SlideShare a Scribd company logo
1 of 9
Download to read offline
Etripamil Nasal Spray for
Rapid Conversion of Supraventricular
Tachycardia to Sinus Rhythm
Bruce S. Stambler, MD,a
Paul Dorian, MD,b
Philip T. Sager, MD,c
Douglas Wight, MSC,d
Philippe Douville, PHD,d
Diane Potvin, MSC,e
Pirouz Shamszad, MD,f
Ronald J. Haberman, MD,g
Richard S. Kuk, MD,h
Dhanunjaya R. Lakkireddy, MD,i
Jose M. Teixeira, MD,j
Kenneth C. Bilchick, MD,k
Roger S. Damle, MD,l
Robert C. Bernstein, MD,m
Wilson W. Lam, MD,n
Gearoid O’Neill, MD,o
Peter A. Noseworthy, MD,p
Kalpathi L. Venkatachalam, MD,q
Benoit Coutu, MD,r
Blandine Mondésert, MD,s
Francis Plat, MDd
ABSTRACT
BACKGROUND There is no nonparenteral medication for the rapid termination of paroxysmal supraventricular
tachycardia.
OBJECTIVES The purpose of this study was to assess the efficacy and safety of etripamil nasal spray, a short-acting
calcium-channel blocker, for the rapid termination of paroxysmal supraventricular tachycardia (SVT).
METHODS This phase 2 study was performed during electrophysiological testing in patients with previously docu-
mented SVT who were induced into SVT prior to undergoing a catheter ablation. Patients in sustained SVT for 5 min
received either placebo or 1 of 4 doses of active compound. The primary endpoint was the SVT conversion rate within
15 min of study drug administration. Secondary endpoints included time to conversion and adverse events.
RESULTS One hundred four patients were dosed. Conversion rates from SVT to sinus rhythm were between 65% and
95% in the etripamil nasal spray groups and 35% in the placebo group; the differences were statistically significant
(Pearson chi-square test) in the 3 highest active compound dose groups versus placebo. In patients who converted, the
median time to conversion with etripamil was <3 min. Adverse events were mostly related to the intranasal route of
administration or local irritation. Reductions in blood pressure occurred predominantly in the highest etripamil dose.
CONCLUSIONS Etripamil nasal spray rapidly terminated induced SVT with a high conversion rate. The safety and efficacy
results of this study provide guidance for etripamil dose selection for future studies involving self-administration of this new
intranasal calcium-channel blocker in a real-world setting for the termination of SVT. (Efficacy and Safety of Intranasal
MSP-2017 [Etripamil] for the Conversion of PSVT to Sinus Rhythm [NODE-1]; NCT02296190) (J Am Coll Cardiol 2018;72:489–97)
© 2018 Milestone Pharmaceuticals inc. Published by Elsevier on behalf of the American College of Cardiology Foundation.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ISSN 0735-1097 https://doi.org/10.1016/j.jacc.2018.04.082
From the a
Piedmont Heart Institute, Atlanta, Georgia; b
University of Toronto & St. Michael’s Hospital, Toronto, Ontario, Canada;
c
Stanford University, Palo Alto, California; d
Milestone Pharmaceuticals, Montreal St.-Laurent, Quebec, Canada; e
Excelsus Statis-
tics, Montreal, Quebec, Canada; f
Medpace, Cincinnati, Ohio; g
Top Line Pharma Contracting, Scottsdale, Arizona; h
Centra Stroo-
bants Cardiovascular Center, Lynchburg, Virginia; i
University of Kansas Medical Center, Kansas City, Kansas; j
Black Hills
Cardiovascular Research, Rapid City, South Dakota; k
University of Virginia Health System, Charlottesville, Virginia; l
South Denver
Cardiology Associates, Littleton, Colorado; m
Sentara Norfolk General Hospital, Norfolk, Virginia; n
Baylor St. Luke’s Medical
Center, Houston, Texas; o
General Hospital, Sacramento, California; p
Mayo Clinic, Rochester, Minnesota; q
Mayo Clinic at Jack-
sonville, Jacksonville, Florida; r
Hotel-Dieu Recherche Cardiologie, Montreal, Quebec, Canada; and the s
Montreal Heart Institute,
Montreal, Quebec, Canada. This research was funded by Milestone Pharmaceuticals and did not receive any specific grant from
funding agencies in the public or not-for-profit sector. Drs. Dorian and Sager have received honoraria from Milestone Pharma-
ceuticals. Drs. Plat and Douville and Mr. Wight have received salaries from Milestone Pharmaceuticals. Mrs. Potvin, Dr. Shamszad,
and Dr. Haberman have received salaries from companies that provide services to Milestone Pharmaceuticals. Dr. Lam has
received fees from Milestone Pharmaceuticals as an investigator in the study. All other authors have reported that they have no
relationships relevant to the contents of this paper to disclose.
Manuscript received December 12, 2017; revised manuscript received April 26, 2018, accepted April 30, 2018.
Listen to this manuscript’s
audio summary by
JACC Editor-in-Chief
Dr. Valentin Fuster.
J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 7 2 , N O . 5 , 2 0 1 8
ª 2 0 1 8 M I L E S T O N E P H A R M A C E U T I C A L S I N C . P U B L I S H E D B Y E L S E V I E R O N B E H A L F O F T H E A M E R I C A N
C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N . T H I S I S A N O P E N A C C E S S A R T I C L E U N D E R T H E C C B Y - N C - N D
L I C E N S E ( h t t p : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 / ) .
Currently, there is no short-acting,
nonparenteral drug available for
the acute termination of supraven-
tricular tachycardia (SVT) that can be self-
administered. Such a drug would provide
individuals the ability to rapidly terminate
SVT episodes without the need to visit a
health care facility.
Etripamil (Milestone Pharmaceuticals,
Montreal St.-Laurent, Quebec, Canada) is a
short-acting L-type calcium-channel blocker
with a rapid onset of action designed for intranasal
administration. It has been formulated as a nasal
spray for self-administration by patients who expe-
rience SVT recurrences. It has a high potency and a
short first half-life of about 20 min. Like other non-
dihydropyridine calcium-channel blockers, etripamil
slows atrioventricular nodal conduction and prolongs
atrioventricular nodal refractory periods by inhibiting
calcium ion influx through the calcium slow channels
in the atrioventricular node cells. A phase 1 trial in
healthy volunteers demonstrated that intranasal
administration of etripamil was well tolerated and
caused a dose-dependent PR interval prolongation
indicative of the desired pharmacological effect on
atrioventricular nodal conduction. There was no
observed prolongation of QRS or Fredericia-corrected
QT interval.
NODE-1 (Efficacy and Safety of Intranasal MSP-2017
[Etripamil] for the Conversion of PSVT to Sinus
Rhythm) was a phase 2 study designed to demon-
strate the superiority of etripamil over placebo for the
acute termination of SVT in the electrophysiology
laboratory, evaluate the safety of etripamil, and
identify dose(s) to be tested in future phase 3 studies
to be conducted outside the hospital environment.
METHODS
STUDY DESIGN AND PATIENTS. NODE-1 (NCT02296190)
was a multicenter, randomized, double-blind, placebo-
controlled, dose-ranging study designed to evaluate
the effects of etripamil nasal spray in male and female
patients 18 years of age and older with documented
histories of SVT who were scheduled to undergo elec-
trophysiological studies prior to planned catheter
ablation. The exclusion criteria were a history of
adverse reaction to intravenous (IV) verapamil, a sig-
nificant or chronic condition of the nasal cavity that
would interfere with intranasal drug administration,
systolic blood pressure (SBP) <100 mm Hg or diastolic
blood pressure <50 mm Hg at screening or at the treat-
ment visit, history or evidence of congestive heart
failure (except New York Heart Association functional
class I) or pulmonary edema, a prolonged Bazett-
corrected QT interval (>455 ms), ventricular pre-
excitation, second- or third-degree atrioventricular
block, pregnancy, breastfeeding, failure to agree to
use an acceptable form of contraception, concomitant
use of certain medications (e.g., digoxin, class I to IV
antiarrhythmic drug), and documentation of an
arrhythmia other than SVT.
This study was carried out in accordance with In-
ternational Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for
Human Use and Good Clinical Practice guidelines. All
sites obtained Institutional Review Board or ethics
committee approval, and study-specific procedures
were not conducted until after patient informed con-
sent was obtained. A complete list of study sites and
primary investigators is available in the Online
Appendix.
RANDOMIZATION. During a pre-study visit patients
were randomly assigned to 1 of the 5 following study
groups in a 1:1:1:1:1 ratio using an interactive web
response system: placebo or etripamil at 35, 70, 105,
or 140 mg.
BASELINE ELECTROPHYSIOLOGICAL STUDY DATA
COLLECTION. Before attempted induction of SVT,
vital signs, consisting of blood pressure and heart rate,
were recorded, and a continuous surface rhythm strip
was obtained. Baseline vital signs were the averages of
the measurements taken 10 and 20 min before SVT
induction, and the time 0 vital signs were the averages
of the measurements during SVT between 5 and 0 min
before study drug administration. Sedation could be
given during the study via single or multiple admin-
istrations using minimally necessary doses of benzo-
diazepines and/or narcotics at the investigator’s
discretion, but a continuous sedative or analgesic or
inhaled anesthetic drug was not permitted until min-
ute 30 after study drug administration.
SVT INDUCTION. Induction of SVT was attempted
using standard pacing and programmed stimulation
methods. If SVT could not be induced after a
reasonable number of attempts, or could be induced
but did not sustain for 5 min, IV isoproterenol was
infused at a rate of 1 mg/min, and attempts to induce
SVT were repeated. If SVT induction was unsuccess-
ful with isoproterenol 1 mg/min, the infusion rate
could be increased. If isoproterenol was used, a sur-
face rhythm strip was collected once the heart rate
had stabilized. If induction was successful with
SEE PAGE 498
A B B R E V I A T I O N S
A N D A C R O N Y M S
AVRT = atrioventricular
reciprocating tachycardia
CI = confidence interval
IV = intravenous
OR = odds ratio
PSVT = paroxysmal
supraventricular tachycardia
SBP = systolic blood pressure
SVT = supraventricular
tachycardia
Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8
Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7
490
isoproterenol, the infusion was continued at 1 mg/min
for 5 min of sustained SVT and continuing for either
15 min after study drug administration or until
termination of SVT, whichever occurred first.
STUDY DRUG ADMINISTRATION. After a minimum of
5 min in sustained SVT, electrophysiology laboratory
personnel administered the study drug to the patient
using 4 prefilled Aptar Pharma unit-dose spray de-
vices via alternating nares over 30 s or less. Each
device delivered 100 ml of placebo or 35 mg of etri-
pamil. The appropriate combination of 4 devices
containing active compound or placebo was used to
deliver the assigned, randomized dose of etripamil (0,
35, 70, 105, or 140 mg). The devices were prefilled,
packaged into drug kits, and administered in a spe-
cific order, with sprays of etripamil delivered before
sprays containing placebo.
ASSESSMENTS AFTER STUDY DRUG ADMINISTRATION.
Starting at time 0, vital signs were recorded every
2 min for 30 min, and the cardiac rhythm was
continuously monitored. A successful conversion was
defined as conversion of SVT to sinus rhythm lasting
at least 30 s within 15 min after study drug adminis-
tration. For patients who did not convert within
15 min after study drug administration, SVT was then
terminated by standard intracardiac stimulation
