GRAVITATIONAL WAVES
and
BINARY SYSTEMS (lecture 3)
Thibault Damour
Institut des Hautes Etudes Scientifiques
Waves on the lake: the astrophysics behind gravitational waves
Lake Como School of Advanced Studies - May 28 - June 1, 2018,
Como, Italy
2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]
13
3
Explicit Source Quadrupole Moment at 3.5 PN for a binary system
(Blanchet-Damour-Esposito-Farese-Iyer’05; Blanchet et al;Faye-Marsat-Blanchet-Iyer’12)
Perturbative computation of GW flux from binary system
• lowest order : Einstein 1918 Peters-Mathews 63
• 1 + (v2 /c2) : Wagoner-Will 76
• … + (v3 /c3) : Blanchet-Damour 92, Wiseman 93
• … + (v4 /c4) : Blanchet-Damour-Iyer Will-Wiseman 95
• … + (v5 /c5) : Blanchet 96
• … + (v6 /c6) : Blanchet-Damour-Esposito-Farèse-Iyer 2004
• … + (v7 /c7) : Blanchet
x =
⇣v
c
⌘2
=
✓
G(m1 + m2)⌦
c3
◆2
3
=
✓
⇡G(m1 + m2)f
c3
◆2
3
⌫ =
m1m2
(m1 + m2)2
29
Effective One Body (EOB) Method)
Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001 ;Damour-Iyer-Nagar 2008
Predictions as early as 2000 :
continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final
mass
Resummation of perturbative PN results description of the coalescence
+ addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972)
Buonanno-Damour 2000
First complete waveforms for BBH coalescences: analytical EOB
Non-spinning BHs
Buonanno-Damour 2000
Spinning BHs
Buonanno-Chen-Damour
Nov 2005:
« to show the
promise
of a purely
analytical
EOB-based
approach »
EOB THEORY + EOB[NR] + EOB[SF] DEVELOPMENTS
8
Buonanno,Damour 99 (2 PN Hamiltonian)
Buonanno,Damour 00 (Rad.Reac. full waveform)
Damour, Jaranowski,Schäfer 00 (3 PN Hamiltonian)
Damour 01, (spinning bodies)
Buonanno, Chen, Damour 05,
Damour-Jaranowski,Schäfer 08, Barausse, Buonanno, 10, Nagar 11,
Balmelli-Jetzer 12, Taracchini et al 12,14, Damour,Nagar 14
Damour, Nagar 07, (factorized waveform)
Damour, Iyer, Nagar 08,
Pan et al. 11
Damour, Nagar 10 (BNS tidal effects)
Bini-Damour-Faye 12
Bini, Damour 13, Damour, Jaranowski, Schäfer 15 (4 PN Hamiltonian)
EOB vs NR and EOB[NR]
Buonanno, Cook, Pretorius 07,
Buonanno, Pan, Taracchini 08-
Damour-Nagar 08-
EOB vs SF and EOB[SF]
Damour 09
Barack-Sago-Damour 10
Barausse-Buonanno-LeTiec 12
Akcay-Barack-Damour-Sago 12
Bini-Damour 13-16
LeTiec 15
Bini-Damour-Geralico 16
Hopper-Kavanagh-Ottewill 16
Akcay-vandeMeent 16
Reduced Order Model version (Pürrer 2014, 2016) of
EOB[NR] (Taracchini et al 2014)
Phenomenological model (Ajith et al 2007, Hannam et
al 2014, Husa et al 2016, Kahn et al 2016)
of FFT of hybrids EOB + NR
EOB vs PM
Damour 16
EOB: resumming the dynamics of a two-body system (m_1,m_2,S_1,S_2)
in terms of the dynamics of a particle of mass mu and spin S*
moving in some effective metric g(M,S)
Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild
ds2
e↵ = A(r; ⌫) dt2
+ B(r; ⌫) dr2
+ r2
d✓2
+ sin2
✓ d'2
µ =
m1m2
m1 + m2
M = m1 + m2 ⌫ =
µ
M
=
m1m2
(m1 + m2)2
Real dynamics versus Effective dynamics
G G2
1 loop
G3
2 loops
G4
3 loops
Real dynamics Effective dynamics
Effective metric for non-spinning bodies: a nu-deformation of
Schwarzschild
31
⌫ =
m1m2
(m1 + m2)2
ds2
e↵ = A(r; ⌫) dt2
+ B(r; ⌫) dr2
+ r2
d✓2
+ sin2
✓ d'2
TWO-BODY/EOB “CORRESPONDENCE”:
THINK QUANTUM-MECHANICALLY (J.A. WHEELER)
11
1:1 map
(m1, m2)
µ =
m1m2
m1 + m2
ge
µ⇥
Bohr-Sommerfeld’s
Quantization Conditions
(action-angle variables &
Delaunay Hamiltonian)
J = ⌃ =
1
2
p d⇥
N = n = Ir + J
Ir =
1
2
prdr
Real 2-body system
(in the c.o.m. frame)
An effective particle
in some effective metric
Hclassical
(q, p) Equantum
(Ia = nah) = f 1[Equantum
e (Ie
a = nah)]
E = f(E)
Hclassical
(Ia)
µ2
+ gµ⇥
e
⇥Se
⇥xµ
⇥Se
⇥x⇥
+ O(p4
) = 0
2-body Taylor-expanded N + 1PN + 2PN Hamiltonian
11
13
Technical aspects of EOB
After going to the c.m. frame (p_1=-p_2=p) look for a canonical transformation G(q,p’)
Parametrizing a general energy-map:
System of algebraic eqs for unknown coefficients; impose b1=2
14
EOB results at 1PN and 2PN
2-body Taylor-expanded 3PN Hamiltonian [JS 98, DJS 01]
12
16
EOB results at 3PN (DJS’00)
Less eqs than unknowns ? Need to introduce higher-in-momenta contributions
post-geodesic effective mass-shell condition
at 3PN
DJS gauge: z1=z2=0 to have only pr^4 terms
17
3PN EOB
2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]
13
Resummed (non-spinning) 4PN EOB interaction potentials
ds2
e↵ = A(r; ⌫) dt2
+ B(r; ⌫) dr2
+ r2
d✓2
+ sin2
✓ d'2 ¯D ⌘ (A B) 1
u ⌘
GM
R c2
AEOB
(u) = Pade1
4[AP N
(u)]
20
Spinning EOB effective Hamiltonian
He↵ = Horb + Hso
S = S1 + S2 ; S⇤ =
m2
m1
S1 +
m1
m2
S2 ,
r3
GPN
S = 2
5
8
⌫u
27
8
⌫p2
r + ⌫
✓
51
4
u2 21
2
up2
r +
5
8
p4
r
◆
+ ⌫2
✓
1
8
u2
+
23
8
up2
r +
35
8
p4
r
◆
r3
GPN
S⇤
=
3
2
9
8
u
15
8
p2
r + ⌫
✓
3
4
u
9
4
p2
r
◆
27
16
u2
+
69
16
up2
r +
35
16
p4
r + ⌫
✓
39
4
u2 9
4
up2
r +
5
2
p4
r
◆
+⌫2
✓
3
16
u2
+
57
16
up2
r +
45
16
p4
r
◆
Gyrogravitomagnetic ratios (when neglecting spin^2 effects)
! HEOB = Mc2
s
1 + 2⌫
✓
He↵
µc2
1
◆
Damour’01, Damour-Jaranowski-Schaefer’08,Barausse-Buonanno’10, Damour-Nagar’14, ……
Resummed EOB waveform
(Damour-Iyer-Sathyaprakash ’98) Damour-Nagar ’07, Damour-Iyer -Nagar ’08, Pan et al. ‘10
NB: T_lm
resums an
infinite number
of terms and
already contains,
eg, 4.5PN tail^3
terms
(Messina-Nagar17)
STRUCTURE OF THE EOB FORMALISM
EOB Hamiltonian
Resummed (BD99)
PN dynamics
(DD81,D82,DJS01,IF03,BDIF04
)
EOB Rad. Reac. force
ˆFHEOB
Factorized waveform
h⇧m = h
(N,⇥)
⇧m
ˆh
(⇥)
⇧m
ˆh
(⇥)
⇧m = ˆS
(⇥)
eff T⇧mei m ⇧
⇧m
Resummed (DN07,DIN08)Resummed (DIS98)
