de Cuba 2011Conferencia Santiago de Cuba 2011
Conferencia Santiago de Cuba 2011Montserrat Rivas
 
2011 ISMANAM Magnetoimpedance David
2011 ISMANAM Magnetoimpedance David2011 ISMANAM Magnetoimpedance David
2011 ISMANAM Magnetoimpedance DavidMontserrat Rivas
 

More from Montserrat Rivas (10)

Cuieet Gamificación
Cuieet GamificaciónCuieet Gamificación
Cuieet Gamificación
 
Detección ultrarrápida mediante marcaje magnético
Detección ultrarrápida mediante marcaje magnéticoDetección ultrarrápida mediante marcaje magnético
Detección ultrarrápida mediante marcaje magnético
 
Nba magnetic materials
Nba magnetic materialsNba magnetic materials
Nba magnetic materials
 
Meander-line structure for eddy-current sensing of magnetic nanoparticles
Meander-line structure for eddy-current sensing of magnetic nanoparticlesMeander-line structure for eddy-current sensing of magnetic nanoparticles
Meander-line structure for eddy-current sensing of magnetic nanoparticles
 
Poster 2010 IEEE Summer School
Poster 2010 IEEE Summer SchoolPoster 2010 IEEE Summer School
Poster 2010 IEEE Summer School
 
Poster NANOfutures 2010
Poster NANOfutures 2010 Poster NANOfutures 2010
Poster NANOfutures 2010
 
Conferencia Santiago de Cuba 2011
Conferencia Santiago de Cuba 2011Conferencia Santiago de Cuba 2011
Conferencia Santiago de Cuba 2011
 
2011 ISMANAM FeAl Pablo
2011 ISMANAM FeAl Pablo2011 ISMANAM FeAl Pablo
2011 ISMANAM FeAl Pablo
 
2011 ISMANAM Magnetoimpedance David
2011 ISMANAM Magnetoimpedance David2011 ISMANAM Magnetoimpedance David
2011 ISMANAM Magnetoimpedance David
 
2011 09 bienal fisica
2011 09 bienal fisica2011 09 bienal fisica
2011 09 bienal fisica
 

Ismanam2013 for cs_poster

  • 1. FORC differential dissection of soft biphase magnetic ribbons J.C. Martínez-García*, M. Rivas*, D. Lago-Cachón, J.A. García Departamento de Física de la Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón, España. *Emails: jcmg@uniovi.es, rivas@uniovi.es Unravelling the information contained in First Order Reversal Curves (FORC) is a hot topic. FORC differential dissection leads to a simple physical interpretation of both the SFDs and the FORC di- agrams, eluding the usual reference to the CPM which is not generally applicable. The technique provides a systematic procedure of discriminating the magnetic phases as well as the dominant interactions in multiphase systems.  Soft Sample: Co69B12Si12Fe4Mo2Ni1 ribbon annealed at 505C for 30 min with incipient precipitation of hcp Co crystallites. The peak in the SFD comes from the soft residual amorphous matrix. The shift of the ascending side of the peak produces the negative interaction spot (I-spot), due to a positive coupling. The disappearance of the hard-phase plateau produc- es the extinction spot (E-spot) which emerges below the H=-Hr axis due again to the positive coupling. The scheme shows how the evolution of the SFD with the reversal field is related to the sign of the interac- tion. Nano Bio Análisis  Hard Sample: Annealed at 520C for 30 min producing total disappearance of the soft amor- phous matrix. We observe as well the distinc- tive features of positive cou- pling.  Biphase Sample: Annealed at 510C for 30 min producing a hard-soft magnetic system. Both peaks get closer respect to their position in the monophase SFDs, indicating positive mutual interaction. Soft Sample FORC diagram Hard Sample FORC diagram Biphase Sample FORC diagram I-spot E-spot I-spot E-spot I-spots E-spot