techniques. Surface rhythm strips were collected in
all patients at the time of conversion and at 15 min
after study drug administration. At any time beyond
30 min after study drug administration, the patient’s
scheduled ablation (outside the scope of this study)
could be performed at the discretion of the treating
physician.
FOLLOW-UP PROCEDURES. From 12 h to 5 days after
the procedure, physical examination, assessment of
vital signs, 12-lead electrocardiography, and clinical
laboratory analysis were performed. Adverse events
and concomitant medications were recorded.
STATISTICAL METHODS. Efficacy analyses were
performed in randomized patients in whom SVT was
induced and sustained for 5 min, had received study
drug, and completed the assessment of conversion to
sinus rhythm (i.e., evaluable population). Safety an-
alyses were based on all randomized patients who
were induced into SVT and received study drug.
Sample size determination. It was expected that
there would be a 50 percentage point difference in the
SVT conversion rate between patients receiving pla-
cebo and any dose of etripamil within 15 min after
study drug administration (i.e., 30% for placebo, 80%
for etripamil). Accounting for a 2-sided test with a
type I error rate of a ¼ 0.05, 20 patients per group
provided 84% power when using the Fisher exact
test. Therefore, a sample size of at least 100 evaluable
patients (i.e., at least 20 evaluable patients per group)
was considered appropriate to meet study objectives.
Statistical analyses. The primary efficacy endpoint
was the rate of successful SVT conversion to sinus
rhythm lasting at least 30 s within 15 min of study
drug administration. The primary efficacy analysis
was performed using the Fisher exact test to compare
the conversion rate between each etripamil group and
the placebo group. To control the type I error rate of
a ¼ 0.05, a hierarchical procedure was used for hy-
pothesis testing. The hierarchy first compared the
conversion rate in the highest etripamil dose (140 mg)
versus placebo; if that comparison resulted in a
p value <0.05, the next highest etripamil dose
(105 mg) was compared with placebo. These com-
parisons continued in a stepwise fashion until either
all doses were tested or a comparison yielded a
p value of $0.05, in which case all doses prior to that
comparison were considered to have statistically
significant conversion rates versus placebo. A 2-sided
test with a significance level of 0.05 was used for each
comparison. The odds ratio (OR), 95% confidence in-
terval (CI), and p value for the OR were calculated and
tabulated for each pairwise treatment comparison.
Conversion rates were analyzed using a Cochran-
Mantel-Haenszel test and stratified by isoproterenol
to test for an association between treatment and
conversion rate. Secondary and exploratory efficacy
analyses were performed as follows. 1) The Cochran-
Armitage test for trend was used to assess the
presence of an association between conversion rate
and the etripamil dose groups. 2) The dose-response
relationship (percentage conversion at time 15) was
assessed using a generalized linear model with logit
link and binomial distribution. 3) Time to conversion
was summarized for patients whose SVT was suc-
cessfully converted to sinus rhythm after study drug
administration. The distribution of conversion times
from initiation of treatment to SVT termination and
conversion to sinus rhythm during a 15-min period of
observation was estimated using the Kaplan-Meier
method. Patients who did not convert within 15 min
after study drug administration were censored at that
time point. In a post hoc analysis, the hazard ratio and
95% CI were based on a Cox proportional hazards
regression model with treatment as a factor. 4) The
interaction test between etripamil and isoproterenol
was carried out in an analysis-of-covariance model.
Continuous safety data are summarized with
descriptive statistics. Discrete safety data are sum-
marized with frequency counts.
J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al.
J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray
491
RESULTS
BASELINE PATIENT CHARACTERISTICS. A total of
199 patients were randomized into the double-blind
study; 95 patients withdrew prior to dosing: 70
patients because of inability to induce (n ¼ 42) or
sustain (n ¼ 28) SVT, 5 patients on the basis of
physician discretion, 1 patient lost to follow-up, 1
because of withdrawal of consent, and 18 patients for
other reasons. A total of 104 patients had SVT induced
and sustained for $5 min and were dosed with study
drug. The median age was 55.0 years (mean 52.2;
range: 19 to 85 years), and the median body mass
index was 28.57 kg/m2
(mean 29.35 kg/m2
; range: 19.0
to 64.1 kg/m2
). Overall, there were more female than
male patients (n ¼ 59 [56.7%] vs. n ¼ 45 [43.3%],
respectively). The predominant races were white
(80.8%) and black or African American (12.5%). There
were no imbalances in baseline characteristics across
the 5 treatment groups. Isoproterenol was given to
46.2% of patients. The mean heart rate in SVT at time
0 was 177 beats/min in the placebo group and 168,
173, 180, and 155 beats/min in the etripamil 35-, 70-,
105-, and 140-mg groups, respectively. The mecha-
nism of induced SVT was atrioventricular nodal
re-entrant tachycardia in 87% of patients. A total of
29 sites dosed patients. Twenty-six sites dosed be-
tween 1 and 5 patients, and 3 sites dosed between 10
and 13 patients (i.e., 33% of the study population).
The percentage of patients dosed by number of
patients per site is shown in Figure 1.
EFFICACY. Conversion rates from SVT to sinus
rhythm. Of the 104 patients in the evaluable popu-
lation, 20 received etripamil 35 mg, 23 received
70 mg, 20 received 105 mg, 21 received 140 mg, and 20
received placebo. The percentages of patients in
whom SVT converted to sinus rhythm within 15 min
after study drug administration and in whom sinus
rhythm was maintained for at least 30 s (primary ef-
ficacy endpoint) were 35%, 65%, 87%, 75%, and 95%
in the placebo and etripamil 35-, 70-, 105-, and 140-
mg groups, respectively (Table 1). Applying the pre-
specified hierarchy for determining significance, the
3 highest etripamil doses of 140, 105, and 70 mg
showed statistically significant higher conversion
rates compared with placebo, with respective
conversion rate differences from placebo of 60%
(OR: 37.14; 95% CI: 3.84 to 1,654.17; p < 0.0001),
40% (OR: 5.57; 95% CI: 1.19 to 27.63; p ¼ 0.0248),
and 52% (OR: 12.38; 95% CI: 2.28 to 82.26;
p ¼ 0.0006). There was a statistically significant
trend between treatment with etripamil and
conversion to sinus rhythm (p < 0.0001, Cochran-
Armitage test). A maximal-efficacy dose-response
model best fit the dose-response relationship; the
conversion rate increased with the dose with a steep
slope until 70 mg and reached a plateau at higher
doses (Figure 2).
Overall, no differences in conversion rates were
observed on the basis of the administration or lack of
administration of isoproterenol.
Time to conversion from SVT to sinus rhythm. For the 3
etripamil doses with statistically significant conver-
sion rates compared with placebo (70, 105, and
140 mg), the time at which 50% of patients converted
FIGURE 1 Percentage of the Study Population Dosed by the
Number of Patients Dosed per Site
24%
7%
15%
6%
15%
33%
Number of Patients Dosed per Site
2 3 4 5 7 10-13
3 sites dosed 10, 11, and 13 patients (i.e., 33% of the total
number of dosed patients); 5 sites dosed 5 patients (i.e., 24%
of the total number of dosed patients); 21 sites dosed 1 to 4
patients (i.e., 43% of the total number of dosed patients).
TABLE 1 Summary of Conversion of Induced, Sustained Supraventricular Tachycardia to
Sinus Rhythm Within 15 min After Study Drug Administration
Placebo
(n ¼ 20)
Etripamil
35 mg
(n ¼ 20)
Etripamil
70 mg
(n ¼ 23)
Etripamil
105 mg
(n ¼ 20)
Etripamil
140 mg
(n ¼ 21)
Patients converted
to sinus rhythm
7 (35) 13 (65) 20 (87) 15 (75) 20 (95)
p value (vs. placebo),
Fisher exact test
0.1128 0.0006 0.0248 <0.0001
Values are n (%).
Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8
Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7
492
was <3 min, with the shortest time in the etripamil
140-mg group (1.8 min). Because only 35% patients
converted to sinus rhythm within 15 min in the pla-
cebo group, the time at which 50% of patients con-
verted cannot be determined.
Distribution of time to conversion for each patient
is reported as a Kaplan-Meier plot (Figure 3). Patients
who did not convert within 15 min after study drug
administration were censored at 15 min. On the basis
of a Cox proportional hazards regression model with
treatment as a factor, the 3 highest etripamil doses of
140, 105, and 70 mg showed statistically significant
shorter time to conversion compared with placebo
(Table 2).
SAFETY. At least 1 adverse event, per patient,
considered related to the study drug according to the
investigators’ assessment, was reported in 17 patients
(85.0%) in the etripamil 35-mg group, 18 (78.3%) in
the 70-mg group, 15 (75.0%) in the 105-mg group, 20
(95.2%) in the 140-mg group, and 4 (20.0%) in the
placebo group. The incidence of adverse events was
not dose dependent.
Most adverse events were mild (44.2%) or moder-
ate (24.0%) across all treatment groups. A total of 3
severe adverse events were considered possibly
related to etripamil. One patient who received 35 mg
experienced facial flushing, shortness of breath, and
chest discomfort; 1 patient who received 105 mg had
nausea and vomiting; and 1 patient who received
105 mg had a serious adverse event of cough. There
were no adverse events that led to study discontin-
uation or death.
Adverse events that occurred with an incidence of
>10% in any etripamil group and $10% in the placebo
group were nasal discomfort, nasal congestion,
oropharyngeal pain, rhinorrhea, cough, dysgeusia,
increased lacrimation, vomiting, and nausea. One
patient had an episode of second-degree atrioven-
tricular block with hypotension beginning 5 min after
conversion to sinus rhythm immediately following
administration of etripamil 140 mg, which resolved
after 43 min, and ablation was subsequently
performed.
Vital signs were recorded before induction into
SVT and every 2 min for 30 min after study drug was
given. The mean SBP decreased from the baseline
measurements (20 and 10 min before SVT induction)
to measurements done while in SVT before study
drug administration (time 0). Compared with baseline
prior to SVT induction, SBP measurements recorded
from 2 to 16 min after study drug administration
demonstrated no statistically significant decrease in
mean SBP in the placebo, 35-mg, and 70-mg groups,
and a maximum statistically significant decrease of
17 mm Hg 6 min post-dose when 65% of the patients
were in sinus rhythm in the 105-mg group, and
20 mm Hg 6 min post-dose when 80% of the patients
were in sinus rhythm in the 140-mg group. There was
no decrease in mean SBP compared with baseline
from 16 to 30 min after study drug administration
when all the patients were in sinus rhythm (Figure 4).
In the placebo group and the combined active
substance groups, the minimum mean heart rates
(84.7 and 82.4 beats/min, respectively) were similar.
The minimum heart rate in any individual patient
occurring within 30 min after study drug adminis-
tration was 58 beats/min in the placebo group and 70,
55, 71, and 47 beats/min in the etripamil 35-, 70-, 105-,
and 140-mg groups, respectively. There was no sta-
tistically significant change between baseline and
15 min post-dose in mean Bazett-corrected QT
intervals.
DISCUSSION
