SlideShare a Scribd company logo
1 of 70
Download to read offline
 ¢¡¤£¦¥¨§©¡¤§¡ !¡#$£%'()©¦102¡#£34§%'©¦65
798A@CB'B'DFEG@¨8IH PQESRT@¢UVDFESB 5W ¢%QXQ¡#$3`Y 3©a§©¡#
bcedIfhg¨iWfhprq
s$tvuetvwAx$y€y‚yFƒ€ƒ€ƒ
„†…ˆ‡V‰‘“’T” •
–9—™˜CdTefhg ikjli
monqpsrltvuApswlxy{za|~}{|~ns€t~tv‚„ƒ¤zauAw…ƒAxv†‡uArAˆqw“z‰{†Š|vy‹{r¦ƒa|vŒhult~ŽquAC|vƒ…ƒa|vns}€n‘uAtvu’r¦ƒ“zay{n”y{•Q–y€—
–uln‹ƒ“ps™˜hšœ›€¤žTuAŸ“ „r{x‡€ns†¢€ƒ'za|v}h¡hƒ¢€nŠ}htvu’w™ƒay¤ƒ“¡su£†‡|~z“u’r¦ƒa|vyhn¨y€•4ƒa¡Šu£uAtvu’r¦ƒaz“yhn¨¤nŠuAp‡ƒ“za|vnsy
¤ |vƒ“¡¢–y{–uln‹ƒapŠ¥˜{š¦{¦#žTuAŸ“ „r{šQ§¨¢¡ŠuhžTuAŸ©§ªC|~t~tv|~y{n¢uAtvu’r¦ƒ“zay{n¢Œhy{tvƒ‰«v|¬w‚¤pŠnŠ|vƒ‚y€•!uAnŠulza}{hx
psw“uA†‘|~n­–y‡†‡ulzan­®Š¡q‡w“|~rAwlxvuA¯‹ps{t‚ƒay6˜hš°h¦²±³˜A¦‡´€µ¢ulza}sš‘¶'y{zaz“u’w…®ey{nF†‡|vns}{t~{xvžTulŸ# „r¨|¬wC
pŠnŠ|vƒ'y{•4tv|~nŠuA{z‚–y{–uAnhƒapŠ·uA¯‹ps{tŠƒ“yC¸‡š€¹“±²˜A¦ ´!º¼» }{C—½rlW „w“uAr€šœ«#¾¿n ¤ ¡s„ƒ'†Š|vzauArƒ“|~y{n¨†‡yquAw
ƒ“¡suknqpsrt~ulpFwhzauArly{|~t¬ÀIÁ³¡s€ƒ£|¬w£|vƒaw£–y{–uln‹ƒapŠÂ|vn‚žTulŸ# „rAÀI¾½•Gƒa¡ŠuC–hw“why€•Gƒa¡ŠuCz“u’w…|¬†‡ps{t
nqpsrt~ulpFw¢|~wSsšÃh¦k±‚˜A¦ ´€Ä“Ä }h$x ¤ ¡F„ƒÅ|¬wS|ƃ‰w¢Çq|vnŠulƒ“|¬r“ulnŠuAz“}h{x‡|~n²ult~uAr¦ƒaz“yhnWŒhy{tvƒaw‰À
È t¬{rlu¤ƒ“¡suCnqpsrltvuApsw“„ƒÉƒ“¡ŠuCy{za|~}{|~n!x4€ns†‚w…pŠ®s®Fy‹w…uʃ“¡Šu–uAtvu’r¦ƒ“zay{n|~wÉul–|vƒ…ƒauA†‚|vn‚ƒ“¡Šu
®eyhw“|ƃa|vŒhu$Ë̆‡|~z“u’r¦ƒ“|~y{nÍxQ{ns†Iƒ“¡ŠuTnŠuAp‡ƒ“za|~nŠy‘|vña¡ŠuT®Fy‹w…|vƒ“|~Œ{uTÎφŠ|vzauArƒ“|~y{n!š ¨¢¡sulñ“¡Šu
zauAw“pŠtƃ‰€n‹ƒSy€•ƒ“¡Šu#uAtvu’r¦ƒ“zay{n²€nF†WnŠuAp‡ƒ“za|~nŠy¢–y{–uln‹ƒaC¡shw¢¢€}{ns|ƃaps†‡u
ÐÑÒ¦ÓÍÔsÐhÕ×Ö §¼˜hØœ›€h« ÄGÙ ˜ Ä ÕÛÚ žTulŸ# „r€Ü
€nF†W|vƒawņŠ|vzauArƒ“|~y{n$–{Ç{u’wS€n²€nŠ}htvu
Ý Õ ƒ‰€n ´!º ˜{ØÞ›„
˜ Õ °{¦hß
¤ |vƒ“¡‘ƒa¡ŠuWÎÌ„±‡|~wAšT¨¢¡ŠuWnqpsrltvuApsw¤Êpsw…ƒC{rA¯‹pŠ|vzau¨T–y{–uAnhƒapŠày€•SuA¯‹ps{t‚¢€}hnŠ|vƒ“ps†‡u
€nF††‡|~zauAr¦ƒauA†$|~nƒa¡Šu“y{®Š®eyhw“|vƒ“u¤†‡|~z“u’r¦ƒa|vyhn!š™¨¢¡Šu#Çq|vnŠulƒ“|¬r“ulnŠuAz“}h¢y€•ƒ“¡Šu#nqpsrltvuApsw¢|¬w
á Õãâ Ä
Ú€ä Õ ¹¢žTulŸ Ä r„´eÄ
ÚÉå ŠØÃ å ˜A¦ ´eÄaÄ }h å ˜hØœ›€æ å ˜A¦Š´eÄa»É}{
˜#žTulŸ×r ´eÄ Õ ÃŠØ~˜“ulŒ
¨¢¡Š|¬wÉ|~w£kpsr‰¡Vw…¢{tvt~ulz£ƒ“¡s{nŽƒa¡Šu–n‹pFrt~ulpsw£z“u’w¼ƒ“ulnsulza}{²y€•‚w“ulŒhulz‰€t¡‹psns†‡zauA†çÉuAŸkx!w“y
ƒ“¡su#nŠy{n‡—½zault¬„ƒ“|~Œq|~w…ƒ“|¬rÉ€®Š®Šzayˆ±‡|v¢€ƒ“|~y{nW|¬wè¼psw…ƒ“|vésuA†!š
˜
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ Ú
–9—™˜CdTefhg ikj¨S
¨¢¡ŠuUTWV3X`Y¨a%Tcb¤TWdfegX3hi#pTy{•“”®s{z…ƒa|~rltvuTyhñ“¡ŠuŽu’€z“ƒ“¡Ì|~w¢ƒ“¡ŠuŽ–|~nŠ|~kpŠãŒ{uAtvy‡r|vƒ¼6zauA¯‹pŠ|~zauA†
„ƒ#ƒa¡ŠuWw“pŠz“•ª{ru–y{•'ƒa¡Šu¨uA{z…ƒa¡”|vn‘yhza†‡uAz“ƒ“¡s€ƒ#ƒ“¡ŠuW®s€z“ƒ“|¬rt~u¨rl{nVu’w“rA€®eu–• z“yh ƒa¡Šu¢uA{z…ƒa¡rqw
}{z‰ˆŒq|ƃ‰„ƒa|vyhns€tFésult¬†4šDsÅuA}{t~uAr¦ƒa|vns}–ƒ“¡Šu¤zauAw“|¬w¼ƒ‰€nsrluÉy{•ƒa¡Šuk€ƒ“–yhw“®Š¡ŠuAz“uhxqƒ“¡Šukw“‡w¼ƒaul |~wÅrly{n‡—
w“ulzaŒˆ€ƒ“|~Œ{uhšutŠzay{ ƒa¡Šu$rly{nsw“ulzaŒ„„ƒa|vyhn”ƒ“¡ŠuAy{zaul •y {zÊ®Fy{ƒ“uln‹ƒa|~{tQ®stvpswCÇq|~nŠuƒa|~rWulnŠuAz“}h”w“¡Šy ¤
ƒ“¡F„ƒ#ƒ“¡su¨uAwarl{®Fu–Œ{uAtvy‡rl|ƃ¼T• yhz#ƒ“¡su¨uA{z…ƒa¡!xÍ|~}{nŠyhz“|~nŠ}ƒ“¡ŠuW®Šz“u’w…uAnsru–y{•'ƒa¡Šu¨–yqy{n!x|~w¤°sšÃ‹¸
–|  €w…u’r€š
¾½•'ƒa¡Šu–®s€z“ƒ“|¬rt~u–w¼ƒ‰€z“ƒaw“„ƒ“ƒ“¡suCu’€z“ƒ“¡rq w“w…psz…•ªhru ¤ |ƃa¡‚ƒa¡Šu–uAwarl{®FuCŒ{uAtvy‡r|vƒ¼{xÍ|ƃ ¤ |~tvt
è¼psw…ƒÅ¢€ns{}{uɃ“y–ŠzauA{Ç¢• z“uAu“y€•ƒ“¡Šu#u’€z“ƒ“¡rq wQésult¬†²€ns†$¡sˆŒhu£nsy€ƒ“¡s|vnŠ}¢t~u• ƒ’š‚¨¢¡qpswS„• ƒaulz
|vƒ“¡F{wÉuAwarl{®Fu’†Žƒa¡Šu–uA€z“ƒ“¡vqw£ésuAt~†‚|ƃ ¤ |~tvt™¡FˆŒ{uCnŠy²Ç‹|~nŠulƒ“|¬rÊuAnŠulza}{²t~u• ƒ’x€nF†‚{t~w“yWnŠy
®ey€ƒ“uAn‹ƒ“|¬€t‡ulnsulza}{¤w“|vnsrluS|ƃgqwvyhp‡ƒGy€•Fƒ“¡ŠuSu’€z“ƒ“¡rq wésult¬†4x‹w…y“|vƒawƒ“y{ƒa{t‡ulnŠuAz“}h ¤ |vt~t‡euxwlulzaysš
y |~nsru¤ƒ“¡Šu¤®F€z“ƒ“|¬rt~u€q w¢ƒ“y{ƒa€tÍulnŠuAz“}hWkpFw¼ƒheukrly{nsw…ƒa{nhƒ’xŠ|vƒ£kpFw¼ƒh{t~w“y¢¡sˆŒ{u(wAulzayCƒ“y€ƒ‰€t
ulnsulza}{¢„ƒQƒ“¡Šu#w“pŠz“•ª{ru£y€•!ƒa¡Šu“uA{z…ƒa¡!š™¨¢¡Š|~wQ–uA{nsw'ƒ“¡s€ƒ'ƒa¡Šu“Çq|vnŠulƒ“|¬rÉulnŠuAz“}hC|vƒ¢¡s{w¢„ƒ
ƒ“¡suÊw“pŠz…•ªhru¤y{•™ƒ“¡ŠuÊuA{z…ƒa¡Žkpsw…ƒ£ul±Š{r¦ƒatv²rl{nsruAt̓a¡Šuk}hzaˆŒq|vƒa€ƒ“|~y{ns{t4®Fy{ƒ“uln‹ƒa|~{tuAnŠulza}{
|vƒÅ¡s{wQƒa¡Šulzau€
˜
Ú äƒ‚ Ä„1…‡†
䉈‘
’  Õ ¦
w“y
‚¢Õ”“ • Ú † ˆ–
’  — Õ˜• ÚÉå §° ŠØ°‹› å ˜’¦ ºaº @™“Çq} ´ ™ w ´€Ä « å §¸ ‡ØÃ{æ å ˜’¦ Äed Ç‹}q«
°ŠØ{æ å ˜’¦ µ  —
ºefaÄ
Õ ˜h˜{ØÚ ÇqW „w å ˜“
˜{Ø°Š˜ÉÇq Õ °ŠØÃh¸kC|  „wlØ
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ 
–9—™˜CdTefhg ikj¡ 
¢ y‡r‰Ç{ulƒaw€zau'®sz“yh®FuAtvt~uA†k‹“ƒa¡Šu¢–y{–uln‹ƒ“ps×z“u’{rƒ“|~y{n¤y{•Šƒ“¡Šu¢ul±q¡F€psw…ƒ}‹{w“uAwu±‡®eult~tvu’†¤• zay{
ƒ“¡su“ƒa€|~trš y |~nsrlu“ƒ“¡Šu’w…u¤}‹{w“uAwS{z“|¬w…uÉ• zay{)ƒ“¡Šu¤zauAhr¦ƒa|vyhny{•ƒa¡Šu#• pŠuAt~whrl€zaza|vu’†W|~n²ƒ“¡Šukz“y‡r‰Ç{ulƒ
ƒ“¡su£¢{wawQy€•ƒ“¡ŠuÉz“y‡r‰Çhuƒ¢|~wQnŠy{ƒ¢rly{nsw…ƒa{nhƒ’xqŠp‡ƒÅ†‡uArlz“u’{w“uAwQ{w'ƒ“¡su£• psult4|¬w'ul±‡®FuAns†‡uA†!š y ¡Šy ¤
ƒ“¡F„ƒÉƒ“¡ŠuCuA¯‹ps€ƒ“|~y{nŽy{•‚–y€ƒ“|~y{n• y{z“¨zay‡r‰Ç{uƒÉ®Šzay€è¼uArƒ“u’†TŒ{uAz…ƒa|~rA€t~tv$pŠ® ¤ {za†Ž|vnVWpŠns|Æ• yhz“
}{z‰ˆŒq|ƃ‰„ƒa|vyhns€tFésult¬†4xŠnsul}{t~uArƒ“|~nŠ}¢„ƒaCy‹w…®s¡Šulza|~r£zauAw“|~w…ƒa{nsruhx‡|~w
䤣
‚
£¦¥
Õ … ‚¨§©£
ä
£¥
… ä Ü
¤ ¡ŠuAz“u ä |~wƒa¡ŠuS¢{wawy{•sƒa¡Šu¢z“y‡r‰Ç{ulƒ{ns† ‚ § |¬wƒ“¡ŠuSŒhult~yqrl|ƃ¼#y{•Šƒ“¡suSuAwarl€®s|vnŠ}£}hhw…u’wzault¬„ƒa|vŒhu
ƒ“yƒ“¡suCzay‡r‰Ç{ulƒAš¤¾¿n‹ƒ“uA}{z‰„ƒau¤ƒ“¡s|~w“u’¯hpF„ƒ“|~y{nƒ“y²y{Šƒa€|~n ‚ hw“W• psnsr¦ƒa|vyhn‚y{• ä x!{waw…pŠ–|~nŠ}²
ryhnsw…ƒa€n‹ƒ£ƒ“|~Cu–z‰„ƒauÊy{•'t~yhwawhy{•'¢{wawlš y ¡Šy ¤ x€• y{z#z“y‡r‰ÇhuƒÉw…ƒa{z…ƒa|vns}|~nŠ|vƒ“|¬€t~tvT• zay{ÂzauAw…ƒAx
¤ |vƒ“¡ ‚ § uA¯‹ps{tqƒ“y¤°{æh¦{¦h• ƒ¦ €w…u’rS€ns†C“¢{wawvtvy‹w“wv®eulz‚w“uArly{ns†ÊuA¯‹ps{t‡ƒ“y¢˜„ „°h¦„ƒ“¡Êy€•eƒ“¡ŠuS|~nŠ|vƒ“|¬€t
¢{wawlxsƒ“¡s€ƒ£|~nyhza†‡uAzSƒ“yz“u’{r‰¡$ƒ“¡suÊu’w“rA€®eu¤Œ{uAtvy‡r|vƒ¼ƒ“¡ŠuÊza€ƒ“|~y¨y€•™ƒa¡Šu ¤ ul|~}{¡‹ƒhy{•™ƒ“¡Šuk• pŠult
ƒ“yCƒa¡Šu ¤ uA|v}h¡‹ƒ¢y{•Íƒa¡Šu#ul–®‡ƒ¼z“y‡r‰Ç{ulƒQÊpsw…ƒÅFu¤{tv–yhw…ƒÅ{¦h¦
y pŠ®Š®eyhw“u¢ƒa¡s„ƒ’x€ƒ¤ƒ“|~–u ¥
x̓a¡Šu¨zay‡r‰Ç{uƒ#¡shw#¢{waw ä § ¥
«#{ns†VŒ{ult~y‡r|vƒ¼ ‚ § ¥
«š$¨¢¡Šu
ƒ“y{ƒa{thul±‹ƒaulzans€th• y{z‰ru'y{n#ƒa¡ŠuQz“y‡r‰Ç{ulƒÍ|¬w!ƒa¡Šuln Õ‹ä § ¥
«x ¤ |ƃa¡ –Õ  Ú Øv˜‚• ƒ¦ „w Ä x„®ey{|~n‹ƒ“u’†
†‡y ¤ n ¤ €z‰†Šwlxqw“yʃa¡s„ƒSƒa¡Šu“ƒ“y{ƒa{t!r‰¡s€nŠ}hu“|vn²–y{–uln‹ƒapŠeuƒ ¤ ululn ¥
€ns† ¥
Ù £¦¥
|¬w

£¦¥
Õ … qä § ¥
« £¦¥
Ø §¼˜’«
mQƒSƒ“|~–u ¥
x‡ƒ“¡Šu#zay‡r‰Ç{ulƒQ¡shw¢–y{–uln‹ƒ“ps
â § ¥
« Õ ä § ¥
« ‚ § ¥
«¦Ø §Ú «
 nVƒ“¡Šu¨y{ƒ“¡ŠuAz¤¡s{ns†4xv†‡pŠza|vnŠ}²ƒa¡Šu–ƒ“|~–u¨|~nhƒaulzaŒ„€t £¦¥
ƒa¡Šu¨zay‡r‰Ç{uƒ#zault~uAhw…u’w#²–hw“w
 ä y€•v}hhwS„ƒh–Œhult~yqrl|ƃ¼ ‚ § ¤ |ƃa¡Tz“u’w…®euArƒSƒ“y–ƒ“¡su#z“y‡r‰Ç{ulƒAš™¾¿nŽw“y¢†‡y{|~nŠ}sxŠƒ“¡Šu¤zay‡r‰Ç{ulƒBq w
Œ{uAtvy‡rl|ƃ¼¨|~nsrlz“u’{w“uAwQq€n²€–yhpŠn‹ƒ £
‚ š‚¨¢¡Šu“ƒay€ƒa{t!–y{–uln‹ƒapŠ €ƒSƒ“|~Cu ¥
Ù £¥
|¬w¢ƒ“¡Šu
w“pŠy€•ƒ“¡su#Cyh–uln‹ƒaCy€•ƒ“¡su#z“y‡r‰Ç{ulƒ¢{ns†}h{wB
â § ¥
Ù £¥
« Õ â!
Ù â#
Õ%$ ä § ¥
« …  ä'$ ‚ § ¥
« Ù £
‚ Ù  ä($ ‚ § ¥
« Ù ‚ §  §ªh«
y pŠ‡ƒazahr¦ƒa|vnŠ}”§ Ú «S• zay{ § h«£€ns†uA¯‹ps€ƒ“|~nŠ}Wƒa¡Šu–†‡|0)€ulzaulnFru ¤ |ƃa¡Ì§…˜’«¦x ¤ uC¡sˆŒ{u$§ ƒ“y
ész‰w¼ƒSyhza†‡uAz¢|vnT†‡|1)euAz“uAn‹ƒ“|¬€tͯ‹ps{nhƒa|ƃa|vu’wa«
… qä § ¥
« £¦¥
Õ³ä § ¥
« £
‚ Ù ‚2§  ä
y{z
£
‚
£¥
Õ … 
…
‚ §
ä § ¥
«
 ä
£¦¥
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ¹
¤ ¡Š|¬r‰¡ ¤ u“¢ˆ ¤ z“|vƒ“u¤hw
£
‚
£¥
Õ … 
…
‚ §
ä § ¥
«¡ 
§¹ ‹«
¤ ¡ŠuAz“u
 
Õ  ä
£¦¥
Õ ˜
°{¦ 䣢¥¤ ´!º Ø
¨¢¡Š|¬wk|¬wC†‡|1)euAz“uAn‹ƒ“|¬€tQuA¯‹ps„ƒa|vyhn‘• y{zʃ“¡suW• pŠnFr¦ƒ“|~y{n ‚ § ¥
«k}h|vŒq|~nŠ}Tƒa¡ŠuŒhult~y‡r|vƒ¼‚y{•Åƒ“¡Šu
zayqr‰ÇhuƒhhwÅ–• pŠnsrƒ“|~y{nŽy{•™ƒ“|~–u{šSÁVu ¤ y{pŠt¬†²nŠy ¤ tv|~Ç{u¤ƒ“y¨zauArA{w…ƒSƒ“¡Š|¬w£hwŨ†‡|1)€ulzauln‹ƒ“|¬€t
uA¯‹ps€ƒ“|~y{nT• yhzhƒa¡ŠuÊ• pŠnsr¦ƒa|vyhn ‚ §ä «h}{|~Œ‹|~nŠ}Wƒ“¡ŠuCz“y‡r‰ÇhuƒBq w£Œ{ult~y‡r|vƒ¼$hw£W• pŠnsrƒ“|~y{n‚y€•‚|vƒaw
¢{wawlš¨ÍyŽ†‡y²ƒa¡Š|¬wlx ¤ u–éFzaw…ƒ¤y{sw“ulzaŒ{uʃ“¡F„ƒÊw“|vnFru–ƒ“¡su¨z“y‡r‰Çhuƒ“|~w§¦eTWd4T`Y¤Vh©¨ƒ“¡ŠuW–hw“w
 ä ulŒhulza £¥
w“uAryhns†ŠwAx‹ƒ“¡Šu“ƒa|v–uk†‡uAz“|~Œ„„ƒa|vŒhu£y{•ƒa¡Šu#z“y‡r‰ÇhuƒBq wQ¢{waw¢|~w
£
ä
£¥
Õ …
 ä
£¥
Õ …  
Ø
ÁVu“ƒ“¡ŠuAn$¡FˆŒ{u
£
‚
£¥
Õ £
‚
£
ä £
ä
£¦¥
Õ …  
£
‚
£
ä Ø
y pŠFw¼ƒa|ƃap‡ƒ“|~nŠ}¢|~nhƒayŽ§ ¹q«¦x ¤ u#y{‡ƒ‰€|~n
…  
£
‚
£
ä Õ … 
…
‚ §
ä  
y{z
£
‚–Õ 
 
£
ä Ù ‚ § £
ä
ä Ø
¾¿n‹ƒ“uA}{z‰„ƒ“|~nŠ}Fx ¤ |vƒ“¡$ƒa¡Šu¤ryhns†‡|vƒ“|~y{nƒ“¡s€ƒ ‚ §ä ¢ « Õ ¦sx
‚ §ä « Õ 
 
§ä … 䣢 « Ù ‚ § t~n • ä
ä ¢ — Ø
sÅy ¤ x  
Õ §¼˜„°h¦h« 䣢 w ´!º x ¤ ¡Š|~tvu ‚ § Õ —¿°{æh¦{¦#• ƒ „wAšG¨¢¡Šuln
‚ §ä « Õ ˜’Ã{h¦¤• ƒ „w å • ä
ä ¢¦… ˜ — Ù °{æh¦{¦k• ƒ¦ €w å t~n
ä¢
ä
tŠyhz 䣢àä ¤ u¤rA€nTnŠuA}{t~uArƒSƒ“¡Šu#éFzaw…ƒSƒ“uAz“™|vn²ƒa¡Šu¤®s{z“uAn‹ƒ“¡Šu’w…u’w¢y€•vƒ“¡Šu¤észaw…ƒSƒ“uAz“²x
}{|~Œq|vns}
‚ §ä « Õ … ˜AÃh{¦k• ƒ¦ „w Ù °hæ{¦{¦k• ƒ¦ €w å t~n
ä¢
ä 
Ø
¨¢¡Šu¢u’w“rA€®euCŒhult~y‡r|vƒ¼Ž|~w ‚‚Õ °ŠØÃh¸k–|  €w Õ {°sØœ› å ˜A¦ ™£• ƒ¦ „wlš È t~pŠ}h}{|~nŠ}$ƒ“¡Š|¬w#|~nhƒay²ƒ“¡Šu
uA¯‹ps€ƒ“|~y{n¢€ey„Œ{uÅ{ns† ¤ y{zaÇ‹|~nŠ}“shr‰Ç ¤ €z‰†ŠwAx ¤ uÅésns†Cƒ“¡F„ƒ'u’w“rA€®euSŒ{uAtvy‡r|vƒ¼k|¬w‚hr‰¡Š|~ulŒ{u’†
¤ ¡ŠuAn ä ¢  äTÕ“Ú Ã{sš
¨¢¡s€nsÇqwƒay!'za|¬€n$#h€z“ƒv• y{zv®ey{|~nhƒa|vns}Éyhp‡ƒ‚€nC|~nsryhnsw…|¬w…ƒ“ulnFr¤|~nʐʁ¤y{za|~}{|~ns€t‡r‰¡Šyh|~rlu
y€•nŠy€ƒ‰„ƒa|vyhnW• yhz¢ƒ“¡Š|¬wS®Šzay{Št~ul²š
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ¸
–9—™˜CdTefhg ikj¡ 
y ¡Šy ¤ ƒa¡s„ƒÉ• y{zÉWw“|vnŠ}htvuÊ®s€z“ƒ“|¬rt~u ¤ |vƒ“¡Vry{nFw¼ƒ‰€n‹ƒ£¢{wawSƒa¡ŠuCuA¯‹ps„ƒa|vyhnTy€•G–y€ƒa|vyhnŽ|~C®stv|~uAw
ƒ“¡su“• y{t~tvy ¤ |~nŠ}–†‡|0)€ulzauln‹ƒa|~{t4uA¯‹ps„ƒa|vyhnW• yhz¢ƒ“¡Šu#Çq|~nŠuƒa|~r“uAnŠulza}{ 
£
á
£¦¥
Õ£¢Ì奤 Ü
¤ ¡Š|~tvu“|v•ƒa¡Šu#¢{waw¢Œ„€za|vu’w ¤ |ƃa¡ƒa|v–u“ƒa¡Šu¤ryhz“zauAw“®Fyhns†‡|~nŠ}CuA¯‹ps„ƒa|vyhn|¬w
£
§ä á «
£¦¥
Õ¦¢ÌåÑ Ø
Á‚u#¡FˆŒ{u
¢ Õ¨§Ñ §¸ {«
¾½• ä |~wÅrly{nsw…ƒa{n‹ƒAx
¢ ճ䩧¤
 y€ƒ…ƒa|vns} ¤ |~n‹ƒ“y–ey€ƒ“¡Tw“|~†ŠuAwAx
¢I夂ճä¤T姤‚Õ ˜
Ú ä £
£¦¥
Ф'ÐÄ
Õ £
á
£¥
§ª°h«
 n$ƒ“¡Šu#y{ƒ“¡ŠuAzS¡s€ns†!x‡|Æ• ä |¬w¢nŠy€ƒhrly{nsw…ƒa{nhƒ’x‡|vnFw¼ƒauA{†y€• ¤ ¤ u¤†Šy€ƒ Ñ |~nhƒayT§ ¸{«W
¢Iålєճюå§Ñ
Õ³ä¤Tå £
§ä ¤ «
£¦¥
Õ³ä¤Tå • ¤ £
ä
£¥
٠䤣
¤
£¥
—
Õ ˜
Ú ‚ Ä £
£¦¥
ä Ä Ù ˜
Ú ä Ä £
£¥
§ ‚ Ä «
Õ ˜
Ú £
£¦¥
§ä Ä ‚ Ä « Õ £
§ä á «
£¦¥
Ø
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ °
–9—™˜CdTefhg ikj¡ 
È zay„Œ{uɃa¡s„ƒÉƒ“¡Šuʐ¢€}{ns|ƃaps†‡u ’ y{•™ƒ“¡ŠuC®Fy‹w…|vƒ“|~y{nŒ{uArƒ“yhzÅ• y{zhƒ“¡Šu–ruAn‹ƒ“ulzÉy€•G¢hw“wÅ• z“yh¥{n
€zaŠ|vƒ“z‰€za–y{za|v}h|vn$|~w¢}h|vŒhuln$q¢ƒ“¡Šu#u’¯‹ps„ƒa|vyhn
ˆ Ä ’ Ä Õ ˆ£¢¥¤³ä
¤§¦
Ä
¤
…
˜
Ú ¢¨¤©‘ä
¤
ä
©¦
Ä
¤©
Ø
Á‚u#¡FˆŒ{u
’ Õ ˜
ˆ ¢¥¤ ä
¤
Î
¤
w“y
’ Ä Õ ˜
ˆ Ä

¢ ¤ ä Ä
¤
Î Ä
¤
Ù ¢¤

© ä
¤
ä
©
Î
¤
Î
©!
€nF†w“|v–|~t~{z“t~
’ Ä#
Õ ˜
ˆ Ä

¢ ¤ ä Ä
¤
Ë Ä
¤
Ù ¢¤

© ä
¤
ä
©
Ë
¤
Ë
© 
’ Ä$
Õ ˜
ˆ Ä

¢¥¤ ä²Ä¤%
Ä
¤
Ù ¢¤

© ä
¤
ä
© % ¤ % ©¡
Ø
mh†s†‡|vns}sx
’ Ä Õ ˜ ˆ Ä

¢ ¤ ä Ä
¤ ¦
Ä
¤
Ù ¢¤

© ä
¤
ä
©
§§')( å '10‰«

Ø §r›€«
 nƒ“¡Šu#y{ƒ“¡ŠuAzS¡s€ns†!x ¦
Ä
¤©
Õ
¦
Ä
¤
Ù
¦
Ä
©
… Ú ' ( å ' 0
€nF†4x‡|vn²®s{z…ƒa|~rlpŠt¬€z’x
¦
Ä
¤2¤
Õ ¦sxŠw…y
¢ ¤43 © ä
¤
ä
©¦
Ä
¤©
Õ5¢¤

© $ ä
¤
ä
©¦
Ä
¤
Ù ä
¤
ä
©¦
Ä
©
… Ú€ä
¤
ä
©
§
¦6¤
å
¦7©
« 
ÕÏÚ ¢¤

© ä
¤
ä
©¦
Ä
¤
… Ú ¢¤

© ä
¤
ä
©
§
¦8¤
å
¦!©
«¦Ø §ªæh«
sÅul±qƒAx
ˆ£¢ ¤ ä
¤§¦
Ä
¤
Õ9¢ © ä
©A@
¢ ¤ ä
¤4¦
Ä
¤CB
ÕD¢ ¤ ä Ä
¤ ¦
Ä
¤
Ù ¢¤

© ä
¤
ä
©¦
Ä
¤
Ø §ªÃh«
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ›
Ý
¦
Ü¡ 
¦
§ Ü¡  §
§ªÎÍÜ…ËŠ«
t|v}hpŠzauC˜ ™žTrly{nsrlul®‡ƒa|vyhny{•Íƒ“¡su¤w…|vƒ“ps€ƒ“|~y{n²y€• È zay{Št~ul2˜{šæ
y pŠŠƒ“z‰{r¦ƒa|vns}C¡F€tv•y{•Q§ªæ‹«'• z“yh2§ªÃ‹«¦x ¤ u“¡sˆŒ{u
ˆ ¢ ä
¤4¦
Ä
¤
…
˜
Ú ¢ ¢¤£hä
¤
ä
©¦
Ä
¤©
ÕD¢¥¤ ä Ä
¤ ¦
Ä
¤
Ù ¢¤

© ä
¤
ä
©
§§' ( å ' 0 «
€nF†rly{–®s€za|~nŠ}kƒa¡Š|¬w ¤ |ƃa¡‘§r›€« ¤ u#w…uAuɃ“¡s€ƒ ¤ u¤{z“u“†‡y{nsu{š
–9—™˜CdTefhg ikj¡¥
¨ ¤ y ¤ ¡ŠuluAt~w'y€•zah†‡|vpFw§¦–€zauŐ–y{psnhƒauA†Wy{n¢ƒa¡Šu£uAns†Šw'y€•ÊryhC–yhnW„±‡t~uhy€•!t~ulns}€ƒ“¡©¨Sw“psr‰¡
ƒ“¡F„ƒ™ƒ“¡su ¤ ¡ŠuluAt~w™zay€ƒ‰„ƒauQ|~ns†‡uA®FuAns†‡uAnhƒatvhš™¨¢¡Šu ¤ ¡Šy{t~uSryhkŠ|~ns„ƒa|vyhnÊzay{t~t¬w ¤ |ƃa¡Šy{p‡ƒQw…t~|v®s®Š|vns}
y{n²C®Št¬€nŠuhš y ¡Šy ¤ ƒa¡s„ƒSƒa¡Šulzau#€zauɃ ¤ y–nŠyhnŠ¡Šy{t~y{nsy{–|~r£uA¯‹ps€ƒ“|~y{nsw¢y{•rly{nsw…ƒ“z‰€|~n‹ƒAx
ryhw Ý £
Î Ù w“|vn Ý £
Ë Õ ¦
w“|vn Ý £
Î … ryhw Ý £
Ë Õ ¦€§ £
  Ù £
  § «
§ ¤ ¡sulzau Ý x Íx€€nF†  § ¡sˆŒhu#Cu’€nŠ|~nŠ}‹wÅw…|~–|vt¬€zhƒ“y¢ƒa¡Šu¤®Šzay{stvuA y{•™Ww…|~nŠ}{t~u¤Œhulz“ƒ“|¬rl€t†‡|~war€x
€nF†¨§ ÎÜ…ËŠ«!{z“u‚ƒ“¡ŠuQryqy{z‰†‡|~ns„ƒauAw!y{•sÅ®ey{|~n‹ƒy{n¤ƒ“¡Šu¢„±‡t~uG–|~† ¤ ˆÉFulƒ ¤ uAuln¤ƒa¡ŠuGƒ ¤ y ¤ ¡sulult¬w‰«
€nF†WyhnŠu“¡Šy{t~y{nŠyh–|~rÉuA¯‹ps€ƒ“|~y{n$y€•vry{nFw¼ƒaza{|vn‹ƒAx
Ý Õ
…
¦
¨
§ 
…   § «
¤ ¡ŠuAz“u  |~wS–ryhnsw…ƒa€n‹ƒ’š
žT ry{nFrul®Šƒ“|~y{n y€•“ƒ“¡suw…|vƒ“pF„ƒ“|~y{n³|¬w¢|~tvt~psw…ƒ“z‰„ƒauA† |~n t|~}{psz“u‘˜hš Ý |¬w¢ƒa¡Šu€ns}{t~u
euƒ ¤ ululn‚ƒ“¡suCέ€±‡|~w“€nF†Žƒa¡Šu¨„±‡|¬w£y{•'ƒa¡ŠuCƒ ¤ y ¤ ¡ŠuAult¬wlš ‘{ns†  § {z“uCƒa¡Šu–z“y{ƒa„ƒa|vyhn
€ns}{t~uAwÉy€•'ƒ“¡ŠuCƒ ¤ y ¤ ¡ŠuAult¬wlx€ns† 'W€nF† ' § {z“uʃ“¡Šu–t~y‡rl„ƒa|vyhnswÉy€•'ƒ“¡ŠuA|vz¤rluln‹ƒ“uAzawAšÊ¨¢¡Šu
ruAn‹ƒ“ulzSy{•Íƒa¡Šu ¤ ¡ŠuluAtÍ„±‡|¬w¢|~wQƒa¡Šu#®ey{|~nhƒ™è¼pFw¼ƒÅeuƒ ¤ uluAn 'C€ns† ' § 
§Î Ü…ËŠ« Õ ˜
Ú §
¦
 Ù
¦
§ Ü
¦
#
Ù
¦
§
#
«¦Ø
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ æ
¾½•€ƒ“¡Šu   ¤ ¡ŠuAultFz“y{ƒa„ƒauAwƒa¡Šz“yhpŠ}{¡¢{n–{nŠ}{t~u £
 Íx‹ƒa¡ŠuÅŒ{u’r¦ƒay{zG†‡|¬w…®st~hrul–uAnhƒGy{•4|ƃ‰w‚ruAn‹ƒ“ulz
¤ |~tvt¡sˆŒ{u#¢€}hnŠ|vƒ“ps†‡u ¦
£
 V€ns†T†Š|vzauArƒ“|~y{nŽ†‡ulƒ“ulza–|vnsuA†Tq Ý ØGtsy{zhul±Š€–®Št~u{xs|v• Ý Õ ¦
ƒ“¡sulnŽƒa¡Šu ¤ ¡ŠuluAtv€±‡|~w£|~w£®s{za{tvt~ultƒ“yWƒ“¡Šu–Δ„±‡|~wAx€|vn ¤ ¡Š|¬r‰¡rlhw…uÊz“yhtvt~|vns}¨ƒ“¡su   ¤ ¡ŠuAult
rt~y‡r‰Ç ¤ |~w“u ¤ |~tvt!rA€psw“uÉ|ƃ¢ƒ“yC–y„Œ{u£|vnƒ“¡Šu“nŠuA}h€ƒ“|~Œ{uh˨†Š|vzauArƒ“|~y{n!š™¾¿n}{ulnsulz‰€trx‹zau• uAz“za|~nŠ}
ƒ“yCƒa¡ŠuRt|v}hpŠz“uhx ¤ u“¡sˆŒhu
¡ ' Õ ¦
£
  $ w…|~n Ý£¢¤ … ryhw Ý¥¢¦  §…˜A¦h«
¡ ' §eÕ ¦
£
  § $ w…|~n Ý ¢¤ … rlyhw Ý ¢¦  §…˜{˜’«
mh†s†‡|vns}–ƒ“¡Šu’w…u#ryh–®FyhnŠuln‹ƒ ¤ |¬w…u ¤ uÉ¡FˆŒ{u º
£
Î Õ ¦
Ú $
£
  Ù £
  §  w…|~n Ý
£
Ë Õ …
¦
Ú $
£
  Ù £
  §0 ry‹w Ý
žTpŠtvƒ“|~®Št~q|vnŠ}–ƒa¡ŠuAw“u“qw“|vn Ý y{z … ry‹w Ý €ns†²{†s†‡|vns}CyhzÅw…ps‡ƒ“z‰{rƒ“|~nŠ}sx ¤ u“y{‡ƒ‰€|~n
w“|vn Ý £
Î … ry‹w Ý £
Ë Õ ¦ $
£
  Ù £
  § 
rlyhw Ý £
Î Ù w…|~n Ý £
Ë Õ ¦sØ
sÅul±qƒAxŠryhnsw“|~†‡uAz‚ƒa¡Šu“Œ{u’r¦ƒ“yhz '
º…Ä Õ '
… ' §4rly{nŠnŠu’r¦ƒa|vnŠ}ʃ“¡su“rluln‹ƒ“uAzaw'y€•Íƒ“¡ŠuɃ ¤ y ¤ ¡ŠuAult¬wlš
¨¢¡Šuk†ŠuésnŠ|vƒ“|~y{nTy{• Ý |~w£w…pFr‰¡²ƒ“¡s€ƒh|ƃ‰wSƒ‰€nŠ}huln‹ƒhkpFw¼ƒGè¼pFw¼ƒÉFu#ƒa¡Šukz‰„ƒa|vy¢y{•vƒ“¡Šu¤Ë²€nF†
ÎŽryh–®FyhnŠuln‹ƒaw¢y{•Íƒa¡Š|~wÅŒ{uArƒ“yhzB
ƒa{n Ý Õ Ë º¼ÄÎ º…Ä
§ w“uAr Ä Ý £
Ý Õ …
Ë º¼ÄΠĺ…Ä £
Î º…Ä Ù ˜
Î º…Ä £
Ë º¼Ä Ø
y pŠŠƒ“z‰{r¦ƒa|vns}²§…˜{˜ˆ«G• zay{ §¼˜’¦h«¦x
w“uAr Ä Ý £
Ý Õ ¦ $
£
 