BH perturbations
RW57, Z70, Z72
hEOB
m = (tm t)hinsplunge
m (t) + (t tm)hringdown
m (t)
hringdown
⇤m (t) =
N
C+
N e
+
N (t tm)
EOB waveform
PN waveform
BD89, B95&05,ABIQ04,
PN rad losses
WW76, BDIWW95, BDEFI
05
Matching at merger time
⇥N = N + i⇤N
QNMs spectrum
BNS: tides
(Love numbers)
22
OTHER EOB-NR COMPARISONS
23
Periastron precession
(LeTiec-Mroue-Barack-Buonanno-Pfeiffer-Sago-Tarachini 11, Hinderer et al 13)
−0.13
−0.12
−0.11
−0.1
−0.09
−0.08
−0.07
−0.06
−0.05
−0.04
Eb
4PN
NR
EOB, Fr = 0
EOB, Fr ̸= 0
2.8 3 3.2 3.4 3.6 3.8
0
1
2
3
x 10
−3
j
∆EEOBNR
b
−0.039
−0.0388
−0.0386
−0.0384
−0.0382
−0.038
−0.0378
q = 1, (χ1, χ2) = (0, 0)
Energetics (Nagar-Damour-Reisswig-Pollney 16
Scattering angle (Damour-Guercilena-
Hinder-Hopper-Nagar-Rezzolla 14)
EOB AND GSF
24
Comparable-mass case:
Gravitational Self-Force Theory : m1 << m2
• Analytical high-PN results : Blanchet-Detweiler-LeTiec-Whiting ’10,
Damour ’10, Blanchet et al ’10, LeTiec et al ’12, Bini-Damour ’13-15,
Kavanagh-Ottewill-Wardell ’15
• (gauge-invariant) Numerical results : Detweiler ’08, Barack-Sago ’09,
Blanchet-Detweiler-LeTiec-Whiting ’10, Barack-Damour-Sago ’10, Shah-
Friedman-Keidl ’12, Dolan et al ’14, Nolan et al ’15, …
• Analytical PN results from high-precision (hundreds to thousands of
digits !) numerical results : Shah-Friedman-Whiting ’14, Johnson-McDaniel-
Shah-Whiting ’15
m1 ⇠ m2
Bini-Damour-Geralico’16, Hopper-Kavanagh-Ottewill’16
Akcay-van de Meent ‘16
25
Gravitational Self-Force
Black-Hole perturbation theory `a la Regge-Wheeler-Zerilli-Mano-Suzuki-Takasugi
EOB, SF, EOB[SF], LISA ETC
26
Remarkable cancellations in EOB expansions in nu=m1m2/(m1+m2)^2: while
EOB[SF] program: improve the few EOB gauge-invariant potentials by SF-computing
(analytically or numerically) the contributions linear in nu. Recently implemented for
A, B, Q, gS, gS* (Bini,Damour,Geralico,Kavanagh,Akcay, van de Meent, Hopper,Wardell,Ottewill,…
Computation of 4PN O(nu) term in A from numerical (Barausse-Buonanno-LeTiec’12)
and analytical (Bini-Damour’13) SF computation;
Confirmation of all 4PN O(nu) terms of Damour-Jaranowski-Schaefer’14’15 from SF
computations (Barack-Damour-Sago, Bini-Damour-Geralico, van de Meent)
Aim: define template banks for LISA
GSF : ANALYTICAL HIGH-PN RESULTS
27
Bini-Damour 15 Kavanagh et al 15
28
Numerical SF computation of a(u) function
(using LeTiec-Blanchet-Whiting’12, Barausse-Buonanno-LeTiec’12), Akcay-Barack-Damour-Sago ‘12
A(u, ⌫) = 1 2u + ⌫a(u) + O(⌫2
) ; u ⌘
GM
c2R
Singularity at the light-ring: u=1/3
Factorize the energy and the LO PN: 2u^3
FIRST EOB GYROGRAVITOMAGNETIC RATIO FROM SF
29
Bini-Damour-Geralico’15
From NR calibration
From SF

Gravitational Waves and Binary Systems (3) - Thibault Damour

  • 1.