In this study, the 3 highest doses of etripamil tested
demonstrated the ability to terminate SVT with very
high and statistically significant conversion rates
compared with placebo (Central Illustration). The
median time to conversion for each of the etripamil
doses was <3 min. From an efficacy standpoint, this
makes this intranasal calcium-channel blocker an
FIGURE 2 Etripamil Dose Response Maximal Efficacy Model
0 4020 60
Etripamil Dose mg
%PatientsSuccessfullyConverted
Emax Model (E0 = 1-Emax; D50 = 32.5; Emax = 0.65) R2
= 0.915
10080 120 140
50
40
30
80
90
70
60
100
Actual % Conversion Emax Model Curve
D50 ¼ dose (milligrams) related to 50% of the maximal effect; E0 ¼ placebo effect;
Emax ¼ maximal efficacy.
J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al.
J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray
493
excellent drug candidate to fill the existing gap in
therapy for the rapid termination of SVT outside of
the health care setting. Judicious selection of etripa-
mil doses in future studies may be able to mitigate
decreases in SBP, which occurred most often and for
the longest duration in the etripamil 140-mg group.
During the course of the study it was recognized
that the discomfort and cough possibly related to the
presence of the drug in the throat could be dramati-
cally reduced by elevating the head of the bed to 30
,
keeping the chin close to the chest, and trying to
avoid inhaling or swallowing the drug. It is conceiv-
able that providing patients with this information
could reduce or eliminate these adverse events in the
future.
ETRIPAMIL PHARMACOLOGY AND CHARACTERISTICS.
Etripamil is a short-acting, phenylalkylamine class
L-type calcium-channel blocker. It follows a 2-
compartment pharmacokinetic model with a time
to maximum plasma concentration of approximately
8 min and a mean first half-life of about 20 min across
all doses tested when administered intranasally. The
drug is metabolized by ubiquitous serum esterases,
and the major metabolite is an inactive carboxylic
acid. Dose-dependent side effects (nasal congestion,
oropharyngeal pain) are most likely related to the
intranasal route of administration. Neither animal nor
human studies demonstrated prolongation of the QRS
duration or corrected QT interval. The shelf life of
etripamil is 1 year.
FIGURE 3 Kaplan-Meier Plot of Conversion 15 min After Study Drug Administration
0 5
Time Since First Study Drug Administration (Minutes)
CumulativeConversionRate(%)
10 15
+
+ censored
+
+
+
+
20 16 14 13
20 9 7 6
23 4 3 2
20 7 5 4
21
Placebo
35 mg
70 mg
105 mg
140 mg
Number at risk:
etripamil
etripamil
etripamil
etripamil 4 3 1
0.4
0.2
0.0
1.0
0.8
0.6
Placebo Etripamil 35 mg Etripamil 70 mg
Etripamil 105 mg Etripamil 140 mg
Patients who did not convert within 15 min after study drug administration were censored at 15 min.
TABLE 2 Survival Analysis of Patients Converted to Sinus Rhythm at 15 min After Study
Drug Administration
Placebo
(n ¼ 20)
Etripamil
35 mg
(n ¼ 20)
Etripamil
70 mg
(n ¼ 23)
Etripamil
105 mg
(n ¼ 20)
Etripamil
140 mg
(n ¼ 21)
Patients converted 7 (35.0) 13 (65.0) 20 (87.0) 15 (75.0) 20 (95.2)
Patients censored* 13 (65.0) 7 (35.0) 3 (13.0) 5 (25.0) 1 (4.8)
Kaplan-Meier estimate,
min
Q1 7.08 2.28 1.57 2.13 1.23
Median NC 4.38 2.82 3.54 1.92
95% CI 6.07–NC 2.20–NC 1.63–3.25 2.07–8.13 1.23–2.90
Q3 NC NC 3.88 NC 3.27
Treatment comparison
(vs. placebo)†
Hazard ratio 2.43 4.99 3.13 6.67
95% CI for hazard ratio 0.97–6.11 2.09–11.93 1.27–7.71 2.79–15.94
p value 0.0587 0.0003 0.0131 0.0001
Values are n (%) unless otherwise indicated. *Patients who did not convert within 15 min after study drug
administration are censored at 15 min after study drug administration. †The hazard ratio and 95% CI are based on
a Cox proportional hazards regression model with treatment as a factor.
CI ¼ confidence interval; Median ¼ time to conversion of 50% of the patients; NC ¼ not calculated; Q1 ¼ 25th
percentile; Q3 ¼ 75th percentile.
Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8
Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7
494
CURRENT TREATMENTS FOR SVT. All medications
currently approved for the acute termination of SVT
must be administered in the presence of a trained
health care professional and require the establish-
ment of IV access along with real-time rhythm
monitoring. IV beta-blockers and calcium-channel
blockers are effective for acute treatment in patients
with hemodynamically stable SVT. Oral beta-blockers
and calcium-channel blockers alone or in combina-
tion may be self-administered (“pill-in-the-pocket”)
for acute treatment of well-tolerated SVT, with mean
times to conversion of approximately 30 min or
longer, but the overall efficacy and safety of the self-
administration of these medications remains unclear
because of the lack of scientific evidence and poten-
tial risk for hypotension and/or syncope (1,2). Anti-
arrhythmic drugs such as flecainide, which are not
approved for this indication, have been used as a
“pill-in-pocket” strategy (3), but with small studies
showing variable conversion rates of about 50%,
often approximating the placebo conversion rate.
Mean conversion times were 1 h or longer, although
by 2 h up to 80% of patients may spontaneously
convert. Additionally, multiple factors limit the abil-
ity to prescribe these and other antiarrhythmic drugs:
known or suspected coronary artery disease, left
ventricular dysfunction, borderline or prolonged QT
interval, and unfavorable or unknown metabolizer
status.
FUTURE EVALUATION. Etripamil will need to be
evaluated in future studies that are performed
outside of the electrophysiology laboratory in
nonsupine, nonsedated patients to confirm its
efficacy in a real-world environment and to demon-
strate an appropriate safety profile for self-
administration without medical supervision. The
observed balance between efficacy and safety in
the 70-mg group makes this dose a good candidate
for future studies.
STUDY LIMITATIONS. This study was carried out
during an electrophysiology study prior to a planned
ablation in a carefully monitored and controlled
hospital environment, which introduced elements
that differ from the real-world setting in which
etripamil nasal spray might ultimately be used. The
use of conscious sedation in the electrophysiology
laboratory reduces circulating catecholamines (4,5),
which could alter the time to spontaneous conver-
sion along with the etripamil-related conversion rate
due to effects on atrioventricular node conduction
properties. Sedation may also predispose patients to
hypotension, which may not be seen in a non-
procedural setting. The possibility of catheter
FIGURE 4 Mean Æ SE Systolic Blood Pressure Over Time
Baseline 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (Minutes, Post Dose)
SystolicBloodPressure(mmHg)
120
110
150
140
130
Placebo Etripamil 35 mg Etripamil 70 mg
Etripamil 105 mg Etripamil 140 mg
*
* *
*
** *
*
Baseline is defined as the average of the 20-min and 10-min pre-dose measurements. Time 0 is defined as the average of the measurements
during supraventricular tachycardia between 5 and 0 min before study drug administration. *p  0.05 versus baseline.
J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al.
J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray
495
movement causing SVT termination exists, which
could affect efficacy results. It is conceivable that at
least some of the adverse events associated with
drug administration (i.e., supine position) could be
eliminated or minimized if patients are allowed to
self-administer the drug in a more optimal position
outside of the electrophysiology laboratory envi-
ronment. Because all patients were converted, per
protocol, by overdrive pacing after 15 min in SVT,
the time to spontaneous conversion for the 13
remaining patients who received placebo is un-
known. Analysis of the time to conversion, for pa-
tients who were inducible into sustained SVT, was
limited to 15 min in this proof-of-concept study,
which could be considered too short to evaluate the
spontaneous time to conversion in the placebo
group. Almost 90% of patients had atrioventricular
nodal re-entrant tachycardia, and thus the efficacy
and safety in AVRT was less well established in this
study.
CONCLUSIONS
Etripamil, an intranasally administered, L-type
calcium-channel blocker, demonstrated high efficacy
for rapid SVT termination and conversion to sinus
rhythm and was generally well tolerated. The results of
this study are promising and support the ongoing
development of this new intranasal calcium-channel
blocker for the acute termination of SVT, with a goal of
providing this therapy for patient self-administration
in the “real world” outside a health care setting. This
has the potential to change the treatment paradigm for
the acute management of SVT.
ACKNOWLEDGMENTS The authors thank Data
Monitoring Committee members John P. DiMarco,
MD, PhD, Mark N.A. Estes, MD, Hussein R. Al-Khalidi,
PhD, and Murray Ducharme, PharmD, and Pavine
Lefevre, PhD, for the dose-effect analysis.
ADDRESS FOR CORRESPONDENCE: Dr. Francis Plat,
Milestone Pharmaceuticals, 1111 Dr.-Frederik-Philips
Boulevard, Suite 420, Saint-Laurent, Quebec H4M
2X6, Canada. E-mail: fplat@milestonepharma.com.
CENTRAL ILLUSTRATION Conversion Rate (%) of Induced Paroxysmal Supraventricular Tachycardia
Within 15 min of Study Drug Administration
Placebo Etripamil 35 mg Etripamil 70 mg Etripamil 105 mg Etripamil 140 mg
35
65
*
87
*
75
*
95
0
90
80
70
60
50
40
30
20
10
100
Stambler, B.S. et al. J Am Coll Cardiol. 2018;72(5):489–97.
*p  0.05 versus placebo.
PERSPECTIVES
COMPETENCY IN MEDICAL KNOWLEDGE: Etri-
pamil, a short-acting calcium-channel blocker, when
administered as a nasal spray, is more effective than
placebo in terminating induced SVT, though a high
dose was associated with lowering of blood pressure.
TRANSLATIONAL OUTLOOK: Larger clinical
studies are needed to confirm the safety and efficacy
of etripamil nasal spray for termination of spontane-
ously occurring episodes of SVT.
Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8
Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7
496
R E F E R E N C E S
1. Alboni AP, Tomasi C, Menozzi C, et al. Efficacy
and safety of out-of-hospital self-administered
single-dose oral drug treatment in the manage-
ment of infrequent, well-tolerated paroxysmal
supraventricular tachycardia. J Am Coll Cardiol
2001;37:548–53.
2. Yeh SJ, Lin FC, Chou YY, Hung JS, Wu D.
Termination of paroxysmal supraventricular
tachycardia with a single oral dose of diltiazem
and propranolol. Circulation 1985;71:104–9.
3. Hamer AW, Strathmore N, Vohra JK, Hunt VD.
Oral flecainide, sotalol, and verapamil for the
termination of paroxysmal supraventricular
tachycardia. Pacing Clin Electrophysiol 1993;16 7
Pt 1:1394–400.
4. Tomicheck RC, Rosow CE, Philbin DM, Moss J,
Teplick RS, Schneider RC. Diazepam-fentanyl inter-
action-hemodynamic and hormonal effects in coro-
nary artery surgery. Anesth Analg 1983;62:881–4.
5. Dörges V, Wenzel V, Dix S, et al. The effect
of midazolam on stress levels during
simulated emergency medical service transport: a
placebo-controlled, dose-response study. Anesth
Analg 2002;95:417–22.
KEY WORDS atrioventricular nodal
re-entrant tachycardia, atrioventricular
reciprocating tachycardia, calcium-channel
blocker, conversion rate, episodic
treatment, paroxysmal supraventricular
tachycardia
APPENDIX For a complete list of study sites
and primary investigators, please see the online
version of this paper.
J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al.
J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray
497