… £
  § • …
Ë º…ÄΠĺ…Ä
w“|~n Ý …
˜
Î º…Ä
rlyhw Ý —
mÅ}‹€|~n$w“pŠsw…ƒ“|vƒ“pŠƒ“|~nŠ}–• y{zSË º…Ä „Î º…Ä |vn$ƒa¡Šu“ész‰w¼ƒ¢ƒ“uAz“ |vn²®s{z“uAn‹ƒ“¡Šu’w…u’wlx
w“uAr Ä Ý £
Ý Õ … ¦ $
£
 
… £
  §0
˜
Î º…Ä
§ƒ a{n Ý w…|~n Ý Ù ryhw Ý «
y{z
£
Ý Õ … ¦ $
£
 
… £
  §0
˜
Î º…Ä
§ªw“|vn Ä Ý ry‹w Ý Ù rlyhw ™ Ý «
Õ … ¦ $
£
 
… £
  §0
˜
Î º…Ä
rlyhw Ý Ø §…˜ Ú «
¨©£!$#%('0)132£154'6879!@1¥AB!@'0%5'0(CD!@E(38794!@1FG!7HFGPIQ!D)151!@1£'0R5()S!@15'0C@'0TUV%)15'0!@W!7
)5)¥)XEY5'0!@a`
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ Ã
#Åy ¤ ulŒhulz’x‹rly{nsw“|¬†‡ulza|vns}ʃa¡Šu¤†‡ulésnŠ|vƒ“|~y{n²y€• Ý x ¤ u“rltvu’€zatvW¡sˆŒ{u
ry‹w Ý Õ Î º¼Ä
§ªÎ ĺ…Ä Ù Ë Äº¼Ä « ºefaÄ Õ Î º¼Ä¨
euArl{psw“uŃ“¡suɐ¢{}{nŠ|vƒ“ps†Šu£y{•!ƒ“¡Šu“†‡|¬w¼ƒ‰€nsrlu£euƒ ¤ uluAn
¦
º {ns†
¦
Ä |~w¢ryhnsw…ƒ“z‰€|~nŠuA†–ƒayʍeu ¨
q¢ƒ“¡su#z“|~}{|¬†€±‡|~wAš™¨¢¡Šuln‘§¼˜ Ú «'euAryh–uAw
£
Ý Õ …
¦
¨
$
£
 
… £
  §1
¤ |vƒ“¡²|v––uA†Š|~€ƒ“u¤w“y{t~p‡ƒ“|~y{n
Ý Õ 
…
¦
¨
$  
…   §0 Ø
¤ |vƒ“¡  –rly{nsw…ƒa{nhƒSy{•|~nhƒaul}hza€ƒ“|~y{n!š
–9—™˜CdTefhg ikj¡ 
mˆ®s{z…ƒa|~rltvu“–y„Œ{u’w¢|vn$ƒ“¡su#Î … ˨®Št¬€nŠu#pŠnF†‡ulzSƒa¡Šu¤ryhnsw…ƒ“z‰€|~nhƒ¢ƒa¡s„ƒÅ|vƒawSŒhult~y‡r|vƒ¼¨Œ{u’r¦ƒ“yhzS|~w
€t ¤ ˆqw™†Š|vzauArƒ“uA†Cƒay ¤ {za†sw™#®Fyh|vn‹ƒ‚yhn–ƒ“¡Šu£ÎW„±‡|¬w ¤ ¡Šy‹w…uÅ{swar|¬w“wa“|~w'w…yh–uÅ}{|~Œ{uAnÊ• psnsr¦ƒa|vyhn
y€•qƒa|v–u£¢v§ ¥
«¦Ø y ¡Šy ¤ ƒ“¡s€ƒÍ• yhz¤¢v§ ¥
«Í†‡|1)euAz“uAnhƒa|~{Št~u{x’Šp‡ƒy{ƒ“¡ŠuAz ¤ |¬w“u‚€zaŠ|vƒ“z‰€za{xƒa¡Šu'rly{nsw…ƒ“z‰€|~n‹ƒ
|¬w¢nŠy{nŠ¡sy{t~y{nŠyhC|¬r€š
¨¢¡Šu“®s€z“ƒ“|¬rt~u€q w'®Fy‹w…|vƒ“|~y{n$|~w“§ªÎ§ ¥
«Ü…Ë4§ ¥
«“«¦x ¤ ¡Š|vt~u£ƒ“¡Šu“®eyhw“|ƃa|vyhnWy€•ƒ“¡Šuɐ–y„Œq|vnŠ}C®ey{|~nhƒ
|¬w#§¥¢v§ ¥
«Ü“¦‹«¦šG¨¢¡ŠuAnƒa¡Šu#Œ{u’r¦ƒay{z ¡ •z ay{oƒa¡Šu#®s€z“ƒ“|¬rt~uɃ“y–ƒa¡Šu#®Fyh|vn‹ƒÅ¡shwSryhC®ey{nsuln‹ƒaw
£
 Õ Î§ ¥
« … ¢v§ ¥
« £ #
Õ Ë€§ ¥
«¦Ø §…˜Ah«
¨¢¡Šu“®s{z…ƒa|~rltvu qw¢Œhult~yqrl|ƃ¼ ¤ ¡F{wSryh–®FyhnŠuln‹ƒaw
‚  Õ £
Î
£¦¥
‚ #
Õ £
Ë
£¦¥
§…˜l¹‹«
€nF†¨• yhz¢ƒ“¡Šu#ŒhuAr¦ƒay{z‰wQ|vn‘§¼˜’h«Q€nF†V§§¦¨¦–ƒay–Fu#|~n$ƒ“¡Šu¤wa€–u#†‡|~z“u’r¦ƒ“|~y{nÍx ¤ u“zauA¯‹pŠ|~z“u
‚ #
‚ 
Õ £ #
£

y{z
£
Ë 
£¦¥
£
Î 
£¦¥
Õ £
Ë
£
Î Õ Ë4§ ¥
«
Χ ¥
« … ¢v§ ¥
«
w“y
£
Ë
Ë Õ £
Î
Î … ¢v§ ¥
« §…˜’¸{«
tŠyhzSu±Š€–®Št~u{x‡|v•©¢v§ ¥
« Õ
¥
x‡ƒa¡Šuln ¤ u“–ˆW|vn‹ƒ“uA}{z‰„ƒau£ƒayCésns†
tvnSË4§ ¥
« Õ t~n $ Χ ¥
« …  § ¥
«  Ù 
y{z
Ë€§ ¥
« Õ Ûå$ Χ ¥
« … 
¥

¤ ¡Š|¬r‰¡‚|¬w“$¡Šy{t~y{nŠyh–|~rCryhnsw¼ƒaza{|vn‹ƒ’š !Qp‡ƒ#• y{z“}{uAnŠulz‰€t¢v§ ¥
«£ƒa¡Šu–z“|~}{¡‹ƒ#w…|¬†‡u–y€•“§¼˜ˆ¸{«h|~w
nŠy{ƒ¢|~n‹ƒ“uA}{z‰€Št~u{xŠw“yCƒ“¡Šu¤rly{nsw…ƒ“z‰€|~n‹ƒQ|¬wSnŠyhnŠ¡Šy{t~y{nsy{–|~r{š
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’¦
Ý
 
 
¦
t|v}hpŠz“u Ú vžŽryhnsruA®‡ƒ“|~y{n$y€•ƒ“¡su¤w…|vƒ“ps€ƒ“|~y{n$y€• È zay{Št~ulÂ˜hšv˜’¦
–9—™˜CdTefhg ikjAi¢¡
¨ ¤ yk®ey{|~nhƒ‰w¢y€•Í¢hw“w ä €zauGè¼yh|vnŠu’†Wq¨Êz“|~}{|¬† ¤ ul|~}{¡‹ƒatvu’w“w'z“y‡†Wy€•Ít~ulnŠ}{ƒ“¡   x‹ƒ“¡su“rluln‹ƒ“uAz¢y€•
¤ ¡Š|¬r‰¡Ž|¬wÉrly{nsw…ƒ“z‰€|~nŠu’†²ƒ“y$–y„Œ{ukyhn$r|~zarltvuÊy€•‚z‰{†‡|~psw ¦eš y uƒ“pŠ®Žƒa¡ŠuCÇ‹|~nŠulƒ“|¬rÊuAnŠulza}{$|~n
}{uAnŠulz‰€t~|4wluA†ryqy{z‰†‡|~ns„ƒauAwAš
žT²ry{nFrul®Šƒ“|~y{n²y€•vƒ“¡s|~why{nŠu¤|¬wÅw“¡Šy ¤ n²|vn t|~}{pŠzau Ú š Ý |¬w¢ƒ“¡suÊ€ns}{t~u#z“uA®Šz“u’w…uAn‹ƒ“|~nŠ}
¡Šy ¤ •ª{z“{z“yhpŠns†Žƒ“¡Šu¢r|~z‰rt~u¤ƒ“¡su–rluln‹ƒ“uAz“y€•Gƒa¡Šu–z“y‡†Ž¡F{wɐ–y„Œ{uA†!š  ”|~w£ƒa¡Šu¢€nŠ}htvuʃ“¡Šu
zayq†¢€ÇhuAw ¤ |ƃa¡²ƒ“¡Šu“Ώ€±‡|~wAš
¨¢¡Šu­®eyhw“|ƃa|vyhn y€•–ƒ“¡su6ruAnhƒaulz‚y€•Cƒ“¡ŠuIz“y‡†‘|~wI§ ÎÜ…ËŠ« Õ § ¦'rlyhw Ý Ü ¦Qw…|~n Ý «¦š ¨¢¡Šu
®eyhw“|ƃa|vyhnswŽy{•¢ƒ“¡ŠuI–hw“w“uAwz“uAt~€ƒ“|~Œ{u”ƒayσ“¡suIruAn‹ƒ“ulz‚y€•¢ƒa¡Šu6zay‡† €zau §Î „¤£ Ü…Ë „¤£ « Õ
¥ §¼˜ Ú «§   rlyhw  Ü   w…|~n  e«ØF¨¢¡ŠuAn$ƒ“¡Šu¤{sw…yhtvpŠƒ“u“®Fy‹w…|vƒ“|~y{nFw¢y€•Íƒa¡Šu#¢{waw…u’wS€zau
§Î Ü…ËŠ« Õ § ¦'rlyhw Ý ¥  
Ú ry‹w  Ü ¦Qw…|~n Ý ¥  
Ú w…|~n  e«
€nF†¨ƒa¡Šul|~zÅŒ{uAtvy‡rl|ƃa|vu’wS€zau
§ ‚  Ü ‚ #
« Õ § … ¦Qw“|vn ݧ¦Ý¢¨  
Ú w…|~n   ¦ Ü¡¦'rlyhw ݧ¦Ý ¥  
Ú ry‹w   ¦ 4«¦Ø
¨¢¡Šu“¢€}hnŠ|ƃaps†‡u’wSy€•ƒ“¡Šu’w…u¤{z“u
Ђ4Ð{Õ ¦ Ä ¦Ý Ä Ù   Ä
¹ ¦  Ä ¥ ¦   ¦Ý ¦ §ªw“|vn Ý w“|~n   Ù ry‹w Ý ry‹w  €«
Õ ¦ Ä ¦Ý Ä Ù   Ä
¹ ¦  Ä ¥ ¦   ¦Ý©¦ £ryhwA§ Ý …  €«
Á³¡ŠuAn ¤ u{†Š†”ƒa¡ŠuWÇq|~nŠuƒa|~rWulnŠuAz“}h|vu’w#y€•Sƒa¡Šu¨ƒ ¤ yŽ¢{waw“uAwAx̓a¡Šu¨ƒa¡Š|vz‰†”ƒaulzaàrA€nsrlult¬wlx
€nF† ¤ u“¡sˆŒ{u
á Õ ˜
Ú ¢ 䃂 Ä ÕÏä § ¦ Ä ¦Ý Ä Ù   Ä
¹ ¦  Ä «¦Ø
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜h˜
–9—™˜CdTefhg ikjAiki
y ¡Šy ¤ ƒ“¡s€ƒ¡ Í{}{z‰€nŠ}hu€q wGuA¯‹ps€ƒ“|~y{nsw¢|~n$ƒ“¡Šu“• yhz“)y€•£¢‚¯eš¢˜—¼¸€Crl€n²€t¬w“yCeu ¤ za|ƃ“ƒ“ulnThw
¤ ¦á
¤ ¦¥
©
… Ú ¤ á
¤ ¥
© Õ§¦
©
Ø
¨¢¡Šu’w…u#€zau“w…yhCulƒ“|~–uAwSÇqnŠy ¤ n²{w'ƒ“¡su©¨(hT3d V3T ¨¢• yhz“)y€•Íƒa¡Šu Í{}{z‰€nŠ}huhu’¯hpF„ƒ“|~y{nFwlš
–9—™˜CdTefhg ikjAi S
m¥®ey{|~nhƒ¨®F€z“ƒ“|¬rt~uTCy„ŒhuAw–|~n³w…®shru²pŠns†Šulz¢ƒa¡ŠuŽ|~nspŠuAnsruTy{•#‚• yhzarluŽ†‡ulza|vŒ„{Štvu$• zay{ã
}{uAnŠulz‰€t~|4wluA†W®Fy{ƒ“uAnhƒa|~{t4y€•ƒ“¡Šu“• yhz“
 §4'‹Ü ¤ « Õ §
¦
« Ù å
¤ ¡ŠuAz“u 'k|¬w¢ƒa¡Šu#zah†‡|~psw¢Œ{u’r¦ƒ“yhz¢• z“yh)C銱‡uA†$®ey{|~n‹ƒAx  |¬w¢ƒ“¡su¤€nŠ}hpŠt~{zS–y{–uln‹ƒ“ps €ey{pŠƒ
ƒ“¡F„ƒS®Fyh|vn‹ƒ’xs€ns†  |~wSÊ銱‡u’†ŒhuArƒ“y{z¢|~nTw…®shruhš
!$# t|~ns†“ƒa¡Šu'rly{–®FyhnŠuln‹ƒ‰w!y€•‡ƒa¡ŠuG• yhzarluGy{n“ƒa¡Šu‚®F€z“ƒ“|¬rt~uG|vnkFy{ƒ“¡C¶Q{z…ƒauAw“|~{n“{ns†¤w“®Š¡ŠuAz“|¬rl{t
®ey{t¬€zÅrlyqy{z‰†‡|vnF„ƒ“u’wlxqyhnWƒa¡Šu#s{w“|¬w¢y€•£¢‚¯ešS§¼˜—¼¸€æ‹«¦š
%'# y ¡Šy ¤ ƒa¡s„ƒÉƒ“¡Šu¢rly{–®FyhnŠuln‹ƒ‰w£|~nŽƒa¡ŠuCƒ ¤ y$ryqy{z‰†‡|~ns„ƒauÊw“‡w¼ƒaul¢w“€zaukzault¬„ƒ“u’†²ƒ“y$uAhr‰¡
y{ƒ“¡ŠuAzÅ{w¢|~n(¢‚¯ešS§¼˜—½¹hË«¦š
)0#  ‡ƒa{|vnƒ“¡Šu#u’¯‹ps„ƒa|vyhnsw¢y€•Cy{ƒ“|~y{n²|~n²w“®Š¡ŠuAz“|¬rl{t€®Fyht~{zÅryqy{z‰†‡|~ns„ƒauAwAš
–9—™˜CdTefhg ikjAi  
m©®s€z“ƒ“|¬rt~uk–y„Œ{u’wÅ|~n‚®Št¬€nŠuÊpŠns†‡uAz£ƒa¡ŠuC|vnFpŠulnsrluÊy{•'¢• yhzarlu{x4{rƒ“|~nŠ}ƒ“y ¤ €z‰†TWruAn‹ƒ“ulz
y€•• y{z‰ruhx ¤ ¡Šyhw“u“–{}{nŠ|vƒ“pF†‡u“|~w
 Õ ˜¦
Ä • ˜ …
¦
¦
Ä … Ú21
¦C¦
3 Ä — Ü
¤ ¡ŠuAz“u
¦
|¬whƒ“¡Šu–†‡|¬w¼ƒ‰€nsrluky€•™ƒa¡ŠuC®s€z“ƒ“|¬rt~u#ƒ“yWƒ“¡Šu–ruAn‹ƒ“ulzÉy€•™• yhzarlu{š¢t|~ns†²ƒa¡ŠuC}{ulnsulz‰€t~|fwAuA†
®ey€ƒ“uAn‹ƒ“|¬€t¢ƒ“¡F„ƒ ¤ |~tvthz“u’w…pŠtvƒ¢|vn³w“psr‰¡³‚• y{z‰ru{x¢€nF†6• zay{ ƒ“¡s€ƒ¢ƒ“¡Šu4 €}hza{nŠ}{|¬€n‘• yhz–ƒ“¡Šu
–y€ƒa|vyhn|~nŽ–®Št¬€nŠuhšh§ª¨¢¡Šuku±‡®ŠzauAwaw…|~y{nW• y{z1t6z“uA®Šz“u’w…uAn‹ƒawQƒ“¡su#• y{z‰ru“euƒ ¤ ululn$ƒ ¤ y¨r‰¡s€za}{u’w
|~nÁVuleulzgqwÅult~uAr¦ƒaz“y‡†‡qns{–|~rAwa«š
¾½• ¤ uɃa{Ç{u
 §
¦
« Õ ˜¦ • ˜ Ù ‚ Ä
3 Ä — Õ ˜¦
Ù § ¦
¦
« Ä
3 Ä
¦
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜ Ú
ƒ“¡suln
¤ 
¤
¦ Õ …
˜¦
Ä …
¦
¦
Ä
3 Ä
¦
Ä
€nF†
£
£¥
¤ 
¤ ¦
¦ Õ £
£¦¥
• Ú ¦
¦
3 Ä
¦
— Õ Ú21
¦
3 Ä
¦
…
Ú § ¦
¦
« Ä
3 Ä
¦
Ä
w“y
¦ Õ …
¤ 
¤
¦
Ù £
£¥
¤ 
¤ ¦
¦ Õ ˜¦
Ä • ˜ Ù Ú
¦
1
¦
… § ¦
¦
«…Ä
3 Ä —
¨¢¡Šu  Í{}{z‰€nŠ}h|~{n¢• y{zS–y{ƒ“|~y{n²|vnTC®Št¬€nŠu“|¬w
¡ Õ á … ×Õ ˜
Ú ä ¦
¦
Ä Ù ˜
Ú ä ¦
¦
Ä ¦Ý Ä …
˜¦
Ä • ˜ Ù Ú
¦
1
¦
… § ¦
¦
« Ä
3 Ä — Ø
–9—™˜CdTefhg ikjAi  
¾½• ¡ |¬w¢  Í{}{z‰€nŠ}h|~{n”• y{zW”w“‡w¼ƒaul y{•£¢‘†‡ul}hz“uAuAw–y€•£• z“uAuA†‡yh wa„ƒ“|¬w…• ‹|~nŠ}  Í{}{z‰€nŠ}hu€q w
uA¯‹ps€ƒ“|~y{nswAx‡w…¡sy ¤ qW†‡|~z“u’r¦ƒhw“pŠsw…ƒ“|vƒ“p‡ƒa|vyhn$ƒ“¡s€ƒ
¡ § Õ ¡ Ù £
¢§ ¥ º ÜlØlØAØlÜ ¥¥¤ Ü ¥
«
£¦¥
€t¬w“y­w“€ƒ“|¬w¼ésu’w  €}{z‰€ns}{u€q w–uA¯‹ps€ƒ“|~y{nswAx ¤ ¡ŠuAz“u à|¬w$€nqÌ{z“s|ƃaza{z“hx'ŠpŠƒ²†‡|1)€ulzauln‹ƒ“|¬€Št~u{x
•p Šnsrƒ“|~y{n²y€•|ƃ‰wÅ€za}{psCuAn‹ƒawAš
Á‚u#¡FˆŒ{u
¤ ¡ §
¤ ¥
¤ Õ ¤ ¡
¤ ¥
¤
Ù ¤
¤ ¥
¤ £

£¥
§…˜A°h«
€nF†
¤ ¡ §
¤ ¦¥
¤ Õ ¤ ¡
¤ ¦¥
¤
Ù ¤
¤ ¦¥
¤ £

£¦¥
Ø §…˜ˆ›€«
tŠyhz¢ƒ“¡Šu“• psnsr¦ƒa|vyhn  ¤ u#¢ˆ ¤ za|vƒ“u
£

£¦¥
Õ9¢ ¤
¤ 
¤ ¥
¤
¦¥
¤
Ù ¤ 
¤ ¥
€nF†¨• zay{oƒa¡Š|¬w ¤ u#¢ˆ¢zauAh†Wy)
¤
¤ ¦¥
¤ £

£¥
Õ ¤ 
¤ ¥
¤ Ø
¨¢¡ŠuAnƒ‰€Çq|~nŠ}Cƒ“¡ŠuɃ“|~–uk†‡uAz“|~Œ„„ƒ“|~Œ{uÉy€•S§¼˜„›€«'}{|~Œ{u’w
£
£¥
¤ ¡ §
¤ ¦¥
¤ Õ £
£¦¥
¤ ¡
¤ ¦¥
¤
Ù £
£¥
¤ 
¤ ¥
¤
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’
w“y ¤ u“¡sˆŒ{u
¤ ¡ §
¤ ¥
¤
… £
£¥
¤ ¡ §
¤ ¦¥
¤ Õ ¤ ¡
¤ ¥
¤
… £
£¦¥
¤ ¡
¤ ¦¥
¤
Ù ¤
¤ ¥
¤ £

£¥
… £
£¦¥
¤ 
¤ ¥
¤ Ø
¨¢¡Šukészaw…ƒhƒ ¤ y¨ƒaulza¢whyhnTƒ“¡Šu ¢ # y rl{nsruAteuArA€psw“u ¡ w“€ƒ“|¬w¼ésu’wŃa¡Šu ¢GpŠt~ulz“—  €}hza{nŠ}{u
uA¯‹ps€ƒ“|~y{nswAx ¤ ¡s|vt~uŃa¡Šu£w“uArly{ns†–ƒ ¤ y#ƒaulza–w'rl{nsruAtseuArl{psw“u ˆ|¬w‚†‡|1)euAz“uAn‹ƒ“|¬€Št~u{š #ÅuAnsru
¡ § wa„ƒa|~w…ésu’wQƒ“¡Šu¢‚pŠtvuAz…— Í{}{z‰€nŠ}huÅuA¯‹ps€ƒ“|~y{nswAš
–9—™˜CdTefhg ikjAi¡ 
m  Í{}{z‰€nŠ}h|~{n¢• y{zhC®s{z…ƒa|~rlpŠt¬€z¢®Š¡q‡w…|¬rl{t!w…‡w…ƒ“ul rl€n$eu ¤ z“|vƒ…ƒaulnT{w
¡ §FÕ ä
Ú § ¦ ¦Î Ä Ù Ú ¨ ¦Î ¦Ë Ù 3 ¦Ë Ä « …
¢
Ú § ¦‹Î Ä Ù Ú ¨‰ÎsË Ù 3 Ë Ä «¦Ü
¤ ¡ŠuAz“u ¦ex ¨ˆx‹€ns† 3 €zauÅ€zaŠ|vƒ“z‰€za¤ryhnsw¼ƒ‰€n‹ƒawvsp‡ƒ'w“pŠ‡è¼uArƒ™ƒ“y“ƒa¡Šuhryhns†‡|vƒ“|~y{nCƒ“¡F„ƒ§¨ Ä … ¦ 3¤£Õ
¦ŠšÁ³¡s„ƒ‚{z“u'ƒ“¡suQu’¯‹ps„ƒa|vyhnswvy€•eCy{ƒ“|~y{nFÀ ¢G±‡{–|vnŠuQ®s{z…ƒa|~rlpŠt~{z“t~“ƒ“¡su'ƒ ¤ y#rlhw…u’w ¦ Õ ¦ Õ 3
€nF† ¨ Õ ¦sÜ 3 Õ … ¦ešÁ³¡s„ƒ™|¬w̓a¡Šu¢®Š¡q‡w…|¬rl{tqw“‡w¼ƒaul×†‡u’w“rlz“|~euA†Ê‹“ƒa¡ŠuS€ey„Œ{u  Í€}hza{nŠ}{|¬€neÀ
y ¡Šy ¤ ƒ“¡s€ƒSƒ“¡Šu#pFw…ps{t  Í{}{z‰€nŠ}h|~{n¢• y{z¢ƒa¡Š|~whw…‡w…ƒ“ul {wS†‡ulésnŠuA†$q ¢'¯eš¢§…˜—¼¸€°‹«‚|¬w¢zault¬„ƒ“u’†
ƒ“y ¡ §F‹¢k®Fyh|vn‹ƒ‚ƒaza{nsw…• y{za–€ƒ“|~y{nT§ªr•¼š'¢™±‡ulz‰r|¬w“u#˜’¸#{Fy„Œhu’«¦šÁ³¡s€ƒ'|¬wGƒa¡ŠuÉw“|~}{nŠ|véFrl{nsruhy€•
ƒ“¡su¤ry{nF†‡|ƃa|vyhnyhnWƒa¡Šu#Œ„€t~pŠu#y€• ¨ Ä … ¦ 3 À
¶'tvu’€zatv ¤ u“¡sˆŒhu
¤ ¡
¤eÎ Õ … ¢ ¦‹Î … ¢ ¨‰Ë ¤ ¡
¤ ¦Î Õ³ä ¦ ¦Î Ù ä ¨ ¦Ë
w“yʃa¡Šu¢GpstvuAz…— Í{}{z‰€nŠ}huÅuA¯‹ps€ƒ“|~y{n• y{zSÎT|¬w
¤ ¡
¤eÎ Õ £
£¥
¤ ¡
¤ ¦Î § ä § ¦ 1Î Ù ¨ 1Ëq« Õ … ¢ § ¦hÎ Ù ¨‰ËŠ«¦Ø
y |~–|vt¬€zatvhxq• y{zSË ¤ u#y{Šƒa€|~n
ä § ¨ 1Ë Ù 3 1ˇ« Õ … ¢ §¨‰Î Ù 3 ËŠ«¦Ø
¨¢¡Šu’w…uC€zau¤ƒ“¡suÊu’¯hpF„ƒ“|~y{nFwÅy€•'Cy{ƒ“|~y{nT• yhzÉ®s{z…ƒa|~rltvuÊy€•G¢{waw ä pŠnF†‡ulza}{yh|vnŠ}w…|~–®Štvu
¡s{z“–y{ns|~r#–y{ƒ“|~y{nT|~nŽƒ ¤ yW†‡|~CuAnsw“|vyhnswlx€{wh|Æ•'FyhpŠns†Tq$ƒ ¤ yw…®Šza|~nŠ}hwhy€•‚w“®Šz“|~nŠ}Wrly{n‡—
w…ƒa€n‹ƒ ¢ šUshy{za¢€t~tv ¤ u ¤ y{pst~†6u±‡®ŠzauAwaw¤ƒa¡Šu( Í€}hza{nŠ}{|¬€n‘|~nÌpŠnŠz‰ˆŒ{ult~t~uA†”• yhz“²xGq
ƒ“z‰€nFw¼• yhz“–|~nŠ}kƒay–nŠu ¤ ryqy{z‰†‡|~ns„ƒauAw¦¥ º €ns†§¥ Ä ¤ |vƒ“¡
¥ º Õ ¦‹Î Ù ¨¦Ë ¥ Ä Õ ¨‰Î Ù 3 ËeØ
¨¢¡ŠuCry{nF†‡|ƃa|vyhn ¨ Ä … ¦ 3¨£Õ ¦¨|~whƒ“¡Šu–ryhns†‡|vƒ“|~y{nTƒa¡s„ƒ£ƒ“¡Šu–ryqyhza†‡|~ns€ƒ“u#ƒaza{nsw¼• yhz“¢€ƒ“|~y{n
nŠy{ƒQeu#†‡ul}hulnŠuAza€ƒ“u{x‹|ršuhšvƒ“¡s€ƒQƒa¡Šulzau“€zau£{rƒ“ps{tvt~–ƒ ¤ yʆ‡|¬w¼ƒa|vnFr¦ƒÅ†‡|~CuAnsw“|vyhnswQ|vn ¤ ¡Š|¬r‰¡
ƒ“¡suC®F€z“ƒ“|¬rt~uku±‡®eulza|vuAnsru’w“WzauAw…ƒ“yhz“|~nŠ}¨• yhzarlu{š¤¾½• ¨ Ä Õ ¦ 3 ƒa¡Šuln ¤ uC¡sˆŒhuhè¼psw…ƒ¤WyhnŠu—
†‡|~–ulnsw“|vyhns€t4®sz“yhŠtvuA²š
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜A¹
–9—™˜CdTefhg ikjAi¡ 
 ‡ƒ‰€|~nTƒ“¡Šu  €}{z‰€ns}{|¬€n²uA¯‹ps€ƒ“|~y{nsw£y€•‚–y{ƒ“|~y{nŽ• yhz#Ww“®Š¡Šulza|¬rl€t®eulns†‡pstvpŠ²x!|ršu{škW–hw“w
®ey{|~nhƒÅw“psw“®FuAns†‡uA†$qCza|v}h|~† ¤ ul|~}{¡‹ƒ“t~uAwawQz“y‡†4š
 uAnŠy€ƒa|vns}Žƒ“¡su¢{waw¤y{•Åƒ“¡suW®s{z…ƒa|~rltvu‹ ä xvƒ“¡ŠutvuAnŠ}€ƒa¡­y€•Sƒa¡Šu$z“y‡†‘q ¡ x™€nF†
ƒ“¡su–{nŠ}{t~u–Fulƒ ¤ uAuln‚ƒ“¡Šu¢zay‡†‚{ns†ƒ“¡Šu¢Œhulz“ƒ“|¬rl€tvq Ý x ¤ u–¡sˆŒhukƒa¡Šu¢®s{z…ƒa|~rltvu qw“t~|vnsuA€z
Œ{uAtvy‡rl|ƃ¼¨}h|vŒhuln²|~nT–{}{nŠ|vƒ“pF†‡u#q ‚¨Õ ¡ ¦Ý x ¤ ¡s|vt~u¤|vƒawS¡ŠuA|v}h¡‹ƒh|~w£¢ Õ … ¡ rlyhw Ý § ¤ ¡ŠuAz“u
ƒ“¡su“• pŠt~rlz“ps)y€•ƒ“¡Šu#®eulnF†‡pŠt~pŠ |¬wQƒa{Ç{uAn$hwQƒ“¡Šu#yhz“|~}{|~ny{•rly‹yhza†Š|vns€ƒ“u’wa«šv¨¢¡suln
¡ Õ á … ×Õ ˜
Ú ä ¡ Ä ¦Ý Ä Ù ä  ¡ ry‹w Ý
w“yʃa¡Šu#uA¯‹ps€ƒ“|~y{n$y€•Cy{ƒ“|~y{n²|¬w
¤ ¡
¤ Ý Õ £
£¦¥
¤ ¡
¤ ¦Ý § …  w“|vn Ý Õ ¡ 1Ý Ø
–9—™˜CdTefhg ikjAi ¥
m‘®s€z“ƒ“|¬rt~u#y€•¢{waw ä –y„Œ{uAwQ|~n²y{nŠu#†‡|~–ulnsw“|vyhn$w“psr‰¡$ƒ“¡F„ƒS|ƃšF{w¢ƒa¡Šu Í{}{z‰€nŠ}h|~{n
¡ Õ ä Ä ¦Î d
˜ Ú Ù ä ¦Î Ä  §ªÎe« …  Ä §Î €«¦Ü
¤ ¡ŠuAz“u  |¬whw“y{–uk†Š|0)€ulzauln‹ƒ“|¬€stvu#• psnsr¦ƒa|vyhnTy€•™ÎÍšt|~ns†²ƒ“¡sukuA¯‹ps€ƒ“|~y{n²y€•™–y€ƒa|vyhn²• y{z£Î§ ¥
«
€nF††‡u’w“rlz“|~eu£ƒa¡Šu#®Š¡q‡w…|¬rl{t4ns„ƒapŠzauÉy{•ƒa¡Šu¤w“qw…ƒ“uAy{nƒ“¡su#s{w“|~w¢y{•ƒa¡Š|¬wSuA¯‹ps€ƒ“|~y{n!š
ÁVu#¡sˆŒ{u
¤ ¡
¤FÎ ÕÏä ¦Î Ä!£

£
Î … Ú  §ªÎe« £

£
Î
¤ ¡
¤ ¦Î Õ ä Ä ¦ÎG™
 Ù Ú„ä ¦Î  §Î €«
£
£¦¥
¤ ¡
¤ ¦Î ÕÏä Ä § ¦Î4« Ä 1Î Ù Ú€ä 1Î  §ªÎe« Ù Ú„ä ¦Î £
£¦¥
 §ªÎe«
¾¿n$ƒ“¡Šu“t¬{w…ƒÅuA¯‹ps€ƒ“|~y{n ¤ u#rl{npFw…u
£
£¦¥
 §Î €« Õ ¦Î £

£
Î Ø
¨¢¡ŠuAnƒa¡Šu ¢GpŠt~ulz“— Í€}hza{nŠ}{uhuA¯‹ps„ƒa|vyhn|¬w
£
£¦¥
¤ ¡
¤ ¦Î …
¤ ¡
¤eÎ Õ ¦ § ä Ä § ¦Î4« Ä 1Î Ù Ú€ä 1Î  §Î €« Ù ä ¦Î Ä £

£
Î Ù Ú  §ªÎe« £

£
Î
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜ˆ¸
y{z
•sä 1Î Ù £

£
Î —¡  ä ¦Î Ä Ù Ú  §ªÎe«£¢ Õ ¦sØ
¾½• ¤ u“|¬†‡uln‹ƒ“|v•  Õ … £
 
£
ÎŽ€ns† á Õ ä ¦Î Ä  Ú x ¤ u“¢ˆ ¤ z“|vƒ“uɃa¡Š|~wh{w
§ 
… ä 1Î4«§ á Ù  « Õ ¦
y yFxsƒa¡Š|~w£|¬w£waˆq|vnŠ}¨ƒ“¡s€ƒAx€„ƒÉ{tvtƒ“|~–uAwAx€ul|vƒ“¡ŠuAzhƒa¡Šuʆ‡|1)€ulzaulnsrlukeuƒ ¤ ululn o€ns† ä ¦$|~w
wluAz“yFxre¦'ƒ“¡Šu¤w“pŠ)y{•Çq|~nŠuƒa|~r“{ns†$®Fy{ƒ“uln‹ƒa|~{t4ulnŠuAz“}h¨|~wDwAulzaysš
–9—™˜CdTefhg ikjAi  
¨ ¤ yŽ¢{waw¤®ey{|~nhƒ‰w¤y{•Å–hw“w ä º €ns† ä Ä {z“ury{nsnŠuArƒ“uA†­‹”w…ƒ“za|~nŠ}Ž®shw“w“|vns}²ƒ“¡Šzay{pŠ}h¡
$¡Šy{t~u–|vn”Tw“Cyqy{ƒ“¡‚ƒa€stvu¢w“yƒa¡s„ƒ ä º z“u’w¼ƒ‰w“y{n‚ƒ“¡Šu–ƒ‰€Št~u¨€nF† ä Ä ¡s€ns}hw“w…pFw…®eulns†ŠuA†4š
mhwaw“pŠ–|vnŠ} ä Ä –y„ŒhuAw“y{nstvV|vn­ŽŒ{ulz“ƒ“|¬rl{t™tv|~nŠuhx ¤ ¡F„ƒÊ{z“u–ƒa¡Šu¨}{uAnŠulz‰€t~|4wluA†”rly‹yhza†Š|vns€ƒ“u’w
•y {z‚ƒ“¡ŠuÉw…‡w…ƒ“uA¢À$ÁVza|ƃau£†‡y ¤ n–ƒa¡Šu  €}hza{nŠ}{u¢uA¯‹ps€ƒ“|~y{nswG• y{z‚ƒ“¡Šu“w…‡w…ƒ“uA {ns†4xq|Æ•!®eyhwaw“|vŠt~u{x
†‡|¬w“rlpswaw‚ƒa¡Šu#®Š¡q‡w…|¬rl{t4w…|~}{nŠ|véFrA€nsrlu“{nq¢y€•Íƒa¡Šul –|v}h¡hƒS¡sˆŒhu{š ¢ u’†‡psruɃa¡Šu#®Šzay{Št~uloƒay¢
w“|vnŠ}htvu“w“uAryhns†q—½y{z‰†‡ulz¢†‡|1)euAz“uAn‹ƒ“|¬€t4uA¯‹ps€ƒ“|~y{n$€ns†y{‡ƒ‰€|~n$Êész‰w…ƒ¢|~n‹ƒ“uA}{z‰€t€y€•ƒ“¡Šu“uA¯‹ps€ƒ“|~y{n!š
Á³¡s€ƒÅ|~w¢|vƒawS®s¡‹‡w“|~rA€t!w“|v}hnŠ|véFrl{nsruˆÀ”§r¶'y{nFw…|¬†‡ulz¢ƒa¡Šu#–y€ƒa|vyhn$yhnŠt~Ww…y–t~y{nŠ}¢hw¢nŠul|vƒ“¡ŠuAz ä ºnŠyhz ä Ä ®shw“w“uAwQƒa¡Šz“yhpŠ}{¡ƒ“¡suÉ¡sy{t~u’«¦š
 !ulƒ £
Fuƒ“¡Šu¡Šul|~}{¡‹ƒCy€• ä Ä €ey„Œ{u¨|vƒawÊt~y ¤ u’w¼ƒk®eyhwaw“|vŠt~u¨®eyhw“|ƃa|vyhn!xGw“yTƒ“¡s€ƒ £
Õ
¦ ¤ ¡ŠuAnIƒa¡Šuw…ƒ“za|vns}‘|~w–• pstvt~Iul±qƒ“ulnF†‡uA†ÌeulnŠu’„ƒ“¡ ƒa¡ŠuTƒ‰€Št~uŽ€ns† ä º |¬w“è¼psw…ƒ€ey{p‡ƒ
ƒ“y•ª€t~t‚ƒa¡Šzay{pŠ}h¡‘ƒ“¡Šu¡Šy{t~u{šVmÅt¬w…yFx™tvulƒ Ý Fuƒ“¡Šu²€ns}{pŠt¬€zkrlyqy{z‰†‡|vnF„ƒ“uWy€• ä º yhn‘ƒ“¡Šu
ƒa{Št~u{šk¨¢¡ŠuAnŽƒa¡Šu–Ç‹|~nŠulƒ“|¬rÊuAnŠulza}{²y{• ä Ä |¬w'è¼psw¼ƒ ä Ä ¦£
Ä  Ú x ¤ ¡Š|~tvuCƒa¡Šu–Ç‹|~nŠulƒ“|¬rkuAnŠulza}{
y€• ä º |~w ä º ¦£
Ä  Ú Ù ä º £
Ä ¦Ý{Ä  Ú xq{ns†–ƒa¡Šu“®Fy{ƒ“uln‹ƒa|~{teuAnŠulza}{–y{•!ƒ“¡Šu“w“qw…ƒ“uAo|~wè¼psw…ƒ¢ƒ“¡Šu
}{z‰ˆŒq|ƃ‰„ƒa|vyhns€te®Fy{ƒ“uAnhƒa|~{t4ulnŠuAz“}h¨y€• ä Ä x  Õ³ä Ä 
£
šG¨¢¡Šulnƒ“¡Šu €}hza{nŠ}{|¬€n¨|¬w
¡ Õ ˜
Ú §ä º Ù ä Ä « ¦£
Ä Ù ˜
Ú ä º £
Ä ¦Ý Ä … ä Ä 
£
€nF†¨ƒa¡Šu¢GpŠt~ulz“— Í€}hza{nŠ}{uhuA¯‹ps„ƒa|vyhnswS€zau
£
£¦¥
§ä º £
Ä ¦Ý « Õ ¦
§ä º Ù ä Ä « 1
£
Õ … ä Ä  Ù ä º £
¦Ý Ä
tŠzay{ ƒ“¡su¤ész‰w¼ƒ£uA¯‹ps„ƒa|vyhn ¤ uÊrl€nT|¬†‡uAnhƒa|Æ• Ž¢észaw…ƒh|~n‹ƒ“ul}hza{t x ä º £
Ä ¦Ý Õ   ¤ ¡Šulzau   |¬wh
ryhnsw…ƒa€n‹ƒ’šÁ³|vƒ“¡$ƒa¡Š|~w ¤ u#rl{nTw…pŠFw¼ƒa|ƃap‡ƒ“u“• yhz ¦Ý |~n$ƒ“¡Šu¤w“uArly{ns†uA¯‹ps€ƒ“|~y{nr
§ä º Ù ä Ä « 1
£
Õ … ä Ä  Ù   Ä
ä º £
™
!QuArA€psw“uSƒ“¡suÉw“|v}hn¨y€•4ƒa¡Šu£ƒ ¤ ykƒ“ulza¢w‚yhn¢ƒ“¡su ¢ # y |¬w'†Š|0)€ulzauln‹ƒAx‹ƒa¡Š|~wQ|¬w'waˆq|vns}#ƒ“¡s€ƒAx‡|v•
  |¬wōŠ|~}¨uAnŠy{pŠ}h¡­§ |v• ä º |~w£w…®s|vnŠns|vnŠ}¨•ª{w…ƒ£ulnsy{pŠ}h¡F«¦xsƒ“¡ŠuCruln‹ƒaz“|v• pŠ}h{t!• yhzarlu#y€• ä º rl{n
s{t~{nsruɃ“¡su¤†‡y ¤ n ¤ {za†¢®spŠtvtÍy€• ä Ä xs€ns†Wƒ“¡su¤w…‡w…ƒ“ul rl€n²eu#|vn$uA¯‹pŠ|~t~|vŠza|~pŠ²š
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’°
–9—™˜CdTefhg ikjS ¡
 ‡ƒ‰€|~n¤ƒ“¡su  €}hza{nŠ}{|¬€n¤{ns†¤u’¯hpF„ƒ“|~y{nFwy{•F–y€ƒa|vyhn¤• yhzƒa¡ŠuS†‡y{psŠtvu¢®eulns†ŠpŠtvps9|~tvt~psw…ƒ“z‰„ƒ“u’†
|~n t|v}Fš‚˜—½¹sx ¤ ¡ŠuAz“u‚ƒ“¡Šu'tvuAnŠ}€ƒa¡swÍy{•‡ƒ“¡Šu'®FuAns†‡pŠt¬h{z“u   º €nF†   Ä ¤ |vƒ“¡Cry{zazauAw“®Fyhns†‡|~nŠ}S¢{waw…u’w
ä º {ns† ä Ä š
¨{Çq|vnŠ}Wƒ“¡ŠuÊy{za|v}h|vnŽ€ƒhƒa¡Šu¤• pŠt¬rzapŠÂy{•™ƒ“¡Šukészaw…ƒ£®eulnF†‡pŠt~pŠ²x ¤ uCrl€n ¤ z“|vƒ“uC†‡y ¤ n
ƒ“¡su¤ryqy{z‰†‡|~ns„ƒauAwQy€•ƒ“¡Šu“ész‰w…ƒÅ–hw“w¢®ey{|~n‹ƒB
Î º Õ   º w“|vn Ý º
Ë º Õ …   º ry‹w Ý º
¨¢¡ŠuTryqyhza†‡|~ns€ƒ“uAwÊy€•£ƒ“¡ŠuTw“uArly{ns†6–hw“wC®ey{|~n‹ƒ¢{z“u²†‡ulésnŠuA†Izault¬„ƒ“|~Œ{uƒ“y‚ƒ“¡su²rlyqy{z‰†‡|Æ—
ns€ƒ“uAw‚y€•4ƒa¡ŠuÅész‰w…ƒ‚¢{wawG®ey{|~nhƒQqCul±Š{r¦ƒatv–€nF€t~y{}{yhpswvu±‡®ŠzauAwaw“|vyhnswlx‹w…ykz“uAt~€ƒ“|~Œ{u¢ƒ“ykƒ“¡Šu
ryqyhza†‡|~ns€ƒ“uÉy{za|v}h|vn ¤ u“¡sˆŒhu
Î Ä Õ Î º Ù   Ä w“|vn Ý Ä
Ë Ä Õ Ë º …   Ä ry‹w Ý Ä
 |0)€ulzauln‹ƒ“|¬„ƒa|vns}–{ns†²†‡y{|~nŠ}¢Ctv|vƒ…ƒatvu¤{tv}hulŠz‰ ¤ uÉésns†
¦Î ĺ Ù ¦Ë ĺ Õ   ĺ ¦Ý ĺ
¦Î ÄÄ Ù ¦Ë ÄÄ Õ   ĺ ¦Ý ĺ Ù   ÄÄ ¦Ý ÄÄ … Ú   º   Ä ¦Ý º ¦Ý Ä ry‹wA§ Ý º … Ý Ä «
¨¢¡Šu Í{}{z‰€nŠ}h|~{n¨|¬w
¡ Õ ˜
Ú §ä º Ù ä Ä «   ĺ ¦Ý ĺ Ù ˜
Ú ä Ä   ÄÄ ¦Ý ÄÄ … ä Ä   º   Ä ¦Ý º ¦Ý Ä ryhwA§ Ý º … Ý Ä « Ù §ä º Ù ä Ä «    Ä ryhw Ý º Ù ä Ä    Ä ryhw Ý Ä
¤ |vƒ“¡²uA¯‹ps€ƒ“|~y{nsw¢y{•–y€ƒa|vyhn
£
£¦¥
 