    GRAVITATIONAL WAVES and BINARY SYSTEMS(lecture 3) Thibault Damour Institut des Hautes Etudes Scientifiques Waves on the lake: the astrophysics behind gravitational waves Lake Como School of Advanced Studies - May 28 - June 1, 2018, Como, Italy
  • 2.
    2-body Taylor-expanded 4PNHamiltonian [DJS, 2014] 13
  • 3.
    3 Explicit Source QuadrupoleMoment at 3.5 PN for a binary system (Blanchet-Damour-Esposito-Farese-Iyer’05; Blanchet et al;Faye-Marsat-Blanchet-Iyer’12)
  • 4.
    Perturbative computation ofGW flux from binary system • lowest order : Einstein 1918 Peters-Mathews 63 • 1 + (v2 /c2) : Wagoner-Will 76 • … + (v3 /c3) : Blanchet-Damour 92, Wiseman 93 • … + (v4 /c4) : Blanchet-Damour-Iyer Will-Wiseman 95 • … + (v5 /c5) : Blanchet 96 • … + (v6 /c6) : Blanchet-Damour-Esposito-Farèse-Iyer 2004 • … + (v7 /c7) : Blanchet x = ⇣v c ⌘2 = ✓ G(m1 + m2)⌦ c3 ◆2 3 = ✓ ⇡G(m1 + m2)f c3 ◆2 3 ⌫ = m1m2 (m1 + m2)2
  • 5.
  • 6.
    Effective One Body(EOB) Method) Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001 ;Damour-Iyer-Nagar 2008 Predictions as early as 2000 : continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass Resummation of perturbative PN results description of the coalescence + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972) Buonanno-Damour 2000
  • 7.
    First complete waveformsfor BBH coalescences: analytical EOB Non-spinning BHs Buonanno-Damour 2000 Spinning BHs Buonanno-Chen-Damour Nov 2005: « to show the promise of a purely analytical EOB-based approach »
  • 8.
    EOB THEORY +EOB[NR] + EOB[SF] DEVELOPMENTS 8 Buonanno,Damour 99 (2 PN Hamiltonian) Buonanno,Damour 00 (Rad.Reac. full waveform) Damour, Jaranowski,Schäfer 00 (3 PN Hamiltonian) Damour 01, (spinning bodies) Buonanno, Chen, Damour 05, Damour-Jaranowski,Schäfer 08, Barausse, Buonanno, 10, Nagar 11, Balmelli-Jetzer 12, Taracchini et al 12,14, Damour,Nagar 14 Damour, Nagar 07, (factorized waveform) Damour, Iyer, Nagar 08, Pan et al. 11 Damour, Nagar 10 (BNS tidal effects) Bini-Damour-Faye 12 Bini, Damour 13, Damour, Jaranowski, Schäfer 15 (4 PN Hamiltonian) EOB vs NR and EOB[NR] Buonanno, Cook, Pretorius 07, Buonanno, Pan, Taracchini 08- Damour-Nagar 08- EOB vs SF and EOB[SF] Damour 09 Barack-Sago-Damour 10 Barausse-Buonanno-LeTiec 12 Akcay-Barack-Damour-Sago 12 Bini-Damour 13-16 LeTiec 15 Bini-Damour-Geralico 16 Hopper-Kavanagh-Ottewill 16 Akcay-vandeMeent 16 Reduced Order Model version (Pürrer 2014, 2016) of EOB[NR] (Taracchini et al 2014) Phenomenological model (Ajith et al 2007, Hannam et al 2014, Husa et al 2016, Kahn et al 2016) of FFT of hybrids EOB + NR EOB vs PM Damour 16
  • 9.
    EOB: resumming thedynamics of a two-body system (m_1,m_2,S_1,S_2) in terms of the dynamics of a particle of mass mu and spin S* moving in some effective metric g(M,S) Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild ds2 e↵ = A(r; ⌫) dt2 + B(r; ⌫) dr2 + r2 d✓2 + sin2 ✓ d'2 µ = m1m2 m1 + m2 M = m1 + m2 ⌫ = µ M = m1m2 (m1 + m2)2
  • 10.