More Related Content

What's hot

Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
Faizan Qaisar
 
Niv and sedation dr vijay kumar agrawal 2019
Niv and sedation dr vijay kumar agrawal   2019Niv and sedation dr vijay kumar agrawal   2019
Niv and sedation dr vijay kumar agrawal 2019
vkatbcd
 
Renal Artery Denervation Patient Selection and Results
Renal Artery Denervation Patient Selection and ResultsRenal Artery Denervation Patient Selection and Results
Renal Artery Denervation Patient Selection and Results
PAIRS WEB
 
Impact of DM and its control on the risk of developing TB in Taiwan
Impact of DM and its control on the risk of developing TB in TaiwanImpact of DM and its control on the risk of developing TB in Taiwan
Impact of DM and its control on the risk of developing TB in Taiwan
Ming Chia Lee
 
Olive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_theOlive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_the
angelicaRAMIREZALTAM
 
NAEMSP CPAP Poster Presentation
NAEMSP CPAP Poster PresentationNAEMSP CPAP Poster Presentation
NAEMSP CPAP Poster Presentation
larry_johnson
 
COPD Journal Club
COPD Journal ClubCOPD Journal Club
COPD Journal Club
Jade Abudia
 

What's hot (15)

Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
Www.iosrjournals.org iosr jdms-papers_vol8-issue6_n0866669
 
Niv and sedation dr vijay kumar agrawal 2019
Niv and sedation dr vijay kumar agrawal   2019Niv and sedation dr vijay kumar agrawal   2019
Niv and sedation dr vijay kumar agrawal 2019
 
Journal presentation on comparative efficacy of different mood stabilizers du...
Journal presentation on comparative efficacy of different mood stabilizers du...Journal presentation on comparative efficacy of different mood stabilizers du...
Journal presentation on comparative efficacy of different mood stabilizers du...
 
Actigraphy as a Metric in PAH Research and Clinical Care
Actigraphy as a Metric in PAH Research and Clinical CareActigraphy as a Metric in PAH Research and Clinical Care
Actigraphy as a Metric in PAH Research and Clinical Care
 
Dizziness
DizzinessDizziness
Dizziness
 
Renal Artery Denervation Patient Selection and Results
Renal Artery Denervation Patient Selection and ResultsRenal Artery Denervation Patient Selection and Results
Renal Artery Denervation Patient Selection and Results
 
Serelaxin.
Serelaxin.Serelaxin.
Serelaxin.
 
How to Improve the Accuracy of the Initial Evaluation, Using a System Develop...
How to Improve the Accuracy of the Initial Evaluation, Using a System Develop...How to Improve the Accuracy of the Initial Evaluation, Using a System Develop...
How to Improve the Accuracy of the Initial Evaluation, Using a System Develop...
 
Impact of DM and its control on the risk of developing TB in Taiwan
Impact of DM and its control on the risk of developing TB in TaiwanImpact of DM and its control on the risk of developing TB in Taiwan
Impact of DM and its control on the risk of developing TB in Taiwan
 
Does ICP monitoring in TBI really help? by Dr Paul Goldrick
Does ICP monitoring in TBI really help? by Dr Paul GoldrickDoes ICP monitoring in TBI really help? by Dr Paul Goldrick
Does ICP monitoring in TBI really help? by Dr Paul Goldrick
 
Olive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_theOlive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_the
 
Actualización en sedación octubre 2014, WHAT´S NEW ON SEDATION IN ICU
Actualización en sedación octubre 2014, WHAT´S NEW ON SEDATION IN ICUActualización en sedación octubre 2014, WHAT´S NEW ON SEDATION IN ICU
Actualización en sedación octubre 2014, WHAT´S NEW ON SEDATION IN ICU
 
NAEMSP CPAP Poster Presentation
NAEMSP CPAP Poster PresentationNAEMSP CPAP Poster Presentation
NAEMSP CPAP Poster Presentation
 
COPD Journal Club
COPD Journal ClubCOPD Journal Club
COPD Journal Club
 
Channalging Cases in AHF Hypoperfusion
Channalging Cases in AHF HypoperfusionChannalging Cases in AHF Hypoperfusion
Channalging Cases in AHF Hypoperfusion
 

Similar to Etripamil

Sager kowey editorial ane 2014
Sager kowey editorial ane 2014Sager kowey editorial ane 2014
Sager kowey editorial ane 2014
Sasha Latypova
 
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdf
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdfTreatment-of-hypertension-in-elderly-patients_lanc_4.pdf
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdf
Kilo42
 
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
BioMedSciDirect Publications
 

Similar to Etripamil (20)

EAST-AFNET4.pptx
EAST-AFNET4.pptxEAST-AFNET4.pptx
EAST-AFNET4.pptx
 
CLEVER Final Manuscript_JACC_17Mar2015
CLEVER Final Manuscript_JACC_17Mar2015CLEVER Final Manuscript_JACC_17Mar2015
CLEVER Final Manuscript_JACC_17Mar2015
 
THE LATEST IN STROKE MANAGEMENT, ACUTE AND PREVENTIVE By Arlyn Valencia, M.D....
THE LATEST IN STROKE MANAGEMENT, ACUTE AND PREVENTIVE By Arlyn Valencia, M.D....THE LATEST IN STROKE MANAGEMENT, ACUTE AND PREVENTIVE By Arlyn Valencia, M.D....
THE LATEST IN STROKE MANAGEMENT, ACUTE AND PREVENTIVE By Arlyn Valencia, M.D....
 