§ä º Ù ä Ä «   ĺ ¦Ý º … ä Ä   º   Ä ¦Ý Ä ry‹wA§ Ý º … Ý Ä «¢¡ Õ … §ä º Ù ä Ä «    Ä w…|~n Ý º
€nF†
£
£¦¥
 
  Ä ¦Ý Ä …   º ¦Ý º ryhwA§ Ý º … Ý Ä « ¡ Õ …  w…|~n Ý Ä Ø
¾½• ¦Ý º Õ ¦sxew“y¨ƒa¡s„ƒ£ƒ“¡ŠuÊ• pŠt¬rzapŠ™• y{z£ƒ“¡Šu–w…u’ryhns†²®FuAns†‡pŠt~pŠ |¬wÉw¼ƒ‰„ƒ“|~y{nF€za{xŠƒa¡Šulnƒ“¡Šu
w“uAryhns†y€•Íƒa¡ŠuAw“u#uA¯‹ps€ƒ“|~y{nsw¢zauA†Špsru’wQƒ“yCƒ“¡Šu#u’¯‹ps„ƒa|vyhn ¤ u#†‡ulza|vŒhuA†|vn È z“yhŠtvuAÂ˜{š~˜ˆ›‡š
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜„›
–9—™˜CdTefhg ikjS–i
¨¢¡Šu¨uAtvu’r¦ƒaz“yh–{}{nŠulƒ“|¬rÊésult¬†‘|¬w¤|~n‹Œ„{z“|¬€n‹ƒ#pŠns†‡uAzÊT}‹€pŠ}hu–ƒ“z‰€nsw…• y{za¢„ƒa|vyhn‚y{•Qƒa¡ŠuWwarl{t~{z
€nF†WŒhuAr¦ƒay{z¢®ey€ƒ“uAn‹ƒ“|¬€t!}h|vŒhuln$‹  
§
 
Ù¢¡¤£ §§'qÜ ¥
«Ü
¥ § ¥ …
˜
3
¤ £
¤ ¥
Ü
¤ ¡ŠuAz“u £ |~w€zaŠ|vƒ“z‰€za¤§ Šp‡ƒv†‡|1)euAz“uAnhƒa|~{Št~u’«¦šÁ³¡s„ƒu )€uAr¦ƒ†‡yquAw4ƒa¡Š|¬w!}h{pŠ}{uƒaza{nsw¼• yhz“¢€ƒ“|~y{n
¡sˆŒhuCyhn”ƒ“¡Šu  Í€}hza{nŠ}{|¬€n‚y€•ST®s{z…ƒa|~rltvu¢–y„Œq|vns}T|vn”ƒa¡Šu¨ult~uArƒ“zay{¢€}hnŠuƒa|~rÊésuAt~†FÀ ¾¼w“ƒ“¡Šu
–y€ƒa|vyhn$ )eu’r¦ƒ“u’†sÀ
¨¢¡Šu Í{}{z‰€nŠ}h|~{n¢• y{zÅC®s{z…ƒa|~rltvu“|~nT€n$ult~uAr¦ƒaz“yh¢€}{nsuƒ“|¬r£ésult¬†|~w
¡ Õ á … ¥ ¥ §§¦G§ ¥
«“« Ù ¥
3
 
§¨¦G§ ¥
«…« 奤 § ¥
«
¾½• ¤ u“¢€Çhu£ƒa¡Šu¤w“pŠ}{}huAw…ƒ“uA†W}h{pŠ}{u£ƒ“z‰€nsw…• y{za¢„ƒa|vyhn!x‹ƒ“¡Š|¬wSeuAryh–uAw
§ á … ¥
©
¥ §§¦G§ ¥
«“« …
˜
3
¤ £
¤ ¥

¨

Ù ¥
3
$
 
§¨¦G§ ¥
«…« å ¤ § ¥
« Ù ¤Tå ¡£ §§¦G§ ¥
«“« 
Õ á … ¥ ¥ §§¦G§ ¥
«…« Ù ¥
3
 
§¨¦G§ ¥
«…« å ¤ § ¥
« Ù ¥
3!
¤ £
¤ ¥
Ù ¤Tå ¡¤£ §¨¦G§ ¥
«…«#
Õ á … ¥ ¥ §§¦G§ ¥
«…« Ù ¥
3
 
§¨¦G§ ¥
«…« å ¤ § ¥
« Ù ¥
3
£
£¦¥
£ §¨¦G§ ¥
«…«
Õ ¡ Ù ¥
3
£
£¥
£ §§¦G§ ¥
«…«Ø
y ykƒ“¡Šuhƒ“z‰€nsw…• y{za–uA†  Í{}{z‰€nŠ}h|~{nÊu’¯‹ps€t¬wGƒa¡Šuhyhz“|~}{|~ns{t  Í{}{z‰€nŠ}h|~{nÊ®stvpswQ#ƒay€ƒ‰€tFƒ“|~Cu
†‡uAz“|~Œ„„ƒ“|~Œ{uhš !Qp‡ƒ ¤ uS®Šzay„Œ{u’†k|~n È zay{Št~ul)˜{š~˜’¸hƒ“¡s€ƒ'{†s†‡|vns}“ƒ“¡ŠuSƒay€ƒ‰€t‡ƒa|v–uh†‡uAz“|~Œ„„ƒa|vŒhu
y€•¢€nq²• pŠnsrƒ“|~y{nVƒ“y$ƒa¡Šu  Í{}{z‰€nŠ}h|~{n†‡yquAw“nŠy{ƒ¤ )€uAr¦ƒ“ƒa¡Šu¢uA¯‹ps€ƒ“|~y{nswÉy€•Q–y€ƒ“|~y{nÍxw“y
ƒ“¡su#Cy{ƒ“|~y{n$y€•ƒ“¡Šu#®F€z“ƒ“|¬rt~uÉ|¬w¢pŠns )eu’r¦ƒauA†$q¢ƒ“¡Šu#}‹€pŠ}huɃ“z‰€nsw…• y{za¢„ƒ“|~y{nÍš
–9—™˜CdTefhg ikjS S
 ‡ƒ‰€|~nŽƒ“¡su¢uA¯‹ps„ƒa|vyhny{•'–y€ƒa|vyhn• yhz¤®F€z“ƒ“|¬rt~uk•ª{tvt~|vns}$Œhulz“ƒ“|¬rl{tvt~TpŠns†‡uAz“ƒ“¡Šu–|~nspŠuAnsru
y€•Å}hzaˆŒq|vƒ¼ ¤ ¡suln­• za|¬r¦ƒ“|~y{nF€t'• y{z‰ruAwÊy{Šƒa€|~ns{ŠtvuW• z“yh †‡|¬waw…|~®s„ƒa|vyhn‘• pŠnsrƒ“|~y{n ºÄ%$ ‚ Ä €zau
®ŠzauAw“uln‹ƒAš‚¾¿n‹ƒ“ul}hza€ƒ“uWƒ“¡Šu$uA¯‹ps€ƒ“|~y{n”ƒ“yVy{Šƒa€|~n‘ƒa¡ŠuŒhult~y‡r|vƒ¼VhwÊŽ• pŠnsr¦ƒa|vyhn6y{•Åƒ“|~–u${ns†
w“¡Šy ¤ ƒ“¡F„ƒSƒ“¡su#–€±‡|vÊpŠ)®eyhwaw…|~Št~u“Œ{ult~y‡r|vƒ¼¢• y{z¢•ª{tvt€• zay{ z“u’w¼ƒS|¬w ‚CÕÏä  
$ š
¨¢¡Šu Í{}{z‰€nŠ}h|~{n¢• y{z¢ƒa¡Šu#®s{z…ƒa|~rltvu“|¬w
¡ Õ ˜
Ú ä ¦
%
Ä … ä 
%
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’æ
€nF†¨ƒa¡Šu¤†‡|¬w“w“|v®F„ƒ“|~y{n• pŠnsrƒ“|~y{n²|¬w $ ¦
%
Ä  Ú xŠw…yCƒ“¡su#uA¯‹ps„ƒa|vyhny{•–y€ƒa|vyhn²|~w
£
£¦¥
• ¤ ¡
¤ ¦
%
— …
¤ ¡
¤
% Ù ¤ 
¤ ¦
%
§ ä 1
%
Õ³ä 
… $ ¦
%
Ø
¨¢¡Š|¬w#w“ˆ‡w£ƒ“¡F„ƒ#ƒ“¡su¨{rlrlult~ulz‰„ƒa|vyhn}{yqu’wɃ“y6wluAz“y ¤ ¡Šuln ä‚Õ $ ¦
%
xy{z ¦
%
Õ ä 
$ xÍw“y
ƒ“¡su#Œ{ult~y‡r|vƒ¼Wrl{nnsulŒ{uAzSz“|¬w“u“{Fy„Œhuhƒa¡Š|¬w¢ƒ“uAz“–|~ns€t!Œ„{tvpŠu¨§ªpŠnŠt~uAwawQƒ“¡Šu#|~nŠ|vƒ“|¬€t!Œ„{tvpŠu#y{•
ƒ“¡su£Œhult~yqrl|ƃ¼–|¬w‚}hz“u’„ƒaulzGƒa¡s€nWƒ“¡Šu£ƒ“uAz“–|~ns€teŒ{uAtvy‡rl|ƃ¼hxh|~n ¤ ¡Š|¬r‰¡rA{w“uŃa¡Šu£®F€z“ƒ“|¬rt~u ¤ |~tvt
w“tvy ¤ †Šy ¤ nWƒay–ƒ“¡Šu“ƒaulzaC|~ns{t4Œ{ult~y‡r|vƒ¼W€nF†¨ƒa¡ŠulnŽw…ƒaˆ–ƒa¡Šulzau’«š
Solutions to Problems in Goldstein,
Classical Mechanics, Second Edition
Homer Reid
December 1, 2001
Chapter 3
Problem 3.1
A particle of mass m is constrained to move under gravity without friction on the
inside of a paraboloid of revolution whose axis is vertical. Find the one-dimensional
problem equivalent to its motion. What is the condition on the particle’s initial
velocity to produce circular motion? Find the period of small oscillations about
this circular motion.
We’ll take the paraboloid to be defined by the equation z = αr2
. The kinetic
and potential energies of the particle are
T =
m
2
( ˙r2
+ r2 ˙θ2
+ ˙z2
)
=
m
2
( ˙r2
+ r2 ˙θ2
+ 4α2
r2
˙r2
)
V = mgz = mgαr2
.
Hence the Lagrangian is
L =
m
2
(1 + 4α2
r2
) ˙r2
+ r2 ˙θ2
− mgαr2
.
This is cyclic in θ, so the angular momentum is conserved:
l = mr2 ˙θ = constant.
1
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 2
For r we have the derivatives
∂L
∂r
= 4α2
mr ˙r2
+ mr ˙θ2
− 2mgαr
∂L
∂ ˙r
= m(1 + 4α2
r2
) ˙r
d
dt
∂L
∂ ˙r
= 8mα2
r ˙r2
+ m(1 + 4α2
r2
)¨r.
Hence the equation of motion for r is
8mα2
r ˙r2
+ m(1 + 4α2
r2
)¨r = 4α2
mr ˙r2
+ mr ˙θ2
− 2mgαr
or
m(1 + 4α2
r2
)¨r + 4mα2
r ˙r2
− mr ˙θ2
+ 2mgαr = 0.
In terms of the constant angular momentum, we may rewrite this as
m(1 + 4α2
r2
)¨r + 4mα2
r ˙r2
−
l2
mr3
+ 2mgαr = 0.
So this is the differential equation that determines the time evolution of r.
If initially ˙r = 0, then we have
m(1 + 4α2
r2
)¨r + −
l2
mr3
+ 2mgαr = 0.
Evidently, ¨r will then vanish—and hence ˙r will remain 0, giving circular motion—
if
l2
mr3
= 2mgαr
or
˙θ = 2gα.
So if this condition is satisfied, the particle will execute circular motion (assum-
ing its initial r velocity was zero). It’s interesting to note that the condition on
˙θ for circular motion is independent of r.
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 3
Problem 3.2
A particle moves in a central force field given by the potential
V = −k
e−ar
r
,
where k and a are positive constants. Using the method of the equivalent one-
dimensional potential discuss the nature of the motion, stating the ranges of l and
E appropriate to each type of motion. When are circular orbits possible? Find the
period of small radial oscillations about the circular motion.
The Lagrangian is
L =
m
2
˙r2
+ r2 ˙θ2
+ k
e−ar
r
.
As usual the angular momentum is conserved:
l = mr2 ˙θ = constant.
We have
∂L
∂r
= mr ˙θ2
− k (1 + ar)
e−ar
r2
∂L
∂ ˙r
= m ˙r
so the equation of motion for r is
¨r = r ˙θ2
−
k
m
(1 + ar)
e−ar
r2
=
l2
m2r3
−
k
m
(1 + ar)
e−ar
r2
. (1)
The condition for circular motion is that this vanish, which yields
˙θ =
k
m
(1 + ar0)
e−ar0/2
r
3/2
0
. (2)
What this means is that that if the particle’s initial θ velocity is equal to the
above function of the starting radius r0, then the second derivative of r will
remain zero for all time. (Note that, in contrast to the previous problem, in this
case the condition for circular motion does depend on the starting radius.)
To find the frequency of small oscillations, let’s suppose the particle is exe-
cuting a circular orbit with radius r0 (in which case the θ velocity is given by
(2)), and suppose we nudge it slightly so that its radius becomes r = r0 + x,
where x is small. Then (1) becomes
¨x =
k
m
1 + ar0
e−ar0
r2
0
−
k
m
(1 + a[r0 + x])
e−a[r0+x]
[r0 + x]2
(3)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 4
Since x is small, we may write the second term approximately as
≈
k
m
e−ar0
r2
0
(1 + ar0 + ax)(1 − ax) 1 − 2
x
r0
≈
k
m
(1 + ar0)
e−ar0
r2
0
+
k
m
e−ar0
r2
0
a − a(1 + ar0) − 2
(1 + ar0)
r0
x
≈
k
m
(1 + ar0)
e−ar0
r2
0
−
k
m
e−ar0
r2
0
2a +
2
r0
+ a2
r0 x.
The first term here just cancels the first term in (??), so we are left with
¨x =
k
m
e−ar0
r2
0
2a +
2
r0
+ a2
r0 x
The problem is that the RHS here has the wrong sign—this equation is satisfied
by an x that grows (or decays) exponentially, rather than oscillates. Somehow
I messed up the sign of the RHS, but I can’t find where–can anybody help?
Problem 3.3
Two particles move about each other in circular orbits under the influence of grav-
itational forces, with a period τ. Their motion is suddenly stopped, and they are
then released and allowed to fall into each other. Prove that they collide after a
time τ/4
√
2.
Since we are dealing with gravitational forces, the potential energy between
the particles is
U(r) = −
k
r
and, after reduction to the equivalent one-body problem, the Lagrangian is
L =
µ
2
[ ˙r2
+ r2 ˙θ2
] +
k
r
where µ is the reduced mass. The equation of motion for r is
µ¨r = µr ˙θ2
−
k
r2
. (4)
If the particles are to move in circular orbits with radius r0, (4) must vanish at
r = r0, which yields a relation between r0 and ˙θ:
r0 =
k
µ ˙θ2
1/3
=
kτ2
4π2µ
1/3
(5)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 5
where we used the fact that the angular velocity in the circular orbit with period
τ is ˙θ = 2π/τ.
When the particles are stopped, the angular velocity goes to zero, and the
first term in (4) vanishes, leaving only the second term:
¨r = −
k
µr2
. (6)
This differential equation governs the evolution of the particles after they are
stopped. We now want to use this equation to find r as a function of t, which
we will then need to invert to find the time required for the particle separation
r to go from r0 to 0.
The first step is to multiply both sides of (6) by the integrating factor 2 ˙r:
2 ˙r¨r = −
2k
µr2
˙r
or
d
dt
˙r2
= +
d
dt
2k
µr
from which we conclude
˙r2
=
2k
µr
+ C. (7)
The constant C is determined from the boundary condition on ˙r. This is simply
that ˙r = 0 when r = r0, since initially the particles are not moving at all. With
the appropriate choice of C in (7), we have
˙r =
d r
d t
=
2k
µ
1/2
1
r
−
1
r0
=
2k
µ
1/2
r0 − r
rr0
. (8)
We could now proceed to solve this differential equation for r(t), but since in
fact we’re interested in solving for the time difference corresponding to given
boundary values of r, it’s easier to invert (8) and solve for t(r):
∆t =
0
r0
dt
dr
dr
=
0
r0
dr
dt
−1
dr
=
µ
2k
1/2 0
r0
rr0
r0 − r
1/2
dr
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 6
We change variables to u = r/r0, du = dr/r0 :
=
µ
2k
1/2
r
3/2
0
0
1
u
1 − u
1/2
du
Next we change variables to u = sin2
x, du = 2 sin x cos x dx :
= 2
µ
2k
1/2
r
3/2
0
0
π/2
sin2
x dx
=
µ
2k
1/2
r
3/2
0
π
4
.
Now plugging in (5), we obtain
∆t =
µ
2k
1/2 kτ2
4π2µ
1/2
π
4
=
τ
4
√
2
as advertised.
Problem 3.6
(a) Show that if a particle describes a circular orbit under the influence of an
attractive central force directed at a point on the circle, then the force varies
as the inverse fifth power of the distance.
(b) Show that for the orbit described the total energy of the particle is zero.
(c) Find the period of the motion.
(d) Find ˙x, ˙y, and v as a function of angle around the circle and show that all
three quantities are infinite as the particle goes through the center of force.
Let’s suppose the center of force is at the origin, and that the particle’s orbit
is a circle of radius R centered at (x = R, y = 0) (so that the leftmost point
of the particle’s origin is the center of force). The equation describing such an
orbit is
r(θ) =
√
2R(1 + cos 2θ)1/2
so
u(θ) =
1
r(θ)
=
1
√
2R(1 + cos 2θ)1/2
. (9)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 7
Differentiating,
du
dθ
=
sin 2θ
√
2R(1 + cos 2θ)3/2
du
dθ
=
1
√
2R
2 cos 2θ
(1 + cos 2θ)3/2
+ 3
sin2
2θ
(1 + cos 2θ)5/2
=
1
2
√
2R
1
(1 + cos 2θ)5/2
2 cos2θ + 2 cos2
2θ + 3 sin2
2θ . (10)
Adding (9) and (10),
d2
u
dθ2
+ u =
1
√
2R(1 + cos 2θ)5/2
(1 + cos 2θ)2
+ 2 cos2θ + 2 cos2
2θ + 3 sin2
2θ
=
1
√
2R(1 + cos 2θ)5/2
[4 + 4 cos 2θ]
=
4
√
2R(1 + cos 2θ)3/2
= 8R2
u3
. (11)
The differential equation for the orbit is
d2
u
dθ2
+ u = −
m
l2
d
du
V
1
u
(12)
Plugging in (11), we have
8R2
u3
= −
m
l2
d
du
V
1
u
so
V
1
u
= −
2l2
R2
m
u4
−→ V (r) = −
2l2
R2
mr4
(13)
so
f(r) = −
8l2
R2
mr5
(14)
which is the advertised r dependence of the force.
(b) The kinetic energy of the particle is
T =
m
2
[ ˙r2
+ r2 ˙θ2
]. (15)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 8
We have
r =
√
2R(1 + cos 2θ)1/2
r2
= 2R2
(1 + cos 2θ)
˙r =
√
2R
sin 2θ
(1 + cos 2θ)1/2
˙θ
˙r2
= 2R2 sin2
2θ
1 + cos 2θ
˙θ2
Plugging into (15),
T = mR2 ˙θ2 sin2
2θ
1 + cos 2θ
+ 1 + cos 2θ
= mR2 ˙θ2 sin2
2θ + 1 + 2 cos2θ + cos2
2θ
1 + cos θ
= 2mR2 ˙θ2
In terms of l = mr2 ˙θ, this is just
=
2R2
l2
mr4
But this is just the negative of the potential energy, (13); hence the total particle
energy T + V is zero.
(c) Suppose the particle starts out at the furthest point from the center of force
on its orbit, i.e the point x = 2R, y = 0, and that it moves counter-clockwise
from this point to the origin. The time required to undergo this motion is half
the period of the orbit, and the particle’s angle changes from θ = 0 to θ = π/2.
Hence we can calculate the period as
τ = 2
π/2
0
dt
dθ
dθ
= 2
π/2
0
dθ
˙θ
Using ˙θ = l/mr2
, we have
= 2
m
l
π/2
0
r2
(θ) dθ
=
4R2
m
l
π/2
0
(1 + 2 cos2θ + cos2
2θ) dθ
=
4R2
m
l
·
3π
4
=
3πR2
m
l
.
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 9
Problem 3.8
(a) For circular and parabolic orbits in an attractive 1/r potential having the same
angular momentum, show that the perihelion distance of the parabola is one
half the radius of the circle.
(b) Prove that in the same central force as in part (a) the speed of a particle at
any point in a parabolic orbit is
√
2 times the speed in a circular orbit passing
through the same point.
(a) The equations describing the orbits are
r =



l2
mk
(circle)
l2
mk
1
1 + cos θ
(parabola.)
Evidently, the perihelion of the parabola occurs when θ = 0, in which case
r = l2
/2mk, or one-half the radius of the circle.
(b) For the parabola, we have
˙r =
l2
mk
sin θ
(1 + cos θ)2
˙θ (16)
= r ˙θ
sin θ
1 + cos θ
so
v2
= ˙r2
+ r2 ˙θ2
= r2 ˙θ2 sin2
θ
(1 + cos θ)2
+ 1
= r2 ˙θ2 sin2
θ + 1 + 2 cos θ + cos2
θ
(1 + cos θ)2
= 2r2 ˙θ2 1
1 + cos θ
=
2mkr3 ˙θ2
l2
=
2k
mr
(17)
in terms of the angular momentum l = mr2 ˙θ2
. On the other hand, for the circle
˙r = 0, so
v2
= r2 ˙θ2
=
l2
m2r2
=
k
mr
(18)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 10
where we used that fact that, since this is a circular orbit, the condition k/r =
l2
/mr2
is satisfied. Evidently (17) is twice (18) for the same particle at the
same point, so the unsquared speed in the parabolic orbit is
√
2 times that in
the circular orbit at the same point.
Problem 3.12
At perigee of an elliptic gravitational orbit a particle experiences an impulse S (cf.
Exercise 9, Chapter 2) in the radial direction, sending the particle into another
elliptic orbit. Determine the new semimajor axis, eccentricity, and orientation of
major axis in terms of the old.
The orbit equation for elliptical motion is
r(θ) =
a(1 − 2
)
1 + cos(θ − θ0)
. (19)
For simplicity we’ll take θ0 = 0 for the initial motion of the particle. Then
perigee happens when θ = 0, which is to say the major axis of the orbit is on
the x axis.
Then at the point at which the impulse is delivered, the particle’s momentum
is entirely in the y direction: pi = pi
ˆj. After receiving the impulse S in the radial
(x) direction, the particle’s y momentum is unchanged, but its x momentum is
now px = S. Hence the final momentum of the particle is pf = Sˆi+pi
ˆj. Since the
particle is in the same location before and after the impulse, its potential energy
is unchanged, but its kinetic energy is increased due to the added momentum:
Ef = Ei +
S2
2m
. (20)
Hence the semimajor axis length shrinks accordingly:
af = −
k
2Ef
= −
k
2Ei + S2/m
=
ai
1 + S2/(2mEi)
. (21)
Next, since the impulse is in the same direction as the particle’s distance from
the origin, we have ∆L = r × ∆p = 0, i.e. the impulse does not change the
particle’s angular momentum:
Lf = Li ≡ L. (22)
With (20) and (22), we can compute the change in the particle’s eccentricity:
f = 1 +
2Ef L2
mk2
= 1 +
2EiL2
mk2
+
L2S2
m2k2
. (23)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 11
What remains is to compute the constant θ0 in (19) for the particle’s orbit after
the collision. To do this we need merely observe that, since the location of the
particle is unchanged immediately after the impulse is delivered, expression (19)
must evaluate to the same radius at θ = 0 with both the “before” and “after”
values of a and :
ai(1 − 2
i )
1 + i
=
af (1 − 2
f )
1 + f cos θ0
or
cos θ0 =
1
f
af (1 − 2
f )
ai(1 − i)
− 1 .
Problem 3.13
A uniform distribution of dust in the solar system adds to the gravitational attrac-
tion of the sun on a planet an additional force
F = −mCr
where m is the mass of the planet, C is a constant proportional to the gravitational
constant and the density of the dust, and r is the radius vector from the sun to the
planet (both considered as points). This additional force is very small compared to
the direct sun-planet gravitational force.
(a) Calculate the period for a circular orbit of radius r0 of the planet in this com-
bined field.
(b) Calculate the period of radial oscillations for slight disturbances from this cir-
cular orbit.
(c) Show that nearly circular orbits can be approximated by a precessing ellipse
and find the precession frequency. Is the precession the same or opposite
direction to the orbital angular velocity?
(a) The equation of motion for r is
m¨r =
l2
mr3
+ f(r)
=
l2
mr3
−
k
r2
− mCr. (24)
For a circular orbit at radius r0 this must vanish:
0 =
l2
mr3
0
−
k
r2
0
− mCr0 (25)
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 12
−→ l = mkr0 + m2Cr4
0
−→ ˙θ =
l
mr2
0
=
1
mr2
0
mkr0 + m2Cr4
0
=
k
mr3
0
1 +
mCr3
0
k
≈
k
mr3
0
1 +
mCr3
0
2k
Then the period is
τ =
2π
˙θ
≈ 2πr
3/2
0
m
k
1 −
mCr3
0
2k
= τ0 1 −
Cτ2
0
8π2
where τ0 = 2πr
3/2
0 m/k is the period of circular motion in the absence of the
perturbing potential.
(b) We return to (24) and put r = r0 + x with x r0:
m¨x =
l2
m(r0 + x)3
−
k
(r0 + x)2
− mC(r0 + x)
≈
l2
mr3
0
1 − 3
x
r0
−
k
r2
0
1 − 2
x
r0
− mCr0 − mCx
Using (25), this reduces to
m¨x = −
3l2
mr4
0
+
2k
r3
0
− mC x
or
¨x + ω2
x = 0
with
ω =
3l2
m2r4
0
−
2k
mr3
0
− C
1/2
=
2l2
m2r4
0
−
k
mr3
0
1/2
where in going to the last line we used (25) again.
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 13
Problem 3.14
Show that the motion of a particle in the potential field
V (r) = −
k
r
+
h
r2
is the same as that of the motion under the Kepler potential alone when expressed
in terms of a coordinate system rotating or precessing around the center of force.
For negative total energy show that if the additional potential term is very small
compared to the Kepler potential, then the angular speed of precession of the ellip-
tical orbit is
˙Ω =
2πmh
l2τ
.
The perihelion of Mercury is observed to precess (after corrections for known plan-
etary perturbations) at the rate of about 40 of arc per century. Show that this
precession could be accounted for classically if the dimensionless quantity
η =
k
ka
(which is a measure of the perturbing inverse square potential relative to the grav-
itational potential) were as small as 7 × 10−8
. (The eccentricity of Mercury’s orbit
is 0.206, and its period is 0.24 year).
The effective one-dimensional equation of motion is
m¨r =
L2
mr3
−
k
r2
+
2h
r3
=
L2
+ 2mh
mr3
+
k
r2
=
L2
+ 2mh + (mh/L)2
− (mh/L)2
mr3
+
k
r2
=
[L + (mh/L)]2
− (mh/L)2
mr3
+
k
r2
If mh L2
, then we can neglect the term (mh/L)2
in comparison with L2
, and
write
m¨r =
[L + (mh/L)]2
mr3
+
k
r2
(26)
which is just the normal equation of motion for the Kepler problem, but with
the angular momentum L augmented by the additive term ∆L = mh/L.
Such an augmentation of the angular momentum may be accounted for by
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 14
augmenting the angular velocity:
L = mr2 ˙θ −→ L 1 +
mh
L2
= mr2 ˙θ 1 +
mh
L2
= mr2 ˙θ + mr2 ˙Ω
where
˙Ω =
mh
L2 ˙θ
=
2πmh
L2τ
is a precession frequency. If we were to go back and work the problem in the
reference frame in which everything is precessing with angular velocity ˙Ω, but
there is no term h/r2
in the potential, then the equations of motion would come
out the same as in the stationary case, but with a term ∆L = mr2 ˙Ω added to
the effective angular momentum that shows up in the equation of motion for r,
just as we found in (26).
To put in the numbers, we observe that
˙Ω =
2π
τ
m
L2
(h)
=
2π
τ
mka
L2
h
ka
=
2π
τ
1
1 − e2
h
ka
so
h
ka
= (1 − e2
)
τ ˙Ω
2π
= (1 − e2
)τfprec
where in going to the third-to-last line we used Goldstein’s equation (3-62), and
in the last line I put fprec = ˙Ω/2π. Putting in the numbers, we find
h
ka
= (1 − .2062
) · 0.24 yr · 40
1◦
3600
1 revolution
360◦
1 century−1
100 yr−1
yr−1
= 7.1 · 10−8
.
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 15
Problem 3.22
In hyperbolic motion in a 1/r potential the analogue of the eccentric anomaly is F
defined by
r = a(e cosh F − 1),
where a(1 − e) is the distance of closest approach. Find the analogue to Kepler’s
equation giving t from the time of closest approach as a function of F.
We start with Goldstein’s equation (3.65):
t =
m
2
r
r0
dr
k
r − l2
2mr2 + E
=
m
2
r
r0
r dr
Er2 + kr − l2
2m
. (27)
With the suggested substitution, the thing under the radical in the denom-
inator of the integrand is
Er2
+ kr −
l2
2m
= Ea2
(e2
cosh2
F − 2e coshF + 1) + ka(e cosh F − 1) −
l2
2m
= Ea2
e2
cosh2
F + ae(k − 2Ea) cosh F + Ea2
− ka −
l2
2m
It follows from the orbit equation that, if a(e − 1) is the distance of closest
approach, then a = k/2E. Thus
=
k2
e2
4E
cosh2
F −
k2
e2
4E
−
l2
2m
=
k2
4E
e2
cosh2
F − 1 +
2El2
mk2
=
k2
e2
4E
cosh2
F − 1 =
k2
e2
4E
sinh2
F = a2
e2
E sinh2
F.
Plugging into (27) and observing that dr = ae sinh F dF, we have
t =
m
2E
F
F0
a(e cosh F − 1) dF =
ma2
2E
[e(sinh F − sinh F0) − (F − F0)]
and I suppose this equation could be a jumping-off point for numerical or other
investigations of the time of travel in hyperbolic orbit problems.
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 16
Problem 3.26
Examine the scattering produced by a repulsive central force f = kr−3
. Show that
the differential cross section is given by
σ(Θ)dΘ =
k
2E
(1 − x)dx
x2(2 − x)2 sin πx
where x is the ratio Θ/π and E is the energy.
The potential energy is U = k/2r2
= ku2
/2, and the differential equation
for the orbit reads
d2
u
dθ2
+ u = −
m
l2
dU
du
= −
mk
l2
u
or
d2
u
dθ2
+ 1 +
mk
l2
u = 0
with solution
u = A cos γθ + B sin γθ (28)
where
γ = 1 +
mk
l2
. (29)
We’ll set up our coordinates in the way traditional for scattering experiments:
initially the particle is at angle θ = π and a great distance from the force center,
and ultimately the particle proceeds off to r = ∞ at some new angle θs. The
first of these observations gives us a relation between A and B in the orbit
equation (28):
u(θ = π) = 0 −→ A cos γπ + B sin γπ = 0
−→ A = −B tan γπ. (30)
The condition that the particle head off to r = ∞ at angle θ = θs yields the
condition
A cos γθs + B sin γθs = 0.
Using (30), this becomes
− cosγθs tan γπ + sin γθs = 0
Homer Reid’s Solutions to Goldstein Problems: Chapter 3 17
or
− cos γθs sin γπ + sin γθs cos γπ = 0
−→ sin γ(θs − π) = 0
−→ γ(θs − π) = π
or, in terms of Goldstein’s variable x = θ/π,
γ =
1
x − 1
. (31)
Plugging in (29) and squaring both sides, we have
1 +
mk
l2
=
1
(x − 1)2
.
Now l = mv0s = (2mE)1/2
s with s the impact parameter and E the particle
energy. Thus the previous equation is
1 +
k
2Es2
=
1
(x − 1)2
or
s2
= −
k
2E
(x − 1)2
x(x − 2)
.
Taking the differential of both sides,
2s ds = −
k
2E
2(x − 1)
x(x − 2)
−
(x − 1)2
x2(x − 2)
−
(x − 1)2
x(x − 2)2
dx
= −
k
2E
2x(x − 1)(x − 2) − (x − 1)2
(x − 2) − x(x − 1)2
x2(x − 2)2
= −
k
2E
2(1 − x)
x2(x − 2)2
. (32)
The differential cross section is given by
σ(θ)dΩ =
| s ds |
sin θ
.
Plugging in (32), we have
σ(θ)dΩ =
k
2E
(1 − x)
x2(x − 2)2 sin θ
dx
as advertised.
Solutions to Problems in Goldstein,
Classical Mechanics, Second Edition
Homer Reid
April 21, 2002
Chapter 7
Problem 7.2
Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle
dθ counterclockwise from the z axis, by means of a similarity transformation applied
to Eq. (7-18). Show directly that the resulting matrix is orthogonal and that the
inverse matrix is obtained by substituting −v for v.
We can obtain this transformation by first applying a pure rotation to rotate
the z axis into the boost axis, then applying a pure boost along the (new) z
axis, and then applying the inverse of the original rotation to bring the z axis
back in line with where it was originally. Symbolically we have L = R−1
KR
where R is the rotation to achieve the new z axis, and K is the boost along the
z axis.
Goldstein tells us that the new z axis is to be rotated dθ counterclockise
from the original z axis, but he doesn’t tell us in which plane, i.e. we know θ
but not φ for the new z axis in the unrotated coordinates. We’ll assume the z
axis is rotated around the x axis, in a sense such that if you’re standing on the
positive x axis, looking toward the negative x axis, the rotation appears to be
counterclockwise, so that the positive z axis is rotated toward the negative y
1
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 2
axis. Then, using the real metric,
L =




1 0 0 0
0 cos dθ sin dθ 0
0 − sin dθ cos dθ 0
0 0 0 1








1 0 0 0
0 1 0 0
0 0 γ −βγ
0 0 −βγ γ








1 0 0 0
0 cos dθ − sin dθ 0
0 sin dθ cos dθ 0
0 0 0 1




=




1 0 0 0
0 cos dθ sin dθ 0
0 − sin dθ cos dθ 0
0 0 0 1








1 0 0 0
0 cos dθ − sin dθ 0
0 γ sin dθ γ cos dθ −βγ
0 −βγ sin dθ −βγ cos dθ γ




=




1 0 0 0
0 cos2
dθ + γ sin2
dθ (γ − 1) sin dθ cos dθ −βγ sin dθ
0 (γ − 1) sin dθ cos dθ sin2
dθ + γ cos2
dθ −βγ cos dθ
0 −βγ sin dθ −βγ cos dθ γ