    Real dynamics versusEffective dynamics G G2 1 loop G3 2 loops G4 3 loops Real dynamics Effective dynamics Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild 31 ⌫ = m1m2 (m1 + m2)2 ds2 e↵ = A(r; ⌫) dt2 + B(r; ⌫) dr2 + r2 d✓2 + sin2 ✓ d'2
  • 11.
    TWO-BODY/EOB “CORRESPONDENCE”: THINK QUANTUM-MECHANICALLY(J.A. WHEELER) 11 1:1 map (m1, m2) µ = m1m2 m1 + m2 ge µ⇥ Bohr-Sommerfeld’s Quantization Conditions (action-angle variables & Delaunay Hamiltonian) J = ⌃ = 1 2 p d⇥ N = n = Ir + J Ir = 1 2 prdr Real 2-body system (in the c.o.m. frame) An effective particle in some effective metric Hclassical (q, p) Equantum (Ia = nah) = f 1[Equantum e (Ie a = nah)] E = f(E) Hclassical (Ia) µ2 + gµ⇥ e ⇥Se ⇥xµ ⇥Se ⇥x⇥ + O(p4 ) = 0
  • 12.
    2-body Taylor-expanded N+ 1PN + 2PN Hamiltonian 11
  • 13.
    13 Technical aspects ofEOB After going to the c.m. frame (p_1=-p_2=p) look for a canonical transformation G(q,p’) Parametrizing a general energy-map: System of algebraic eqs for unknown coefficients; impose b1=2
  • 14.
    14 EOB results at1PN and 2PN
  • 15.
    2-body Taylor-expanded 3PNHamiltonian [JS 98, DJS 01] 12
  • 16.
    16 EOB results at3PN (DJS’00) Less eqs than unknowns ? Need to introduce higher-in-momenta contributions post-geodesic effective mass-shell condition at 3PN DJS gauge: z1=z2=0 to have only pr^4 terms
  • 17.
  • 18.
    2-body Taylor-expanded 4PNHamiltonian [DJS, 2014] 13
  • 19.
    Resummed (non-spinning) 4PNEOB interaction potentials ds2 e↵ = A(r; ⌫) dt2 + B(r; ⌫) dr2 + r2 d✓2 + sin2 ✓ d'2 ¯D ⌘ (A B) 1 u ⌘ GM R c2 AEOB (u) = Pade1 4[AP N (u)]
  • 20.
    20 Spinning EOB effectiveHamiltonian He↵ = Horb + Hso S = S1 + S2 ; S⇤ = m2 m1 S1 + m1 m2 S2 , r3 GPN S = 2 5 8 ⌫u 27 8 ⌫p2 r + ⌫ ✓ 51 4 u2 21 2 up2 r + 5 8 p4 r ◆ + ⌫2 ✓ 1 8 u2 + 23 8 up2 r + 35 8 p4 r ◆ r3 GPN S⇤ = 3 2 9 8 u 15 8 p2 r + ⌫ ✓ 3 4 u 9 4 p2 r ◆ 27 16 u2 + 69 16 up2 r + 35 16 p4 r + ⌫ ✓ 39 4 u2 9 4 up2 r + 5 2 p4 r ◆ +⌫2 ✓ 3 16 u2 + 57 16 up2 r + 45 16 p4 r ◆ Gyrogravitomagnetic ratios (when neglecting spin^2 effects) ! HEOB = Mc2 s 1 + 2⌫ ✓ He↵ µc2 1 ◆ Damour’01, Damour-Jaranowski-Schaefer’08,Barausse-Buonanno’10, Damour-Nagar’14, ……
  • 21.
    Resummed EOB waveform (Damour-Iyer-Sathyaprakash’98) Damour-Nagar ’07, Damour-Iyer -Nagar ’08, Pan et al. ‘10 NB: T_lm resums an infinite number of terms and already contains, eg, 4.5PN tail^3 terms (Messina-Nagar17)
  • 22.