Wilmore Labs
Wilmore LabsWilmore Labs
Wilmore Labs
 
The odyssey outcomes trial alirocumab
The odyssey outcomes trial  alirocumabThe odyssey outcomes trial  alirocumab
The odyssey outcomes trial alirocumab
 
EMGuideWire's Radiology Reading Room: Spontaneous Pneumothorax
EMGuideWire's Radiology Reading Room: Spontaneous PneumothoraxEMGuideWire's Radiology Reading Room: Spontaneous Pneumothorax
EMGuideWire's Radiology Reading Room: Spontaneous Pneumothorax
 
Effect of levosimendan on adhf
Effect of levosimendan on adhfEffect of levosimendan on adhf
Effect of levosimendan on adhf
 
Presentation 2 - Andrew Ludman_0_0.pptx
Presentation 2 - Andrew Ludman_0_0.pptxPresentation 2 - Andrew Ludman_0_0.pptx
Presentation 2 - Andrew Ludman_0_0.pptx
 
Sager kowey editorial ane 2014
Sager kowey editorial ane 2014Sager kowey editorial ane 2014
Sager kowey editorial ane 2014
 
SLT Referenced Paper 1.pdf
SLT Referenced Paper 1.pdfSLT Referenced Paper 1.pdf
SLT Referenced Paper 1.pdf
 
Weaning from mechanical ventilation and extubation by dr tareq
Weaning from mechanical ventilation and extubation by dr tareqWeaning from mechanical ventilation and extubation by dr tareq
Weaning from mechanical ventilation and extubation by dr tareq
 
Sepsisgrandrounds
SepsisgrandroundsSepsisgrandrounds
Sepsisgrandrounds
 
Jeff_Pulm_CC__grand_rounds_2011.ppt
Jeff_Pulm_CC__grand_rounds_2011.pptJeff_Pulm_CC__grand_rounds_2011.ppt
Jeff_Pulm_CC__grand_rounds_2011.ppt
 
2014-10-22 EUGM | WEI | Moving Beyond the Comfort Zone in Practicing Translat...
2014-10-22 EUGM | WEI | Moving Beyond the Comfort Zone in Practicing Translat...2014-10-22 EUGM | WEI | Moving Beyond the Comfort Zone in Practicing Translat...
2014-10-22 EUGM | WEI | Moving Beyond the Comfort Zone in Practicing Translat...
 
Early goal-directed therapy in severe sepsis and septic shock: ProCESS, ARISE...
Early goal-directed therapy in severe sepsis and septic shock: ProCESS, ARISE...Early goal-directed therapy in severe sepsis and septic shock: ProCESS, ARISE...
Early goal-directed therapy in severe sepsis and septic shock: ProCESS, ARISE...
 
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdf
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdfTreatment-of-hypertension-in-elderly-patients_lanc_4.pdf
Treatment-of-hypertension-in-elderly-patients_lanc_4.pdf
 
Midwest Stroke Alliance VTE Presentation
Midwest Stroke Alliance VTE PresentationMidwest Stroke Alliance VTE Presentation
Midwest Stroke Alliance VTE Presentation
 
Journal club On Proton Pump Inhibitors. ...
Journal club On Proton Pump Inhibitors.                                      ...Journal club On Proton Pump Inhibitors.                                      ...
Journal club On Proton Pump Inhibitors. ...
 
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
Propofol versus dexmedetomidine in reducing emergence agitation after sevoflu...
 
From Ketamine to Collars Evidence, Controversies And An International Dialogu...
From Ketamine to Collars Evidence, Controversies And An International Dialogu...From Ketamine to Collars Evidence, Controversies And An International Dialogu...
From Ketamine to Collars Evidence, Controversies And An International Dialogu...
 

More from Jose Mejias Melendez (12)

Etripamil
EtripamilEtripamil
Etripamil
 
Etripamil
EtripamilEtripamil
Etripamil
 
Etripamil
EtripamilEtripamil
Etripamil
 
Anticoagulantes orales
Anticoagulantes oralesAnticoagulantes orales
Anticoagulantes orales
 
Whelton sprint(1)
Whelton sprint(1)Whelton sprint(1)
Whelton sprint(1)
 
Marcapasos reusados
Marcapasos reusadosMarcapasos reusados
Marcapasos reusados
 
Eleccion junta directiva 2018
Eleccion junta directiva 2018Eleccion junta directiva 2018
Eleccion junta directiva 2018
 
Marcapasos reusados
Marcapasos reusadosMarcapasos reusados
Marcapasos reusados
 
Impact of glucose lowering drugs on
Impact of glucose lowering drugs onImpact of glucose lowering drugs on
Impact of glucose lowering drugs on
 
Looking ahead at easd 2015
Looking ahead at easd 2015Looking ahead at easd 2015
Looking ahead at easd 2015
 
Consenso en prevención de enf cardiovascular en diabéticos (1)
Consenso en   prevención de enf cardiovascular en diabéticos (1)Consenso en   prevención de enf cardiovascular en diabéticos (1)
Consenso en prevención de enf cardiovascular en diabéticos (1)
 
Consenso en prevención de enf cardiovascular en diabéticos (1)
Consenso en   prevención de enf cardiovascular en diabéticos (1)Consenso en   prevención de enf cardiovascular en diabéticos (1)
Consenso en prevención de enf cardiovascular en diabéticos (1)
 

Recently uploaded

👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
Sheetaleventcompany
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
jualobat34
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
Sheetaleventcompany
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
Sheetaleventcompany
 
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Sheetaleventcompany
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
Sheetaleventcompany
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Sheetaleventcompany
 
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
Sheetaleventcompany
 
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
Sheetaleventcompany
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Sheetaleventcompany
 

Recently uploaded (20)

👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
👉 Amritsar Call Girls 👉📞 8725944379 👉📞 Just📲 Call Ruhi Call Girl Near Me Amri...
 
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
 
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room DeliveryCall 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
 
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
 
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
Cardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their RegulationCardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their Regulation
 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
 
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
 
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
 
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
💚Chandigarh Call Girls 💯Riya 📲🔝8868886958🔝Call Girls In Chandigarh No💰Advance...
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
 