 .
Problem 7.4
A rocket of length l0 in its rest system is moving with constant speed along the z
axis of an inertial system. An observer at the origin observes the apparent length
of the rocket at any time by noting the z coordinates that can be seen for the head
and tail of the rocket. How does this apparent length vary as the rocket moves from
the extreme left of the observer to the extreme right?
Let’s imagine a coordinate system in which the rocket is at rest and centered
at the origin. Then the world lines of the rocket’s top and bottom are
xt
µ = {0, 0, +L0/2, τ} xb
µ = {0, 0, −L0/2, τ} .
where we are parameterizing the world lines by the proper time τ. Now, the rest
frame of the observer is moving in the negative z direction with speed v = βc
relative to the rest frame of the rocket. Transforming the world lines of the
rocket’s top and bottom to the rest frame of the observer, we have
xt
µ = {0, 0, γ(L0/2 + vτ), γ(τ + βL0/2c)} (1)
xb
µ = {0, 0, γ(−L0/2 + vτ), γ(τ − βL0/2c)} . (2)
Now consider the observer. At any time t in his own reference frame, he is
receiving light from two events, namely, the top and bottom of the rocket moving
past imaginary distance signposts that we pretend to exist up and down the z
axis. He sees the top of the rocket lined up with one distance signpost and the
bottom of the rocket lined up with another, and from the difference between the
two signposts he computes the length of the rocket. Of course, the light that
he sees was emitted by the rocket some time in the past, and, moreover, the
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 3
light signals from the top and bottom of the rocket that the observer receives
simultaneously at time t were in fact emitted at different proper times τ in the
rocket’s rest frame.
First consider the light received by the observer at time t0 coming from
the bottom of the rocket. Suppose in the observer’s rest frame this light were
emitted at time t0 − ∆t, i.e. ∆t seconds before it reaches the observer at the
origin; then the rocket bottom was passing through z = −c∆t when it emitted
this light. But then the event identified by (z, t) = (−c∆t, t0 − ∆t) must lie on
the world line of the rocket’s bottom, which from (2) determines both ∆t and
the proper time τ at which the light was emitted:
−c∆t = γ(−L0/2 + vτ)
t0 − ∆t = γ(τ + βL0/2c)
=⇒ τ =
1 + β
1 − β
1/2
t0 −
L0
2c
≡ τb(t0).
We use the notation τb(t0) to indicate that this is the proper time at which the
bottom of the rocket emits the light that arrives at the observer’s origin at the
observer’s time t0. At this proper time, from (2), the position of the bottom of
the rocket in the observer’s reference frame was
zb(τb(t0)) = −γL0/2 + vγτb(t0)
= −γL0/2 + vγ
1 + β
1 − β
1/2
t0 −
L0
2c
(3)
Similarly, for the top of the rocket we have
τt(t0) =
1 + β
1 − β
1/2
t0 +
L0
2c
and
zt(τt(t0)) = γL0/2 + vγ
1 + β
1 − β
1/2
t0 +
L0
2c
(4)
Subtracting (3) from (4), we have the length for the rocket computed by the
observer from his observations at time t0 in his reference frame:
L(t0) = γ(1 + β)L0
=
1 + β
1 − β
1/2
L0.
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 4
Problem 7.17
Two particles with rest masses m1 and m2 are observed to move along the observer’s
z axis toward each other with speeds v1 and v2, respectively. Upon collision they
are observed to coalesce into one particle of rest mass m3 moving with speed v3
relative to the observer. Find m3 and v3 in terms of m1, m2, v1, and v2. Would it
be possible for the resultant particle to be a photon, that is m3 = 0, if neither m1
nor m2 are zero?
Equating the 3rd and 4th components of the initial and final 4-momentum
of the system yields
γ1m1v1 − γ2m2v2 = γ3m3v3
γ1m1c + γ2m2c = γ3m3c
Solving the second for m3 yields
m3 =
γ1
γ3
m1 +
γ2
γ3
m2 (5)
and plugging this into the first yields v3 in terms of the properties of particles
1 and 2:
v3 =
γ1m1v1 − γ2m2v2
γ1m1 + γ2m2
Then
β3 =
v3
c
=
γ1m1β1 − γ2m2β2
γ1m1 + γ2m2
1 − β2
3 =
γ2
1 m2
1 + 2γ1γ2m1m2 + γ2
2 m2
2 − [γ2
1m2
1β2
1 + γ2
2 m2
2β2
2 − 2γ1γ2m1m2β1β2]
(γ1m1 + γ2m2)2
=
γ2
1 m2
1(1 − β2
1 ) + γ2
2m2
2(1 − β2
2) + 2γ1γ2m1m2(1 − β1β2)
(γ1m1 + γ2m2)2
=
m2
1 + m2
2 + 2γ1γ2m1m2(1 − β1β2)
(γ1m1 + γ2m2)2
and hence
γ2
3 =
1
1 − β2
3
=
(γ1m1 + γ2m2)2
m2
1 + m2
2 + 2γ1γ2m1m2(1 − β1β2)
. (6)
Now, (5) shows that, for m3 to be zero when either m1 or m2 is zero, we must
have γ3 = ∞. That this condition cannot be met for nonzero m1, m2 is evident
from the denominator of (6), in which all terms are positive (since β1β2  1 if
m1 or m2 is nonzero).
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 5
Problem 7.19
A meson of mass π comes to rest and disintegrates into a meson of mass µ and a
neutrino of zero mass. Show that the kinetic energy of motion of the µ meson (i.e.
without the rest mass energy) is
(π − µ)2
2π
c2
.
Working in the rest frame of the pion, the conservation relations are
πc2
= (µ2
c4
+ p2
µc2
)1/2
+ pνc (energy conservation)
0 = pµ + pν (momentum conservation).
From the second of these it follows that the muon and neutrino must have the
same momentum, whose magnitude we’ll call p. Then the energy conservation
relation becomes
πc2
= (µ2
c4
+ p2
c2
)1/2
+ pc
−→ (πc − p)2
= µ2
c2
+ p2
−→ p =
π2
− µ2
2π
c.
Then the total energy of the muon is
Eµ = (µ2
c4
+ p2
c2
)1/2
= c2
µ2
+
(π2
− µ2
)2
4π2
1/2
=
c2
2π
4π2
µ2
+ (π2
− µ2
)2 1/2
=
c2
2π
(π2
+ µ2
)
Then subtracting out the rest energy to get the kinetic energy, we obtain
K = Eµ − µc2
=
c2
2π
(π2
+ µ2
) − µc2
=
c2
2π
(π2
+ µ2
− 2πµ)
=
c2
2π
(π − µ)2
as advertised.
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 6
Problem 7.20
A π+
meson of rest mass 139.6 MeV collides with a neutron (rest mass 939.6 MeV)
stationary in the laboratory system to produce a K+
meson (rest mass 494 MeV)
and a Λ hyperon (rest mass 1115 MeV). What is the threshold energy for this
reaction in the laboratory system?
We’ll put c = 1 for this problem. The four-momenta of the pion and neutron
before the collision are
pµ,π = (pπ, γπmπ), pµ,n = (0, mn)
and the squared magnitude of the initial four-momentum is thus
pµ,T pµ
T = −|pπ|2
+ (γπmπ + mn)2
= −|pπ|2
+ γ2
πm2
π + m2
n + 2γπmπmn
= m2
π + m2
n + 2γπmπmn
= (mπ + mn)2
+ 2(γπ − 1)mπmn (7)
The threshold energy is the energy needed to produce the K and Λ particles
at rest in the COM system. In this case the squared magnitude of the four-
momentum of the final system is just (mK + mΛ)2
, and, by conservation of
momentum, this must be equal to the magnitude of the four-momentum of the
initial system (7):
(mK + mΛ)2
= (mπ + mn)2
+ 2(γπ − 1)mπmn
=⇒ γπ = 1 +
(mK + mΛ)2
− (mπ + mn)2
2mπmn
= 6.43
Then the total energy of the pion is T = γπmπ = (6.43 · 139.6 MeV) = 898
MeV, while its kinetic energy is K = T − m = 758 MeV.
The above appears to be the correct solution to this problem. On the other
hand, I first tried to do it a different way, as below. This way yields a different
and hence presumably incorrect answer, but I can’t figure out why. Can anyone
find the mistake?
The K and Λ particles must have, between them, the same total momentum
in the direction of the original pion’s momentum as the original pion had. Of
course, the K and Λ may also have momentum in directions transverse to the
original pion momentum (if so, their transverse momenta must be equal and
opposite). But any transverse momentum just increases the energy of the final
system, which increases the energy the initial system must have had to produce
the final system. Hence the minimum energy situation is that in which the K and
Λ both travel in the direction of the original pion’s motion. (This is equivalent
to Goldstein’s conclusion that, just at threshold, the produced particles are at
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 7
rest in the COM system). Then the momentum conservation relation becomes
simply
pπ = pK + pλ (8)
and the energy conservation relation is (with c = 1)
(m2
π + p2
π)1/2
+ mn = (m2
K + p2
K)1/2
+ (m2
Λ + p2
Λ)1/2
. (9)
The problem is to find the minimum value of pπ that satisfies (9) subject to the
constraint (8).
To solve this we must first resolve a subquestion: for a given pπ, what is the
relative allocation of momentum to pK and pΛ that minimizes (9) ? Minimizing
Ef = (m2
K + p2
K)1/2
+ (m2
Λ + p2
Λ)1/2
.
subject to pK + pΛ = pπ, we obtain the condition
pK
(m2
K + p2
K)1/2
=
pΛ
(m2
Λ + p2
Λ)1/2
=⇒ pK =
mK
mΛ
pΛ (10)
Combining this with (8) yields
pΛ =
mΛ
mK + mΛ
pπ pK =
mK
mK + mΛ
pπ. (11)
For a given total momentum pπ, the minimum possible energy the final system
can have is realized when pπ is partitioned between pK and pΛ according to
(11). Plugging into (8), the relation defining the threshold momentum is
(m2
π + p2
π)1/2
+ mn = m2
K +
mK
mK + mΛ
2
p2
π
1/2
+ m2
Λ +
mΛ
mK + mΛ
2
p2
π
1/2
Solving numerically yields pπ ≈ 655 MeV/c, for a total pion energy of about
670 MeV.
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 8
Problem 7.21
A photon may be described classically as a particle of zero mass possessing never-
theless a momentum h/λ = hν/c, and therefore a kinetic energy hν. If the photon
collides with an electron of mass m at rest it will be scattered at some angle θ with
a new energy hν . Show that the change in energy is related to the scattering angle
by the formula
λ − λ = 2λc sin2 θ
2
,
where λc = h/mc, known as the Compton wavelength. Show also that the kinetic
energy of the recoil motion of the electron is
T = hν
2 λc
λ sin2 θ
2
1 + 2 λc
λ sin2
θ/2
.
Let’s assume the photon is initially travelling along the z axis. Then the sum
of the initial photon and electron four-momenta is
pµ,i = pµ,γ + pµ,e =




0
0
h/λ
h/λ



 +




0
0
0
mc



 =




0
0
h/λ
mc + h/λ



 . (12)
Without loss of generality we may assume that the photon and electron move
in the xz plane after the scatter. If the photon’s velocity makes an angle θ with
the z axis, while the electron’s velocity makes an angle φ, the four-momentum
after the collision is
pµ,f = pµ,γ + pµ,e =




(h/λ ) sin θ
0
(h/λ ) cos θ
h/λ



 +




pe sin φ
0
pe cos φ
m2c2 + p2
e



 =




(h/λ ) sin θ + pe sin φ
0
(h/λ ) cos θ + pe cos φ
(h/λ ) + m2c2 + p2
e



 .
(13)
Equating (12) and (13) yields three separate equations:
(h/λ ) sin θ + pe sin φ = 0 (14)
(h/λ ) cos θ + pe cos φ = h/λ (15)
h/λ + m2c2 + p2
e = mc + h/λ (16)
From the first of these we find
sin φ = −
h
λ pe
sin θ =⇒ cos φ = 1 +
h
λ pe
2
sin2
θ
1/2
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 9
and plugging this into (15) we find
p2
e =
h2
λ2
+
h2
λ 2
− 2
h2
λλ
cos θ. (17)
On the other hand, we can solve (16) to obtain
p2
e = h2 1
λ
−
1
λ
2
+ 2mch
1
λ
−
1
λ
.
Comparing these two determinations of pe yields
cosθ = 1 −
mc
h
(λ − λ)
or
sin2 θ
2
=
mc
2h
(λ − λ) =
1
2λc
(λ − λ)
so this is advertised result number 1.
Next, to find the kinetic energy of the electron after the collision, we can
write the conservation of energy equation in a slightly different form:
mc +
h
λ
= γmc +
h
λ
=⇒ (γ − 1)mc = K = h
1
λ
−
1
λ
= h
λ − λ
λλ
= h
2λc sin2
(θ/2)
λ[λ + 2λc sin2
(θ/2)]
=
h
λ
2χ sin2
(θ/2)
1 + 2χ sin2
(θ/2)
where we put χ = λc/λ.
Problem 7.22
A photon of energy E collides at angle θ with another photon of energy E. Prove
that the minimum value of E permitting formation of a pair of particles of mass m
is
Eth =
2m2
c4
E(1 − cos θ)
.
We’ll suppose the photon of energy E is traveling along the positive z axis,
while that with energy E is traveling in the xz plane (i.e., its velocity has
Homer Reid’s Solutions to Goldstein Problems: Chapter 7 10
spherical polar angles θ and φ = 0). Then the 4-momenta are
p1 = 0, 0,
E
c
,
E
c
p2 =
E
c
sin θ, 0,
E
c
cos θ,
E
c
pt = p1 + p2 =
E
c
sin θ, 0,
E + E cos θ
c
,
E + E
c
It’s convenient to rotate our reference frame to one in which the space portion
of the composite four-momentum of the two photons is all along the z direction.
In this frame the total four-momentum is
pt = 0, 0,
1
c
E2 + E2 + 2EE cos θ,
E + E
c
. (18)
At threshold energy, the two produced particles have the same four-momenta:
p3 = p4 = 0, 0, p, (m2
c2
+ p2
)1/2
(19)
and 4-momentum conservation requires that twice (19) add up to (18), which
yields two conditions:
2p = 1
c
√
E2 + E2 + 2EE cos θ −→ p2
c2
= 1
4 (E2
+ E2
+ 2EE cos θ)
2 m2c2 + p2 = E+E
c −→ m2
c4
+ p2
c2
= 1
4 (E2
+ E2
+ 2EE)
Subtracting the first of these from the second, we obtain
m2
c4
=
EE
2
(1 − cos θ)
or
E =
2m2
c4
E(1 − cos θ)
as advertised.
Solutions to Problems in Goldstein,
Classical Mechanics, Second Edition
Homer Reid
October 29, 2002
Chapter 9
Problem 9.1
One of the attempts at combining the two sets of Hamilton’s equations into one
tries to take q and p as forming a complex quantity. Show directly from Hamilton’s
equations of motion that for a system of one degree of freedom the transformation
Q = q + ip, P = Q∗
is not canonical if the Hamiltonian is left unaltered. Can you find another set of
coordinates Q , P that are related to Q, P by a change of scale only, and that are
canonical?
Generalizing a little, we put
Q = µ(q + ip), P = ν(q − ip). (1)
The reverse transformation is
q =
1
2
1
µ
Q +
1
ν
P , p =
1
2i
1
µ
Q −
1
ν
P .
The direct conditions for canonicality, valid in cases (like this one) in which the
1
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 2
transformation equations do not depend on the time explicitly, are
∂Q
∂q
=
∂p
∂P
∂Q
∂p
= −
∂q
∂P
∂P
∂q
= −
∂p
∂Q
∂P
∂p
=
∂q
∂Q
.
(2)
When applied to the case at hand, all four of these yield the same condition,
namely
µ = −
1
2iν
.
For µ = ν = 1, which is the case Goldstein gives, these conditions are clearly
not satisfied, so (1) is not canonical. But putting µ = 1, ν = − 1
2i we see that
equations (1) are canonical.
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 3
Problem 9.2
(a) For a one-dimensional system with the Hamiltonian
H =
p2
2
−
1
2q2
,
show that there is a constant of the motion
D =
pq
2
− Ht.
(b) As a generalization of part (a), for motion in a plane with the Hamiltonian
H = |p|n
− ar−n
,
where p is the vector of the momenta conjugate to the Cartesian coordinates,
show that there is a constant of the motion
D =
p · r
n
− Ht.
(c) The transformation Q = λq, p = λP is obviously canonical. However, the same
transformation with t time dilatation, Q = λq, p = λP, t = λ2
t, is not. Show
that, however, the equations of motion for q and p for the Hamiltonian in part
(a) are invariant under the transformation. The constant of the motion D is
said to be associated with this invariance.
(a) The equation of motion for the quantity D is
dD
dT
= {D, H} +
∂D
∂t
The Poisson bracket of the second term in D clearly vanishes, so we have
=
1
2
{pq, H} − H
=
1
4
pq, p2
−
1
4
pq,
1
q2
− H. (3)
The first Poisson bracket is
pq, p2
=
∂(pq)
∂q
∂(p2
)
∂p
−
∂(pq)
∂p
∂(p2
)
∂q
= (p)(2p) − 0
= 2p2
(4)
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 4
Next,
pq,
1
q2
=
∂(pq)
∂q
∂ 1
q2
∂p
−
∂(pq)
∂p
∂ 1
q2
∂q
= 0 − −
2
q3
q
=
2
q2
(5)
Plugging (4) and (5) into (3), we obtain
dD
dt
=
p2
2
−
1
2q2
− H
= 0.
(b) We have
H = (p2
1 + p2
2 + p2
3)n/2
− a(x2
1 + x2
2 + x2
3)−n/2
so
∂H
∂xi
= anxi(x2
1 + x2
2 + x2
3)−n/2−1
∂H
∂pi
= 2npi(p2
1 + p2
2 + p2
3)n/2−1
.
Then
{p · r, H} =
i
∂(p1x1 + p2x2 + p3x3)
∂xi
∂H
∂pi
−
∂(p1x1 + p2x2 + p3x3)
∂pi
∂H
∂xi
=
i
np2
i (p2
1 + p2
2 + p2
3)n/2−1
− anx2
i (x2
1 + x2
2 + x2
3)−n/2−1
= n(p2
1 + p2
2 + p2
3)n/2
− an(x2
1 + x2
2 + x2
3)−n/2
(6)
so if we define D = p · r/n − Ht, then
dD
dT
= {D, H} −
∂D
∂t
=
1
n
{p · r, H} −
∂D
∂t
Substituting in from (6),
= |p|n
− ar−n
− H
= 0.
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 5
(c) We put
Q(t ) = λq
t
λ2
, P(t ) =
1
λ
p
t
λ2
. (7)
Since q and p are the original canonical coordinates, they satisfy
˙q =
∂H
∂p
= p
˙p = −
∂H
∂q
=
1
q3
.
(8)
On the other hand, differentiating (7), we have
dQ
dt
=
1
λ
˙q
t
λ2
=
1
λ
p
t
λ2
= P(t )
dP
dt
=
1
λ3
˙p
t
λ2
=
1
λ3
1
q t
λ2
=
1
Q3(t )
which are the same equations of motion as (8).
Problem 9.4
Show directly that the transformation
Q = log
1
p
sin p , P = q cot p
is canonical.
The Jacobian of the transformation is
M =
∂Q
∂q
∂Q
∂p
∂P
∂q
∂P
∂p
=
−1
q cot p
cot p −q csc2
p
.
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 6
Hence
˜MJM =
−1
q cot p
cot p −q csc2
p
0 1
−1 0
−1
q cot p
cot p −q csc2
p
=
−1
q cot p
cot p −q csc2
p
cot p −q csc2
p
1
q − cot p
=
0 csc2
p − cot2
p
cot2
p − csc2
p 0
=
0 1
−1 0
= J
so the symplectic condition is satisfied.
Problem 9.5
Show directly for a system of one degree of freedom that the transformation
Q = arctan
αq
p
, P =
αq2
2
1 +
p2
α2q2
is canonical, where α is an arbitrary constant of suitable dimensions.
The Jacobian of the transformation is
M =


∂Q
∂q
∂Q
∂p
∂P
∂q
∂P
∂p


=


α
p
1
1+(αq
p )2 − αq
p2
1
1+(αq
p )2
αq p
α

 .
so
˜MJM =



α
p
1
1+(αq
p )
2 αq
− αq
p2
1
1+(αq
p )2
p
α





αq p
α
− α
p
1
1+(αq
p )2 + αq
p2
1
1+(αq
p )2


=


0 1
−1 0


= J
so the symplectic condition is satisfied.
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 7
Problem 9.6
The transformation equations between two sets of coordinates are
Q = log(1 + q1/2
cos p)
P = 2(1 + q1/2
cos p)q1/2
sin p
(a) Show directly from these transformation equations that Q, P are canonical
variables if q and p are.
(b) Show that the function that generates this transformation is
F3 = −(eQ
− 1)2
tan p.
(a) The Jacobian of the transformation is
M =


∂Q
∂q
∂Q
∂p
∂P
∂q
∂P
∂p


=


1
2
q−1/2
cos p
1+q1/2 cos p
− q1/2
sin p
1+q1/2 cos p
q−1/2
sin p + 2 cos p sin p 2q1/2
cos p + 2q cos2
p − 2q sin2
p


=


1
2
q−1/2
cos p
1+q1/2 cos p
− q1/2
sin p
1+q1/2 cos p
q−1/2
sin p + sin 2p 2q1/2
cos p + 2q cos 2p

 .
Hence we have
˜MJM =


1
2
q−1/2
cos p
1+q1/2 cos p
q−1/2
sin p + sin 2p
− q1/2
sin p
1+q1/2 cos p
2q1/2
cos p + 2q cos 2p


×


q−1/2
sin p + sin 2p 2q1/2
cos p + 2q cos 2p
− 1
2
q−1/2
cos p
1+q1/2 cos p
q1/2
sin p
1+q1/2 cos p


=


0 cos2
p+sin2
p+q1/2
cos p cos 2p+q1/2
sin p sin 2p
1+q1/2 cos p
−cos2
p+sin2
p+q1/2
cos p cos 2p+q1/2
sin p sin 2p
1+q1/2 cos p
0


=


0 1
−1 0


= J
so the symplectic condition is satisfied.
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 8
(b) For an F3 function the relevant relations are q = −∂F/∂p, P = −∂F/∂Q.
We have
F3(p, Q) = −(eQ
− 1)2
tan p
so
P = −
∂F3
∂Q
= 2eQ
(eQ
− 1) tan p
q = −
∂F3
∂p
= (eQ
− 1)2
sec2
p.
The second of these may be solved to yield Q in terms of q and p:
Q = log(1 + q1/2
cos p)
and then we may plug this back into the equation for P to obtain
P = 2q1/2
sin p + q sin 2p
as advertised.
Problem 9.7
(a) If each of the four types of generating functions exist for a given canonical
transformation, use the Legendre transformation to derive relations between
them.
(b) Find a generating function of the F4 type for the identity transformation and
of the F3 type for the exchange transformation.
(c) For an orthogonal point transformation of q in a system of n degrees of freedom,
show that the new momenta are likewise given by the orthogonal transforma-
tion of an n−dimensional vector whose components are the old momenta plus
a gradient in configuration space.
Problem 9.8
Prove directly that the transformation
Q1 = q1, P1 = p1 − 2p2
Q2 = p2, P2 = −2q1 − q2
is canonical and find a generating function.
After a little hacking I came up with the generating function
F13(p1, Q1, q2, Q2) = −(p1 − 2Q2)Q1 + q2Q2
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 9
which is of mixed F3, F1 type. This is Legendre-transformed into a function of
the F1 type according to
F1(q1, Q1, q2, Q2) = F13 + p1q1.
The least action principle then says
p1 ˙q1 + p2 ˙q2 − H(qi, pi) = P1
˙Q1 + P2
˙Q2 − K(Qi, Pi) +
∂F13
∂p1
˙p1 +
∂F13
∂Q1
˙Q1
+
∂F13
∂q2
˙q2 +
∂F13
∂Q2
˙Q2 + p1 ˙q1 + q1 ˙p1
whence clearly
q1 = −
∂F13
∂p1
= Q1
P1 = −
∂F13
∂Q1
= −p1 − 2Q2
= −p1 − 2p2
p2 =
∂F13
∂q2
= Q2
P2 = −
∂F13
∂Q2
= −2Q1 − q2 = −2q1 − q2 .
Problem 9.14
By any method you choose show that the following transformation is canonical:
x =
1
α
( 2P1 sin Q1 + P2), px =
α
2
( 2P1 cos Q1 − Q2)
y =
1
α
( 2P1 cos Q1 + Q2), py = −
α
2
( 2P1 sin Q1 − P2)
where α is some fixed parameter.
Apply this transformation to the problem of a particle of charge q moving in a plane
that is perpendicular to a constant magnetic field B. Express the Hamiltonian for
this problem in the (Qi, Pi) coordinates, letting the parameter α take the form
α2
=
qB
c
.
From this Hamiltonian obtain the motion of the particle as a function of time.
We will prove that the transformation is canonical by finding a generating
function. Our first step to this end will be to express everything as a function
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 10
of some set of four variables of which two are old variables and two are new.
After some hacking, I arrived at the set {x, Q1, py, Q2}. In terms of this set, the
remaining quantities are
y =
1
2
x −
1
α2
py cot Q1 +
1
α
Q2 (9)
px =
α2
4
x −
1
2
py cot Q1 −
α
2
Q2 (10)
P1 =
α2
x2
8
−
1
2
xpy +
1
2α2
p2
y csc2
Q1 (11)
P2 =
α
2
x +
1
α
py (12)
We now seek a generating function of the form F(x, Q1, py, Q2). This is of mixed
type, but can be related to a generating function of pure F1 character according
to
F1(x, Q1, y, Q2) = F(x, Q1, py, Q2) − ypy.
Then the principle of least action leads to the condition
px ˙x + py ˙y = P1
˙Q1 + P2
˙Q2 +
∂F
∂x
˙x +
∂F
∂py
˙py +
∂F
∂Q1
˙Q1 +
∂F
∂Q2
˙Q2 + y ˙py + py ˙y
from which we obtain
px =
∂F
∂x
(13)
y = −
∂F
∂py
(14)
P1 = −
∂F
∂Q1
(15)
P2 = −
∂F
∂Q2
. (16)
Doing the easiest first, comparing (12) and (16) we see that F must have
the form
F(x, Q1, py, Q2) = −
α
2
xQ2 −
1
α
pyQ2 + g(x, Q1, py). (17)
Plugging this in to (14) and comparing with (14) we find
g(x, Q1, py) = −
1
2
xpy +
1
2α2
p2
y cot Q1 + ψ(x, Q1). (18)
Plugging (17) and (18) into (13) and comparing with (10), we see that
∂ψ
∂x
=
α2
4
x cot Q1
Homer Reid’s Solutions to Goldstein Problems: Chapter 9 11
or
ψ(x, Q1) =
α2
x2
8
cot Q1. (19)
Finally, combining (19), (18), (17), and (15) and comparing with (11) we see
that we may simply take φ(Q1) ≡ 0. The final form of the generating function
is then
F(x, Q1, py, Q2) = −
α
2
x +
1
α
py Q2 +
α2
x2
8
−
1
2
xpy +
1
2α2
p2
y cot Q1
and its existence proves the canonicality of the transformation.
Turning now to the solution of the problem, we take the B field in the z
direction, i.e. B = B0
ˆk, and put
A =
B0
2
− yˆi + xˆj .
Then the Hamiltonian is
H(x, y, px, py) =
1
2m
p −
q
c
A
2
=
1
2m
px +
qB0
2c
y
2
+ py −
qB0
2c
x
2
=
1
2m
px +
α2
2
y
2
+ py −
α2
2
x
2
where we put α2
= qB/c. In terms of the new variables, this is
H(Q1, Q2, P1, P2) =
1
2m
α 2P1 cos Q1
2
+ α 2P1 sin Q1
2
=
α2
m
P1
= ωcP1
where ωc = qB/mc is the cyclotron frequency. From the Hamiltonian equations
of motion applied to this Hamiltonian we see that Q2, P1, and P2 are all constant,
while the equation of motion for Q1 is
˙Q1 =
∂H
∂P1
= ωc −→ Q1 = ωct + φ
for some phase φ. Putting r =
√
2P1/α, x0 = P2/α, y0 = Q2/α we then have
x = r(sin ωct + φ) + x0, px =
mωc
2
[r cos(ωct + φ) − y0]
y = r(cos ωct + φ) + y0, py =
mωc
2
[r sin(ωct + φ) + x0]
in agreement with the standard solution to the problem.
 ¢¡¤£¦¥¨§©¡¤§¡ !¡#$£%'()©¦102¡#£34§%'©¦65
798A@CB'B'DFEG@¨8IH PQESRT@¢UVDFESB 5W ¢%QXQ¡#$3`Y 3©a§©¡#
bcedIfhg¨iWfhprq
s$tvuetvwAx€y‚ƒ…„F††‡
ˆ‰’‘V“•”—–T˜d™Te
f9gihCjTklnm onpqar
suthvxwhyza{|y~}|at€‚vxyAƒ„t†…—za{|yTƒ‡t†z‰ˆŠt‹Œt…—Ž}etˆŠ‹zW}|at†‘y“’¦z‰ˆŠvŠyTˆx‹Œ”why•‰z‰ˆ–’•†vS}‚vŠ‹|y—™˜‚š‰ˆx‹‚›
z‰{‚yœž†ƒ‡ˆŠvŸzat‹‚ ¢¡hh’th€|ˆ'ƒ‡y•z‰{|t‚£4¤¦¥ˆx‹‚£I€et†z‰{Iz‰{‚yTyA§˜‚¨zaˆxth‹6t…©z‰{|yzaa†‘yA’z‰taª”†‹‚£«z‰{|y
£‚yA}FyA‹‚£‚y•‹F’y¬t…vz‰{|yC’tut­£‚ˆŠ‹‚¨zayAšSth‹z‰ˆŠƒCyh—4šaš®˜|ƒ‡ˆŠ‹|›‡z‰{‚y¬}|at†‘y“’¦z‰ˆŠvŠy¤ˆŠš©¯‚ayA£t†°”¨znz‰ˆŠƒCy
±G²Œ³ …´‰thƒµz‰{|y—th‰ˆŠ›ˆŠ‹W¶Sˆxz‰{z‰{|y—why•vŠtu’•ˆŸz‘ª¢·¨¸¹uƒ¢†ºuˆx‹‚›C‹$‹|›vŠy¼»Ž¶Sˆxz‰{z‰{‚y#{|taˆx½At‹zav¾¤
¿ {|y¤œnƒ‡ˆxvxz‰th‹|ˆŠ‹ˆ–š
À ²ÂÁFÃÄŨÆÈÇ ÁeÃÉŨÆÊÇ ÆˏÌ
š‰tÍza{|y¤œnƒ‡ˆxvxz‰th‹‚ Î¡’•t€|ˆ†y“§h˜F¨z‰ˆŠt‹$€eyA’thƒ‡yAš
Ï
ŨÆЅцÒ
ÑeÓ©Ô
à Ç
Ï
ņÆÕÐGÑ4Ò
Ñ
Ì
Ô
Ã Ç ÆËÌ ÇÖÑ4Ò
Ñ
± ²×³‚Ø Ù Ï“Ú
Û y¤š®yAy•ºW‡š‰tvŠ˜‚z‰ˆŠt‹$t†…z‰{|y—…´th‰ƒ
Ò
Ù
Ó
¹‘Üv¹ Ì ¹‰Ý¢¹ ± Ú ² Ü
Ó ÇIÞ ÙÌ ¹‰Ý Úß Ý ± ÙÅ Ú
¶S{|yA‰y'ÜW†‹‚£CÝ•†ay…zat¼€ey™z‰{‚y Ù ’th‹‚š‘z­†‹z Ú zaa‹‚š‘…´th‰ƒ‡y“£¤ƒ‡tƒ‡y•‹z­|¤ Û ˆŸza{Íza{|ˆ–ši†‹‚ša¨za½
…´t
Ò
¹ Ù ÏàÚ €eyA’•tƒ‡yAš
Ü ÃņÆáÇ
Ï
ŨÆÕÐ Ñ Þ
Ñ
Ì
Ô
Ã Ç ÆËÌ ² Ý
t
Ñ Þ
Ñ
Ì ²Öâ Å¨Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ Ø
Ï
 ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ¤S Å
T ‹z‰yA›­¨z‰ˆŠ‹|›F—
Þ ÙÌ |Ú ²VU ÉIW ÌYX â Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ X
² ß Ï
`Æ à Ëba Å¨Æ Ý ß Ü Ã ßŽÅ†Æ Ã ËÌ2c¤dfe à Ø
¿ {|yA‹œž†ƒ‡ˆŠvŸzat‹hg š™}|aˆx‹‚’•ˆx}F†v†…´˜|‹‚’z‰ˆŠt‹ ÙÅ hÚ ˆŠš
Ò
² Ü
Ó
ß Ï
`†Æ à Ëpi Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ2q dfe Ã ß Ý ±¦Ø
¿ {|y Ù ’•t‹‚š®za‹z Ú z‰­†‹‚š®…´taƒ‡yA£’tut­£‚ˆŠ‹‚¨zayAš™’th‹¨‘˜|›h†z‰yžz‰tCz‰{‚y¤’t‹Fš‘z­†‹z'zaa‹‚š®…´taƒCy“£
ƒ‡tƒ‡y•‹z­Cݵ‹‚£¨Ü€‰y
rts ² Ñ4Ò
Ñ
Ý
² ß Ï
ÆËba Å¨Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌuc
s
e Ã ß ± Ù `hÚ
r
Ã
² Ñ4Ò
Ñ
Ü
²
Ó Ç
Ü
Æ Ã Ëva Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ2c
s
e à Ù9w Ú
¿ ˜|‰‹‚ˆx‹|›™za{|yAš‰y…ˆŠ‹‚š‰ˆŠ£|yGt˜‚z z‰t©th€‚zaˆx‹
Ó
†‹‚£ Ì š†…´˜‚‹‚’¦zaˆxth‹‚š t…uz‰ˆŠƒCy'†‹‚£¼za{|y'’•t‹‚š®za‹hz­š•—
¶Qyž¯F‹‚£
Ì ² Ý
ÆË ß Ü ÃÅ†Æ Ã Ë ß Ë
Å Ù´± Ç r s Ú Ã
Ó
² r
à Ç
Ü
Æ Ù´± Ç rts Ú
¥ˆx‹F†vŠvxªh—‚…´atƒ z‰{‚yÍ›hˆxwhy•‹TˆŠ‹|ˆŸzaˆŠv’•t‹‚£|ˆŸzaˆxth‹‚šn¶Qy¤th€‚zaˆx‹Tza{|y¤…´thvxvŠt¨¶SˆŠ‹|›¨yA§˜‚†z‰ˆŠt‹‚šn…´t
z‰{‚y¤’t‹Fš‘z­†‹zaš™Ý¢¹®Ü¹xrysà¹xr
Á€
Ì Ù´±G² ³ Ú ²×³ ²h‚
Ý
ÆË ß Ü ÃÅ†Æ Ã Ë ß Ë r
Ãs
Å ² ³
Ó
Ù´±…² ³ Ú ²×³ ²h‚ r
à Ç
Ü
Æ rys ² ³
ƒÌ Ù´±G² ³ Ú ² ·¨¸š®ˆŠ‹©» ²h‚ ß€Ë rys ² ·¨¸ š‰ˆx‹©»
ƒ
Ó
Ù´±G² ³ Ú ² ·¨¸’thš‚» ²h‚ Ü
Æ ² ·¨¸ ’tš|»
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)
[Goldstein herbert] classical_mechanics_solution_m(book_see.org)

More Related Content

What's hot

Week 05 Switchgear and Protection
Week   05 Switchgear and ProtectionWeek   05 Switchgear and Protection
Week 05 Switchgear and ProtectionPremanandDesai
 
TTF.MNSTY.11
TTF.MNSTY.11TTF.MNSTY.11
TTF.MNSTY.11Arcee327
 
Zs 1018 zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)
Zs 1018   zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)Zs 1018   zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)
Zs 1018 zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)zoran radovic
 
Zagor - VC 168 - Ludilo čoveka-munje.pdf
Zagor - VC 168 - Ludilo čoveka-munje.pdfZagor - VC 168 - Ludilo čoveka-munje.pdf
Zagor - VC 168 - Ludilo čoveka-munje.pdfStripovizijacom
 
Zagor - VC 167 - Užarena stena.pdf
Zagor - VC 167 - Užarena stena.pdfZagor - VC 167 - Užarena stena.pdf
Zagor - VC 167 - Užarena stena.pdfStripovizijacom
 
0099. Zagor Prica
0099. Zagor Prica0099. Zagor Prica
0099. Zagor PricaTompa *
 
Tex LIB 077 - U prorokovoj jazbini
Tex LIB 077 - U prorokovoj jazbiniTex LIB 077 - U prorokovoj jazbini
Tex LIB 077 - U prorokovoj jazbiniStripovizijacom
 
Anil - Engineering Consolidated Marks Memo
Anil - Engineering Consolidated Marks MemoAnil - Engineering Consolidated Marks Memo
Anil - Engineering Consolidated Marks MemoD S Anil Kumar Bokka
 
Zagor - VC 164 - Banda nemilosrdnih
Zagor - VC 164 - Banda nemilosrdnihZagor - VC 164 - Banda nemilosrdnih
Zagor - VC 164 - Banda nemilosrdnihStripovizijacom
 
TTF.MTMTE.32
TTF.MTMTE.32TTF.MTMTE.32
TTF.MTMTE.32Arcee327
 
Quran para 27 for Kindle
Quran para 27 for KindleQuran para 27 for Kindle
Quran para 27 for Kindleharoobnabbas
 
030 teks viler - divlje horde
030   teks viler - divlje horde030   teks viler - divlje horde
030 teks viler - divlje hordezoran radovic
 
Quran chapter-46-surah-al-ahqaf-pdf
Quran chapter-46-surah-al-ahqaf-pdfQuran chapter-46-surah-al-ahqaf-pdf
Quran chapter-46-surah-al-ahqaf-pdfQuran Pak
 
Zagor Ludens 228 - Grad ludila
Zagor Ludens  228 - Grad ludilaZagor Ludens  228 - Grad ludila
Zagor Ludens 228 - Grad ludilaStripovizijacom
 
Kupdf.com zagor kameni-ubica
Kupdf.com zagor kameni-ubicaKupdf.com zagor kameni-ubica
Kupdf.com zagor kameni-ubicazoran radovic
 
Veliki Blek - Pobuna robova
Veliki Blek - Pobuna robovaVeliki Blek - Pobuna robova
Veliki Blek - Pobuna robovaStripovizijacom
 
Zagor 631 povratak blondi (ras & emeri)(11 mb)
Zagor 631   povratak blondi (ras & emeri)(11 mb)Zagor 631   povratak blondi (ras & emeri)(11 mb)
Zagor 631 povratak blondi (ras & emeri)(11 mb)zoran radovic
 

What's hot (20)

Week 05 Switchgear and Protection
Week   05 Switchgear and ProtectionWeek   05 Switchgear and Protection
Week 05 Switchgear and Protection
 
TTF.MNSTY.11
TTF.MNSTY.11TTF.MNSTY.11
TTF.MNSTY.11
 
Zs 1018 zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)
Zs 1018   zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)Zs 1018   zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)
Zs 1018 zagor - banda staklenog oka (scanturion & folpi & emeri)(5 mb)
 
Zagor - VC 168 - Ludilo čoveka-munje.pdf
Zagor - VC 168 - Ludilo čoveka-munje.pdfZagor - VC 168 - Ludilo čoveka-munje.pdf
Zagor - VC 168 - Ludilo čoveka-munje.pdf
 
Zagor - VC 167 - Užarena stena.pdf
Zagor - VC 167 - Užarena stena.pdfZagor - VC 167 - Užarena stena.pdf
Zagor - VC 167 - Užarena stena.pdf
 
Degree Marklist
Degree MarklistDegree Marklist
Degree Marklist
 
0099. Zagor Prica
0099. Zagor Prica0099. Zagor Prica
0099. Zagor Prica
 
Tex LIB 077 - U prorokovoj jazbini
Tex LIB 077 - U prorokovoj jazbiniTex LIB 077 - U prorokovoj jazbini
Tex LIB 077 - U prorokovoj jazbini
 
Anil - Engineering Consolidated Marks Memo
Anil - Engineering Consolidated Marks MemoAnil - Engineering Consolidated Marks Memo
Anil - Engineering Consolidated Marks Memo
 
Zagor - VC 164 - Banda nemilosrdnih
Zagor - VC 164 - Banda nemilosrdnihZagor - VC 164 - Banda nemilosrdnih
Zagor - VC 164 - Banda nemilosrdnih
 
Quran with Tajwid Surah 40 ﴾القرآن سورۃ غافر﴿ Ghafir 🙪 PDF
Quran with Tajwid Surah 40 ﴾القرآن سورۃ غافر﴿ Ghafir 🙪 PDFQuran with Tajwid Surah 40 ﴾القرآن سورۃ غافر﴿ Ghafir 🙪 PDF
Quran with Tajwid Surah 40 ﴾القرآن سورۃ غافر﴿ Ghafir 🙪 PDF
 
TTF.MTMTE.32
TTF.MTMTE.32TTF.MTMTE.32
TTF.MTMTE.32
 
Quran para 27 for Kindle
Quran para 27 for KindleQuran para 27 for Kindle
Quran para 27 for Kindle
 
030 teks viler - divlje horde
030   teks viler - divlje horde030   teks viler - divlje horde
030 teks viler - divlje horde
 
Quran chapter-46-surah-al-ahqaf-pdf
Quran chapter-46-surah-al-ahqaf-pdfQuran chapter-46-surah-al-ahqaf-pdf
Quran chapter-46-surah-al-ahqaf-pdf
 
Zagor Ludens 228 - Grad ludila
Zagor Ludens  228 - Grad ludilaZagor Ludens  228 - Grad ludila
Zagor Ludens 228 - Grad ludila
 
Kupdf.com zagor kameni-ubica
Kupdf.com zagor kameni-ubicaKupdf.com zagor kameni-ubica
Kupdf.com zagor kameni-ubica
 
Sem 3 Marksheet
Sem 3 MarksheetSem 3 Marksheet
Sem 3 Marksheet
 
Veliki Blek - Pobuna robova
Veliki Blek - Pobuna robovaVeliki Blek - Pobuna robova
Veliki Blek - Pobuna robova
 
Zagor 631 povratak blondi (ras & emeri)(11 mb)
Zagor 631   povratak blondi (ras & emeri)(11 mb)Zagor 631   povratak blondi (ras & emeri)(11 mb)
Zagor 631 povratak blondi (ras & emeri)(11 mb)
 

Similar to [Goldstein herbert] classical_mechanics_solution_m(book_see.org)

คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1sornblog2u
 
Uyghur bible mukeddes kitab arabic script
Uyghur bible   mukeddes kitab arabic scriptUyghur bible   mukeddes kitab arabic script
Uyghur bible mukeddes kitab arabic scriptArabBibles
 
Uyghur bible mukeddes kitab
Uyghur bible mukeddes kitabUyghur bible mukeddes kitab
Uyghur bible mukeddes kitabChineseBibles
 
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2sornblog2u
 
22841927 aptitude
22841927 aptitude22841927 aptitude
22841927 aptitudeAnupam1234
 
Dispositivi per la telemedicina
Dispositivi per la telemedicinaDispositivi per la telemedicina
Dispositivi per la telemedicinaSergio Pillon
 
Ethiopian Democratic Party (.E.D.P) major-policies & programs
Ethiopian Democratic Party  (.E.D.P) major-policies &  programs Ethiopian Democratic Party  (.E.D.P) major-policies &  programs
Ethiopian Democratic Party (.E.D.P) major-policies & programs Ethio-Afric News en Views Media!!
 