    STRUCTURE OF THEEOB FORMALISM EOB Hamiltonian Resummed (BD99) PN dynamics (DD81,D82,DJS01,IF03,BDIF04 ) EOB Rad. Reac. force ˆFHEOB Factorized waveform h⇧m = h (N,⇥) ⇧m ˆh (⇥) ⇧m ˆh (⇥) ⇧m = ˆS (⇥) eff T⇧mei m ⇧ ⇧m Resummed (DN07,DIN08)Resummed (DIS98) BH perturbations RW57, Z70, Z72 hEOB m = (tm t)hinsplunge m (t) + (t tm)hringdown m (t) hringdown ⇤m (t) = N C+ N e + N (t tm) EOB waveform PN waveform BD89, B95&05,ABIQ04, PN rad losses WW76, BDIWW95, BDEFI 05 Matching at merger time ⇥N = N + i⇤N QNMs spectrum BNS: tides (Love numbers) 22
  • 23.
    OTHER EOB-NR COMPARISONS 23 Periastronprecession (LeTiec-Mroue-Barack-Buonanno-Pfeiffer-Sago-Tarachini 11, Hinderer et al 13) −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 Eb 4PN NR EOB, Fr = 0 EOB, Fr ̸= 0 2.8 3 3.2 3.4 3.6 3.8 0 1 2 3 x 10 −3 j ∆EEOBNR b −0.039 −0.0388 −0.0386 −0.0384 −0.0382 −0.038 −0.0378 q = 1, (χ1, χ2) = (0, 0) Energetics (Nagar-Damour-Reisswig-Pollney 16 Scattering angle (Damour-Guercilena- Hinder-Hopper-Nagar-Rezzolla 14)
  • 24.
    EOB AND GSF 24 Comparable-masscase: Gravitational Self-Force Theory : m1 << m2 • Analytical high-PN results : Blanchet-Detweiler-LeTiec-Whiting ’10, Damour ’10, Blanchet et al ’10, LeTiec et al ’12, Bini-Damour ’13-15, Kavanagh-Ottewill-Wardell ’15 • (gauge-invariant) Numerical results : Detweiler ’08, Barack-Sago ’09, Blanchet-Detweiler-LeTiec-Whiting ’10, Barack-Damour-Sago ’10, Shah- Friedman-Keidl ’12, Dolan et al ’14, Nolan et al ’15, … • Analytical PN results from high-precision (hundreds to thousands of digits !) numerical results : Shah-Friedman-Whiting ’14, Johnson-McDaniel- Shah-Whiting ’15 m1 ⇠ m2 Bini-Damour-Geralico’16, Hopper-Kavanagh-Ottewill’16 Akcay-van de Meent ‘16
  • 25.
    25 Gravitational Self-Force Black-Hole perturbationtheory `a la Regge-Wheeler-Zerilli-Mano-Suzuki-Takasugi
  • 26.
    EOB, SF, EOB[SF],LISA ETC 26 Remarkable cancellations in EOB expansions in nu=m1m2/(m1+m2)^2: while EOB[SF] program: improve the few EOB gauge-invariant potentials by SF-computing (analytically or numerically) the contributions linear in nu. Recently implemented for A, B, Q, gS, gS* (Bini,Damour,Geralico,Kavanagh,Akcay, van de Meent, Hopper,Wardell,Ottewill,… Computation of 4PN O(nu) term in A from numerical (Barausse-Buonanno-LeTiec’12) and analytical (Bini-Damour’13) SF computation; Confirmation of all 4PN O(nu) terms of Damour-Jaranowski-Schaefer’14’15 from SF computations (Barack-Damour-Sago, Bini-Damour-Geralico, van de Meent) Aim: define template banks for LISA
  • 27.
    GSF : ANALYTICALHIGH-PN RESULTS 27 Bini-Damour 15 Kavanagh et al 15
  • 28.
    28 Numerical SF computationof a(u) function (using LeTiec-Blanchet-Whiting’12, Barausse-Buonanno-LeTiec’12), Akcay-Barack-Damour-Sago ‘12 A(u, ⌫) = 1 2u + ⌫a(u) + O(⌫2 ) ; u ⌘ GM c2R Singularity at the light-ring: u=1/3 Factorize the energy and the LO PN: 2u^3
  • 29.
    FIRST EOB GYROGRAVITOMAGNETICRATIO FROM SF 29 Bini-Damour-Geralico’15 From NR calibration From SF