Etripamil

  • 1. Etripamil Nasal Spray for Rapid Conversion of Supraventricular Tachycardia to Sinus Rhythm Bruce S. Stambler, MD,a Paul Dorian, MD,b Philip T. Sager, MD,c Douglas Wight, MSC,d Philippe Douville, PHD,d Diane Potvin, MSC,e Pirouz Shamszad, MD,f Ronald J. Haberman, MD,g Richard S. Kuk, MD,h Dhanunjaya R. Lakkireddy, MD,i Jose M. Teixeira, MD,j Kenneth C. Bilchick, MD,k Roger S. Damle, MD,l Robert C. Bernstein, MD,m Wilson W. Lam, MD,n Gearoid O’Neill, MD,o Peter A. Noseworthy, MD,p Kalpathi L. Venkatachalam, MD,q Benoit Coutu, MD,r Blandine Mondésert, MD,s Francis Plat, MDd ABSTRACT BACKGROUND There is no nonparenteral medication for the rapid termination of paroxysmal supraventricular tachycardia. OBJECTIVES The purpose of this study was to assess the efficacy and safety of etripamil nasal spray, a short-acting calcium-channel blocker, for the rapid termination of paroxysmal supraventricular tachycardia (SVT). METHODS This phase 2 study was performed during electrophysiological testing in patients with previously docu- mented SVT who were induced into SVT prior to undergoing a catheter ablation. Patients in sustained SVT for 5 min received either placebo or 1 of 4 doses of active compound. The primary endpoint was the SVT conversion rate within 15 min of study drug administration. Secondary endpoints included time to conversion and adverse events. RESULTS One hundred four patients were dosed. Conversion rates from SVT to sinus rhythm were between 65% and 95% in the etripamil nasal spray groups and 35% in the placebo group; the differences were statistically significant (Pearson chi-square test) in the 3 highest active compound dose groups versus placebo. In patients who converted, the median time to conversion with etripamil was <3 min. Adverse events were mostly related to the intranasal route of administration or local irritation. Reductions in blood pressure occurred predominantly in the highest etripamil dose. CONCLUSIONS Etripamil nasal spray rapidly terminated induced SVT with a high conversion rate. The safety and efficacy results of this study provide guidance for etripamil dose selection for future studies involving self-administration of this new intranasal calcium-channel blocker in a real-world setting for the termination of SVT. (Efficacy and Safety of Intranasal MSP-2017 [Etripamil] for the Conversion of PSVT to Sinus Rhythm [NODE-1]; NCT02296190) (J Am Coll Cardiol 2018;72:489–97) © 2018 Milestone Pharmaceuticals inc. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). ISSN 0735-1097 https://doi.org/10.1016/j.jacc.2018.04.082 From the a Piedmont Heart Institute, Atlanta, Georgia; b University of Toronto & St. Michael’s Hospital, Toronto, Ontario, Canada; c Stanford University, Palo Alto, California; d Milestone Pharmaceuticals, Montreal St.-Laurent, Quebec, Canada; e Excelsus Statis- tics, Montreal, Quebec, Canada; f Medpace, Cincinnati, Ohio; g Top Line Pharma Contracting, Scottsdale, Arizona; h Centra Stroo- bants Cardiovascular Center, Lynchburg, Virginia; i University of Kansas Medical Center, Kansas City, Kansas; j Black Hills Cardiovascular Research, Rapid City, South Dakota; k University of Virginia Health System, Charlottesville, Virginia; l South Denver Cardiology Associates, Littleton, Colorado; m Sentara Norfolk General Hospital, Norfolk, Virginia; n Baylor St. Luke’s Medical Center, Houston, Texas; o General Hospital, Sacramento, California; p Mayo Clinic, Rochester, Minnesota; q Mayo Clinic at Jack- sonville, Jacksonville, Florida; r Hotel-Dieu Recherche Cardiologie, Montreal, Quebec, Canada; and the s Montreal Heart Institute, Montreal, Quebec, Canada. This research was funded by Milestone Pharmaceuticals and did not receive any specific grant from funding agencies in the public or not-for-profit sector. Drs. Dorian and Sager have received honoraria from Milestone Pharma- ceuticals. Drs. Plat and Douville and Mr. Wight have received salaries from Milestone Pharmaceuticals. Mrs. Potvin, Dr. Shamszad, and Dr. Haberman have received salaries from companies that provide services to Milestone Pharmaceuticals. Dr. Lam has received fees from Milestone Pharmaceuticals as an investigator in the study. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Manuscript received December 12, 2017; revised manuscript received April 26, 2018, accepted April 30, 2018. Listen to this manuscript’s audio summary by JACC Editor-in-Chief Dr. Valentin Fuster. J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 7 2 , N O . 5 , 2 0 1 8 ª 2 0 1 8 M I L E S T O N E P H A R M A C E U T I C A L S I N C . P U B L I S H E D B Y E L S E V I E R O N B E H A L F O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N . T H I S I S A N O P E N A C C E S S A R T I C L E U N D E R T H E C C B Y - N C - N D L I C E N S E ( h t t p : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 / ) .
  • 2. Currently, there is no short-acting, nonparenteral drug available for the acute termination of supraven- tricular tachycardia (SVT) that can be self- administered. Such a drug would provide individuals the ability to rapidly terminate SVT episodes without the need to visit a health care facility. Etripamil (Milestone Pharmaceuticals, Montreal St.-Laurent, Quebec, Canada) is a short-acting L-type calcium-channel blocker with a rapid onset of action designed for intranasal administration. It has been formulated as a nasal spray for self-administration by patients who expe- rience SVT recurrences. It has a high potency and a short first half-life of about 20 min. Like other non- dihydropyridine calcium-channel blockers, etripamil slows atrioventricular nodal conduction and prolongs atrioventricular nodal refractory periods by inhibiting calcium ion influx through the calcium slow channels in the atrioventricular node cells. A phase 1 trial in healthy volunteers demonstrated that intranasal administration of etripamil was well tolerated and caused a dose-dependent PR interval prolongation indicative of the desired pharmacological effect on atrioventricular nodal conduction. There was no observed prolongation of QRS or Fredericia-corrected QT interval. NODE-1 (Efficacy and Safety of Intranasal MSP-2017 [Etripamil] for the Conversion of PSVT to Sinus Rhythm) was a phase 2 study designed to demon- strate the superiority of etripamil over placebo for the acute termination of SVT in the electrophysiology laboratory, evaluate the safety of etripamil, and identify dose(s) to be tested in future phase 3 studies to be conducted outside the hospital environment. METHODS STUDY DESIGN AND PATIENTS. NODE-1 (NCT02296190) was a multicenter, randomized, double-blind, placebo- controlled, dose-ranging study designed to evaluate the effects of etripamil nasal spray in male and female patients 18 years of age and older with documented histories of SVT who were scheduled to undergo elec- trophysiological studies prior to planned catheter ablation. The exclusion criteria were a history of adverse reaction to intravenous (IV) verapamil, a sig- nificant or chronic condition of the nasal cavity that would interfere with intranasal drug administration, systolic blood pressure (SBP) <100 mm Hg or diastolic blood pressure <50 mm Hg at screening or at the treat- ment visit, history or evidence of congestive heart failure (except New York Heart Association functional class I) or pulmonary edema, a prolonged Bazett- corrected QT interval (>455 ms), ventricular pre- excitation, second- or third-degree atrioventricular block, pregnancy, breastfeeding, failure to agree to use an acceptable form of contraception, concomitant use of certain medications (e.g., digoxin, class I to IV antiarrhythmic drug), and documentation of an arrhythmia other than SVT. This study was carried out in accordance with In- ternational Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use and Good Clinical Practice guidelines. All sites obtained Institutional Review Board or ethics committee approval, and study-specific procedures were not conducted until after patient informed con- sent was obtained. A complete list of study sites and primary investigators is available in the Online Appendix. RANDOMIZATION. During a pre-study visit patients were randomly assigned to 1 of the 5 following study groups in a 1:1:1:1:1 ratio using an interactive web response system: placebo or etripamil at 35, 70, 105, or 140 mg. BASELINE ELECTROPHYSIOLOGICAL STUDY DATA COLLECTION. Before attempted induction of SVT, vital signs, consisting of blood pressure and heart rate, were recorded, and a continuous surface rhythm strip was obtained. Baseline vital signs were the averages of the measurements taken 10 and 20 min before SVT induction, and the time 0 vital signs were the averages of the measurements during SVT between 5 and 0 min before study drug administration. Sedation could be given during the study via single or multiple admin- istrations using minimally necessary doses of benzo- diazepines and/or narcotics at the investigator’s discretion, but a continuous sedative or analgesic or inhaled anesthetic drug was not permitted until min- ute 30 after study drug administration. SVT INDUCTION. Induction of SVT was attempted using standard pacing and programmed stimulation methods. If SVT could not be induced after a reasonable number of attempts, or could be induced but did not sustain for 5 min, IV isoproterenol was infused at a rate of 1 mg/min, and attempts to induce SVT were repeated. If SVT induction was unsuccess- ful with isoproterenol 1 mg/min, the infusion rate could be increased. If isoproterenol was used, a sur- face rhythm strip was collected once the heart rate had stabilized. If induction was successful with SEE PAGE 498 A B B R E V I A T I O N S A N D A C R O N Y M S AVRT = atrioventricular reciprocating tachycardia CI = confidence interval IV = intravenous OR = odds ratio PSVT = paroxysmal supraventricular tachycardia SBP = systolic blood pressure SVT = supraventricular tachycardia Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 490