藥錠物理性測試 崩散篇
藥錠物理性測試 崩散篇藥錠物理性測試 崩散篇
藥錠物理性測試 崩散篇Dr SI
 
20 th inmo_solu
20 th inmo_solu20 th inmo_solu
20 th inmo_soluaskiitians
 
cashing scheme for WWW - 1997
cashing scheme for WWW - 1997cashing scheme for WWW - 1997
cashing scheme for WWW - 1997sylvain Lamblot
 
Engagement Report 19 02 15
Engagement Report 19 02 15Engagement Report 19 02 15
Engagement Report 19 02 15Dann Morris
 

Similar to [Goldstein herbert] classical_mechanics_solution_m(book_see.org) (20)

คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน1
 
Uyghur bible mukeddes kitab arabic script
Uyghur bible   mukeddes kitab arabic scriptUyghur bible   mukeddes kitab arabic script
Uyghur bible mukeddes kitab arabic script
 
Uyghur bible mukeddes kitab
Uyghur bible mukeddes kitabUyghur bible mukeddes kitab
Uyghur bible mukeddes kitab
 
Eugen warming
Eugen warmingEugen warming
Eugen warming
 
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2
คู่มือการสร้างอุปกรณ์ เทคโนโลยีพลังงานทดแทน ตอน2
 
Dictall online Sanskrit dictionary
Dictall online Sanskrit dictionaryDictall online Sanskrit dictionary
Dictall online Sanskrit dictionary
 
22841927 aptitude
22841927 aptitude22841927 aptitude
22841927 aptitude
 
Dispositivi per la telemedicina
Dispositivi per la telemedicinaDispositivi per la telemedicina
Dispositivi per la telemedicina
 
Bhashavyakthi-20218-edition-3.pdf
Bhashavyakthi-20218-edition-3.pdfBhashavyakthi-20218-edition-3.pdf
Bhashavyakthi-20218-edition-3.pdf
 
Problem baupc 2002
Problem baupc 2002Problem baupc 2002
Problem baupc 2002
 
Ethiopian Democratic Party (.E.D.P) major-policies & programs
Ethiopian Democratic Party  (.E.D.P) major-policies &  programs Ethiopian Democratic Party  (.E.D.P) major-policies &  programs
Ethiopian Democratic Party (.E.D.P) major-policies & programs
 
藥錠物理性測試 崩散篇
藥錠物理性測試 崩散篇藥錠物理性測試 崩散篇
藥錠物理性測試 崩散篇
 
21
2121
21
 
20 th inmo_solu
20 th inmo_solu20 th inmo_solu
20 th inmo_solu
 
File pdvsa
File pdvsaFile pdvsa
File pdvsa
 
Børsen marts 2016
Børsen marts 2016Børsen marts 2016
Børsen marts 2016
 
วารสาร 2554
วารสาร 2554วารสาร 2554
วารสาร 2554
 
cashing scheme for WWW - 1997
cashing scheme for WWW - 1997cashing scheme for WWW - 1997
cashing scheme for WWW - 1997
 
ME8492 KOM Syllabus
ME8492 KOM SyllabusME8492 KOM Syllabus
ME8492 KOM Syllabus
 
Engagement Report 19 02 15
Engagement Report 19 02 15Engagement Report 19 02 15
Engagement Report 19 02 15
 

[Goldstein herbert] classical_mechanics_solution_m(book_see.org)

