foynomials (Grade o) (RAS) (,)
Aaw the arath of the tbonamial )e 2z
Alno,ind the Coordinaten_of theport nhe
þataboa
clacsmate
2)Aaw the grah of the fatynGrial f)a
3Aras the gaph of the auadrat paynsia
Date
4)Aaw the qoph of the baynamial S)=x6x+
S)ATa the qrah of thebonmial )
-4 t4x-A. AleO,d thhe Netex
8)TA each
)Araw the qraph t thebsynamial f)a
2?-4xt 5..
hicthone
the falauring grah in the
graph of a foty
faynamial, then identity rhieh
comohando toa
Coeahando to a auodrohe þounomial?
X
y'
()
y-f() yg()
(W)
Fig. 2.12
X
(H)
[NCERT EXEMPLARI
X
are qven in below
In each of the following:
x.
A
y
y= a+ bx+ c
0)
(iv)
y ar+ bx+ c
X
y= ax+ bx+ c
y ax+ bx+
y'
(v)
Fig. 2.13
A
X
X
y
y ar+ bx+ c
P
y
P
(1)
(v)
y= ax+ br+ c
1o) Fnd the 2eras at theauadrate patynamial x't+1R,
and veriy the latn between the 2eros and its
loatgioents.
ie
I)ind he 2utoS. of the quadatie ktynomial
#)a bz-3,andvurçu the relatianahi between
the zurs andts coetticAnts
Data
12) Hnd the 2oos of the botynamiad fl)a 4u
+8u,and veitu the relathionahi etween
the zes and its eoethients
a
Paga
3) Fnd a auadatie batunial eoch ith the
gren munbu as the um and roduct o its
2U05 Jakucive
15)T one
4) C the roduct of the 2etos of the koynaial
az-6z-6 is4kind the vae ota
-(K2) in nucitrocal it she other,than fnd
he value o .
t 6a is recbrocal ot the othet, hnd the
Nae o a
o&
)rd the zeroS of the bsunsmialax-R
and veity the nelation etwean tthe enetiurds
and enos f the potynamiak.
18)ind the 2eras ot th paynamialt)
43+5x-23, and veity the latignahi
hatuseen the 2eroA and its coahfcunts
a) Find the zeros ot the auadratieþoynamial
A) ab + (6-ac)z-be and venisy the
alahsnehih beten the ROS and its caetticints.
20) TÊ d and axe the zNOS Of the quadatie
bstuamial f)2z-þx tq, thenfnd the values
a) Fnd a quadrat'e þotynomial, the um and
product of nhose 2en0e0 aree a and -
reabechrey. Alao, ind its 2eroeo.
r this to be bossible
aA) TA d, ane the 2aros of the poynmia
f)22? +5x+ k satishuing the nelatim
a4Tt d and ae the z005
clAsSmute
29)
Date
Poge
aadatie oynmial mchose 2er05 ane
Yeeitocala of the zercoS of the þatynamial.
of the quodratie
otynamial f)e-x-2,find a potunarnual
adt1 and2pt4
nhose 2eob asre
25)TA d ad Rae the 20C0S ot the quadrahe
aunamial foabxte, than eaate i
T dand Bae
26)TA d and ßae the20s thepotynanal
4l)-Sztkjuch that d-BaAtind
hose 2et05 are Qdt 36 and 3t2B
the zerOS of the auadohe
botumial A)kxt 4x+4 such that B'=24
nd the valwe okk
2
the 2ess o& the quadathc
2a)Te d and ae the r0s of the auadathe
batnsmial fl) e3z-4at4yfon a quadate
potunomial nhose 24rOs ae and g².
find the vae
of k
auadate ponsmials)= 2-8x+k
in 0,
the sauare
of 2IOS
of he
Page
Dat
a l
a
ssmat
e
30TA Aum

Grade 10 - CBSE - Polynomials - Worksheet

  • 1.
    foynomials (Grade o)(RAS) (,) Aaw the arath of the tbonamial )e 2z Alno,ind the Coordinaten_of theport nhe þataboa clacsmate 2)Aaw the grah of the fatynGrial f)a 3Aras the gaph of the auadrat paynsia Date 4)Aaw the qoph of the baynamial S)=x6x+ S)ATa the qrah of thebonmial ) -4 t4x-A. AleO,d thhe Netex 8)TA each )Araw the qraph t thebsynamial f)a 2?-4xt 5.. hicthone the falauring grah in the graph of a foty faynamial, then identity rhieh comohando toa Coeahando to a auodrohe þounomial?
  • 2.
  • 3.
  • 4.
    In each ofthe following: x. A y y= a+ bx+ c 0) (iv) y ar+ bx+ c X y= ax+ bx+ c y ax+ bx+ y' (v) Fig. 2.13 A X X y y ar+ bx+ c P y P (1) (v) y= ax+ br+ c
  • 5.
    1o) Fnd the2eras at theauadrate patynamial x't+1R, and veriy the latn between the 2eros and its loatgioents. ie
  • 6.
    I)ind he 2utoS.of the quadatie ktynomial #)a bz-3,andvurçu the relatianahi between the zurs andts coetticAnts Data 12) Hnd the 2oos of the botynamiad fl)a 4u +8u,and veitu the relathionahi etween the zes and its eoethients a Paga 3) Fnd a auadatie batunial eoch ith the gren munbu as the um and roduct o its 2U05 Jakucive 15)T one 4) C the roduct of the 2etos of the koynaial az-6z-6 is4kind the vae ota -(K2) in nucitrocal it she other,than fnd he value o . t 6a is recbrocal ot the othet, hnd the Nae o a o& )rd the zeroS of the bsunsmialax-R and veity the nelation etwean tthe enetiurds and enos f the potynamiak. 18)ind the 2eras ot th paynamialt) 43+5x-23, and veity the latignahi hatuseen the 2eroA and its coahfcunts a) Find the zeros ot the auadratieþoynamial A) ab + (6-ac)z-be and venisy the alahsnehih beten the ROS and its caetticints. 20) TÊ d and axe the zNOS Of the quadatie bstuamial f)2z-þx tq, thenfnd the values
  • 7.
    a) Fnd aquadrat'e þotynomial, the um and product of nhose 2en0e0 aree a and - reabechrey. Alao, ind its 2eroeo. r this to be bossible aA) TA d, ane the 2aros of the poynmia f)22? +5x+ k satishuing the nelatim a4Tt d and ae the z005 clAsSmute 29) Date Poge aadatie oynmial mchose 2er05 ane Yeeitocala of the zercoS of the þatynamial. of the quodratie otynamial f)e-x-2,find a potunarnual adt1 and2pt4 nhose 2eob asre 25)TA d ad Rae the 20C0S ot the quadrahe aunamial foabxte, than eaate i T dand Bae 26)TA d and ßae the20s thepotynanal 4l)-Sztkjuch that d-BaAtind hose 2et05 are Qdt 36 and 3t2B the zerOS of the auadohe botumial A)kxt 4x+4 such that B'=24 nd the valwe okk 2 the 2ess o& the quadathc 2a)Te d and ae the r0s of the auadathe batnsmial fl) e3z-4at4yfon a quadate potunomial nhose 24rOs ae and g².
  • 8.
    find the vae ofk auadate ponsmials)= 2-8x+k in 0, the sauare of 2IOS of he Page Dat a l a ssmat e 30TA Aum