  • 3. isoproterenol, the infusion was continued at 1 mg/min for 5 min of sustained SVT and continuing for either 15 min after study drug administration or until termination of SVT, whichever occurred first. STUDY DRUG ADMINISTRATION. After a minimum of 5 min in sustained SVT, electrophysiology laboratory personnel administered the study drug to the patient using 4 prefilled Aptar Pharma unit-dose spray de- vices via alternating nares over 30 s or less. Each device delivered 100 ml of placebo or 35 mg of etri- pamil. The appropriate combination of 4 devices containing active compound or placebo was used to deliver the assigned, randomized dose of etripamil (0, 35, 70, 105, or 140 mg). The devices were prefilled, packaged into drug kits, and administered in a spe- cific order, with sprays of etripamil delivered before sprays containing placebo. ASSESSMENTS AFTER STUDY DRUG ADMINISTRATION. Starting at time 0, vital signs were recorded every 2 min for 30 min, and the cardiac rhythm was continuously monitored. A successful conversion was defined as conversion of SVT to sinus rhythm lasting at least 30 s within 15 min after study drug adminis- tration. For patients who did not convert within 15 min after study drug administration, SVT was then terminated by standard intracardiac stimulation techniques. Surface rhythm strips were collected in all patients at the time of conversion and at 15 min after study drug administration. At any time beyond 30 min after study drug administration, the patient’s scheduled ablation (outside the scope of this study) could be performed at the discretion of the treating physician. FOLLOW-UP PROCEDURES. From 12 h to 5 days after the procedure, physical examination, assessment of vital signs, 12-lead electrocardiography, and clinical laboratory analysis were performed. Adverse events and concomitant medications were recorded. STATISTICAL METHODS. Efficacy analyses were performed in randomized patients in whom SVT was induced and sustained for 5 min, had received study drug, and completed the assessment of conversion to sinus rhythm (i.e., evaluable population). Safety an- alyses were based on all randomized patients who were induced into SVT and received study drug. Sample size determination. It was expected that there would be a 50 percentage point difference in the SVT conversion rate between patients receiving pla- cebo and any dose of etripamil within 15 min after study drug administration (i.e., 30% for placebo, 80% for etripamil). Accounting for a 2-sided test with a type I error rate of a ¼ 0.05, 20 patients per group provided 84% power when using the Fisher exact test. Therefore, a sample size of at least 100 evaluable patients (i.e., at least 20 evaluable patients per group) was considered appropriate to meet study objectives. Statistical analyses. The primary efficacy endpoint was the rate of successful SVT conversion to sinus rhythm lasting at least 30 s within 15 min of study drug administration. The primary efficacy analysis was performed using the Fisher exact test to compare the conversion rate between each etripamil group and the placebo group. To control the type I error rate of a ¼ 0.05, a hierarchical procedure was used for hy- pothesis testing. The hierarchy first compared the conversion rate in the highest etripamil dose (140 mg) versus placebo; if that comparison resulted in a p value <0.05, the next highest etripamil dose (105 mg) was compared with placebo. These com- parisons continued in a stepwise fashion until either all doses were tested or a comparison yielded a p value of $0.05, in which case all doses prior to that comparison were considered to have statistically significant conversion rates versus placebo. A 2-sided test with a significance level of 0.05 was used for each comparison. The odds ratio (OR), 95% confidence in- terval (CI), and p value for the OR were calculated and tabulated for each pairwise treatment comparison. Conversion rates were analyzed using a Cochran- Mantel-Haenszel test and stratified by isoproterenol to test for an association between treatment and conversion rate. Secondary and exploratory efficacy analyses were performed as follows. 1) The Cochran- Armitage test for trend was used to assess the presence of an association between conversion rate and the etripamil dose groups. 2) The dose-response relationship (percentage conversion at time 15) was assessed using a generalized linear model with logit link and binomial distribution. 3) Time to conversion was summarized for patients whose SVT was suc- cessfully converted to sinus rhythm after study drug administration. The distribution of conversion times from initiation of treatment to SVT termination and conversion to sinus rhythm during a 15-min period of observation was estimated using the Kaplan-Meier method. Patients who did not convert within 15 min after study drug administration were censored at that time point. In a post hoc analysis, the hazard ratio and 95% CI were based on a Cox proportional hazards regression model with treatment as a factor. 4) The interaction test between etripamil and isoproterenol was carried out in an analysis-of-covariance model. Continuous safety data are summarized with descriptive statistics. Discrete safety data are sum- marized with frequency counts. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al. J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray 491
  • 4. RESULTS BASELINE PATIENT CHARACTERISTICS. A total of 199 patients were randomized into the double-blind study; 95 patients withdrew prior to dosing: 70 patients because of inability to induce (n ¼ 42) or sustain (n ¼ 28) SVT, 5 patients on the basis of physician discretion, 1 patient lost to follow-up, 1 because of withdrawal of consent, and 18 patients for other reasons. A total of 104 patients had SVT induced and sustained for $5 min and were dosed with study drug. The median age was 55.0 years (mean 52.2; range: 19 to 85 years), and the median body mass index was 28.57 kg/m2 (mean 29.35 kg/m2 ; range: 19.0 to 64.1 kg/m2 ). Overall, there were more female than male patients (n ¼ 59 [56.7%] vs. n ¼ 45 [43.3%], respectively). The predominant races were white (80.8%) and black or African American (12.5%). There were no imbalances in baseline characteristics across the 5 treatment groups. Isoproterenol was given to 46.2% of patients. The mean heart rate in SVT at time 0 was 177 beats/min in the placebo group and 168, 173, 180, and 155 beats/min in the etripamil 35-, 70-, 105-, and 140-mg groups, respectively. The mecha- nism of induced SVT was atrioventricular nodal re-entrant tachycardia in 87% of patients. A total of 29 sites dosed patients. Twenty-six sites dosed be- tween 1 and 5 patients, and 3 sites dosed between 10 and 13 patients (i.e., 33% of the study population). The percentage of patients dosed by number of patients per site is shown in Figure 1. EFFICACY. Conversion rates from SVT to sinus rhythm. Of the 104 patients in the evaluable popu- lation, 20 received etripamil 35 mg, 23 received 70 mg, 20 received 105 mg, 21 received 140 mg, and 20 received placebo. The percentages of patients in whom SVT converted to sinus rhythm within 15 min after study drug administration and in whom sinus rhythm was maintained for at least 30 s (primary ef- ficacy endpoint) were 35%, 65%, 87%, 75%, and 95% in the placebo and etripamil 35-, 70-, 105-, and 140- mg groups, respectively (Table 1). Applying the pre- specified hierarchy for determining significance, the 3 highest etripamil doses of 140, 105, and 70 mg showed statistically significant higher conversion rates compared with placebo, with respective conversion rate differences from placebo of 60% (OR: 37.14; 95% CI: 3.84 to 1,654.17; p < 0.0001), 40% (OR: 5.57; 95% CI: 1.19 to 27.63; p ¼ 0.0248), and 52% (OR: 12.38; 95% CI: 2.28 to 82.26; p ¼ 0.0006). There was a statistically significant trend between treatment with etripamil and conversion to sinus rhythm (p < 0.0001, Cochran- Armitage test). A maximal-efficacy dose-response model best fit the dose-response relationship; the conversion rate increased with the dose with a steep slope until 70 mg and reached a plateau at higher doses (Figure 2). Overall, no differences in conversion rates were observed on the basis of the administration or lack of administration of isoproterenol. Time to conversion from SVT to sinus rhythm. For the 3 etripamil doses with statistically significant conver- sion rates compared with placebo (70, 105, and 140 mg), the time at which 50% of patients converted FIGURE 1 Percentage of the Study Population Dosed by the Number of Patients Dosed per Site 24% 7% 15% 6% 15% 33% Number of Patients Dosed per Site 2 3 4 5 7 10-13 3 sites dosed 10, 11, and 13 patients (i.e., 33% of the total number of dosed patients); 5 sites dosed 5 patients (i.e., 24% of the total number of dosed patients); 21 sites dosed 1 to 4 patients (i.e., 43% of the total number of dosed patients). TABLE 1 Summary of Conversion of Induced, Sustained Supraventricular Tachycardia to Sinus Rhythm Within 15 min After Study Drug Administration Placebo (n ¼ 20) Etripamil 35 mg (n ¼ 20) Etripamil 70 mg (n ¼ 23) Etripamil 105 mg (n ¼ 20) Etripamil 140 mg (n ¼ 21) Patients converted to sinus rhythm 7 (35) 13 (65) 20 (87) 15 (75) 20 (95) p value (vs. placebo), Fisher exact test 0.1128 0.0006 0.0248 <0.0001 Values are n (%). Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 492
  • 5. was <3 min, with the shortest time in the etripamil 140-mg group (1.8 min). Because only 35% patients converted to sinus rhythm within 15 min in the pla- cebo group, the time at which 50% of patients con- verted cannot be determined. Distribution of time to conversion for each patient is reported as a Kaplan-Meier plot (Figure 3). Patients who did not convert within 15 min after study drug administration were censored at 15 min. On the basis of a Cox proportional hazards regression model with treatment as a factor, the 3 highest etripamil doses of 140, 105, and 70 mg showed statistically significant shorter time to conversion compared with placebo (Table 2). SAFETY. At least 1 adverse event, per patient, considered related to the study drug according to the investigators’ assessment, was reported in 17 patients (85.0%) in the etripamil 35-mg group, 18 (78.3%) in the 70-mg group, 15 (75.0%) in the 105-mg group, 20 (95.2%) in the 140-mg group, and 4 (20.0%) in the placebo group. The incidence of adverse events was not dose dependent. Most adverse events were mild (44.2%) or moder- ate (24.0%) across all treatment groups. A total of 3 severe adverse events were considered possibly related to etripamil. One patient who received 35 mg experienced facial flushing, shortness of breath, and chest discomfort; 1 patient who received 105 mg had nausea and vomiting; and 1 patient who received 105 mg had a serious adverse event of cough. There were no adverse events that led to study discontin- uation or death. Adverse events that occurred with an incidence of >10% in any etripamil group and $10% in the placebo group were nasal discomfort, nasal congestion, oropharyngeal pain, rhinorrhea, cough, dysgeusia, increased lacrimation, vomiting, and nausea. One patient had an episode of second-degree atrioven- tricular block with hypotension beginning 5 min after conversion to sinus rhythm immediately following administration of etripamil 140 mg, which resolved after 43 min, and ablation was subsequently performed. Vital signs were recorded before induction into SVT and every 2 min for 30 min after study drug was given. The mean SBP decreased from the baseline measurements (20 and 10 min before SVT induction) to measurements done while in SVT before study drug administration (time 0). Compared with baseline prior to SVT induction, SBP measurements recorded from 2 to 16 min after study drug administration demonstrated no statistically significant decrease in mean SBP in the placebo, 35-mg, and 70-mg groups, and a maximum statistically significant decrease of 17 mm Hg 6 min post-dose when 65% of the patients were in sinus rhythm in the 105-mg group, and 20 mm Hg 6 min post-dose when 80% of the patients were in sinus rhythm in the 140-mg group. There was no decrease in mean SBP compared with baseline from 16 to 30 min after study drug administration when all the patients were in sinus rhythm (Figure 4). In the placebo group and the combined active substance groups, the minimum mean heart rates (84.7 and 82.4 beats/min, respectively) were similar. The minimum heart rate in any individual patient occurring within 30 min after study drug adminis- tration was 58 beats/min in the placebo group and 70, 55, 71, and 47 beats/min in the etripamil 35-, 70-, 105-, and 140-mg groups, respectively. There was no sta- tistically significant change between baseline and 15 min post-dose in mean Bazett-corrected QT intervals. DISCUSSION In this study, the 3 highest doses of etripamil tested demonstrated the ability to terminate SVT with very high and statistically significant conversion rates compared with placebo (Central Illustration). The median time to conversion for each of the etripamil doses was <3 min. From an efficacy standpoint, this makes this intranasal calcium-channel blocker an FIGURE 2 Etripamil Dose Response Maximal Efficacy Model 0 4020 60 Etripamil Dose mg %PatientsSuccessfullyConverted Emax Model (E0 = 1-Emax; D50 = 32.5; Emax = 0.65) R2 = 0.915 10080 120 140 50 40 30 80 90 70 60 100 Actual % Conversion Emax Model Curve D50 ¼ dose (milligrams) related to 50% of the maximal effect; E0 ¼ placebo effect; Emax ¼ maximal efficacy. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al. J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray 493