  • 1.  ¢¡¤£¦¥¨§©¡¤§¡ !¡#$£%'()©¦102¡#£34§%'©¦65 798A@CB'B'DFEG@¨8IH PQESRT@¢UVDFESB 5W ¢%QXQ¡#$3`Y 3©a§©¡# bcedIfhg¨iWfhprq s$tvuetvwAx$y€y‚yFƒ€ƒ€ƒ „†…ˆ‡V‰‘“’T” • –9—™˜CdTefhg ikjli monqpsrltvuApswlxy{za|~}{|~ns€t~tv‚„ƒ¤zauAw…ƒAxv†‡uArAˆqw“z‰{†Š|vy‹{r¦ƒa|vŒhult~ŽquAC|vƒ…ƒa|vns}€n‘uAtvu’r¦ƒ“zay{n”y{•Q–y€— –uln‹ƒ“ps™˜hšœ›€¤žTuAŸ“ „r{x‡€ns†¢€ƒ'za|v}h¡hƒ¢€nŠ}htvu’w™ƒay¤ƒ“¡su£†‡|~z“u’r¦ƒa|vyhn¨y€•4ƒa¡Šu£uAtvu’r¦ƒaz“yhn¨¤nŠuAp‡ƒ“za|vnsy ¤ |vƒ“¡¢–y{–uln‹ƒapŠ¥˜{š¦{¦#žTuAŸ“ „r{šQ§¨¢¡ŠuhžTuAŸ©§ªC|~t~tv|~y{n¢uAtvu’r¦ƒ“zay{n¢Œhy{tvƒ‰«v|¬w‚¤pŠnŠ|vƒ‚y€•!uAnŠulza}{hx psw“uA†‘|~n­–y‡†‡ulzan­®Š¡q‡w“|~rAwlxvuA¯‹ps{t‚ƒay6˜hš°h¦²±³˜A¦‡´€µ¢ulza}sš‘¶'y{zaz“u’w…®ey{nF†‡|vns}{t~{xvžTulŸ# „r¨|¬wC pŠnŠ|vƒ'y{•4tv|~nŠuA{z‚–y{–uAnhƒapŠ·uA¯‹ps{tŠƒ“yC¸‡š€¹“±²˜A¦ ´!º¼» }{C—½rlW „w“uAr€šœ«#¾¿n ¤ ¡s„ƒ'†Š|vzauArƒ“|~y{n¨†‡yquAw ƒ“¡suknqpsrt~ulpFwhzauArly{|~t¬ÀIÁ³¡s€ƒ£|¬w£|vƒaw£–y{–uln‹ƒapŠÂ|vn‚žTulŸ# „rAÀI¾½•Gƒa¡ŠuC–hw“why€•Gƒa¡ŠuCz“u’w…|¬†‡ps{t nqpsrt~ulpFw¢|~wSsšÃh¦k±‚˜A¦ ´€Ä“Ä }h$x ¤ ¡F„ƒÅ|¬wS|ƃ‰w¢Çq|vnŠulƒ“|¬r“ulnŠuAz“}h{x‡|~n²ult~uAr¦ƒaz“yhnWŒhy{tvƒaw‰À È t¬{rlu¤ƒ“¡suCnqpsrltvuApsw“„ƒÉƒ“¡ŠuCy{za|~}{|~n!x4€ns†‚w…pŠ®s®Fy‹w…uʃ“¡Šu–uAtvu’r¦ƒ“zay{n|~wÉul–|vƒ…ƒauA†‚|vn‚ƒ“¡Šu ®eyhw“|ƃa|vŒhu$Ë̆‡|~z“u’r¦ƒ“|~y{nÍxQ{ns†Iƒ“¡ŠuTnŠuAp‡ƒ“za|~nŠy‘|vña¡ŠuT®Fy‹w…|vƒ“|~Œ{uTÎφŠ|vzauArƒ“|~y{n!š ¨¢¡sulñ“¡Šu zauAw“pŠtƃ‰€n‹ƒSy€•ƒ“¡Šu#uAtvu’r¦ƒ“zay{n²€nF†WnŠuAp‡ƒ“za|~nŠy¢–y{–uln‹ƒaC¡shw¢¢€}{ns|ƃaps†‡u ÐÑÒ¦ÓÍÔsÐhÕ×Ö §¼˜hØœ›€h« ÄGÙ ˜ Ä ÕÛÚ žTulŸ# „r€Ü €nF†W|vƒawņŠ|vzauArƒ“|~y{n$–{Ç{u’wS€n²€nŠ}htvu Ý Õ ƒ‰€n ´!º ˜{ØÞ›„ ˜ Õ °{¦hß ¤ |vƒ“¡‘ƒa¡ŠuWÎÌ„±‡|~wAšT¨¢¡ŠuWnqpsrltvuApsw¤Êpsw…ƒC{rA¯‹pŠ|vzau¨T–y{–uAnhƒapŠày€•SuA¯‹ps{t‚¢€}hnŠ|vƒ“ps†‡u €nF††‡|~zauAr¦ƒauA†$|~nƒa¡Šu“y{®Š®eyhw“|vƒ“u¤†‡|~z“u’r¦ƒa|vyhn!š™¨¢¡Šu#Çq|vnŠulƒ“|¬r“ulnŠuAz“}h¢y€•ƒ“¡Šu#nqpsrltvuApsw¢|¬w á Õãâ Ä Ú€ä Õ ¹¢žTulŸ Ä r„´eÄ ÚÉå ŠØÃ å ˜A¦ ´eÄaÄ }h å ˜hØœ›€æ å ˜A¦Š´eÄa»É}{ ˜#žTulŸ×r ´eÄ Õ ÃŠØ~˜“ulŒ ¨¢¡Š|¬wÉ|~w£kpsr‰¡Vw…¢{tvt~ulz£ƒ“¡s{nŽƒa¡Šu–n‹pFrt~ulpsw£z“u’w¼ƒ“ulnsulza}{²y€•‚w“ulŒhulz‰€t¡‹psns†‡zauA†çÉuAŸkx!w“y ƒ“¡su#nŠy{n‡—½zault¬„ƒ“|~Œq|~w…ƒ“|¬rÉ€®Š®Šzayˆ±‡|v¢€ƒ“|~y{nW|¬wè¼psw…ƒ“|vésuA†!š ˜
  • 2.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ Ú –9—™˜CdTefhg ikj¨S ¨¢¡ŠuUTWV3X`Y¨a%Tcb¤TWdfegX3hi#pTy{•“”®s{z…ƒa|~rltvuTyhñ“¡ŠuŽu’€z“ƒ“¡Ì|~w¢ƒ“¡ŠuŽ–|~nŠ|~kpŠãŒ{uAtvy‡r|vƒ¼6zauA¯‹pŠ|~zauA† „ƒ#ƒa¡ŠuWw“pŠz“•ª{ru–y{•'ƒa¡Šu¨uA{z…ƒa¡”|vn‘yhza†‡uAz“ƒ“¡s€ƒ#ƒ“¡ŠuW®s€z“ƒ“|¬rt~u¨rl{nVu’w“rA€®eu–• z“yh ƒa¡Šu¢uA{z…ƒa¡rqw }{z‰ˆŒq|ƃ‰„ƒa|vyhns€tFésult¬†4šDsÅuA}{t~uAr¦ƒa|vns}–ƒ“¡Šu¤zauAw“|¬w¼ƒ‰€nsrluÉy{•ƒa¡Šuk€ƒ“–yhw“®Š¡ŠuAz“uhxqƒ“¡Šukw“‡w¼ƒaul |~wÅrly{n‡— w“ulzaŒˆ€ƒ“|~Œ{uhšutŠzay{ ƒa¡Šu$rly{nsw“ulzaŒ„„ƒa|vyhn”ƒ“¡ŠuAy{zaul •y {zÊ®Fy{ƒ“uln‹ƒa|~{tQ®stvpswCÇq|~nŠuƒa|~rWulnŠuAz“}h”w“¡Šy ¤ ƒ“¡F„ƒ#ƒ“¡su¨uAwarl{®Fu–Œ{uAtvy‡rl|ƃ¼T• yhz#ƒ“¡su¨uA{z…ƒa¡!xÍ|~}{nŠyhz“|~nŠ}ƒ“¡ŠuW®Šz“u’w…uAnsru–y{•'ƒa¡Šu¨–yqy{n!x|~w¤°sšÃ‹¸ –|  €w…u’r€š ¾½•'ƒa¡Šu–®s€z“ƒ“|¬rt~u–w¼ƒ‰€z“ƒaw“„ƒ“ƒ“¡suCu’€z“ƒ“¡rq w“w…psz…•ªhru ¤ |ƃa¡‚ƒa¡Šu–uAwarl{®FuCŒ{uAtvy‡r|vƒ¼{xÍ|ƃ ¤ |~tvt è¼psw…ƒÅ¢€ns{}{uɃ“y–ŠzauA{Ç¢• z“uAu“y€•ƒ“¡Šu#u’€z“ƒ“¡rq wQésult¬†²€ns†$¡sˆŒhu£nsy€ƒ“¡s|vnŠ}¢t~u• ƒ’š‚¨¢¡qpswS„• ƒaulz |vƒ“¡F{wÉuAwarl{®Fu’†Žƒa¡Šu–uA€z“ƒ“¡vqw£ésuAt~†‚|ƃ ¤ |~tvt™¡FˆŒ{uCnŠy²Ç‹|~nŠulƒ“|¬rÊuAnŠulza}{²t~u• ƒ’x€nF†‚{t~w“yWnŠy ®ey€ƒ“uAn‹ƒ“|¬€t‡ulnsulza}{¤w“|vnsrluS|ƃgqwvyhp‡ƒGy€•Fƒ“¡ŠuSu’€z“ƒ“¡rq wésult¬†4x‹w…y“|vƒawƒ“y{ƒa{t‡ulnŠuAz“}h ¤ |vt~t‡euxwlulzaysš y |~nsru¤ƒ“¡Šu¤®F€z“ƒ“|¬rt~u€q w¢ƒ“y{ƒa€tÍulnŠuAz“}hWkpFw¼ƒheukrly{nsw…ƒa{nhƒ’xŠ|vƒ£kpFw¼ƒh{t~w“y¢¡sˆŒ{u(wAulzayCƒ“y€ƒ‰€t ulnsulza}{¢„ƒQƒ“¡Šu#w“pŠz“•ª{ru£y€•!ƒa¡Šu“uA{z…ƒa¡!š™¨¢¡Š|~wQ–uA{nsw'ƒ“¡s€ƒ'ƒa¡Šu“Çq|vnŠulƒ“|¬rÉulnŠuAz“}hC|vƒ¢¡s{w¢„ƒ ƒ“¡suÊw“pŠz…•ªhru¤y{•™ƒ“¡ŠuÊuA{z…ƒa¡Žkpsw…ƒ£ul±Š{r¦ƒatv²rl{nsruAt̓a¡Šuk}hzaˆŒq|vƒa€ƒ“|~y{ns{t4®Fy{ƒ“uln‹ƒa|~{tuAnŠulza}{ |vƒÅ¡s{wQƒa¡Šulzau€ ˜ Ú äƒ‚ Ä„1…‡† 䉈‘ ’  Õ ¦ w“y ‚¢Õ”“ • Ú † ˆ– ’  — Õ˜• ÚÉå §° ŠØ°‹› å ˜’¦ ºaº @™“Çq} ´ ™ w ´€Ä « å §¸ ‡ØÃ{æ å ˜’¦ Äed Ç‹}q« °ŠØ{æ å ˜’¦ µ  — ºefaÄ Õ ˜h˜{ØÚ ÇqW „w å ˜“ ˜{Ø°Š˜ÉÇq Õ °ŠØÃh¸kC|  „wlØ
  • 3.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ  –9—™˜CdTefhg ikj¡  ¢ y‡r‰Ç{ulƒaw€zau'®sz“yh®FuAtvt~uA†k‹“ƒa¡Šu¢–y{–uln‹ƒ“ps×z“u’{rƒ“|~y{n¤y{•Šƒ“¡Šu¢ul±q¡F€psw…ƒ}‹{w“uAwu±‡®eult~tvu’†¤• zay{ ƒ“¡su“ƒa€|~trš y |~nsrlu“ƒ“¡Šu’w…u¤}‹{w“uAwS{z“|¬w…uÉ• zay{)ƒ“¡Šu¤zauAhr¦ƒa|vyhny{•ƒa¡Šu#• pŠuAt~whrl€zaza|vu’†W|~n²ƒ“¡Šukz“y‡r‰Ç{ulƒ ƒ“¡su£¢{wawQy€•ƒ“¡ŠuÉz“y‡r‰Çhuƒ¢|~wQnŠy{ƒ¢rly{nsw…ƒa{nhƒ’xqŠp‡ƒÅ†‡uArlz“u’{w“uAwQ{w'ƒ“¡su£• psult4|¬w'ul±‡®FuAns†‡uA†!š y ¡Šy ¤ ƒ“¡F„ƒÉƒ“¡ŠuCuA¯‹ps€ƒ“|~y{nŽy{•‚–y€ƒ“|~y{n• y{z“¨zay‡r‰Ç{uƒÉ®Šzay€è¼uArƒ“u’†TŒ{uAz…ƒa|~rA€t~tv$pŠ® ¤ {za†Ž|vnVWpŠns|Æ• yhz“ }{z‰ˆŒq|ƃ‰„ƒa|vyhns€tFésult¬†4xŠnsul}{t~uArƒ“|~nŠ}¢„ƒaCy‹w…®s¡Šulza|~r£zauAw“|~w…ƒa{nsruhx‡|~w 䤣 ‚ £¦¥ Õ … ‚¨§©£ ä £¥ … ä Ü ¤ ¡ŠuAz“u ä |~wƒa¡ŠuS¢{wawy{•sƒa¡Šu¢z“y‡r‰Ç{ulƒ{ns† ‚ § |¬wƒ“¡ŠuSŒhult~yqrl|ƃ¼#y{•Šƒ“¡suSuAwarl€®s|vnŠ}£}hhw…u’wzault¬„ƒa|vŒhu ƒ“yƒ“¡suCzay‡r‰Ç{ulƒAš¤¾¿n‹ƒ“uA}{z‰„ƒau¤ƒ“¡s|~w“u’¯hpF„ƒ“|~y{nƒ“y²y{Šƒa€|~n ‚ hw“W• psnsr¦ƒa|vyhn‚y{• ä x!{waw…pŠ–|~nŠ}² ryhnsw…ƒa€n‹ƒ£ƒ“|~Cu–z‰„ƒauÊy{•'t~yhwawhy{•'¢{wawlš y ¡Šy ¤ x€• y{z#z“y‡r‰ÇhuƒÉw…ƒa{z…ƒa|vns}|~nŠ|vƒ“|¬€t~tvT• zay{ÂzauAw…ƒAx ¤ |vƒ“¡ ‚ § uA¯‹ps{tqƒ“y¤°{æh¦{¦h• ƒ¦ €w…u’rS€ns†C“¢{wawvtvy‹w“wv®eulz‚w“uArly{ns†ÊuA¯‹ps{t‡ƒ“y¢˜„ „°h¦„ƒ“¡Êy€•eƒ“¡ŠuS|~nŠ|vƒ“|¬€t ¢{wawlxsƒ“¡s€ƒ£|~nyhza†‡uAzSƒ“yz“u’{r‰¡$ƒ“¡suÊu’w“rA€®eu¤Œ{uAtvy‡r|vƒ¼ƒ“¡ŠuÊza€ƒ“|~y¨y€•™ƒa¡Šu ¤ ul|~}{¡‹ƒhy{•™ƒ“¡Šuk• pŠult ƒ“yCƒa¡Šu ¤ uA|v}h¡‹ƒ¢y{•Íƒa¡Šu#ul–®‡ƒ¼z“y‡r‰Ç{ulƒQÊpsw…ƒÅFu¤{tv–yhw…ƒÅ{¦h¦ y pŠ®Š®eyhw“u¢ƒa¡s„ƒ’x€ƒ¤ƒ“|~–u ¥ x̓a¡Šu¨zay‡r‰Ç{uƒ#¡shw#¢{waw ä § ¥ «#{ns†VŒ{ult~y‡r|vƒ¼ ‚ § ¥ «š$¨¢¡Šu ƒ“y{ƒa{thul±‹ƒaulzans€th• y{z‰ru'y{n#ƒa¡ŠuQz“y‡r‰Ç{ulƒÍ|¬w!ƒa¡Šuln Õ‹ä § ¥ «x ¤ |ƃa¡ –Õ  Ú Øv˜‚• ƒ¦ „w Ä x„®ey{|~n‹ƒ“u’† †‡y ¤ n ¤ €z‰†Šwlxqw“yʃa¡s„ƒSƒa¡Šu“ƒ“y{ƒa{t!r‰¡s€nŠ}hu“|vn²–y{–uln‹ƒapŠeuƒ ¤ ululn ¥ €ns† ¥ Ù £¦¥ |¬w £¦¥ Õ … qä § ¥ « £¦¥ Ø §¼˜’« mQƒSƒ“|~–u ¥ x‡ƒ“¡Šu#zay‡r‰Ç{ulƒQ¡shw¢–y{–uln‹ƒ“ps â § ¥ « Õ ä § ¥ « ‚ § ¥ «¦Ø §Ú « nVƒ“¡Šu¨y{ƒ“¡ŠuAz¤¡s{ns†4xv†‡pŠza|vnŠ}²ƒa¡Šu–ƒ“|~–u¨|~nhƒaulzaŒ„€t £¦¥ ƒa¡Šu¨zay‡r‰Ç{uƒ#zault~uAhw…u’w#²–hw“w ä y€•v}hhwS„ƒh–Œhult~yqrl|ƃ¼ ‚ § ¤ |ƃa¡Tz“u’w…®euArƒSƒ“y–ƒ“¡su#z“y‡r‰Ç{ulƒAš™¾¿nŽw“y¢†‡y{|~nŠ}sxŠƒ“¡Šu¤zay‡r‰Ç{ulƒBq w Œ{uAtvy‡rl|ƃ¼¨|~nsrlz“u’{w“uAwQq€n²€–yhpŠn‹ƒ £ ‚ š‚¨¢¡Šu“ƒay€ƒa{t!–y{–uln‹ƒapŠ €ƒSƒ“|~Cu ¥ Ù £¥ |¬w¢ƒ“¡Šu w“pŠy€•ƒ“¡su#Cyh–uln‹ƒaCy€•ƒ“¡su#z“y‡r‰Ç{ulƒ¢{ns†}h{wB â § ¥ Ù £¥ « Õ â! Ù â# Õ%$ ä § ¥ « … ä'$ ‚ § ¥ « Ù £ ‚ Ù ä($ ‚ § ¥ « Ù ‚ § §ªh« y pŠ‡ƒazahr¦ƒa|vnŠ}”§ Ú «S• zay{ § h«£€ns†uA¯‹ps€ƒ“|~nŠ}Wƒa¡Šu–†‡|0)€ulzaulnFru ¤ |ƃa¡Ì§…˜’«¦x ¤ uC¡sˆŒ{u$§ ƒ“y ész‰w¼ƒSyhza†‡uAz¢|vnT†‡|1)euAz“uAn‹ƒ“|¬€tͯ‹ps{nhƒa|ƃa|vu’wa« … qä § ¥ « £¦¥ Õ³ä § ¥ « £ ‚ Ù ‚2§ ä y{z £ ‚ £¥ Õ … … ‚ § ä § ¥ « ä £¦¥
  • 4.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ¹ ¤ ¡Š|¬r‰¡ ¤ u“¢ˆ ¤ z“|vƒ“u¤hw £ ‚ £¥ Õ … … ‚ § ä § ¥ «¡  §¹ ‹« ¤ ¡ŠuAz“u   Õ ä £¦¥ Õ ˜ °{¦ 䣢¥¤ ´!º Ø ¨¢¡Š|¬wk|¬wC†‡|1)euAz“uAn‹ƒ“|¬€tQuA¯‹ps„ƒa|vyhn‘• y{zʃ“¡suW• pŠnFr¦ƒ“|~y{n ‚ § ¥ «k}h|vŒq|~nŠ}Tƒa¡ŠuŒhult~y‡r|vƒ¼‚y{•Åƒ“¡Šu zayqr‰ÇhuƒhhwÅ–• pŠnsrƒ“|~y{nŽy{•™ƒ“|~–u{šSÁVu ¤ y{pŠt¬†²nŠy ¤ tv|~Ç{u¤ƒ“y¨zauArA{w…ƒSƒ“¡Š|¬w£hwŨ†‡|1)€ulzauln‹ƒ“|¬€t uA¯‹ps€ƒ“|~y{nT• yhzhƒa¡ŠuÊ• pŠnsr¦ƒa|vyhn ‚ §ä «h}{|~Œ‹|~nŠ}Wƒ“¡ŠuCz“y‡r‰ÇhuƒBq w£Œ{ult~y‡r|vƒ¼$hw£W• pŠnsrƒ“|~y{n‚y€•‚|vƒaw ¢{wawlš¨ÍyŽ†‡y²ƒa¡Š|¬wlx ¤ u–éFzaw…ƒ¤y{sw“ulzaŒ{uʃ“¡F„ƒÊw“|vnFru–ƒ“¡su¨z“y‡r‰Çhuƒ“|~w§¦eTWd4T`Y¤Vh©¨ƒ“¡ŠuW–hw“w ä ulŒhulza £¥ w“uAryhns†ŠwAx‹ƒ“¡Šu“ƒa|v–uk†‡uAz“|~Œ„„ƒa|vŒhu£y{•ƒa¡Šu#z“y‡r‰ÇhuƒBq wQ¢{waw¢|~w £ ä £¥ Õ … ä £¥ Õ …   Ø ÁVu“ƒ“¡ŠuAn$¡FˆŒ{u £ ‚ £¥ Õ £ ‚ £ ä £ ä £¦¥ Õ …   £ ‚ £ ä Ø y pŠFw¼ƒa|ƃap‡ƒ“|~nŠ}¢|~nhƒayŽ§ ¹q«¦x ¤ u#y{‡ƒ‰€|~n …   £ ‚ £ ä Õ … … ‚ § ä   y{z £ ‚–Õ   £ ä Ù ‚ § £ ä ä Ø ¾¿n‹ƒ“uA}{z‰„ƒ“|~nŠ}Fx ¤ |vƒ“¡$ƒa¡Šu¤ryhns†‡|vƒ“|~y{nƒ“¡s€ƒ ‚ §ä ¢ « Õ ¦sx ‚ §ä « Õ   §ä … 䣢 « Ù ‚ § t~n • ä ä ¢ — Ø sÅy ¤ x   Õ §¼˜„°h¦h« 䣢 w ´!º x ¤ ¡Š|~tvu ‚ § Õ —¿°{æh¦{¦#• ƒ „wAšG¨¢¡Šuln ‚ §ä « Õ ˜’Ã{h¦¤• ƒ „w å • ä ä ¢¦… ˜ — Ù °{æh¦{¦k• ƒ¦ €w å t~n ä¢ ä tŠyhz 䣢àä ¤ u¤rA€nTnŠuA}{t~uArƒSƒ“¡Šu#éFzaw…ƒSƒ“uAz“™|vn²ƒa¡Šu¤®s{z“uAn‹ƒ“¡Šu’w…u’w¢y€•vƒ“¡Šu¤észaw…ƒSƒ“uAz“²x }{|~Œq|vns} ‚ §ä « Õ … ˜AÃh{¦k• ƒ¦ „w Ù °hæ{¦{¦k• ƒ¦ €w å t~n ä¢ ä Ø ¨¢¡Šu¢u’w“rA€®euCŒhult~y‡r|vƒ¼Ž|~w ‚‚Õ °ŠØÃh¸k–|  €w Õ {°sØœ› å ˜A¦ ™£• ƒ¦ „wlš È t~pŠ}h}{|~nŠ}$ƒ“¡Š|¬w#|~nhƒay²ƒ“¡Šu uA¯‹ps€ƒ“|~y{n¢€ey„Œ{uÅ{ns† ¤ y{zaÇ‹|~nŠ}“shr‰Ç ¤ €z‰†ŠwAx ¤ uÅésns†Cƒ“¡F„ƒ'u’w“rA€®euSŒ{uAtvy‡r|vƒ¼k|¬w‚hr‰¡Š|~ulŒ{u’† ¤ ¡ŠuAn ä ¢ äTÕ“Ú Ã{sš ¨¢¡s€nsÇqwƒay!'za|¬€n$#h€z“ƒv• y{zv®ey{|~nhƒa|vns}Éyhp‡ƒ‚€nC|~nsryhnsw…|¬w…ƒ“ulnFr¤|~nʐʁ¤y{za|~}{|~ns€t‡r‰¡Šyh|~rlu y€•nŠy€ƒ‰„ƒa|vyhnW• yhz¢ƒ“¡Š|¬wS®Šzay{Št~ul²š
  • 5.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ¸ –9—™˜CdTefhg ikj¡  y ¡Šy ¤ ƒa¡s„ƒÉ• y{zÉWw“|vnŠ}htvuÊ®s€z“ƒ“|¬rt~u ¤ |vƒ“¡Vry{nFw¼ƒ‰€n‹ƒ£¢{wawSƒa¡ŠuCuA¯‹ps„ƒa|vyhnTy€•G–y€ƒa|vyhnŽ|~C®stv|~uAw ƒ“¡su“• y{t~tvy ¤ |~nŠ}–†‡|0)€ulzauln‹ƒa|~{t4uA¯‹ps„ƒa|vyhnW• yhz¢ƒ“¡Šu#Çq|~nŠuƒa|~r“uAnŠulza}{  £ á £¦¥ Õ£¢Ì奤 Ü ¤ ¡Š|~tvu“|v•ƒa¡Šu#¢{waw¢Œ„€za|vu’w ¤ |ƃa¡ƒa|v–u“ƒa¡Šu¤ryhz“zauAw“®Fyhns†‡|~nŠ}CuA¯‹ps„ƒa|vyhn|¬w £ §ä á « £¦¥ Õ¦¢ÌåÑ Ø Á‚u#¡FˆŒ{u ¢ Õ¨§Ñ §¸ {« ¾½• ä |~wÅrly{nsw…ƒa{n‹ƒAx ¢ ճ䩧¤ y€ƒ…ƒa|vns} ¤ |~n‹ƒ“y–ey€ƒ“¡Tw“|~†ŠuAwAx ¢I夂ճä¤T姤‚Õ ˜ Ú ä £ £¦¥ Ф'ÐÄ Õ £ á £¥ §ª°h« n$ƒ“¡Šu#y{ƒ“¡ŠuAzS¡s€ns†!x‡|Æ• ä |¬w¢nŠy€ƒhrly{nsw…ƒa{nhƒ’x‡|vnFw¼ƒauA{†y€• ¤ ¤ u¤†Šy€ƒ Ñ |~nhƒayT§ ¸{«W ¢Iålєճюå§Ñ Õ³ä¤Tå £ §ä ¤ « £¦¥ Õ³ä¤Tå • ¤ £ ä £¥ ٠䤣 ¤ £¥ — Õ ˜ Ú ‚ Ä £ £¦¥ ä Ä Ù ˜ Ú ä Ä £ £¥ § ‚ Ä « Õ ˜ Ú £ £¦¥ §ä Ä ‚ Ä « Õ £ §ä á « £¦¥ Ø
  • 6.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ° –9—™˜CdTefhg ikj¡  È zay„Œ{uɃa¡s„ƒÉƒ“¡Šuʐ¢€}{ns|ƃaps†‡u ’ y{•™ƒ“¡ŠuC®Fy‹w…|vƒ“|~y{nŒ{uArƒ“yhzÅ• y{zhƒ“¡Šu–ruAn‹ƒ“ulzÉy€•G¢hw“wÅ• z“yh¥{n €zaŠ|vƒ“z‰€za–y{za|v}h|vn$|~w¢}h|vŒhuln$q¢ƒ“¡Šu#u’¯‹ps„ƒa|vyhn ˆ Ä ’ Ä Õ ˆ£¢¥¤³ä ¤§¦ Ä ¤ … ˜ Ú ¢¨¤©‘ä ¤ ä ©¦ Ä ¤© Ø Á‚u#¡FˆŒ{u ’ Õ ˜ ˆ ¢¥¤ ä ¤ Î ¤ w“y ’ Ä Õ ˜ ˆ Ä ¢ ¤ ä Ä ¤ Î Ä ¤ Ù ¢¤ © ä ¤ ä © Î ¤ Î ©! €nF†w“|v–|~t~{z“t~ ’ Ä# Õ ˜ ˆ Ä ¢ ¤ ä Ä ¤ Ë Ä ¤ Ù ¢¤ © ä ¤ ä © Ë ¤ Ë © ’ Ä$ Õ ˜ ˆ Ä ¢¥¤ ä²Ä¤% Ä ¤ Ù ¢¤ © ä ¤ ä © % ¤ % ©¡ Ø mh†s†‡|vns}sx ’ Ä Õ ˜ ˆ Ä ¢ ¤ ä Ä ¤ ¦ Ä ¤ Ù ¢¤ © ä ¤ ä © §§')( å '10‰« Ø §r›€« nƒ“¡Šu#y{ƒ“¡ŠuAzS¡s€ns†!x ¦ Ä ¤© Õ ¦ Ä ¤ Ù ¦ Ä © … Ú ' ( å ' 0 €nF†4x‡|vn²®s{z…ƒa|~rlpŠt¬€z’x ¦ Ä ¤2¤ Õ ¦sxŠw…y ¢ ¤43 © ä ¤ ä ©¦ Ä ¤© Õ5¢¤ © $ ä ¤ ä ©¦ Ä ¤ Ù ä ¤ ä ©¦ Ä © … Ú€ä ¤ ä © § ¦6¤ å ¦7© « ÕÏÚ ¢¤ © ä ¤ ä ©¦ Ä ¤ … Ú ¢¤ © ä ¤ ä © § ¦8¤ å ¦!© «¦Ø §ªæh« sÅul±qƒAx ˆ£¢ ¤ ä ¤§¦ Ä ¤ Õ9¢ © ä ©A@ ¢ ¤ ä ¤4¦ Ä ¤CB ÕD¢ ¤ ä Ä ¤ ¦ Ä ¤ Ù ¢¤ © ä ¤ ä ©¦ Ä ¤ Ø §ªÃh«
  • 7.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ › Ý ¦ Ü¡  ¦ § Ü¡  § §ªÎÍÜ…ËŠ« t|v}hpŠzauC˜ ™žTrly{nsrlul®‡ƒa|vyhny{•Íƒ“¡su¤w…|vƒ“ps€ƒ“|~y{n²y€• È zay{Št~ul2˜{šæ y pŠŠƒ“z‰{r¦ƒa|vns}C¡F€tv•y{•Q§ªæ‹«'• z“yh2§ªÃ‹«¦x ¤ u“¡sˆŒ{u ˆ ¢ ä ¤4¦ Ä ¤ … ˜ Ú ¢ ¢¤£hä ¤ ä ©¦ Ä ¤© ÕD¢¥¤ ä Ä ¤ ¦ Ä ¤ Ù ¢¤ © ä ¤ ä © §§' ( å ' 0 « €nF†rly{–®s€za|~nŠ}kƒa¡Š|¬w ¤ |ƃa¡‘§r›€« ¤ u#w…uAuɃ“¡s€ƒ ¤ u¤{z“u“†‡y{nsu{š –9—™˜CdTefhg ikj¡¥ ¨ ¤ y ¤ ¡ŠuluAt~w'y€•zah†‡|vpFw§¦–€zauŐ–y{psnhƒauA†Wy{n¢ƒa¡Šu£uAns†Šw'y€•ÊryhC–yhnW„±‡t~uhy€•!t~ulns}€ƒ“¡©¨Sw“psr‰¡ ƒ“¡F„ƒ™ƒ“¡su ¤ ¡ŠuluAt~w™zay€ƒ‰„ƒauQ|~ns†‡uA®FuAns†‡uAnhƒatvhš™¨¢¡Šu ¤ ¡Šy{t~uSryhkŠ|~ns„ƒa|vyhnÊzay{t~t¬w ¤ |ƃa¡Šy{p‡ƒQw…t~|v®s®Š|vns} y{n²C®Št¬€nŠuhš y ¡Šy ¤ ƒa¡s„ƒSƒa¡Šulzau#€zauɃ ¤ y–nŠyhnŠ¡Šy{t~y{nsy{–|~r£uA¯‹ps€ƒ“|~y{nsw¢y{•rly{nsw…ƒ“z‰€|~n‹ƒAx ryhw Ý £ Î Ù w“|vn Ý £ Ë Õ ¦ w“|vn Ý £ Î … ryhw Ý £ Ë Õ ¦€§ £   Ù £   § « § ¤ ¡sulzau Ý x Íx€€nF†  § ¡sˆŒhu#Cu’€nŠ|~nŠ}‹wÅw…|~–|vt¬€zhƒ“y¢ƒa¡Šu¤®Šzay{stvuA y{•™Ww…|~nŠ}{t~u¤Œhulz“ƒ“|¬rl€t†‡|~war€x €nF†¨§ ÎÜ…ËŠ«!{z“u‚ƒ“¡ŠuQryqy{z‰†‡|~ns„ƒauAw!y{•sÅ®ey{|~n‹ƒy{n¤ƒ“¡Šu¢„±‡t~uG–|~† ¤ ˆÉFulƒ ¤ uAuln¤ƒa¡ŠuGƒ ¤ y ¤ ¡sulult¬w‰« €nF†WyhnŠu“¡Šy{t~y{nŠyh–|~rÉuA¯‹ps€ƒ“|~y{n$y€•vry{nFw¼ƒaza{|vn‹ƒAx Ý Õ … ¦ ¨ §  …   § « ¤ ¡ŠuAz“u |~wS–ryhnsw…ƒa€n‹ƒ’š žT ry{nFrul®Šƒ“|~y{n y€•“ƒ“¡suw…|vƒ“pF„ƒ“|~y{n³|¬w¢|~tvt~psw…ƒ“z‰„ƒauA† |~n t|~}{psz“u‘˜hš Ý |¬w¢ƒa¡Šu€ns}{t~u euƒ ¤ ululn‚ƒ“¡suCέ€±‡|~w“€nF†Žƒa¡Šu¨„±‡|¬w£y{•'ƒa¡ŠuCƒ ¤ y ¤ ¡ŠuAult¬wlš ‘{ns†  § {z“uCƒa¡Šu–z“y{ƒa„ƒa|vyhn €ns}{t~uAwÉy€•'ƒ“¡ŠuCƒ ¤ y ¤ ¡ŠuAult¬wlx€ns† 'W€nF† ' § {z“uʃ“¡Šu–t~y‡rl„ƒa|vyhnswÉy€•'ƒ“¡ŠuA|vz¤rluln‹ƒ“uAzawAšÊ¨¢¡Šu ruAn‹ƒ“ulzSy{•Íƒa¡Šu ¤ ¡ŠuluAtÍ„±‡|¬w¢|~wQƒa¡Šu#®ey{|~nhƒ™è¼pFw¼ƒÅeuƒ ¤ uluAn 'C€ns† ' §  §Î Ü…ËŠ« Õ ˜ Ú § ¦ Ù ¦ § Ü ¦ # Ù ¦ § # «¦Ø
  • 8.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ æ ¾½•€ƒ“¡Šu   ¤ ¡ŠuAultFz“y{ƒa„ƒauAwƒa¡Šz“yhpŠ}{¡¢{n–{nŠ}{t~u £  Íx‹ƒa¡ŠuÅŒ{u’r¦ƒay{zG†‡|¬w…®st~hrul–uAnhƒGy{•4|ƃ‰w‚ruAn‹ƒ“ulz ¤ |~tvt¡sˆŒ{u#¢€}hnŠ|vƒ“ps†‡u ¦ £  V€ns†T†Š|vzauArƒ“|~y{nŽ†‡ulƒ“ulza–|vnsuA†Tq Ý ØGtsy{zhul±Š€–®Št~u{xs|v• Ý Õ ¦ ƒ“¡sulnŽƒa¡Šu ¤ ¡ŠuluAtv€±‡|~w£|~w£®s{za{tvt~ultƒ“yWƒ“¡Šu–Δ„±‡|~wAx€|vn ¤ ¡Š|¬r‰¡rlhw…uÊz“yhtvt~|vns}¨ƒ“¡su   ¤ ¡ŠuAult rt~y‡r‰Ç ¤ |~w“u ¤ |~tvt!rA€psw“uÉ|ƃ¢ƒ“yC–y„Œ{u£|vnƒ“¡Šu“nŠuA}h€ƒ“|~Œ{uh˨†Š|vzauArƒ“|~y{n!š™¾¿n}{ulnsulz‰€trx‹zau• uAz“za|~nŠ} ƒ“yCƒa¡ŠuRt|v}hpŠz“uhx ¤ u“¡sˆŒhu ¡ ' Õ ¦ £   $ w…|~n Ý£¢¤ … ryhw Ý¥¢¦ §…˜A¦h« ¡ ' §eÕ ¦ £   § $ w…|~n Ý ¢¤ … rlyhw Ý ¢¦ §…˜{˜’« mh†s†‡|vns}–ƒ“¡Šu’w…u#ryh–®FyhnŠuln‹ƒ ¤ |¬w…u ¤ uÉ¡FˆŒ{u º £ Î Õ ¦ Ú $ £   Ù £   § w…|~n Ý £ Ë Õ … ¦ Ú $ £   Ù £   §0 ry‹w Ý žTpŠtvƒ“|~®Št~q|vnŠ}–ƒa¡ŠuAw“u“qw“|vn Ý y{z … ry‹w Ý €ns†²{†s†‡|vns}CyhzÅw…ps‡ƒ“z‰{rƒ“|~nŠ}sx ¤ u“y{‡ƒ‰€|~n w“|vn Ý £ Î … ry‹w Ý £ Ë Õ ¦ $ £   Ù £   § rlyhw Ý £ Î Ù w…|~n Ý £ Ë Õ ¦sØ sÅul±qƒAxŠryhnsw“|~†‡uAz‚ƒa¡Šu“Œ{u’r¦ƒ“yhz ' º…Ä Õ ' … ' §4rly{nŠnŠu’r¦ƒa|vnŠ}ʃ“¡su“rluln‹ƒ“uAzaw'y€•Íƒ“¡ŠuɃ ¤ y ¤ ¡ŠuAult¬wlš ¨¢¡Šuk†ŠuésnŠ|vƒ“|~y{nTy{• Ý |~w£w…pFr‰¡²ƒ“¡s€ƒh|ƃ‰wSƒ‰€nŠ}huln‹ƒhkpFw¼ƒGè¼pFw¼ƒÉFu#ƒa¡Šukz‰„ƒa|vy¢y{•vƒ“¡Šu¤Ë²€nF† ÎŽryh–®FyhnŠuln‹ƒaw¢y{•Íƒa¡Š|~wÅŒ{uArƒ“yhzB ƒa{n Ý Õ Ë º¼ÄÎ º…Ä § w“uAr Ä Ý £ Ý Õ … Ë º¼ÄΠĺ…Ä £ Î º…Ä Ù ˜ Î º…Ä £ Ë º¼Ä Ø y pŠŠƒ“z‰{r¦ƒa|vns}²§…˜{˜ˆ«G• zay{ §¼˜’¦h«¦x w“uAr Ä Ý £ Ý Õ ¦ $ £   … £   § • … Ë º…ÄΠĺ…Ä w“|~n Ý … ˜ Î º…Ä rlyhw Ý — mÅ}‹€|~n$w“pŠsw…ƒ“|vƒ“pŠƒ“|~nŠ}–• y{zSË º…Ä „Î º…Ä |vn$ƒa¡Šu“ész‰w¼ƒ¢ƒ“uAz“ |vn²®s{z“uAn‹ƒ“¡Šu’w…u’wlx w“uAr Ä Ý £ Ý Õ … ¦ $ £   … £   §0 ˜ Î º…Ä §ƒ a{n Ý w…|~n Ý Ù ryhw Ý « y{z £ Ý Õ … ¦ $ £   … £   §0 ˜ Î º…Ä §ªw“|vn Ä Ý ry‹w Ý Ù rlyhw ™ Ý « Õ … ¦ $ £   … £   §0 ˜ Î º…Ä rlyhw Ý Ø §…˜ Ú « ¨©£!$#%('0)132£154'6879!@1¥AB!@'0%5'0(CD!@E(38794!@1FG!7HFGPIQ!D)151!@1£'0R5()S!@15'0C@'0TUV%)15'0!@W!7 )5)¥)XEY5'0!@a`
  • 9.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ à #Åy ¤ ulŒhulz’x‹rly{nsw“|¬†‡ulza|vns}ʃa¡Šu¤†‡ulésnŠ|vƒ“|~y{n²y€• Ý x ¤ u“rltvu’€zatvW¡sˆŒ{u ry‹w Ý Õ Î º¼Ä §ªÎ ĺ…Ä Ù Ë Äº¼Ä « ºefaÄ Õ Î º¼Ä¨ euArl{psw“uŃ“¡suɐ¢{}{nŠ|vƒ“ps†Šu£y{•!ƒ“¡Šu“†‡|¬w¼ƒ‰€nsrlu£euƒ ¤ uluAn ¦ º {ns† ¦ Ä |~w¢ryhnsw…ƒ“z‰€|~nŠuA†–ƒayʍeu ¨ q¢ƒ“¡su#z“|~}{|¬†€±‡|~wAš™¨¢¡Šuln‘§¼˜ Ú «'euAryh–uAw £ Ý Õ … ¦ ¨ $ £   … £   §1 ¤ |vƒ“¡²|v––uA†Š|~€ƒ“u¤w“y{t~p‡ƒ“|~y{n Ý Õ … ¦ ¨ $   …   §0 Ø ¤ |vƒ“¡ –rly{nsw…ƒa{nhƒSy{•|~nhƒaul}hza€ƒ“|~y{n!š –9—™˜CdTefhg ikj¡  mˆ®s{z…ƒa|~rltvu“–y„Œ{u’w¢|vn$ƒ“¡su#Î … ˨®Št¬€nŠu#pŠnF†‡ulzSƒa¡Šu¤ryhnsw…ƒ“z‰€|~nhƒ¢ƒa¡s„ƒÅ|vƒawSŒhult~y‡r|vƒ¼¨Œ{u’r¦ƒ“yhzS|~w €t ¤ ˆqw™†Š|vzauArƒ“uA†Cƒay ¤ {za†sw™#®Fyh|vn‹ƒ‚yhn–ƒ“¡Šu£ÎW„±‡|¬w ¤ ¡Šy‹w…uÅ{swar|¬w“wa“|~w'w…yh–uÅ}{|~Œ{uAnÊ• psnsr¦ƒa|vyhn y€•qƒa|v–u£¢v§ ¥ «¦Ø y ¡Šy ¤ ƒ“¡s€ƒÍ• yhz¤¢v§ ¥ «Í†‡|1)euAz“uAnhƒa|~{Št~u{x’Šp‡ƒy{ƒ“¡ŠuAz ¤ |¬w“u‚€zaŠ|vƒ“z‰€za{xƒa¡Šu'rly{nsw…ƒ“z‰€|~n‹ƒ |¬w¢nŠy{nŠ¡sy{t~y{nŠyhC|¬r€š ¨¢¡Šu“®s€z“ƒ“|¬rt~u€q w'®Fy‹w…|vƒ“|~y{n$|~w“§ªÎ§ ¥ «Ü…Ë4§ ¥ «“«¦x ¤ ¡Š|vt~u£ƒ“¡Šu“®eyhw“|ƃa|vyhnWy€•ƒ“¡Šuɐ–y„Œq|vnŠ}C®ey{|~nhƒ |¬w#§¥¢v§ ¥ «Ü“¦‹«¦šG¨¢¡ŠuAnƒa¡Šu#Œ{u’r¦ƒay{z ¡ •z ay{oƒa¡Šu#®s€z“ƒ“|¬rt~uɃ“y–ƒa¡Šu#®Fyh|vn‹ƒÅ¡shwSryhC®ey{nsuln‹ƒaw £ Õ Î§ ¥ « … ¢v§ ¥ « £ # Õ Ë€§ ¥ «¦Ø §…˜Ah« ¨¢¡Šu“®s{z…ƒa|~rltvu qw¢Œhult~yqrl|ƃ¼ ¤ ¡F{wSryh–®FyhnŠuln‹ƒaw ‚ Õ £ Î £¦¥ ‚ # Õ £ Ë £¦¥ §…˜l¹‹« €nF†¨• yhz¢ƒ“¡Šu#ŒhuAr¦ƒay{z‰wQ|vn‘§¼˜’h«Q€nF†V§§¦¨¦–ƒay–Fu#|~n$ƒ“¡Šu¤wa€–u#†‡|~z“u’r¦ƒ“|~y{nÍx ¤ u“zauA¯‹pŠ|~z“u ‚ # ‚ Õ £ # £ y{z £ Ë £¦¥ £ Î £¦¥ Õ £ Ë £ Î Õ Ë4§ ¥ « Χ ¥ « … ¢v§ ¥ « w“y £ Ë Ë Õ £ Î Î … ¢v§ ¥ « §…˜’¸{« tŠyhzSu±Š€–®Št~u{x‡|v•©¢v§ ¥ « Õ ¥ x‡ƒa¡Šuln ¤ u“–ˆW|vn‹ƒ“uA}{z‰„ƒau£ƒayCésns† tvnSË4§ ¥ « Õ t~n $ Χ ¥ « … § ¥ « Ù y{z Ë€§ ¥ « Õ Ûå$ Χ ¥ « … ¥ ¤ ¡Š|¬r‰¡‚|¬w“$¡Šy{t~y{nŠyh–|~rCryhnsw¼ƒaza{|vn‹ƒ’š !Qp‡ƒ#• y{z“}{uAnŠulz‰€t¢v§ ¥ «£ƒa¡Šu–z“|~}{¡‹ƒ#w…|¬†‡u–y€•“§¼˜ˆ¸{«h|~w nŠy{ƒ¢|~n‹ƒ“uA}{z‰€Št~u{xŠw“yCƒ“¡Šu¤rly{nsw…ƒ“z‰€|~n‹ƒQ|¬wSnŠyhnŠ¡Šy{t~y{nsy{–|~r{š
  • 10.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’¦ Ý     ¦ t|v}hpŠz“u Ú vžŽryhnsruA®‡ƒ“|~y{n$y€•ƒ“¡su¤w…|vƒ“ps€ƒ“|~y{n$y€• È zay{Št~ulÂ˜hšv˜’¦ –9—™˜CdTefhg ikjAi¢¡ ¨ ¤ yk®ey{|~nhƒ‰w¢y€•Í¢hw“w ä €zauGè¼yh|vnŠu’†Wq¨Êz“|~}{|¬† ¤ ul|~}{¡‹ƒatvu’w“w'z“y‡†Wy€•Ít~ulnŠ}{ƒ“¡   x‹ƒ“¡su“rluln‹ƒ“uAz¢y€• ¤ ¡Š|¬r‰¡Ž|¬wÉrly{nsw…ƒ“z‰€|~nŠu’†²ƒ“y$–y„Œ{ukyhn$r|~zarltvuÊy€•‚z‰{†‡|~psw ¦eš y uƒ“pŠ®Žƒa¡ŠuCÇ‹|~nŠulƒ“|¬rÊuAnŠulza}{$|~n }{uAnŠulz‰€t~|4wluA†ryqy{z‰†‡|~ns„ƒauAwAš žT²ry{nFrul®Šƒ“|~y{n²y€•vƒ“¡s|~why{nŠu¤|¬wÅw“¡Šy ¤ n²|vn t|~}{pŠzau Ú š Ý |¬w¢ƒ“¡suÊ€ns}{t~u#z“uA®Šz“u’w…uAn‹ƒ“|~nŠ} ¡Šy ¤ •ª{z“{z“yhpŠns†Žƒ“¡Šu¢r|~z‰rt~u¤ƒ“¡su–rluln‹ƒ“uAz“y€•Gƒa¡Šu–z“y‡†Ž¡F{wɐ–y„Œ{uA†!š  ”|~w£ƒa¡Šu¢€nŠ}htvuʃ“¡Šu zayq†¢€ÇhuAw ¤ |ƃa¡²ƒ“¡Šu“Ώ€±‡|~wAš ¨¢¡Šu­®eyhw“|ƃa|vyhn y€•–ƒ“¡su6ruAnhƒaulz‚y€•Cƒ“¡ŠuIz“y‡†‘|~wI§ ÎÜ…ËŠ« Õ § ¦'rlyhw Ý Ü ¦Qw…|~n Ý «¦š ¨¢¡Šu ®eyhw“|ƃa|vyhnswŽy{•¢ƒ“¡ŠuI–hw“w“uAwz“uAt~€ƒ“|~Œ{u”ƒayσ“¡suIruAn‹ƒ“ulz‚y€•¢ƒa¡Šu6zay‡† €zau §Î „¤£ Ü…Ë „¤£ « Õ ¥ §¼˜ Ú «§   rlyhw  Ü   w…|~n  e«ØF¨¢¡ŠuAn$ƒ“¡Šu¤{sw…yhtvpŠƒ“u“®Fy‹w…|vƒ“|~y{nFw¢y€•Íƒa¡Šu#¢{waw…u’wS€zau §Î Ü…ËŠ« Õ § ¦'rlyhw Ý ¥   Ú ry‹w  Ü ¦Qw…|~n Ý ¥   Ú w…|~n  e« €nF†¨ƒa¡Šul|~zÅŒ{uAtvy‡rl|ƃa|vu’wS€zau § ‚ Ü ‚ # « Õ § … ¦Qw“|vn ݧ¦Ý¢¨   Ú w…|~n   ¦ Ü¡¦'rlyhw ݧ¦Ý ¥   Ú ry‹w   ¦ 4«¦Ø ¨¢¡Šu“¢€}hnŠ|ƃaps†‡u’wSy€•ƒ“¡Šu’w…u¤{z“u Ђ4Ð{Õ ¦ Ä ¦Ý Ä Ù   Ä ¹ ¦  Ä ¥ ¦   ¦Ý ¦ §ªw“|vn Ý w“|~n   Ù ry‹w Ý ry‹w  €« Õ ¦ Ä ¦Ý Ä Ù   Ä ¹ ¦  Ä ¥ ¦   ¦Ý©¦ £ryhwA§ Ý …  €« Á³¡ŠuAn ¤ u{†Š†”ƒa¡ŠuWÇq|~nŠuƒa|~rWulnŠuAz“}h|vu’w#y€•Sƒa¡Šu¨ƒ ¤ yŽ¢{waw“uAwAx̓a¡Šu¨ƒa¡Š|vz‰†”ƒaulzaàrA€nsrlult¬wlx €nF† ¤ u“¡sˆŒ{u á Õ ˜ Ú ¢ 䃂 Ä ÕÏä § ¦ Ä ¦Ý Ä Ù   Ä ¹ ¦  Ä «¦Ø
  • 11.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜h˜ –9—™˜CdTefhg ikjAiki y ¡Šy ¤ ƒ“¡s€ƒ¡ Í{}{z‰€nŠ}hu€q wGuA¯‹ps€ƒ“|~y{nsw¢|~n$ƒ“¡Šu“• yhz“)y€•£¢‚¯eš¢˜—¼¸€Crl€n²€t¬w“yCeu ¤ za|ƃ“ƒ“ulnThw ¤ ¦á ¤ ¦¥ © … Ú ¤ á ¤ ¥ © Õ§¦ © Ø ¨¢¡Šu’w…u#€zau“w…yhCulƒ“|~–uAwSÇqnŠy ¤ n²{w'ƒ“¡su©¨(hT3d V3T ¨¢• yhz“)y€•Íƒa¡Šu Í{}{z‰€nŠ}huhu’¯hpF„ƒ“|~y{nFwlš –9—™˜CdTefhg ikjAi S m¥®ey{|~nhƒ¨®F€z“ƒ“|¬rt~uTCy„ŒhuAw–|~n³w…®shru²pŠns†Šulz¢ƒa¡ŠuŽ|~nspŠuAnsruTy{•#‚• yhzarluŽ†‡ulza|vŒ„{Štvu$• zay{ã }{uAnŠulz‰€t~|4wluA†W®Fy{ƒ“uAnhƒa|~{t4y€•ƒ“¡Šu“• yhz“ §4'‹Ü ¤ « Õ § ¦ « Ù å ¤ ¡ŠuAz“u 'k|¬w¢ƒa¡Šu#zah†‡|~psw¢Œ{u’r¦ƒ“yhz¢• z“yh)C銱‡uA†$®ey{|~n‹ƒAx |¬w¢ƒ“¡su¤€nŠ}hpŠt~{zS–y{–uln‹ƒ“ps €ey{pŠƒ ƒ“¡F„ƒS®Fyh|vn‹ƒ’xs€ns† |~wSÊ銱‡u’†ŒhuArƒ“y{z¢|~nTw…®shruhš !$# t|~ns†“ƒa¡Šu'rly{–®FyhnŠuln‹ƒ‰w!y€•‡ƒa¡ŠuG• yhzarluGy{n“ƒa¡Šu‚®F€z“ƒ“|¬rt~uG|vnkFy{ƒ“¡C¶Q{z…ƒauAw“|~{n“{ns†¤w“®Š¡ŠuAz“|¬rl{t ®ey{t¬€zÅrlyqy{z‰†‡|vnF„ƒ“u’wlxqyhnWƒa¡Šu#s{w“|¬w¢y€•£¢‚¯ešS§¼˜—¼¸€æ‹«¦š %'# y ¡Šy ¤ ƒa¡s„ƒÉƒ“¡Šu¢rly{–®FyhnŠuln‹ƒ‰w£|~nŽƒa¡ŠuCƒ ¤ y$ryqy{z‰†‡|~ns„ƒauÊw“‡w¼ƒaul¢w“€zaukzault¬„ƒ“u’†²ƒ“y$uAhr‰¡ y{ƒ“¡ŠuAzÅ{w¢|~n(¢‚¯ešS§¼˜—½¹hË«¦š )0# ‡ƒa{|vnƒ“¡Šu#u’¯‹ps„ƒa|vyhnsw¢y€•Cy{ƒ“|~y{n²|~n²w“®Š¡ŠuAz“|¬rl{t€®Fyht~{zÅryqy{z‰†‡|~ns„ƒauAwAš –9—™˜CdTefhg ikjAi   m©®s€z“ƒ“|¬rt~uk–y„Œ{u’wÅ|~n‚®Št¬€nŠuÊpŠns†‡uAz£ƒa¡ŠuC|vnFpŠulnsrluÊy{•'¢• yhzarlu{x4{rƒ“|~nŠ}ƒ“y ¤ €z‰†TWruAn‹ƒ“ulz y€•• y{z‰ruhx ¤ ¡Šyhw“u“–{}{nŠ|vƒ“pF†‡u“|~w Õ ˜¦ Ä • ˜ … ¦ ¦ Ä … Ú21 ¦C¦ 3 Ä — Ü ¤ ¡ŠuAz“u ¦ |¬whƒ“¡Šu–†‡|¬w¼ƒ‰€nsrluky€•™ƒa¡ŠuC®s€z“ƒ“|¬rt~u#ƒ“yWƒ“¡Šu–ruAn‹ƒ“ulzÉy€•™• yhzarlu{š¢t|~ns†²ƒa¡ŠuC}{ulnsulz‰€t~|fwAuA† ®ey€ƒ“uAn‹ƒ“|¬€t¢ƒ“¡F„ƒ ¤ |~tvthz“u’w…pŠtvƒ¢|vn³w“psr‰¡³‚• y{z‰ru{x¢€nF†6• zay{ ƒ“¡s€ƒ¢ƒ“¡Šu4 €}hza{nŠ}{|¬€n‘• yhz–ƒ“¡Šu –y€ƒa|vyhn|~nŽ–®Št¬€nŠuhšh§ª¨¢¡Šuku±‡®ŠzauAwaw…|~y{nW• y{z1t6z“uA®Šz“u’w…uAn‹ƒawQƒ“¡su#• y{z‰ru“euƒ ¤ ululn$ƒ ¤ y¨r‰¡s€za}{u’w |~nÁVuleulzgqwÅult~uAr¦ƒaz“y‡†‡qns{–|~rAwa«š ¾½• ¤ uɃa{Ç{u § ¦ « Õ ˜¦ • ˜ Ù ‚ Ä 3 Ä — Õ ˜¦ Ù § ¦ ¦ « Ä 3 Ä ¦
  • 12.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜ Ú ƒ“¡suln ¤ ¤ ¦ Õ … ˜¦ Ä … ¦ ¦ Ä 3 Ä ¦ Ä €nF† £ £¥ ¤ ¤ ¦ ¦ Õ £ £¦¥ • Ú ¦ ¦ 3 Ä ¦ — Õ Ú21 ¦ 3 Ä ¦ … Ú § ¦ ¦ « Ä 3 Ä ¦ Ä w“y ¦ Õ … ¤ ¤ ¦ Ù £ £¥ ¤ ¤ ¦ ¦ Õ ˜¦ Ä • ˜ Ù Ú ¦ 1 ¦ … § ¦ ¦ «…Ä 3 Ä — ¨¢¡Šu  Í{}{z‰€nŠ}h|~{n¢• y{zS–y{ƒ“|~y{n²|vnTC®Št¬€nŠu“|¬w ¡ Õ á … ×Õ ˜ Ú ä ¦ ¦ Ä Ù ˜ Ú ä ¦ ¦ Ä ¦Ý Ä … ˜¦ Ä • ˜ Ù Ú ¦ 1 ¦ … § ¦ ¦ « Ä 3 Ä — Ø –9—™˜CdTefhg ikjAi   ¾½• ¡ |¬w¢  Í{}{z‰€nŠ}h|~{n”• y{zW”w“‡w¼ƒaul y{•£¢‘†‡ul}hz“uAuAw–y€•£• z“uAuA†‡yh wa„ƒ“|¬w…• ‹|~nŠ}  Í{}{z‰€nŠ}hu€q w uA¯‹ps€ƒ“|~y{nswAx‡w…¡sy ¤ qW†‡|~z“u’r¦ƒhw“pŠsw…ƒ“|vƒ“p‡ƒa|vyhn$ƒ“¡s€ƒ ¡ § Õ ¡ Ù £ ¢§ ¥ º ÜlØlØAØlÜ ¥¥¤ Ü ¥ « £¦¥ €t¬w“y­w“€ƒ“|¬w¼ésu’w  €}{z‰€ns}{u€q w–uA¯‹ps€ƒ“|~y{nswAx ¤ ¡ŠuAz“u à|¬w$€nqÌ{z“s|ƃaza{z“hx'ŠpŠƒ²†‡|1)€ulzauln‹ƒ“|¬€Št~u{x •p Šnsrƒ“|~y{n²y€•|ƃ‰wÅ€za}{psCuAn‹ƒawAš Á‚u#¡FˆŒ{u ¤ ¡ § ¤ ¥ ¤ Õ ¤ ¡ ¤ ¥ ¤ Ù ¤ ¤ ¥ ¤ £ £¥ §…˜A°h« €nF† ¤ ¡ § ¤ ¦¥ ¤ Õ ¤ ¡ ¤ ¦¥ ¤ Ù ¤ ¤ ¦¥ ¤ £ £¦¥ Ø §…˜ˆ›€« tŠyhz¢ƒ“¡Šu“• psnsr¦ƒa|vyhn ¤ u#¢ˆ ¤ za|vƒ“u £ £¦¥ Õ9¢ ¤ ¤ ¤ ¥ ¤ ¦¥ ¤ Ù ¤ ¤ ¥ €nF†¨• zay{oƒa¡Š|¬w ¤ u#¢ˆ¢zauAh†Wy) ¤ ¤ ¦¥ ¤ £ £¥ Õ ¤ ¤ ¥ ¤ Ø ¨¢¡ŠuAnƒ‰€Çq|~nŠ}Cƒ“¡ŠuɃ“|~–uk†‡uAz“|~Œ„„ƒ“|~Œ{uÉy€•S§¼˜„›€«'}{|~Œ{u’w £ £¥ ¤ ¡ § ¤ ¦¥ ¤ Õ £ £¦¥ ¤ ¡ ¤ ¦¥ ¤ Ù £ £¥ ¤ ¤ ¥ ¤
  • 13.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’ w“y ¤ u“¡sˆŒ{u ¤ ¡ § ¤ ¥ ¤ … £ £¥ ¤ ¡ § ¤ ¦¥ ¤ Õ ¤ ¡ ¤ ¥ ¤ … £ £¦¥ ¤ ¡ ¤ ¦¥ ¤ Ù ¤ ¤ ¥ ¤ £ £¥ … £ £¦¥ ¤ ¤ ¥ ¤ Ø ¨¢¡Šukészaw…ƒhƒ ¤ y¨ƒaulza¢whyhnTƒ“¡Šu ¢ # y rl{nsruAteuArA€psw“u ¡ w“€ƒ“|¬w¼ésu’wŃa¡Šu ¢GpŠt~ulz“—  €}hza{nŠ}{u uA¯‹ps€ƒ“|~y{nswAx ¤ ¡s|vt~uŃa¡Šu£w“uArly{ns†–ƒ ¤ y#ƒaulza–w'rl{nsruAtseuArl{psw“u ˆ|¬w‚†‡|1)euAz“uAn‹ƒ“|¬€Št~u{š #ÅuAnsru ¡ § wa„ƒa|~w…ésu’wQƒ“¡Šu¢‚pŠtvuAz…— Í{}{z‰€nŠ}huÅuA¯‹ps€ƒ“|~y{nswAš –9—™˜CdTefhg ikjAi¡  m  Í{}{z‰€nŠ}h|~{n¢• y{zhC®s{z…ƒa|~rlpŠt¬€z¢®Š¡q‡w…|¬rl{t!w…‡w…ƒ“ul rl€n$eu ¤ z“|vƒ…ƒaulnT{w ¡ §FÕ ä Ú § ¦ ¦Î Ä Ù Ú ¨ ¦Î ¦Ë Ù 3 ¦Ë Ä « … ¢ Ú § ¦‹Î Ä Ù Ú ¨‰ÎsË Ù 3 Ë Ä «¦Ü ¤ ¡ŠuAz“u ¦ex ¨ˆx‹€ns† 3 €zauÅ€zaŠ|vƒ“z‰€za¤ryhnsw¼ƒ‰€n‹ƒawvsp‡ƒ'w“pŠ‡è¼uArƒ™ƒ“y“ƒa¡Šuhryhns†‡|vƒ“|~y{nCƒ“¡F„ƒ§¨ Ä … ¦ 3¤£Õ ¦ŠšÁ³¡s„ƒ‚{z“u'ƒ“¡suQu’¯‹ps„ƒa|vyhnswvy€•eCy{ƒ“|~y{nFÀ ¢G±‡{–|vnŠuQ®s{z…ƒa|~rlpŠt~{z“t~“ƒ“¡su'ƒ ¤ y#rlhw…u’w ¦ Õ ¦ Õ 3 €nF† ¨ Õ ¦sÜ 3 Õ … ¦ešÁ³¡s„ƒ™|¬w̓a¡Šu¢®Š¡q‡w…|¬rl{tqw“‡w¼ƒaul×†‡u’w“rlz“|~euA†Ê‹“ƒa¡ŠuS€ey„Œ{u  Í€}hza{nŠ}{|¬€neÀ y ¡Šy ¤ ƒ“¡s€ƒSƒ“¡Šu#pFw…ps{t  Í{}{z‰€nŠ}h|~{n¢• y{z¢ƒa¡Š|~whw…‡w…ƒ“ul {wS†‡ulésnŠuA†$q ¢'¯eš¢§…˜—¼¸€°‹«‚|¬w¢zault¬„ƒ“u’† ƒ“y ¡ §F‹¢k®Fyh|vn‹ƒ‚ƒaza{nsw…• y{za–€ƒ“|~y{nT§ªr•¼š'¢™±‡ulz‰r|¬w“u#˜’¸#{Fy„Œhu’«¦šÁ³¡s€ƒ'|¬wGƒa¡ŠuÉw“|~}{nŠ|véFrl{nsruhy€• ƒ“¡su¤ry{nF†‡|ƃa|vyhnyhnWƒa¡Šu#Œ„€t~pŠu#y€• ¨ Ä … ¦ 3 À ¶'tvu’€zatv ¤ u“¡sˆŒhu ¤ ¡ ¤eÎ Õ … ¢ ¦‹Î … ¢ ¨‰Ë ¤ ¡ ¤ ¦Î Õ³ä ¦ ¦Î Ù ä ¨ ¦Ë w“yʃa¡Šu¢GpstvuAz…— Í{}{z‰€nŠ}huÅuA¯‹ps€ƒ“|~y{n• y{zSÎT|¬w ¤ ¡ ¤eÎ Õ £ £¥ ¤ ¡ ¤ ¦Î § ä § ¦ 1Î Ù ¨ 1Ëq« Õ … ¢ § ¦hÎ Ù ¨‰ËŠ«¦Ø y |~–|vt¬€zatvhxq• y{zSË ¤ u#y{Šƒa€|~n ä § ¨ 1Ë Ù 3 1ˇ« Õ … ¢ §¨‰Î Ù 3 ËŠ«¦Ø ¨¢¡Šu’w…uC€zau¤ƒ“¡suÊu’¯hpF„ƒ“|~y{nFwÅy€•'Cy{ƒ“|~y{nT• yhzÉ®s{z…ƒa|~rltvuÊy€•G¢{waw ä pŠnF†‡ulza}{yh|vnŠ}w…|~–®Štvu ¡s{z“–y{ns|~r#–y{ƒ“|~y{nT|~nŽƒ ¤ yW†‡|~CuAnsw“|vyhnswlx€{wh|Æ•'FyhpŠns†Tq$ƒ ¤ yw…®Šza|~nŠ}hwhy€•‚w“®Šz“|~nŠ}Wrly{n‡— w…ƒa€n‹ƒ ¢ šUshy{za¢€t~tv ¤ u ¤ y{pst~†6u±‡®ŠzauAwaw¤ƒa¡Šu( Í€}hza{nŠ}{|¬€n‘|~nÌpŠnŠz‰ˆŒ{ult~t~uA†”• yhz“²xGq ƒ“z‰€nFw¼• yhz“–|~nŠ}kƒay–nŠu ¤ ryqy{z‰†‡|~ns„ƒauAw¦¥ º €ns†§¥ Ä ¤ |vƒ“¡ ¥ º Õ ¦‹Î Ù ¨¦Ë ¥ Ä Õ ¨‰Î Ù 3 ËeØ ¨¢¡ŠuCry{nF†‡|ƃa|vyhn ¨ Ä … ¦ 3¨£Õ ¦¨|~whƒ“¡Šu–ryhns†‡|vƒ“|~y{nTƒa¡s„ƒ£ƒ“¡Šu–ryqyhza†‡|~ns€ƒ“u#ƒaza{nsw¼• yhz“¢€ƒ“|~y{n nŠy{ƒQeu#†‡ul}hulnŠuAza€ƒ“u{x‹|ršuhšvƒ“¡s€ƒQƒa¡Šulzau“€zau£{rƒ“ps{tvt~–ƒ ¤ yʆ‡|¬w¼ƒa|vnFr¦ƒÅ†‡|~CuAnsw“|vyhnswQ|vn ¤ ¡Š|¬r‰¡ ƒ“¡suC®F€z“ƒ“|¬rt~uku±‡®eulza|vuAnsru’w“WzauAw…ƒ“yhz“|~nŠ}¨• yhzarlu{š¤¾½• ¨ Ä Õ ¦ 3 ƒa¡Šuln ¤ uC¡sˆŒhuhè¼psw…ƒ¤WyhnŠu— †‡|~–ulnsw“|vyhns€t4®sz“yhŠtvuA²š
  • 14.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜A¹ –9—™˜CdTefhg ikjAi¡  ‡ƒ‰€|~nTƒ“¡Šu  €}{z‰€ns}{|¬€n²uA¯‹ps€ƒ“|~y{nsw£y€•‚–y{ƒ“|~y{nŽ• yhz#Ww“®Š¡Šulza|¬rl€t®eulns†‡pstvpŠ²x!|ršu{škW–hw“w ®ey{|~nhƒÅw“psw“®FuAns†‡uA†$qCza|v}h|~† ¤ ul|~}{¡‹ƒ“t~uAwawQz“y‡†4š uAnŠy€ƒa|vns}Žƒ“¡su¢{waw¤y{•Åƒ“¡suW®s{z…ƒa|~rltvu‹ ä xvƒ“¡ŠutvuAnŠ}€ƒa¡­y€•Sƒa¡Šu$z“y‡†‘q ¡ x™€nF† ƒ“¡su–{nŠ}{t~u–Fulƒ ¤ uAuln‚ƒ“¡Šu¢zay‡†‚{ns†ƒ“¡Šu¢Œhulz“ƒ“|¬rl€tvq Ý x ¤ u–¡sˆŒhukƒa¡Šu¢®s{z…ƒa|~rltvu qw“t~|vnsuA€z Œ{uAtvy‡rl|ƃ¼¨}h|vŒhuln²|~nT–{}{nŠ|vƒ“pF†‡u#q ‚¨Õ ¡ ¦Ý x ¤ ¡s|vt~u¤|vƒawS¡ŠuA|v}h¡‹ƒh|~w£¢ Õ … ¡ rlyhw Ý § ¤ ¡ŠuAz“u ƒ“¡su“• pŠt~rlz“ps)y€•ƒ“¡Šu#®eulnF†‡pŠt~pŠ |¬wQƒa{Ç{uAn$hwQƒ“¡Šu#yhz“|~}{|~ny{•rly‹yhza†Š|vns€ƒ“u’wa«šv¨¢¡suln ¡ Õ á … ×Õ ˜ Ú ä ¡ Ä ¦Ý Ä Ù ä ¡ ry‹w Ý w“yʃa¡Šu#uA¯‹ps€ƒ“|~y{n$y€•Cy{ƒ“|~y{n²|¬w ¤ ¡ ¤ Ý Õ £ £¦¥ ¤ ¡ ¤ ¦Ý § … w“|vn Ý Õ ¡ 1Ý Ø –9—™˜CdTefhg ikjAi ¥ m‘®s€z“ƒ“|¬rt~u#y€•¢{waw ä –y„Œ{uAwQ|~n²y{nŠu#†‡|~–ulnsw“|vyhn$w“psr‰¡$ƒ“¡F„ƒS|ƃšF{w¢ƒa¡Šu Í{}{z‰€nŠ}h|~{n ¡ Õ ä Ä ¦Î d ˜ Ú Ù ä ¦Î Ä §ªÎe« … Ä §Î €«¦Ü ¤ ¡ŠuAz“u |¬whw“y{–uk†Š|0)€ulzauln‹ƒ“|¬€stvu#• psnsr¦ƒa|vyhnTy€•™ÎÍšt|~ns†²ƒ“¡sukuA¯‹ps€ƒ“|~y{n²y€•™–y€ƒa|vyhn²• y{z£Î§ ¥ « €nF††‡u’w“rlz“|~eu£ƒa¡Šu#®Š¡q‡w…|¬rl{t4ns„ƒapŠzauÉy{•ƒa¡Šu¤w“qw…ƒ“uAy{nƒ“¡su#s{w“|~w¢y{•ƒa¡Š|¬wSuA¯‹ps€ƒ“|~y{n!š ÁVu#¡sˆŒ{u ¤ ¡ ¤FÎ ÕÏä ¦Î Ä!£ £ Î … Ú §ªÎe« £ £ Î ¤ ¡ ¤ ¦Î Õ ä Ä ¦ÎG™  Ù Ú„ä ¦Î §Î €« £ £¦¥ ¤ ¡ ¤ ¦Î ÕÏä Ä § ¦Î4« Ä 1Î Ù Ú€ä 1Î §ªÎe« Ù Ú„ä ¦Î £ £¦¥ §ªÎe« ¾¿n$ƒ“¡Šu“t¬{w…ƒÅuA¯‹ps€ƒ“|~y{n ¤ u#rl{npFw…u £ £¦¥ §Î €« Õ ¦Î £ £ Î Ø ¨¢¡ŠuAnƒa¡Šu ¢GpŠt~ulz“— Í€}hza{nŠ}{uhuA¯‹ps„ƒa|vyhn|¬w £ £¦¥ ¤ ¡ ¤ ¦Î … ¤ ¡ ¤eÎ Õ ¦ § ä Ä § ¦Î4« Ä 1Î Ù Ú€ä 1Î §Î €« Ù ä ¦Î Ä £ £ Î Ù Ú §ªÎe« £ £ Î
  • 15.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜ˆ¸ y{z •sä 1Î Ù £ £ Î —¡  ä ¦Î Ä Ù Ú §ªÎe«£¢ Õ ¦sØ ¾½• ¤ u“|¬†‡uln‹ƒ“|v•  Õ … £ £ ÎŽ€ns† á Õ ä ¦Î Ä Ú x ¤ u“¢ˆ ¤ z“|vƒ“uɃa¡Š|~wh{w § … ä 1Î4«§ á Ù « Õ ¦ y yFxsƒa¡Š|~w£|¬w£waˆq|vnŠ}¨ƒ“¡s€ƒAx€„ƒÉ{tvtƒ“|~–uAwAx€ul|vƒ“¡ŠuAzhƒa¡Šuʆ‡|1)€ulzaulnsrlukeuƒ ¤ ululn o€ns† ä ¦$|~w wluAz“yFxre¦'ƒ“¡Šu¤w“pŠ)y{•Çq|~nŠuƒa|~r“{ns†$®Fy{ƒ“uln‹ƒa|~{t4ulnŠuAz“}h¨|~wDwAulzaysš –9—™˜CdTefhg ikjAi   ¨ ¤ yŽ¢{waw¤®ey{|~nhƒ‰w¤y{•Å–hw“w ä º €ns† ä Ä {z“ury{nsnŠuArƒ“uA†­‹”w…ƒ“za|~nŠ}Ž®shw“w“|vns}²ƒ“¡Šzay{pŠ}h¡ $¡Šy{t~u–|vn”Tw“Cyqy{ƒ“¡‚ƒa€stvu¢w“yƒa¡s„ƒ ä º z“u’w¼ƒ‰w“y{n‚ƒ“¡Šu–ƒ‰€Št~u¨€nF† ä Ä ¡s€ns}hw“w…pFw…®eulns†ŠuA†4š mhwaw“pŠ–|vnŠ} ä Ä –y„ŒhuAw“y{nstvV|vn­ŽŒ{ulz“ƒ“|¬rl{t™tv|~nŠuhx ¤ ¡F„ƒÊ{z“u–ƒa¡Šu¨}{uAnŠulz‰€t~|4wluA†”rly‹yhza†Š|vns€ƒ“u’w •y {z‚ƒ“¡ŠuÉw…‡w…ƒ“uA¢À$ÁVza|ƃau£†‡y ¤ n–ƒa¡Šu  €}hza{nŠ}{u¢uA¯‹ps€ƒ“|~y{nswG• y{z‚ƒ“¡Šu“w…‡w…ƒ“uA {ns†4xq|Æ•!®eyhwaw“|vŠt~u{x †‡|¬w“rlpswaw‚ƒa¡Šu#®Š¡q‡w…|¬rl{t4w…|~}{nŠ|véFrA€nsrlu“{nq¢y€•Íƒa¡Šul –|v}h¡hƒS¡sˆŒhu{š ¢ u’†‡psruɃa¡Šu#®Šzay{Št~uloƒay¢ w“|vnŠ}htvu“w“uAryhns†q—½y{z‰†‡ulz¢†‡|1)euAz“uAn‹ƒ“|¬€t4uA¯‹ps€ƒ“|~y{n$€ns†y{‡ƒ‰€|~n$Êész‰w…ƒ¢|~n‹ƒ“uA}{z‰€t€y€•ƒ“¡Šu“uA¯‹ps€ƒ“|~y{n!š Á³¡s€ƒÅ|~w¢|vƒawS®s¡‹‡w“|~rA€t!w“|v}hnŠ|véFrl{nsruˆÀ”§r¶'y{nFw…|¬†‡ulz¢ƒa¡Šu#–y€ƒa|vyhn$yhnŠt~Ww…y–t~y{nŠ}¢hw¢nŠul|vƒ“¡ŠuAz ä ºnŠyhz ä Ä ®shw“w“uAwQƒa¡Šz“yhpŠ}{¡ƒ“¡suÉ¡sy{t~u’«¦š  !ulƒ £ Fuƒ“¡Šu¡Šul|~}{¡‹ƒCy€• ä Ä €ey„Œ{u¨|vƒawÊt~y ¤ u’w¼ƒk®eyhwaw“|vŠt~u¨®eyhw“|ƃa|vyhn!xGw“yTƒ“¡s€ƒ £ Õ ¦ ¤ ¡ŠuAnIƒa¡Šuw…ƒ“za|vns}‘|~w–• pstvt~Iul±qƒ“ulnF†‡uA†ÌeulnŠu’„ƒ“¡ ƒa¡ŠuTƒ‰€Št~uŽ€ns† ä º |¬w“è¼psw…ƒ€ey{p‡ƒ ƒ“y•ª€t~t‚ƒa¡Šzay{pŠ}h¡‘ƒ“¡Šu¡Šy{t~u{šVmÅt¬w…yFx™tvulƒ Ý Fuƒ“¡Šu²€ns}{pŠt¬€zkrlyqy{z‰†‡|vnF„ƒ“uWy€• ä º yhn‘ƒ“¡Šu ƒa{Št~u{šk¨¢¡ŠuAnŽƒa¡Šu–Ç‹|~nŠulƒ“|¬rÊuAnŠulza}{²y{• ä Ä |¬w'è¼psw¼ƒ ä Ä ¦£ Ä Ú x ¤ ¡Š|~tvuCƒa¡Šu–Ç‹|~nŠulƒ“|¬rkuAnŠulza}{ y€• ä º |~w ä º ¦£ Ä Ú Ù ä º £ Ä ¦Ý{Ä Ú xq{ns†–ƒa¡Šu“®Fy{ƒ“uln‹ƒa|~{teuAnŠulza}{–y{•!ƒ“¡Šu“w“qw…ƒ“uAo|~wè¼psw…ƒ¢ƒ“¡Šu }{z‰ˆŒq|ƃ‰„ƒa|vyhns€te®Fy{ƒ“uAnhƒa|~{t4ulnŠuAz“}h¨y€• ä Ä x Õ³ä Ä £ šG¨¢¡Šulnƒ“¡Šu €}hza{nŠ}{|¬€n¨|¬w ¡ Õ ˜ Ú §ä º Ù ä Ä « ¦£ Ä Ù ˜ Ú ä º £ Ä ¦Ý Ä … ä Ä £ €nF†¨ƒa¡Šu¢GpŠt~ulz“— Í€}hza{nŠ}{uhuA¯‹ps„ƒa|vyhnswS€zau £ £¦¥ §ä º £ Ä ¦Ý « Õ ¦ §ä º Ù ä Ä « 1 £ Õ … ä Ä Ù ä º £ ¦Ý Ä tŠzay{ ƒ“¡su¤ész‰w¼ƒ£uA¯‹ps„ƒa|vyhn ¤ uÊrl€nT|¬†‡uAnhƒa|Æ• Ž¢észaw…ƒh|~n‹ƒ“ul}hza{t x ä º £ Ä ¦Ý Õ   ¤ ¡Šulzau   |¬wh ryhnsw…ƒa€n‹ƒ’šÁ³|vƒ“¡$ƒa¡Š|~w ¤ u#rl{nTw…pŠFw¼ƒa|ƃap‡ƒ“u“• yhz ¦Ý |~n$ƒ“¡Šu¤w“uArly{ns†uA¯‹ps€ƒ“|~y{nr §ä º Ù ä Ä « 1 £ Õ … ä Ä Ù   Ä ä º £ ™ !QuArA€psw“uSƒ“¡suÉw“|v}hn¨y€•4ƒa¡Šu£ƒ ¤ ykƒ“ulza¢w‚yhn¢ƒ“¡su ¢ # y |¬w'†Š|0)€ulzauln‹ƒAx‹ƒa¡Š|~wQ|¬w'waˆq|vns}#ƒ“¡s€ƒAx‡|v•   |¬wōŠ|~}¨uAnŠy{pŠ}h¡­§ |v• ä º |~w£w…®s|vnŠns|vnŠ}¨•ª{w…ƒ£ulnsy{pŠ}h¡F«¦xsƒ“¡ŠuCruln‹ƒaz“|v• pŠ}h{t!• yhzarlu#y€• ä º rl{n s{t~{nsruɃ“¡su¤†‡y ¤ n ¤ {za†¢®spŠtvtÍy€• ä Ä xs€ns†Wƒ“¡su¤w…‡w…ƒ“ul rl€n²eu#|vn$uA¯‹pŠ|~t~|vŠza|~pŠ²š
  • 16.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’° –9—™˜CdTefhg ikjS ¡ ‡ƒ‰€|~n¤ƒ“¡su  €}hza{nŠ}{|¬€n¤{ns†¤u’¯hpF„ƒ“|~y{nFwy{•F–y€ƒa|vyhn¤• yhzƒa¡ŠuS†‡y{psŠtvu¢®eulns†ŠpŠtvps9|~tvt~psw…ƒ“z‰„ƒ“u’† |~n t|v}Fš‚˜—½¹sx ¤ ¡ŠuAz“u‚ƒ“¡Šu'tvuAnŠ}€ƒa¡swÍy{•‡ƒ“¡Šu'®FuAns†‡pŠt¬h{z“u   º €nF†   Ä ¤ |vƒ“¡Cry{zazauAw“®Fyhns†‡|~nŠ}S¢{waw…u’w ä º {ns† ä Ä š ¨{Çq|vnŠ}Wƒ“¡ŠuÊy{za|v}h|vnŽ€ƒhƒa¡Šu¤• pŠt¬rzapŠÂy{•™ƒ“¡Šukészaw…ƒ£®eulnF†‡pŠt~pŠ²x ¤ uCrl€n ¤ z“|vƒ“uC†‡y ¤ n ƒ“¡su¤ryqy{z‰†‡|~ns„ƒauAwQy€•ƒ“¡Šu“ész‰w…ƒÅ–hw“w¢®ey{|~n‹ƒB Î º Õ   º w“|vn Ý º Ë º Õ …   º ry‹w Ý º ¨¢¡ŠuTryqyhza†‡|~ns€ƒ“uAwÊy€•£ƒ“¡ŠuTw“uArly{ns†6–hw“wC®ey{|~n‹ƒ¢{z“u²†‡ulésnŠuA†Izault¬„ƒ“|~Œ{uƒ“y‚ƒ“¡su²rlyqy{z‰†‡|Æ— ns€ƒ“uAw‚y€•4ƒa¡ŠuÅész‰w…ƒ‚¢{wawG®ey{|~nhƒQqCul±Š{r¦ƒatv–€nF€t~y{}{yhpswvu±‡®ŠzauAwaw“|vyhnswlx‹w…ykz“uAt~€ƒ“|~Œ{u¢ƒ“ykƒ“¡Šu ryqyhza†‡|~ns€ƒ“uÉy{za|v}h|vn ¤ u“¡sˆŒhu Î Ä Õ Î º Ù   Ä w“|vn Ý Ä Ë Ä Õ Ë º …   Ä ry‹w Ý Ä |0)€ulzauln‹ƒ“|¬„ƒa|vns}–{ns†²†‡y{|~nŠ}¢Ctv|vƒ…ƒatvu¤{tv}hulŠz‰ ¤ uÉésns† ¦Î ĺ Ù ¦Ë ĺ Õ   ĺ ¦Ý ĺ ¦Î ÄÄ Ù ¦Ë ÄÄ Õ   ĺ ¦Ý ĺ Ù   ÄÄ ¦Ý ÄÄ … Ú   º   Ä ¦Ý º ¦Ý Ä ry‹wA§ Ý º … Ý Ä « ¨¢¡Šu Í{}{z‰€nŠ}h|~{n¨|¬w ¡ Õ ˜ Ú §ä º Ù ä Ä «   ĺ ¦Ý ĺ Ù ˜ Ú ä Ä   ÄÄ ¦Ý ÄÄ … ä Ä   º   Ä ¦Ý º ¦Ý Ä ryhwA§ Ý º … Ý Ä « Ù §ä º Ù ä Ä «   Ä ryhw Ý º Ù ä Ä   Ä ryhw Ý Ä ¤ |vƒ“¡²uA¯‹ps€ƒ“|~y{nsw¢y{•–y€ƒa|vyhn £ £¦¥   §ä º Ù ä Ä «   ĺ ¦Ý º … ä Ä   º   Ä ¦Ý Ä ry‹wA§ Ý º … Ý Ä «¢¡ Õ … §ä º Ù ä Ä «   Ä w…|~n Ý º €nF† £ £¦¥     Ä ¦Ý Ä …   º ¦Ý º ryhwA§ Ý º … Ý Ä « ¡ Õ … w…|~n Ý Ä Ø ¾½• ¦Ý º Õ ¦sxew“y¨ƒa¡s„ƒ£ƒ“¡ŠuÊ• pŠt¬rzapŠ™• y{z£ƒ“¡Šu–w…u’ryhns†²®FuAns†‡pŠt~pŠ |¬wÉw¼ƒ‰„ƒ“|~y{nF€za{xŠƒa¡Šulnƒ“¡Šu w“uAryhns†y€•Íƒa¡ŠuAw“u#uA¯‹ps€ƒ“|~y{nsw¢zauA†Špsru’wQƒ“yCƒ“¡Šu#u’¯‹ps„ƒa|vyhn ¤ u#†‡ulza|vŒhuA†|vn È z“yhŠtvuAÂ˜{š~˜ˆ›‡š
  • 17.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜„› –9—™˜CdTefhg ikjS–i ¨¢¡Šu¨uAtvu’r¦ƒaz“yh–{}{nŠulƒ“|¬rÊésult¬†‘|¬w¤|~n‹Œ„{z“|¬€n‹ƒ#pŠns†‡uAzÊT}‹€pŠ}hu–ƒ“z‰€nsw…• y{za¢„ƒa|vyhn‚y{•Qƒa¡ŠuWwarl{t~{z €nF†WŒhuAr¦ƒay{z¢®ey€ƒ“uAn‹ƒ“|¬€t!}h|vŒhuln$‹   §   Ù¢¡¤£ §§'qÜ ¥ «Ü ¥ § ¥ … ˜ 3 ¤ £ ¤ ¥ Ü ¤ ¡ŠuAz“u £ |~w€zaŠ|vƒ“z‰€za¤§ Šp‡ƒv†‡|1)euAz“uAnhƒa|~{Št~u’«¦šÁ³¡s„ƒu )€uAr¦ƒ†‡yquAw4ƒa¡Š|¬w!}h{pŠ}{uƒaza{nsw¼• yhz“¢€ƒ“|~y{n ¡sˆŒhuCyhn”ƒ“¡Šu  Í€}hza{nŠ}{|¬€n‚y€•ST®s{z…ƒa|~rltvu¢–y„Œq|vns}T|vn”ƒa¡Šu¨ult~uArƒ“zay{¢€}hnŠuƒa|~rÊésuAt~†FÀ ¾¼w“ƒ“¡Šu –y€ƒa|vyhn$ )eu’r¦ƒ“u’†sÀ ¨¢¡Šu Í{}{z‰€nŠ}h|~{n¢• y{zÅC®s{z…ƒa|~rltvu“|~nT€n$ult~uAr¦ƒaz“yh¢€}{nsuƒ“|¬r£ésult¬†|~w ¡ Õ á … ¥ ¥ §§¦G§ ¥ «“« Ù ¥ 3   §¨¦G§ ¥ «…« 奤 § ¥ « ¾½• ¤ u“¢€Çhu£ƒa¡Šu¤w“pŠ}{}huAw…ƒ“uA†W}h{pŠ}{u£ƒ“z‰€nsw…• y{za¢„ƒa|vyhn!x‹ƒ“¡Š|¬wSeuAryh–uAw § á … ¥ © ¥ §§¦G§ ¥ «“« … ˜ 3 ¤ £ ¤ ¥ ¨ Ù ¥ 3 $   §¨¦G§ ¥ «…« å ¤ § ¥ « Ù ¤Tå ¡£ §§¦G§ ¥ «“« Õ á … ¥ ¥ §§¦G§ ¥ «…« Ù ¥ 3   §¨¦G§ ¥ «…« å ¤ § ¥ « Ù ¥ 3! ¤ £ ¤ ¥ Ù ¤Tå ¡¤£ §¨¦G§ ¥ «…«# Õ á … ¥ ¥ §§¦G§ ¥ «…« Ù ¥ 3   §¨¦G§ ¥ «…« å ¤ § ¥ « Ù ¥ 3 £ £¦¥ £ §¨¦G§ ¥ «…« Õ ¡ Ù ¥ 3 £ £¥ £ §§¦G§ ¥ «…«Ø y ykƒ“¡Šuhƒ“z‰€nsw…• y{za–uA†  Í{}{z‰€nŠ}h|~{nÊu’¯‹ps€t¬wGƒa¡Šuhyhz“|~}{|~ns{t  Í{}{z‰€nŠ}h|~{nÊ®stvpswQ#ƒay€ƒ‰€tFƒ“|~Cu †‡uAz“|~Œ„„ƒ“|~Œ{uhš !Qp‡ƒ ¤ uS®Šzay„Œ{u’†k|~n È zay{Št~ul)˜{š~˜’¸hƒ“¡s€ƒ'{†s†‡|vns}“ƒ“¡ŠuSƒay€ƒ‰€t‡ƒa|v–uh†‡uAz“|~Œ„„ƒa|vŒhu y€•¢€nq²• pŠnsrƒ“|~y{nVƒ“y$ƒa¡Šu  Í{}{z‰€nŠ}h|~{n†‡yquAw“nŠy{ƒ¤ )€uAr¦ƒ“ƒa¡Šu¢uA¯‹ps€ƒ“|~y{nswÉy€•Q–y€ƒ“|~y{nÍxw“y ƒ“¡su#Cy{ƒ“|~y{n$y€•ƒ“¡Šu#®F€z“ƒ“|¬rt~uÉ|¬w¢pŠns )eu’r¦ƒauA†$q¢ƒ“¡Šu#}‹€pŠ}huɃ“z‰€nsw…• y{za¢„ƒ“|~y{nÍš –9—™˜CdTefhg ikjS S ‡ƒ‰€|~nŽƒ“¡su¢uA¯‹ps„ƒa|vyhny{•'–y€ƒa|vyhn• yhz¤®F€z“ƒ“|¬rt~uk•ª{tvt~|vns}$Œhulz“ƒ“|¬rl{tvt~TpŠns†‡uAz“ƒ“¡Šu–|~nspŠuAnsru y€•Å}hzaˆŒq|vƒ¼ ¤ ¡suln­• za|¬r¦ƒ“|~y{nF€t'• y{z‰ruAwÊy{Šƒa€|~ns{ŠtvuW• z“yh †‡|¬waw…|~®s„ƒa|vyhn‘• pŠnsrƒ“|~y{n ºÄ%$ ‚ Ä €zau ®ŠzauAw“uln‹ƒAš‚¾¿n‹ƒ“ul}hza€ƒ“uWƒ“¡Šu$uA¯‹ps€ƒ“|~y{n”ƒ“yVy{Šƒa€|~n‘ƒa¡ŠuŒhult~y‡r|vƒ¼VhwÊŽ• pŠnsr¦ƒa|vyhn6y{•Åƒ“|~–u${ns† w“¡Šy ¤ ƒ“¡F„ƒSƒ“¡su#–€±‡|vÊpŠ)®eyhwaw…|~Št~u“Œ{ult~y‡r|vƒ¼¢• y{z¢•ª{tvt€• zay{ z“u’w¼ƒS|¬w ‚CÕÏä $ š ¨¢¡Šu Í{}{z‰€nŠ}h|~{n¢• y{z¢ƒa¡Šu#®s{z…ƒa|~rltvu“|¬w ¡ Õ ˜ Ú ä ¦ % Ä … ä %
  • 18.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ ˜’æ €nF†¨ƒa¡Šu¤†‡|¬w“w“|v®F„ƒ“|~y{n• pŠnsrƒ“|~y{n²|¬w $ ¦ % Ä Ú xŠw…yCƒ“¡su#uA¯‹ps„ƒa|vyhny{•–y€ƒa|vyhn²|~w £ £¦¥ • ¤ ¡ ¤ ¦ % — … ¤ ¡ ¤ % Ù ¤ ¤ ¦ % § ä 1 % Õ³ä … $ ¦ % Ø ¨¢¡Š|¬w#w“ˆ‡w£ƒ“¡F„ƒ#ƒ“¡su¨{rlrlult~ulz‰„ƒa|vyhn}{yqu’wɃ“y6wluAz“y ¤ ¡Šuln ä‚Õ $ ¦ % xy{z ¦ % Õ ä $ xÍw“y ƒ“¡su#Œ{ult~y‡r|vƒ¼Wrl{nnsulŒ{uAzSz“|¬w“u“{Fy„Œhuhƒa¡Š|¬w¢ƒ“uAz“–|~ns€t!Œ„{tvpŠu¨§ªpŠnŠt~uAwawQƒ“¡Šu#|~nŠ|vƒ“|¬€t!Œ„{tvpŠu#y{• ƒ“¡su£Œhult~yqrl|ƃ¼–|¬w‚}hz“u’„ƒaulzGƒa¡s€nWƒ“¡Šu£ƒ“uAz“–|~ns€teŒ{uAtvy‡rl|ƃ¼hxh|~n ¤ ¡Š|¬r‰¡rA{w“uŃa¡Šu£®F€z“ƒ“|¬rt~u ¤ |~tvt w“tvy ¤ †Šy ¤ nWƒay–ƒ“¡Šu“ƒaulzaC|~ns{t4Œ{ult~y‡r|vƒ¼W€nF†¨ƒa¡ŠulnŽw…ƒaˆ–ƒa¡Šulzau’«š
  • 19. Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid December 1, 2001 Chapter 3 Problem 3.1 A particle of mass m is constrained to move under gravity without friction on the inside of a paraboloid of revolution whose axis is vertical. Find the one-dimensional problem equivalent to its motion. What is the condition on the particle’s initial velocity to produce circular motion? Find the period of small oscillations about this circular motion. We’ll take the paraboloid to be defined by the equation z = αr2 . The kinetic and potential energies of the particle are T = m 2 ( ˙r2 + r2 ˙θ2 + ˙z2 ) = m 2 ( ˙r2 + r2 ˙θ2 + 4α2 r2 ˙r2 ) V = mgz = mgαr2 . Hence the Lagrangian is L = m 2 (1 + 4α2 r2 ) ˙r2 + r2 ˙θ2 − mgαr2 . This is cyclic in θ, so the angular momentum is conserved: l = mr2 ˙θ = constant. 1
  • 20. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 2 For r we have the derivatives ∂L ∂r = 4α2 mr ˙r2 + mr ˙θ2 − 2mgαr ∂L ∂ ˙r = m(1 + 4α2 r2 ) ˙r d dt ∂L ∂ ˙r = 8mα2 r ˙r2 + m(1 + 4α2 r2 )¨r. Hence the equation of motion for r is 8mα2 r ˙r2 + m(1 + 4α2 r2 )¨r = 4α2 mr ˙r2 + mr ˙θ2 − 2mgαr or m(1 + 4α2 r2 )¨r + 4mα2 r ˙r2 − mr ˙θ2 + 2mgαr = 0. In terms of the constant angular momentum, we may rewrite this as m(1 + 4α2 r2 )¨r + 4mα2 r ˙r2 − l2 mr3 + 2mgαr = 0. So this is the differential equation that determines the time evolution of r. If initially ˙r = 0, then we have m(1 + 4α2 r2 )¨r + − l2 mr3 + 2mgαr = 0. Evidently, ¨r will then vanish—and hence ˙r will remain 0, giving circular motion— if l2 mr3 = 2mgαr or ˙θ = 2gα. So if this condition is satisfied, the particle will execute circular motion (assum- ing its initial r velocity was zero). It’s interesting to note that the condition on ˙θ for circular motion is independent of r.
  • 21. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 3 Problem 3.2 A particle moves in a central force field given by the potential V = −k e−ar r , where k and a are positive constants. Using the method of the equivalent one- dimensional potential discuss the nature of the motion, stating the ranges of l and E appropriate to each type of motion. When are circular orbits possible? Find the period of small radial oscillations about the circular motion. The Lagrangian is L = m 2 ˙r2 + r2 ˙θ2 + k e−ar r . As usual the angular momentum is conserved: l = mr2 ˙θ = constant. We have ∂L ∂r = mr ˙θ2 − k (1 + ar) e−ar r2 ∂L ∂ ˙r = m ˙r so the equation of motion for r is ¨r = r ˙θ2 − k m (1 + ar) e−ar r2 = l2 m2r3 − k m (1 + ar) e−ar r2 . (1) The condition for circular motion is that this vanish, which yields ˙θ = k m (1 + ar0) e−ar0/2 r 3/2 0 . (2) What this means is that that if the particle’s initial θ velocity is equal to the above function of the starting radius r0, then the second derivative of r will remain zero for all time. (Note that, in contrast to the previous problem, in this case the condition for circular motion does depend on the starting radius.) To find the frequency of small oscillations, let’s suppose the particle is exe- cuting a circular orbit with radius r0 (in which case the θ velocity is given by (2)), and suppose we nudge it slightly so that its radius becomes r = r0 + x, where x is small. Then (1) becomes ¨x = k m 1 + ar0 e−ar0 r2 0 − k m (1 + a[r0 + x]) e−a[r0+x] [r0 + x]2 (3)
  • 22. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 4 Since x is small, we may write the second term approximately as ≈ k m e−ar0 r2 0 (1 + ar0 + ax)(1 − ax) 1 − 2 x r0 ≈ k m (1 + ar0) e−ar0 r2 0 + k m e−ar0 r2 0 a − a(1 + ar0) − 2 (1 + ar0) r0 x ≈ k m (1 + ar0) e−ar0 r2 0 − k m e−ar0 r2 0 2a + 2 r0 + a2 r0 x. The first term here just cancels the first term in (??), so we are left with ¨x = k m e−ar0 r2 0 2a + 2 r0 + a2 r0 x The problem is that the RHS here has the wrong sign—this equation is satisfied by an x that grows (or decays) exponentially, rather than oscillates. Somehow I messed up the sign of the RHS, but I can’t find where–can anybody help? Problem 3.3 Two particles move about each other in circular orbits under the influence of grav- itational forces, with a period τ. Their motion is suddenly stopped, and they are then released and allowed to fall into each other. Prove that they collide after a time τ/4 √ 2. Since we are dealing with gravitational forces, the potential energy between the particles is U(r) = − k r and, after reduction to the equivalent one-body problem, the Lagrangian is L = µ 2 [ ˙r2 + r2 ˙θ2 ] + k r where µ is the reduced mass. The equation of motion for r is µ¨r = µr ˙θ2 − k r2 . (4) If the particles are to move in circular orbits with radius r0, (4) must vanish at r = r0, which yields a relation between r0 and ˙θ: r0 = k µ ˙θ2 1/3 = kτ2 4π2µ 1/3 (5)
  • 23. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 5 where we used the fact that the angular velocity in the circular orbit with period τ is ˙θ = 2π/τ. When the particles are stopped, the angular velocity goes to zero, and the first term in (4) vanishes, leaving only the second term: ¨r = − k µr2 . (6) This differential equation governs the evolution of the particles after they are stopped. We now want to use this equation to find r as a function of t, which we will then need to invert to find the time required for the particle separation r to go from r0 to 0. The first step is to multiply both sides of (6) by the integrating factor 2 ˙r: 2 ˙r¨r = − 2k µr2 ˙r or d dt ˙r2 = + d dt 2k µr from which we conclude ˙r2 = 2k µr + C. (7) The constant C is determined from the boundary condition on ˙r. This is simply that ˙r = 0 when r = r0, since initially the particles are not moving at all. With the appropriate choice of C in (7), we have ˙r = d r d t = 2k µ 1/2 1 r − 1 r0 = 2k µ 1/2 r0 − r rr0 . (8) We could now proceed to solve this differential equation for r(t), but since in fact we’re interested in solving for the time difference corresponding to given boundary values of r, it’s easier to invert (8) and solve for t(r): ∆t = 0 r0 dt dr dr = 0 r0 dr dt −1 dr = µ 2k 1/2 0 r0 rr0 r0 − r 1/2 dr
  • 24. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 6 We change variables to u = r/r0, du = dr/r0 : = µ 2k 1/2 r 3/2 0 0 1 u 1 − u 1/2 du Next we change variables to u = sin2 x, du = 2 sin x cos x dx : = 2 µ 2k 1/2 r 3/2 0 0 π/2 sin2 x dx = µ 2k 1/2 r 3/2 0 π 4 . Now plugging in (5), we obtain ∆t = µ 2k 1/2 kτ2 4π2µ 1/2 π 4 = τ 4 √ 2 as advertised. Problem 3.6 (a) Show that if a particle describes a circular orbit under the influence of an attractive central force directed at a point on the circle, then the force varies as the inverse fifth power of the distance. (b) Show that for the orbit described the total energy of the particle is zero. (c) Find the period of the motion. (d) Find ˙x, ˙y, and v as a function of angle around the circle and show that all three quantities are infinite as the particle goes through the center of force. Let’s suppose the center of force is at the origin, and that the particle’s orbit is a circle of radius R centered at (x = R, y = 0) (so that the leftmost point of the particle’s origin is the center of force). The equation describing such an orbit is r(θ) = √ 2R(1 + cos 2θ)1/2 so u(θ) = 1 r(θ) = 1 √ 2R(1 + cos 2θ)1/2 . (9)
  • 25. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 7 Differentiating, du dθ = sin 2θ √ 2R(1 + cos 2θ)3/2 du dθ = 1 √ 2R 2 cos 2θ (1 + cos 2θ)3/2 + 3 sin2 2θ (1 + cos 2θ)5/2 = 1 2 √ 2R 1 (1 + cos 2θ)5/2 2 cos2θ + 2 cos2 2θ + 3 sin2 2θ . (10) Adding (9) and (10), d2 u dθ2 + u = 1 √ 2R(1 + cos 2θ)5/2 (1 + cos 2θ)2 + 2 cos2θ + 2 cos2 2θ + 3 sin2 2θ = 1 √ 2R(1 + cos 2θ)5/2 [4 + 4 cos 2θ] = 4 √ 2R(1 + cos 2θ)3/2 = 8R2 u3 . (11) The differential equation for the orbit is d2 u dθ2 + u = − m l2 d du V 1 u (12) Plugging in (11), we have 8R2 u3 = − m l2 d du V 1 u so V 1 u = − 2l2 R2 m u4 −→ V (r) = − 2l2 R2 mr4 (13) so f(r) = − 8l2 R2 mr5 (14) which is the advertised r dependence of the force. (b) The kinetic energy of the particle is T = m 2 [ ˙r2 + r2 ˙θ2 ]. (15)
  • 26. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 8 We have r = √ 2R(1 + cos 2θ)1/2 r2 = 2R2 (1 + cos 2θ) ˙r = √ 2R sin 2θ (1 + cos 2θ)1/2 ˙θ ˙r2 = 2R2 sin2 2θ 1 + cos 2θ ˙θ2 Plugging into (15), T = mR2 ˙θ2 sin2 2θ 1 + cos 2θ + 1 + cos 2θ = mR2 ˙θ2 sin2 2θ + 1 + 2 cos2θ + cos2 2θ 1 + cos θ = 2mR2 ˙θ2 In terms of l = mr2 ˙θ, this is just = 2R2 l2 mr4 But this is just the negative of the potential energy, (13); hence the total particle energy T + V is zero. (c) Suppose the particle starts out at the furthest point from the center of force on its orbit, i.e the point x = 2R, y = 0, and that it moves counter-clockwise from this point to the origin. The time required to undergo this motion is half the period of the orbit, and the particle’s angle changes from θ = 0 to θ = π/2. Hence we can calculate the period as τ = 2 π/2 0 dt dθ dθ = 2 π/2 0 dθ ˙θ Using ˙θ = l/mr2 , we have = 2 m l π/2 0 r2 (θ) dθ = 4R2 m l π/2 0 (1 + 2 cos2θ + cos2 2θ) dθ = 4R2 m l · 3π 4 = 3πR2 m l .
  • 27. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 9 Problem 3.8 (a) For circular and parabolic orbits in an attractive 1/r potential having the same angular momentum, show that the perihelion distance of the parabola is one half the radius of the circle. (b) Prove that in the same central force as in part (a) the speed of a particle at any point in a parabolic orbit is √ 2 times the speed in a circular orbit passing through the same point. (a) The equations describing the orbits are r =    l2 mk (circle) l2 mk 1 1 + cos θ (parabola.) Evidently, the perihelion of the parabola occurs when θ = 0, in which case r = l2 /2mk, or one-half the radius of the circle. (b) For the parabola, we have ˙r = l2 mk sin θ (1 + cos θ)2 ˙θ (16) = r ˙θ sin θ 1 + cos θ so v2 = ˙r2 + r2 ˙θ2 = r2 ˙θ2 sin2 θ (1 + cos θ)2 + 1 = r2 ˙θ2 sin2 θ + 1 + 2 cos θ + cos2 θ (1 + cos θ)2 = 2r2 ˙θ2 1 1 + cos θ = 2mkr3 ˙θ2 l2 = 2k mr (17) in terms of the angular momentum l = mr2 ˙θ2 . On the other hand, for the circle ˙r = 0, so v2 = r2 ˙θ2 = l2 m2r2 = k mr (18)
  • 28. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 10 where we used that fact that, since this is a circular orbit, the condition k/r = l2 /mr2 is satisfied. Evidently (17) is twice (18) for the same particle at the same point, so the unsquared speed in the parabolic orbit is √ 2 times that in the circular orbit at the same point. Problem 3.12 At perigee of an elliptic gravitational orbit a particle experiences an impulse S (cf. Exercise 9, Chapter 2) in the radial direction, sending the particle into another elliptic orbit. Determine the new semimajor axis, eccentricity, and orientation of major axis in terms of the old. The orbit equation for elliptical motion is r(θ) = a(1 − 2 ) 1 + cos(θ − θ0) . (19) For simplicity we’ll take θ0 = 0 for the initial motion of the particle. Then perigee happens when θ = 0, which is to say the major axis of the orbit is on the x axis. Then at the point at which the impulse is delivered, the particle’s momentum is entirely in the y direction: pi = pi ˆj. After receiving the impulse S in the radial (x) direction, the particle’s y momentum is unchanged, but its x momentum is now px = S. Hence the final momentum of the particle is pf = Sˆi+pi ˆj. Since the particle is in the same location before and after the impulse, its potential energy is unchanged, but its kinetic energy is increased due to the added momentum: Ef = Ei + S2 2m . (20) Hence the semimajor axis length shrinks accordingly: af = − k 2Ef = − k 2Ei + S2/m = ai 1 + S2/(2mEi) . (21) Next, since the impulse is in the same direction as the particle’s distance from the origin, we have ∆L = r × ∆p = 0, i.e. the impulse does not change the particle’s angular momentum: Lf = Li ≡ L. (22) With (20) and (22), we can compute the change in the particle’s eccentricity: f = 1 + 2Ef L2 mk2 = 1 + 2EiL2 mk2 + L2S2 m2k2 . (23)
  • 29. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 11 What remains is to compute the constant θ0 in (19) for the particle’s orbit after the collision. To do this we need merely observe that, since the location of the particle is unchanged immediately after the impulse is delivered, expression (19) must evaluate to the same radius at θ = 0 with both the “before” and “after” values of a and : ai(1 − 2 i ) 1 + i = af (1 − 2 f ) 1 + f cos θ0 or cos θ0 = 1 f af (1 − 2 f ) ai(1 − i) − 1 . Problem 3.13 A uniform distribution of dust in the solar system adds to the gravitational attrac- tion of the sun on a planet an additional force F = −mCr where m is the mass of the planet, C is a constant proportional to the gravitational constant and the density of the dust, and r is the radius vector from the sun to the planet (both considered as points). This additional force is very small compared to the direct sun-planet gravitational force. (a) Calculate the period for a circular orbit of radius r0 of the planet in this com- bined field. (b) Calculate the period of radial oscillations for slight disturbances from this cir- cular orbit. (c) Show that nearly circular orbits can be approximated by a precessing ellipse and find the precession frequency. Is the precession the same or opposite direction to the orbital angular velocity? (a) The equation of motion for r is m¨r = l2 mr3 + f(r) = l2 mr3 − k r2 − mCr. (24) For a circular orbit at radius r0 this must vanish: 0 = l2 mr3 0 − k r2 0 − mCr0 (25)
  • 30. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 12 −→ l = mkr0 + m2Cr4 0 −→ ˙θ = l mr2 0 = 1 mr2 0 mkr0 + m2Cr4 0 = k mr3 0 1 + mCr3 0 k ≈ k mr3 0 1 + mCr3 0 2k Then the period is τ = 2π ˙θ ≈ 2πr 3/2 0 m k 1 − mCr3 0 2k = τ0 1 − Cτ2 0 8π2 where τ0 = 2πr 3/2 0 m/k is the period of circular motion in the absence of the perturbing potential. (b) We return to (24) and put r = r0 + x with x r0: m¨x = l2 m(r0 + x)3 − k (r0 + x)2 − mC(r0 + x) ≈ l2 mr3 0 1 − 3 x r0 − k r2 0 1 − 2 x r0 − mCr0 − mCx Using (25), this reduces to m¨x = − 3l2 mr4 0 + 2k r3 0 − mC x or ¨x + ω2 x = 0 with ω = 3l2 m2r4 0 − 2k mr3 0 − C 1/2 = 2l2 m2r4 0 − k mr3 0 1/2 where in going to the last line we used (25) again.
  • 31. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 13 Problem 3.14 Show that the motion of a particle in the potential field V (r) = − k r + h r2 is the same as that of the motion under the Kepler potential alone when expressed in terms of a coordinate system rotating or precessing around the center of force. For negative total energy show that if the additional potential term is very small compared to the Kepler potential, then the angular speed of precession of the ellip- tical orbit is ˙Ω = 2πmh l2τ . The perihelion of Mercury is observed to precess (after corrections for known plan- etary perturbations) at the rate of about 40 of arc per century. Show that this precession could be accounted for classically if the dimensionless quantity η = k ka (which is a measure of the perturbing inverse square potential relative to the grav- itational potential) were as small as 7 × 10−8 . (The eccentricity of Mercury’s orbit is 0.206, and its period is 0.24 year). The effective one-dimensional equation of motion is m¨r = L2 mr3 − k r2 + 2h r3 = L2 + 2mh mr3 + k r2 = L2 + 2mh + (mh/L)2 − (mh/L)2 mr3 + k r2 = [L + (mh/L)]2 − (mh/L)2 mr3 + k r2 If mh L2 , then we can neglect the term (mh/L)2 in comparison with L2 , and write m¨r = [L + (mh/L)]2 mr3 + k r2 (26) which is just the normal equation of motion for the Kepler problem, but with the angular momentum L augmented by the additive term ∆L = mh/L. Such an augmentation of the angular momentum may be accounted for by
  • 32. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 14 augmenting the angular velocity: L = mr2 ˙θ −→ L 1 + mh L2 = mr2 ˙θ 1 + mh L2 = mr2 ˙θ + mr2 ˙Ω where ˙Ω = mh L2 ˙θ = 2πmh L2τ is a precession frequency. If we were to go back and work the problem in the reference frame in which everything is precessing with angular velocity ˙Ω, but there is no term h/r2 in the potential, then the equations of motion would come out the same as in the stationary case, but with a term ∆L = mr2 ˙Ω added to the effective angular momentum that shows up in the equation of motion for r, just as we found in (26). To put in the numbers, we observe that ˙Ω = 2π τ m L2 (h) = 2π τ mka L2 h ka = 2π τ 1 1 − e2 h ka so h ka = (1 − e2 ) τ ˙Ω 2π = (1 − e2 )τfprec where in going to the third-to-last line we used Goldstein’s equation (3-62), and in the last line I put fprec = ˙Ω/2π. Putting in the numbers, we find h ka = (1 − .2062 ) · 0.24 yr · 40 1◦ 3600 1 revolution 360◦ 1 century−1 100 yr−1 yr−1 = 7.1 · 10−8 .
  • 33. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 15 Problem 3.22 In hyperbolic motion in a 1/r potential the analogue of the eccentric anomaly is F defined by r = a(e cosh F − 1), where a(1 − e) is the distance of closest approach. Find the analogue to Kepler’s equation giving t from the time of closest approach as a function of F. We start with Goldstein’s equation (3.65): t = m 2 r r0 dr k r − l2 2mr2 + E = m 2 r r0 r dr Er2 + kr − l2 2m . (27) With the suggested substitution, the thing under the radical in the denom- inator of the integrand is Er2 + kr − l2 2m = Ea2 (e2 cosh2 F − 2e coshF + 1) + ka(e cosh F − 1) − l2 2m = Ea2 e2 cosh2 F + ae(k − 2Ea) cosh F + Ea2 − ka − l2 2m It follows from the orbit equation that, if a(e − 1) is the distance of closest approach, then a = k/2E. Thus = k2 e2 4E cosh2 F − k2 e2 4E − l2 2m = k2 4E e2 cosh2 F − 1 + 2El2 mk2 = k2 e2 4E cosh2 F − 1 = k2 e2 4E sinh2 F = a2 e2 E sinh2 F. Plugging into (27) and observing that dr = ae sinh F dF, we have t = m 2E F F0 a(e cosh F − 1) dF = ma2 2E [e(sinh F − sinh F0) − (F − F0)] and I suppose this equation could be a jumping-off point for numerical or other investigations of the time of travel in hyperbolic orbit problems.
  • 34. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 16 Problem 3.26 Examine the scattering produced by a repulsive central force f = kr−3 . Show that the differential cross section is given by σ(Θ)dΘ = k 2E (1 − x)dx x2(2 − x)2 sin πx where x is the ratio Θ/π and E is the energy. The potential energy is U = k/2r2 = ku2 /2, and the differential equation for the orbit reads d2 u dθ2 + u = − m l2 dU du = − mk l2 u or d2 u dθ2 + 1 + mk l2 u = 0 with solution u = A cos γθ + B sin γθ (28) where γ = 1 + mk l2 . (29) We’ll set up our coordinates in the way traditional for scattering experiments: initially the particle is at angle θ = π and a great distance from the force center, and ultimately the particle proceeds off to r = ∞ at some new angle θs. The first of these observations gives us a relation between A and B in the orbit equation (28): u(θ = π) = 0 −→ A cos γπ + B sin γπ = 0 −→ A = −B tan γπ. (30) The condition that the particle head off to r = ∞ at angle θ = θs yields the condition A cos γθs + B sin γθs = 0. Using (30), this becomes − cosγθs tan γπ + sin γθs = 0
  • 35. Homer Reid’s Solutions to Goldstein Problems: Chapter 3 17 or − cos γθs sin γπ + sin γθs cos γπ = 0 −→ sin γ(θs − π) = 0 −→ γ(θs − π) = π or, in terms of Goldstein’s variable x = θ/π, γ = 1 x − 1 . (31) Plugging in (29) and squaring both sides, we have 1 + mk l2 = 1 (x − 1)2 . Now l = mv0s = (2mE)1/2 s with s the impact parameter and E the particle energy. Thus the previous equation is 1 + k 2Es2 = 1 (x − 1)2 or s2 = − k 2E (x − 1)2 x(x − 2) . Taking the differential of both sides, 2s ds = − k 2E 2(x − 1) x(x − 2) − (x − 1)2 x2(x − 2) − (x − 1)2 x(x − 2)2 dx = − k 2E 2x(x − 1)(x − 2) − (x − 1)2 (x − 2) − x(x − 1)2 x2(x − 2)2 = − k 2E 2(1 − x) x2(x − 2)2 . (32) The differential cross section is given by σ(θ)dΩ = | s ds | sin θ . Plugging in (32), we have σ(θ)dΩ = k 2E (1 − x) x2(x − 2)2 sin θ dx as advertised.
  • 36. Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle dθ counterclockwise from the z axis, by means of a similarity transformation applied to Eq. (7-18). Show directly that the resulting matrix is orthogonal and that the inverse matrix is obtained by substituting −v for v. We can obtain this transformation by first applying a pure rotation to rotate the z axis into the boost axis, then applying a pure boost along the (new) z axis, and then applying the inverse of the original rotation to bring the z axis back in line with where it was originally. Symbolically we have L = R−1 KR where R is the rotation to achieve the new z axis, and K is the boost along the z axis. Goldstein tells us that the new z axis is to be rotated dθ counterclockise from the original z axis, but he doesn’t tell us in which plane, i.e. we know θ but not φ for the new z axis in the unrotated coordinates. We’ll assume the z axis is rotated around the x axis, in a sense such that if you’re standing on the positive x axis, looking toward the negative x axis, the rotation appears to be counterclockwise, so that the positive z axis is rotated toward the negative y 1