  • 6. excellent drug candidate to fill the existing gap in therapy for the rapid termination of SVT outside of the health care setting. Judicious selection of etripa- mil doses in future studies may be able to mitigate decreases in SBP, which occurred most often and for the longest duration in the etripamil 140-mg group. During the course of the study it was recognized that the discomfort and cough possibly related to the presence of the drug in the throat could be dramati- cally reduced by elevating the head of the bed to 30 , keeping the chin close to the chest, and trying to avoid inhaling or swallowing the drug. It is conceiv- able that providing patients with this information could reduce or eliminate these adverse events in the future. ETRIPAMIL PHARMACOLOGY AND CHARACTERISTICS. Etripamil is a short-acting, phenylalkylamine class L-type calcium-channel blocker. It follows a 2- compartment pharmacokinetic model with a time to maximum plasma concentration of approximately 8 min and a mean first half-life of about 20 min across all doses tested when administered intranasally. The drug is metabolized by ubiquitous serum esterases, and the major metabolite is an inactive carboxylic acid. Dose-dependent side effects (nasal congestion, oropharyngeal pain) are most likely related to the intranasal route of administration. Neither animal nor human studies demonstrated prolongation of the QRS duration or corrected QT interval. The shelf life of etripamil is 1 year. FIGURE 3 Kaplan-Meier Plot of Conversion 15 min After Study Drug Administration 0 5 Time Since First Study Drug Administration (Minutes) CumulativeConversionRate(%) 10 15 + + censored + + + + 20 16 14 13 20 9 7 6 23 4 3 2 20 7 5 4 21 Placebo 35 mg 70 mg 105 mg 140 mg Number at risk: etripamil etripamil etripamil etripamil 4 3 1 0.4 0.2 0.0 1.0 0.8 0.6 Placebo Etripamil 35 mg Etripamil 70 mg Etripamil 105 mg Etripamil 140 mg Patients who did not convert within 15 min after study drug administration were censored at 15 min. TABLE 2 Survival Analysis of Patients Converted to Sinus Rhythm at 15 min After Study Drug Administration Placebo (n ¼ 20) Etripamil 35 mg (n ¼ 20) Etripamil 70 mg (n ¼ 23) Etripamil 105 mg (n ¼ 20) Etripamil 140 mg (n ¼ 21) Patients converted 7 (35.0) 13 (65.0) 20 (87.0) 15 (75.0) 20 (95.2) Patients censored* 13 (65.0) 7 (35.0) 3 (13.0) 5 (25.0) 1 (4.8) Kaplan-Meier estimate, min Q1 7.08 2.28 1.57 2.13 1.23 Median NC 4.38 2.82 3.54 1.92 95% CI 6.07–NC 2.20–NC 1.63–3.25 2.07–8.13 1.23–2.90 Q3 NC NC 3.88 NC 3.27 Treatment comparison (vs. placebo)† Hazard ratio 2.43 4.99 3.13 6.67 95% CI for hazard ratio 0.97–6.11 2.09–11.93 1.27–7.71 2.79–15.94 p value 0.0587 0.0003 0.0131 0.0001 Values are n (%) unless otherwise indicated. *Patients who did not convert within 15 min after study drug administration are censored at 15 min after study drug administration. †The hazard ratio and 95% CI are based on a Cox proportional hazards regression model with treatment as a factor. CI ¼ confidence interval; Median ¼ time to conversion of 50% of the patients; NC ¼ not calculated; Q1 ¼ 25th percentile; Q3 ¼ 75th percentile. Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 494
  • 7. CURRENT TREATMENTS FOR SVT. All medications currently approved for the acute termination of SVT must be administered in the presence of a trained health care professional and require the establish- ment of IV access along with real-time rhythm monitoring. IV beta-blockers and calcium-channel blockers are effective for acute treatment in patients with hemodynamically stable SVT. Oral beta-blockers and calcium-channel blockers alone or in combina- tion may be self-administered (“pill-in-the-pocket”) for acute treatment of well-tolerated SVT, with mean times to conversion of approximately 30 min or longer, but the overall efficacy and safety of the self- administration of these medications remains unclear because of the lack of scientific evidence and poten- tial risk for hypotension and/or syncope (1,2). Anti- arrhythmic drugs such as flecainide, which are not approved for this indication, have been used as a “pill-in-pocket” strategy (3), but with small studies showing variable conversion rates of about 50%, often approximating the placebo conversion rate. Mean conversion times were 1 h or longer, although by 2 h up to 80% of patients may spontaneously convert. Additionally, multiple factors limit the abil- ity to prescribe these and other antiarrhythmic drugs: known or suspected coronary artery disease, left ventricular dysfunction, borderline or prolonged QT interval, and unfavorable or unknown metabolizer status. FUTURE EVALUATION. Etripamil will need to be evaluated in future studies that are performed outside of the electrophysiology laboratory in nonsupine, nonsedated patients to confirm its efficacy in a real-world environment and to demon- strate an appropriate safety profile for self- administration without medical supervision. The observed balance between efficacy and safety in the 70-mg group makes this dose a good candidate for future studies. STUDY LIMITATIONS. This study was carried out during an electrophysiology study prior to a planned ablation in a carefully monitored and controlled hospital environment, which introduced elements that differ from the real-world setting in which etripamil nasal spray might ultimately be used. The use of conscious sedation in the electrophysiology laboratory reduces circulating catecholamines (4,5), which could alter the time to spontaneous conver- sion along with the etripamil-related conversion rate due to effects on atrioventricular node conduction properties. Sedation may also predispose patients to hypotension, which may not be seen in a non- procedural setting. The possibility of catheter FIGURE 4 Mean Æ SE Systolic Blood Pressure Over Time Baseline 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Time (Minutes, Post Dose) SystolicBloodPressure(mmHg) 120 110 150 140 130 Placebo Etripamil 35 mg Etripamil 70 mg Etripamil 105 mg Etripamil 140 mg * * * * ** * * Baseline is defined as the average of the 20-min and 10-min pre-dose measurements. Time 0 is defined as the average of the measurements during supraventricular tachycardia between 5 and 0 min before study drug administration. *p 0.05 versus baseline. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al. J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray 495
  • 8. movement causing SVT termination exists, which could affect efficacy results. It is conceivable that at least some of the adverse events associated with drug administration (i.e., supine position) could be eliminated or minimized if patients are allowed to self-administer the drug in a more optimal position outside of the electrophysiology laboratory envi- ronment. Because all patients were converted, per protocol, by overdrive pacing after 15 min in SVT, the time to spontaneous conversion for the 13 remaining patients who received placebo is un- known. Analysis of the time to conversion, for pa- tients who were inducible into sustained SVT, was limited to 15 min in this proof-of-concept study, which could be considered too short to evaluate the spontaneous time to conversion in the placebo group. Almost 90% of patients had atrioventricular nodal re-entrant tachycardia, and thus the efficacy and safety in AVRT was less well established in this study. CONCLUSIONS Etripamil, an intranasally administered, L-type calcium-channel blocker, demonstrated high efficacy for rapid SVT termination and conversion to sinus rhythm and was generally well tolerated. The results of this study are promising and support the ongoing development of this new intranasal calcium-channel blocker for the acute termination of SVT, with a goal of providing this therapy for patient self-administration in the “real world” outside a health care setting. This has the potential to change the treatment paradigm for the acute management of SVT. ACKNOWLEDGMENTS The authors thank Data Monitoring Committee members John P. DiMarco, MD, PhD, Mark N.A. Estes, MD, Hussein R. Al-Khalidi, PhD, and Murray Ducharme, PharmD, and Pavine Lefevre, PhD, for the dose-effect analysis. ADDRESS FOR CORRESPONDENCE: Dr. Francis Plat, Milestone Pharmaceuticals, 1111 Dr.-Frederik-Philips Boulevard, Suite 420, Saint-Laurent, Quebec H4M 2X6, Canada. E-mail: fplat@milestonepharma.com. CENTRAL ILLUSTRATION Conversion Rate (%) of Induced Paroxysmal Supraventricular Tachycardia Within 15 min of Study Drug Administration Placebo Etripamil 35 mg Etripamil 70 mg Etripamil 105 mg Etripamil 140 mg 35 65 * 87 * 75 * 95 0 90 80 70 60 50 40 30 20 10 100 Stambler, B.S. et al. J Am Coll Cardiol. 2018;72(5):489–97. *p 0.05 versus placebo. PERSPECTIVES COMPETENCY IN MEDICAL KNOWLEDGE: Etri- pamil, a short-acting calcium-channel blocker, when administered as a nasal spray, is more effective than placebo in terminating induced SVT, though a high dose was associated with lowering of blood pressure. TRANSLATIONAL OUTLOOK: Larger clinical studies are needed to confirm the safety and efficacy of etripamil nasal spray for termination of spontane- ously occurring episodes of SVT. Stambler et al. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Conversion of Tachycardia With Etripamil Nasal Spray J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 496
  • 9. R E F E R E N C E S 1. Alboni AP, Tomasi C, Menozzi C, et al. Efficacy and safety of out-of-hospital self-administered single-dose oral drug treatment in the manage- ment of infrequent, well-tolerated paroxysmal supraventricular tachycardia. J Am Coll Cardiol 2001;37:548–53. 2. Yeh SJ, Lin FC, Chou YY, Hung JS, Wu D. Termination of paroxysmal supraventricular tachycardia with a single oral dose of diltiazem and propranolol. Circulation 1985;71:104–9. 3. Hamer AW, Strathmore N, Vohra JK, Hunt VD. Oral flecainide, sotalol, and verapamil for the termination of paroxysmal supraventricular tachycardia. Pacing Clin Electrophysiol 1993;16 7 Pt 1:1394–400. 4. Tomicheck RC, Rosow CE, Philbin DM, Moss J, Teplick RS, Schneider RC. Diazepam-fentanyl inter- action-hemodynamic and hormonal effects in coro- nary artery surgery. Anesth Analg 1983;62:881–4. 5. Dörges V, Wenzel V, Dix S, et al. The effect of midazolam on stress levels during simulated emergency medical service transport: a placebo-controlled, dose-response study. Anesth Analg 2002;95:417–22. KEY WORDS atrioventricular nodal re-entrant tachycardia, atrioventricular reciprocating tachycardia, calcium-channel blocker, conversion rate, episodic treatment, paroxysmal supraventricular tachycardia APPENDIX For a complete list of study sites and primary investigators, please see the online version of this paper. J A C C V O L . 7 2 , N O . 5 , 2 0 1 8 Stambler et al. J U L Y 3 1 , 2 0 1 8 : 4 8 9 – 9 7 Conversion of Tachycardia With Etripamil Nasal Spray 497