  • 37. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 2 axis. Then, using the real metric, L =     1 0 0 0 0 cos dθ sin dθ 0 0 − sin dθ cos dθ 0 0 0 0 1         1 0 0 0 0 1 0 0 0 0 γ −βγ 0 0 −βγ γ         1 0 0 0 0 cos dθ − sin dθ 0 0 sin dθ cos dθ 0 0 0 0 1     =     1 0 0 0 0 cos dθ sin dθ 0 0 − sin dθ cos dθ 0 0 0 0 1         1 0 0 0 0 cos dθ − sin dθ 0 0 γ sin dθ γ cos dθ −βγ 0 −βγ sin dθ −βγ cos dθ γ     =     1 0 0 0 0 cos2 dθ + γ sin2 dθ (γ − 1) sin dθ cos dθ −βγ sin dθ 0 (γ − 1) sin dθ cos dθ sin2 dθ + γ cos2 dθ −βγ cos dθ 0 −βγ sin dθ −βγ cos dθ γ     . Problem 7.4 A rocket of length l0 in its rest system is moving with constant speed along the z axis of an inertial system. An observer at the origin observes the apparent length of the rocket at any time by noting the z coordinates that can be seen for the head and tail of the rocket. How does this apparent length vary as the rocket moves from the extreme left of the observer to the extreme right? Let’s imagine a coordinate system in which the rocket is at rest and centered at the origin. Then the world lines of the rocket’s top and bottom are xt µ = {0, 0, +L0/2, τ} xb µ = {0, 0, −L0/2, τ} . where we are parameterizing the world lines by the proper time τ. Now, the rest frame of the observer is moving in the negative z direction with speed v = βc relative to the rest frame of the rocket. Transforming the world lines of the rocket’s top and bottom to the rest frame of the observer, we have xt µ = {0, 0, γ(L0/2 + vτ), γ(τ + βL0/2c)} (1) xb µ = {0, 0, γ(−L0/2 + vτ), γ(τ − βL0/2c)} . (2) Now consider the observer. At any time t in his own reference frame, he is receiving light from two events, namely, the top and bottom of the rocket moving past imaginary distance signposts that we pretend to exist up and down the z axis. He sees the top of the rocket lined up with one distance signpost and the bottom of the rocket lined up with another, and from the difference between the two signposts he computes the length of the rocket. Of course, the light that he sees was emitted by the rocket some time in the past, and, moreover, the
  • 38. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 3 light signals from the top and bottom of the rocket that the observer receives simultaneously at time t were in fact emitted at different proper times τ in the rocket’s rest frame. First consider the light received by the observer at time t0 coming from the bottom of the rocket. Suppose in the observer’s rest frame this light were emitted at time t0 − ∆t, i.e. ∆t seconds before it reaches the observer at the origin; then the rocket bottom was passing through z = −c∆t when it emitted this light. But then the event identified by (z, t) = (−c∆t, t0 − ∆t) must lie on the world line of the rocket’s bottom, which from (2) determines both ∆t and the proper time τ at which the light was emitted: −c∆t = γ(−L0/2 + vτ) t0 − ∆t = γ(τ + βL0/2c) =⇒ τ = 1 + β 1 − β 1/2 t0 − L0 2c ≡ τb(t0). We use the notation τb(t0) to indicate that this is the proper time at which the bottom of the rocket emits the light that arrives at the observer’s origin at the observer’s time t0. At this proper time, from (2), the position of the bottom of the rocket in the observer’s reference frame was zb(τb(t0)) = −γL0/2 + vγτb(t0) = −γL0/2 + vγ 1 + β 1 − β 1/2 t0 − L0 2c (3) Similarly, for the top of the rocket we have τt(t0) = 1 + β 1 − β 1/2 t0 + L0 2c and zt(τt(t0)) = γL0/2 + vγ 1 + β 1 − β 1/2 t0 + L0 2c (4) Subtracting (3) from (4), we have the length for the rocket computed by the observer from his observations at time t0 in his reference frame: L(t0) = γ(1 + β)L0 = 1 + β 1 − β 1/2 L0.
  • 39. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 4 Problem 7.17 Two particles with rest masses m1 and m2 are observed to move along the observer’s z axis toward each other with speeds v1 and v2, respectively. Upon collision they are observed to coalesce into one particle of rest mass m3 moving with speed v3 relative to the observer. Find m3 and v3 in terms of m1, m2, v1, and v2. Would it be possible for the resultant particle to be a photon, that is m3 = 0, if neither m1 nor m2 are zero? Equating the 3rd and 4th components of the initial and final 4-momentum of the system yields γ1m1v1 − γ2m2v2 = γ3m3v3 γ1m1c + γ2m2c = γ3m3c Solving the second for m3 yields m3 = γ1 γ3 m1 + γ2 γ3 m2 (5) and plugging this into the first yields v3 in terms of the properties of particles 1 and 2: v3 = γ1m1v1 − γ2m2v2 γ1m1 + γ2m2 Then β3 = v3 c = γ1m1β1 − γ2m2β2 γ1m1 + γ2m2 1 − β2 3 = γ2 1 m2 1 + 2γ1γ2m1m2 + γ2 2 m2 2 − [γ2 1m2 1β2 1 + γ2 2 m2 2β2 2 − 2γ1γ2m1m2β1β2] (γ1m1 + γ2m2)2 = γ2 1 m2 1(1 − β2 1 ) + γ2 2m2 2(1 − β2 2) + 2γ1γ2m1m2(1 − β1β2) (γ1m1 + γ2m2)2 = m2 1 + m2 2 + 2γ1γ2m1m2(1 − β1β2) (γ1m1 + γ2m2)2 and hence γ2 3 = 1 1 − β2 3 = (γ1m1 + γ2m2)2 m2 1 + m2 2 + 2γ1γ2m1m2(1 − β1β2) . (6) Now, (5) shows that, for m3 to be zero when either m1 or m2 is zero, we must have γ3 = ∞. That this condition cannot be met for nonzero m1, m2 is evident from the denominator of (6), in which all terms are positive (since β1β2 1 if m1 or m2 is nonzero).
  • 40. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 5 Problem 7.19 A meson of mass π comes to rest and disintegrates into a meson of mass µ and a neutrino of zero mass. Show that the kinetic energy of motion of the µ meson (i.e. without the rest mass energy) is (π − µ)2 2π c2 . Working in the rest frame of the pion, the conservation relations are πc2 = (µ2 c4 + p2 µc2 )1/2 + pνc (energy conservation) 0 = pµ + pν (momentum conservation). From the second of these it follows that the muon and neutrino must have the same momentum, whose magnitude we’ll call p. Then the energy conservation relation becomes πc2 = (µ2 c4 + p2 c2 )1/2 + pc −→ (πc − p)2 = µ2 c2 + p2 −→ p = π2 − µ2 2π c. Then the total energy of the muon is Eµ = (µ2 c4 + p2 c2 )1/2 = c2 µ2 + (π2 − µ2 )2 4π2 1/2 = c2 2π 4π2 µ2 + (π2 − µ2 )2 1/2 = c2 2π (π2 + µ2 ) Then subtracting out the rest energy to get the kinetic energy, we obtain K = Eµ − µc2 = c2 2π (π2 + µ2 ) − µc2 = c2 2π (π2 + µ2 − 2πµ) = c2 2π (π − µ)2 as advertised.
  • 41. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 6 Problem 7.20 A π+ meson of rest mass 139.6 MeV collides with a neutron (rest mass 939.6 MeV) stationary in the laboratory system to produce a K+ meson (rest mass 494 MeV) and a Λ hyperon (rest mass 1115 MeV). What is the threshold energy for this reaction in the laboratory system? We’ll put c = 1 for this problem. The four-momenta of the pion and neutron before the collision are pµ,π = (pπ, γπmπ), pµ,n = (0, mn) and the squared magnitude of the initial four-momentum is thus pµ,T pµ T = −|pπ|2 + (γπmπ + mn)2 = −|pπ|2 + γ2 πm2 π + m2 n + 2γπmπmn = m2 π + m2 n + 2γπmπmn = (mπ + mn)2 + 2(γπ − 1)mπmn (7) The threshold energy is the energy needed to produce the K and Λ particles at rest in the COM system. In this case the squared magnitude of the four- momentum of the final system is just (mK + mΛ)2 , and, by conservation of momentum, this must be equal to the magnitude of the four-momentum of the initial system (7): (mK + mΛ)2 = (mπ + mn)2 + 2(γπ − 1)mπmn =⇒ γπ = 1 + (mK + mΛ)2 − (mπ + mn)2 2mπmn = 6.43 Then the total energy of the pion is T = γπmπ = (6.43 · 139.6 MeV) = 898 MeV, while its kinetic energy is K = T − m = 758 MeV. The above appears to be the correct solution to this problem. On the other hand, I first tried to do it a different way, as below. This way yields a different and hence presumably incorrect answer, but I can’t figure out why. Can anyone find the mistake? The K and Λ particles must have, between them, the same total momentum in the direction of the original pion’s momentum as the original pion had. Of course, the K and Λ may also have momentum in directions transverse to the original pion momentum (if so, their transverse momenta must be equal and opposite). But any transverse momentum just increases the energy of the final system, which increases the energy the initial system must have had to produce the final system. Hence the minimum energy situation is that in which the K and Λ both travel in the direction of the original pion’s motion. (This is equivalent to Goldstein’s conclusion that, just at threshold, the produced particles are at
  • 42. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 7 rest in the COM system). Then the momentum conservation relation becomes simply pπ = pK + pλ (8) and the energy conservation relation is (with c = 1) (m2 π + p2 π)1/2 + mn = (m2 K + p2 K)1/2 + (m2 Λ + p2 Λ)1/2 . (9) The problem is to find the minimum value of pπ that satisfies (9) subject to the constraint (8). To solve this we must first resolve a subquestion: for a given pπ, what is the relative allocation of momentum to pK and pΛ that minimizes (9) ? Minimizing Ef = (m2 K + p2 K)1/2 + (m2 Λ + p2 Λ)1/2 . subject to pK + pΛ = pπ, we obtain the condition pK (m2 K + p2 K)1/2 = pΛ (m2 Λ + p2 Λ)1/2 =⇒ pK = mK mΛ pΛ (10) Combining this with (8) yields pΛ = mΛ mK + mΛ pπ pK = mK mK + mΛ pπ. (11) For a given total momentum pπ, the minimum possible energy the final system can have is realized when pπ is partitioned between pK and pΛ according to (11). Plugging into (8), the relation defining the threshold momentum is (m2 π + p2 π)1/2 + mn = m2 K + mK mK + mΛ 2 p2 π 1/2 + m2 Λ + mΛ mK + mΛ 2 p2 π 1/2 Solving numerically yields pπ ≈ 655 MeV/c, for a total pion energy of about 670 MeV.
  • 43. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 8 Problem 7.21 A photon may be described classically as a particle of zero mass possessing never- theless a momentum h/λ = hν/c, and therefore a kinetic energy hν. If the photon collides with an electron of mass m at rest it will be scattered at some angle θ with a new energy hν . Show that the change in energy is related to the scattering angle by the formula λ − λ = 2λc sin2 θ 2 , where λc = h/mc, known as the Compton wavelength. Show also that the kinetic energy of the recoil motion of the electron is T = hν 2 λc λ sin2 θ 2 1 + 2 λc λ sin2 θ/2 . Let’s assume the photon is initially travelling along the z axis. Then the sum of the initial photon and electron four-momenta is pµ,i = pµ,γ + pµ,e =     0 0 h/λ h/λ     +     0 0 0 mc     =     0 0 h/λ mc + h/λ     . (12) Without loss of generality we may assume that the photon and electron move in the xz plane after the scatter. If the photon’s velocity makes an angle θ with the z axis, while the electron’s velocity makes an angle φ, the four-momentum after the collision is pµ,f = pµ,γ + pµ,e =     (h/λ ) sin θ 0 (h/λ ) cos θ h/λ     +     pe sin φ 0 pe cos φ m2c2 + p2 e     =     (h/λ ) sin θ + pe sin φ 0 (h/λ ) cos θ + pe cos φ (h/λ ) + m2c2 + p2 e     . (13) Equating (12) and (13) yields three separate equations: (h/λ ) sin θ + pe sin φ = 0 (14) (h/λ ) cos θ + pe cos φ = h/λ (15) h/λ + m2c2 + p2 e = mc + h/λ (16) From the first of these we find sin φ = − h λ pe sin θ =⇒ cos φ = 1 + h λ pe 2 sin2 θ 1/2
  • 44. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 9 and plugging this into (15) we find p2 e = h2 λ2 + h2 λ 2 − 2 h2 λλ cos θ. (17) On the other hand, we can solve (16) to obtain p2 e = h2 1 λ − 1 λ 2 + 2mch 1 λ − 1 λ . Comparing these two determinations of pe yields cosθ = 1 − mc h (λ − λ) or sin2 θ 2 = mc 2h (λ − λ) = 1 2λc (λ − λ) so this is advertised result number 1. Next, to find the kinetic energy of the electron after the collision, we can write the conservation of energy equation in a slightly different form: mc + h λ = γmc + h λ =⇒ (γ − 1)mc = K = h 1 λ − 1 λ = h λ − λ λλ = h 2λc sin2 (θ/2) λ[λ + 2λc sin2 (θ/2)] = h λ 2χ sin2 (θ/2) 1 + 2χ sin2 (θ/2) where we put χ = λc/λ. Problem 7.22 A photon of energy E collides at angle θ with another photon of energy E. Prove that the minimum value of E permitting formation of a pair of particles of mass m is Eth = 2m2 c4 E(1 − cos θ) . We’ll suppose the photon of energy E is traveling along the positive z axis, while that with energy E is traveling in the xz plane (i.e., its velocity has
  • 45. Homer Reid’s Solutions to Goldstein Problems: Chapter 7 10 spherical polar angles θ and φ = 0). Then the 4-momenta are p1 = 0, 0, E c , E c p2 = E c sin θ, 0, E c cos θ, E c pt = p1 + p2 = E c sin θ, 0, E + E cos θ c , E + E c It’s convenient to rotate our reference frame to one in which the space portion of the composite four-momentum of the two photons is all along the z direction. In this frame the total four-momentum is pt = 0, 0, 1 c E2 + E2 + 2EE cos θ, E + E c . (18) At threshold energy, the two produced particles have the same four-momenta: p3 = p4 = 0, 0, p, (m2 c2 + p2 )1/2 (19) and 4-momentum conservation requires that twice (19) add up to (18), which yields two conditions: 2p = 1 c √ E2 + E2 + 2EE cos θ −→ p2 c2 = 1 4 (E2 + E2 + 2EE cos θ) 2 m2c2 + p2 = E+E c −→ m2 c4 + p2 c2 = 1 4 (E2 + E2 + 2EE) Subtracting the first of these from the second, we obtain m2 c4 = EE 2 (1 − cos θ) or E = 2m2 c4 E(1 − cos θ) as advertised.
  • 46. Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid October 29, 2002 Chapter 9 Problem 9.1 One of the attempts at combining the two sets of Hamilton’s equations into one tries to take q and p as forming a complex quantity. Show directly from Hamilton’s equations of motion that for a system of one degree of freedom the transformation Q = q + ip, P = Q∗ is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordinates Q , P that are related to Q, P by a change of scale only, and that are canonical? Generalizing a little, we put Q = µ(q + ip), P = ν(q − ip). (1) The reverse transformation is q = 1 2 1 µ Q + 1 ν P , p = 1 2i 1 µ Q − 1 ν P . The direct conditions for canonicality, valid in cases (like this one) in which the 1
  • 47. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 2 transformation equations do not depend on the time explicitly, are ∂Q ∂q = ∂p ∂P ∂Q ∂p = − ∂q ∂P ∂P ∂q = − ∂p ∂Q ∂P ∂p = ∂q ∂Q . (2) When applied to the case at hand, all four of these yield the same condition, namely µ = − 1 2iν . For µ = ν = 1, which is the case Goldstein gives, these conditions are clearly not satisfied, so (1) is not canonical. But putting µ = 1, ν = − 1 2i we see that equations (1) are canonical.
  • 48. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 3 Problem 9.2 (a) For a one-dimensional system with the Hamiltonian H = p2 2 − 1 2q2 , show that there is a constant of the motion D = pq 2 − Ht. (b) As a generalization of part (a), for motion in a plane with the Hamiltonian H = |p|n − ar−n , where p is the vector of the momenta conjugate to the Cartesian coordinates, show that there is a constant of the motion D = p · r n − Ht. (c) The transformation Q = λq, p = λP is obviously canonical. However, the same transformation with t time dilatation, Q = λq, p = λP, t = λ2 t, is not. Show that, however, the equations of motion for q and p for the Hamiltonian in part (a) are invariant under the transformation. The constant of the motion D is said to be associated with this invariance. (a) The equation of motion for the quantity D is dD dT = {D, H} + ∂D ∂t The Poisson bracket of the second term in D clearly vanishes, so we have = 1 2 {pq, H} − H = 1 4 pq, p2 − 1 4 pq, 1 q2 − H. (3) The first Poisson bracket is pq, p2 = ∂(pq) ∂q ∂(p2 ) ∂p − ∂(pq) ∂p ∂(p2 ) ∂q = (p)(2p) − 0 = 2p2 (4)
  • 49. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 4 Next, pq, 1 q2 = ∂(pq) ∂q ∂ 1 q2 ∂p − ∂(pq) ∂p ∂ 1 q2 ∂q = 0 − − 2 q3 q = 2 q2 (5) Plugging (4) and (5) into (3), we obtain dD dt = p2 2 − 1 2q2 − H = 0. (b) We have H = (p2 1 + p2 2 + p2 3)n/2 − a(x2 1 + x2 2 + x2 3)−n/2 so ∂H ∂xi = anxi(x2 1 + x2 2 + x2 3)−n/2−1 ∂H ∂pi = 2npi(p2 1 + p2 2 + p2 3)n/2−1 . Then {p · r, H} = i ∂(p1x1 + p2x2 + p3x3) ∂xi ∂H ∂pi − ∂(p1x1 + p2x2 + p3x3) ∂pi ∂H ∂xi = i np2 i (p2 1 + p2 2 + p2 3)n/2−1 − anx2 i (x2 1 + x2 2 + x2 3)−n/2−1 = n(p2 1 + p2 2 + p2 3)n/2 − an(x2 1 + x2 2 + x2 3)−n/2 (6) so if we define D = p · r/n − Ht, then dD dT = {D, H} − ∂D ∂t = 1 n {p · r, H} − ∂D ∂t Substituting in from (6), = |p|n − ar−n − H = 0.
  • 50. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 5 (c) We put Q(t ) = λq t λ2 , P(t ) = 1 λ p t λ2 . (7) Since q and p are the original canonical coordinates, they satisfy ˙q = ∂H ∂p = p ˙p = − ∂H ∂q = 1 q3 . (8) On the other hand, differentiating (7), we have dQ dt = 1 λ ˙q t λ2 = 1 λ p t λ2 = P(t ) dP dt = 1 λ3 ˙p t λ2 = 1 λ3 1 q t λ2 = 1 Q3(t ) which are the same equations of motion as (8). Problem 9.4 Show directly that the transformation Q = log 1 p sin p , P = q cot p is canonical. The Jacobian of the transformation is M = ∂Q ∂q ∂Q ∂p ∂P ∂q ∂P ∂p = −1 q cot p cot p −q csc2 p .
  • 51. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 6 Hence ˜MJM = −1 q cot p cot p −q csc2 p 0 1 −1 0 −1 q cot p cot p −q csc2 p = −1 q cot p cot p −q csc2 p cot p −q csc2 p 1 q − cot p = 0 csc2 p − cot2 p cot2 p − csc2 p 0 = 0 1 −1 0 = J so the symplectic condition is satisfied. Problem 9.5 Show directly for a system of one degree of freedom that the transformation Q = arctan αq p , P = αq2 2 1 + p2 α2q2 is canonical, where α is an arbitrary constant of suitable dimensions. The Jacobian of the transformation is M =   ∂Q ∂q ∂Q ∂p ∂P ∂q ∂P ∂p   =   α p 1 1+(αq p )2 − αq p2 1 1+(αq p )2 αq p α   . so ˜MJM =    α p 1 1+(αq p ) 2 αq − αq p2 1 1+(αq p )2 p α      αq p α − α p 1 1+(αq p )2 + αq p2 1 1+(αq p )2   =   0 1 −1 0   = J so the symplectic condition is satisfied.
  • 52. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 7 Problem 9.6 The transformation equations between two sets of coordinates are Q = log(1 + q1/2 cos p) P = 2(1 + q1/2 cos p)q1/2 sin p (a) Show directly from these transformation equations that Q, P are canonical variables if q and p are. (b) Show that the function that generates this transformation is F3 = −(eQ − 1)2 tan p. (a) The Jacobian of the transformation is M =   ∂Q ∂q ∂Q ∂p ∂P ∂q ∂P ∂p   =   1 2 q−1/2 cos p 1+q1/2 cos p − q1/2 sin p 1+q1/2 cos p q−1/2 sin p + 2 cos p sin p 2q1/2 cos p + 2q cos2 p − 2q sin2 p   =   1 2 q−1/2 cos p 1+q1/2 cos p − q1/2 sin p 1+q1/2 cos p q−1/2 sin p + sin 2p 2q1/2 cos p + 2q cos 2p   . Hence we have ˜MJM =   1 2 q−1/2 cos p 1+q1/2 cos p q−1/2 sin p + sin 2p − q1/2 sin p 1+q1/2 cos p 2q1/2 cos p + 2q cos 2p   ×   q−1/2 sin p + sin 2p 2q1/2 cos p + 2q cos 2p − 1 2 q−1/2 cos p 1+q1/2 cos p q1/2 sin p 1+q1/2 cos p   =   0 cos2 p+sin2 p+q1/2 cos p cos 2p+q1/2 sin p sin 2p 1+q1/2 cos p −cos2 p+sin2 p+q1/2 cos p cos 2p+q1/2 sin p sin 2p 1+q1/2 cos p 0   =   0 1 −1 0   = J so the symplectic condition is satisfied.
  • 53. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 8 (b) For an F3 function the relevant relations are q = −∂F/∂p, P = −∂F/∂Q. We have F3(p, Q) = −(eQ − 1)2 tan p so P = − ∂F3 ∂Q = 2eQ (eQ − 1) tan p q = − ∂F3 ∂p = (eQ − 1)2 sec2 p. The second of these may be solved to yield Q in terms of q and p: Q = log(1 + q1/2 cos p) and then we may plug this back into the equation for P to obtain P = 2q1/2 sin p + q sin 2p as advertised. Problem 9.7 (a) If each of the four types of generating functions exist for a given canonical transformation, use the Legendre transformation to derive relations between them. (b) Find a generating function of the F4 type for the identity transformation and of the F3 type for the exchange transformation. (c) For an orthogonal point transformation of q in a system of n degrees of freedom, show that the new momenta are likewise given by the orthogonal transforma- tion of an n−dimensional vector whose components are the old momenta plus a gradient in configuration space. Problem 9.8 Prove directly that the transformation Q1 = q1, P1 = p1 − 2p2 Q2 = p2, P2 = −2q1 − q2 is canonical and find a generating function. After a little hacking I came up with the generating function F13(p1, Q1, q2, Q2) = −(p1 − 2Q2)Q1 + q2Q2
  • 54. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 9 which is of mixed F3, F1 type. This is Legendre-transformed into a function of the F1 type according to F1(q1, Q1, q2, Q2) = F13 + p1q1. The least action principle then says p1 ˙q1 + p2 ˙q2 − H(qi, pi) = P1 ˙Q1 + P2 ˙Q2 − K(Qi, Pi) + ∂F13 ∂p1 ˙p1 + ∂F13 ∂Q1 ˙Q1 + ∂F13 ∂q2 ˙q2 + ∂F13 ∂Q2 ˙Q2 + p1 ˙q1 + q1 ˙p1 whence clearly q1 = − ∂F13 ∂p1 = Q1 P1 = − ∂F13 ∂Q1 = −p1 − 2Q2 = −p1 − 2p2 p2 = ∂F13 ∂q2 = Q2 P2 = − ∂F13 ∂Q2 = −2Q1 − q2 = −2q1 − q2 . Problem 9.14 By any method you choose show that the following transformation is canonical: x = 1 α ( 2P1 sin Q1 + P2), px = α 2 ( 2P1 cos Q1 − Q2) y = 1 α ( 2P1 cos Q1 + Q2), py = − α 2 ( 2P1 sin Q1 − P2) where α is some fixed parameter. Apply this transformation to the problem of a particle of charge q moving in a plane that is perpendicular to a constant magnetic field B. Express the Hamiltonian for this problem in the (Qi, Pi) coordinates, letting the parameter α take the form α2 = qB c . From this Hamiltonian obtain the motion of the particle as a function of time. We will prove that the transformation is canonical by finding a generating function. Our first step to this end will be to express everything as a function
  • 55. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 10 of some set of four variables of which two are old variables and two are new. After some hacking, I arrived at the set {x, Q1, py, Q2}. In terms of this set, the remaining quantities are y = 1 2 x − 1 α2 py cot Q1 + 1 α Q2 (9) px = α2 4 x − 1 2 py cot Q1 − α 2 Q2 (10) P1 = α2 x2 8 − 1 2 xpy + 1 2α2 p2 y csc2 Q1 (11) P2 = α 2 x + 1 α py (12) We now seek a generating function of the form F(x, Q1, py, Q2). This is of mixed type, but can be related to a generating function of pure F1 character according to F1(x, Q1, y, Q2) = F(x, Q1, py, Q2) − ypy. Then the principle of least action leads to the condition px ˙x + py ˙y = P1 ˙Q1 + P2 ˙Q2 + ∂F ∂x ˙x + ∂F ∂py ˙py + ∂F ∂Q1 ˙Q1 + ∂F ∂Q2 ˙Q2 + y ˙py + py ˙y from which we obtain px = ∂F ∂x (13) y = − ∂F ∂py (14) P1 = − ∂F ∂Q1 (15) P2 = − ∂F ∂Q2 . (16) Doing the easiest first, comparing (12) and (16) we see that F must have the form F(x, Q1, py, Q2) = − α 2 xQ2 − 1 α pyQ2 + g(x, Q1, py). (17) Plugging this in to (14) and comparing with (14) we find g(x, Q1, py) = − 1 2 xpy + 1 2α2 p2 y cot Q1 + ψ(x, Q1). (18) Plugging (17) and (18) into (13) and comparing with (10), we see that ∂ψ ∂x = α2 4 x cot Q1
  • 56. Homer Reid’s Solutions to Goldstein Problems: Chapter 9 11 or ψ(x, Q1) = α2 x2 8 cot Q1. (19) Finally, combining (19), (18), (17), and (15) and comparing with (11) we see that we may simply take φ(Q1) ≡ 0. The final form of the generating function is then F(x, Q1, py, Q2) = − α 2 x + 1 α py Q2 + α2 x2 8 − 1 2 xpy + 1 2α2 p2 y cot Q1 and its existence proves the canonicality of the transformation. Turning now to the solution of the problem, we take the B field in the z direction, i.e. B = B0 ˆk, and put A = B0 2 − yˆi + xˆj . Then the Hamiltonian is H(x, y, px, py) = 1 2m p − q c A 2 = 1 2m px + qB0 2c y 2 + py − qB0 2c x 2 = 1 2m px + α2 2 y 2 + py − α2 2 x 2 where we put α2 = qB/c. In terms of the new variables, this is H(Q1, Q2, P1, P2) = 1 2m α 2P1 cos Q1 2 + α 2P1 sin Q1 2 = α2 m P1 = ωcP1 where ωc = qB/mc is the cyclotron frequency. From the Hamiltonian equations of motion applied to this Hamiltonian we see that Q2, P1, and P2 are all constant, while the equation of motion for Q1 is ˙Q1 = ∂H ∂P1 = ωc −→ Q1 = ωct + φ for some phase φ. Putting r = √ 2P1/α, x0 = P2/α, y0 = Q2/α we then have x = r(sin ωct + φ) + x0, px = mωc 2 [r cos(ωct + φ) − y0] y = r(cos ωct + φ) + y0, py = mωc 2 [r sin(ωct + φ) + x0] in agreement with the standard solution to the problem.
  • 57.  ¢¡¤£¦¥¨§©¡¤§¡ !¡#$£%'()©¦102¡#£34§%'©¦65 798A@CB'B'DFEG@¨8IH PQESRT@¢UVDFESB 5W ¢%QXQ¡#$3`Y 3©a§©¡# bcedIfhg¨iWfhprq s$tvuetvwAx€y‚ƒ…„F††‡ ˆ‰’‘V“•”—–T˜d™Te f9gihCjTklnm onpqar suthvxwhyza{|y~}|at€‚vxyAƒ„t†…—za{|yTƒ‡t†z‰ˆŠt‹Œt…—Ž}etˆŠ‹zW}|at†‘y“’¦z‰ˆŠvŠyTˆx‹Œ”why•‰z‰ˆ–’•†vS}‚vŠ‹|y—™˜‚š‰ˆx‹‚› z‰{‚yœž†ƒ‡ˆŠvŸzat‹‚ ¢¡hh’th€|ˆ'ƒ‡y•z‰{|t‚£4¤¦¥ˆx‹‚£I€et†z‰{Iz‰{‚yTyA§˜‚¨zaˆxth‹6t…©z‰{|yzaa†‘yA’z‰taª”†‹‚£«z‰{|y £‚yA}FyA‹‚£‚y•‹F’y¬t…vz‰{|yC’tut­£‚ˆŠ‹‚¨zayAšSth‹z‰ˆŠƒCyh—4šaš®˜|ƒ‡ˆŠ‹|›‡z‰{‚y¬}|at†‘y“’¦z‰ˆŠvŠy¤ˆŠš©¯‚ayA£t†°”¨znz‰ˆŠƒCy ±G²Œ³ …´‰thƒµz‰{|y—th‰ˆŠ›ˆŠ‹W¶Sˆxz‰{z‰{|y—why•vŠtu’•ˆŸz‘ª¢·¨¸¹uƒ¢†ºuˆx‹‚›C‹$‹|›vŠy¼»Ž¶Sˆxz‰{z‰{‚y#{|taˆx½At‹zav¾¤ ¿ {|y¤œnƒ‡ˆxvxz‰th‹|ˆŠ‹ˆ–š À ²ÂÁFÃÄŨÆÈÇ ÁeÃÉŨÆÊÇ ÆËÌ š‰tÍza{|y¤œnƒ‡ˆxvxz‰th‹‚ Î¡’•t€|ˆ†y“§h˜F¨z‰ˆŠt‹$€eyA’thƒ‡yAš Ï Å¨ÆÐ…Ñ†Ò ÑeÓ©Ô Ã Ç Ï Å†ÆÕÐGÑ4Ò Ñ Ì Ô Ã Ç ÆËÌ ÇÖÑ4Ò Ñ ± ²×³‚Ø Ù Ï“Ú Û y¤š®yAy•ºW‡š‰tvŠ˜‚z‰ˆŠt‹$t†…z‰{|y—…´th‰ƒ Ò Ù Ó ¹‘Üv¹ Ì ¹‰Ý¢¹ ± Ú ² Ü Ó ÇIÞ ÙÌ ¹‰Ý Úß Ý ± ÙÅ Ú ¶S{|yA‰y'ÜW†‹‚£CÝ•†ay…zat¼€ey™z‰{‚y Ù ’th‹‚š‘z­†‹z Ú zaa‹‚š‘…´th‰ƒ‡y“£¤ƒ‡tƒ‡y•‹z­|¤ Û ˆŸza{Íza{|ˆ–ši†‹‚ša¨za½ …´t Ò ¹ Ù ÏàÚ €eyA’•tƒ‡yAš Ü ÃņÆáÇ Ï Å¨ÆÕÐ Ñ Þ Ñ Ì Ô Ã Ç ÆËÌ ² Ý t Ñ Þ Ñ Ì ²Öâ Å¨Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ Ø Ï
  • 58.  ¢¡¤£¦¥¨§©¥ ¡¤!#%$#¡¤' ($)¡¦01¡¤!23$)¥¨4'657§¡%8¤!9¥¨£@BADCEGFBHI$P¥§RQ¤S Å T ‹z‰yA›­¨z‰ˆŠ‹|›F— Þ ÙÌ |Ú ²VU ÉIW ÌYX â Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ X ² ß Ï `Æ à Ëba Å¨Æ Ý ß Ü Ã ßŽÅ†Æ Ã ËÌ2c¤dfe Ã Ø ¿ {|yA‹œž†ƒ‡ˆŠvŸzat‹hg š™}|aˆx‹‚’•ˆx}F†v†…´˜|‹‚’z‰ˆŠt‹ ÙÅ hÚ ˆŠš Ò ² Ü Ó ß Ï `†Æ à Ëpi Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ2q dfe Ã ß Ý ±¦Ø ¿ {|y Ù ’•t‹‚š®za‹z Ú z‰­†‹‚š®…´taƒ‡yA£’tut­£‚ˆŠ‹‚¨zayAš™’th‹¨‘˜|›h†z‰yžz‰tCz‰{‚y¤’t‹Fš‘z­†‹z'zaa‹‚š®…´taƒCy“£ ƒ‡tƒ‡y•‹z­Cݵ‹‚£¨Ü€‰y rts ² Ñ4Ò Ñ Ý ² ß Ï ÆËba Å¨Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌuc s e Ã ß ± Ù `hÚ r à ² Ñ4Ò Ñ Ü ² Ó Ç Ü Æ Ã Ëva Å†Æ Ý ß Ü Ã ß”Å¨Æ Ã ËuÌ2c s e à Ù9w Ú ¿ ˜|‰‹‚ˆx‹|›™za{|yAš‰y…ˆŠ‹‚š‰ˆŠ£|yGt˜‚z z‰t©th€‚zaˆx‹ Ó †‹‚£ Ì š†…´˜‚‹‚’¦zaˆxth‹‚š t…uz‰ˆŠƒCy'†‹‚£¼za{|y'’•t‹‚š®za‹hz­š•— ¶Qyž¯F‹‚£ Ì ² Ý ÆË ß Ü ÃÅ†Æ Ã Ë ß Ë Å Ù´± Ç r s Ú Ã Ó ² r Ã Ç Ü Æ Ù´± Ç rts Ú ¥ˆx‹F†vŠvxªh—‚…´atƒ z‰{‚yÍ›hˆxwhy•‹TˆŠ‹|ˆŸzaˆŠv’•t‹‚£|ˆŸzaˆxth‹‚šn¶Qy¤th€‚zaˆx‹Tza{|y¤…´thvxvŠt¨¶SˆŠ‹|›¨yA§˜‚†z‰ˆŠt‹‚šn…´t z‰{‚y¤’t‹Fš‘z­†‹zaš™Ý¢¹®Ü¹xrysà¹xr Á€ Ì Ù´±G² ³ Ú ²×³ ²h‚ Ý ÆË ß Ü ÃÅ†Æ Ã Ë ß Ë r Ãs Å ² ³ Ó Ù´±…² ³ Ú ²×³ ²h‚ r Ã Ç Ü Æ rys ² ³ ƒÌ Ù´±G² ³ Ú ² ·¨¸š®ˆŠ‹©» ²h‚ ß€Ë rys ² ·¨¸ š‰ˆx‹©» ƒ Ó Ù´±G² ³ Ú ² ·¨¸’thš‚» ²h‚ Ü Æ ² ·¨¸ ’tš|»