SlideShare a Scribd company logo
1 of 15
Download to read offline
REVIEW ARTICLE 
published: 17 September 2014 
doi: 10.3389/fneur.2014.00179 
Behavioral models of tinnitus and hyperacusis in animals 
Sarah H. Hayes1*, Kelly E. Radziwon1, Daniel J. Stolzberg2 and Richard J. Salvi 1 
1 Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of NewYork, Buffalo, NY, USA 
2 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University ofWestern Ontario, London, ON, Canada 
Edited by: 
Arnaud Norena, Université de 
Provence, France 
Reviewed by: 
Martin Pienkowski, Salus University, 
USA 
Alexander Galazyuk, Northest Ohio 
Medical University, USA 
*Correspondence: 
Sarah H. Hayes, Department of 
Communicative Disorders and 
Sciences, Center for Hearing and 
Deafness, University at Buffalo, The 
State University of NewYork, 137 
Cary Hall, 3435 Main Street, Buffalo, 
NY 14214, USA 
e-mail: shhayes@buffalo.edu 
The phantom perception of tinnitus and reduced sound-level tolerance associated with 
hyperacusis have a high comorbidity and can be debilitating conditions for which there 
are no widely accepted treatments. One factor limiting the development of treatments for 
tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. 
Therefore, the purpose of this review is to highlight the current animal models of tinnitus 
and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To 
date, this is the first review to include models of both tinnitus and hyperacusis. 
Keywords: tinnitus, hyperacusis, lick suppression, operant conditioning, startle reflex, reaction time, behavior 
INTRODUCTION 
Subjective tinnitus refers to the perception of a sound in one or 
both ears, or from inside the head, in the absence of an external 
acoustic source (1, 2). The phantom sound of tinnitus is a serious 
condition affecting 10–15% of the general population, with ~1% 
of the population experiencing a debilitating form of chronic tin-nitus 
that interferes with daily life (3). Hyperacusis, defined as a 
hypersensitivity to moderate-intensity sounds (4–7), is a condi-tion 
affecting ~6% of the general population and often co-occurs 
with tinnitus (4). The prevalence of hyperacusis in the tinnitus 
population has been estimated to be as high as 80% (8), suggest-ing 
a common mechanism of dysfunction for these two perceptual 
disorders. 
At present, the neural basis of tinnitus and hyperacusis remains 
elusive, and there are no widely accepted treatments or cures for 
individuals suffering from these conditions. However, studies in 
both humans and animals have led to a number of proposed 
neurophysiological models thought to underlie these conditions 
including tonotopic map reorganization, changes in spontaneous 
activity, or altered neural synchrony along the auditory pathway 
[for review, see Ref. (9)]. Rigorous testing of these hypotheses, as 
well as screening for potential therapeutic treatments, requires a 
reliable animal behavioral paradigm that not only identifies ani-mals 
with tinnitus and/or hyperacusis but also allows for the use of 
invasive techniques, such as electrophysiological recordings from 
the brain and neuroanatomy, which are inappropriate for use in 
human patients. 
In order to identify and investigate potential underlying mech-anisms 
of tinnitus and hyperacusis, a number of animal models 
have been developed (10–15). Since an animal cannot directly 
communicate its subjective experiences,behavioral paradigmsthat 
extrapolate an animal’s perception based on changes in behavioral 
performance have been devised to indicate whether an animal is 
experiencing tinnitus and/or hyperacusis. Such paradigms have 
utilized a number of behavioral training techniques including lick 
or lever pressing suppression (10–14), two-choice operant con-ditioning 
(16–18), and reflex modification (15). Ultimately, any 
behavioral model of hyperacusis or tinnitus should closely mirror 
what we know about these disorders in the human population. 
When evaluating animal models of tinnitus and hyperacusis, a 
number of important factors should be considered, including 
whether the method, time-course, and variability of tinnitus or 
hyperacusis induction, aswell as any measures of pitch or loudness, 
are consistent with evidence from human tinnitus/hyperacusis 
patients. Furthermore, behavioral paradigms should be resis-tant 
to confounding influences, such as hearing loss, that often 
accompany noise or drug-induced tinnitus/hyperacusis. 
Thus, the goal of this review will be to evaluate current ani-mal 
behavioral models of tinnitus and hyperacusis with a focus 
on the most widely used and newest paradigms in the literature. 
For each paradigm, a brief summary will be provided as well as a 
discussion of the paradigm’s major advantages and disadvantages. 
Important factors such as consistency with the human condition 
and resilience to the secondary effects of drug or noise exposure 
will also be discussed. Although previous reviews have thoroughly 
evaluated many of the proposed animal models of tinnitus (19– 
25), to our knowledge, this review will be the first to incorporate 
evaluations of animal models of hyperacusis, as well as models of 
tinnitus, which is necessary given the frequent co-occurrence of 
these two disorders. 
HUMAN STUDIES OF TINNITUS 
In order to evaluate animal models of tinnitus, it is important 
to have an understanding of the key characteristics of tinnitus in 
the human population. Much of what we know about the fea-tures 
of tinnitus comes from subjective descriptions by tinnitus 
www.frontiersin.org September 2014 | Volume 5 | Article 179 | 1
Hayesetal. Animal modelsoftinnitusandhyperacusis 
patients.Studiesinwhichtinnitusisinducedinindividualsfol- 
lowingexposuretoloudsoundorototoxicagents,aswellasstudies 
ofindividualswithlong-standingtinnitus,provideuswithinfor- 
mationregardingtinnituspitch,intensity,timecourseforonset 
followingexposure,andvariabilityofinduction. 
Measurementsoftinnituspitcharecommonlyconductedusing 
pitchmatchingtechniquesinwhichindividualsarepresentedwith 
tonesofvaryingfrequencyandaskedtoselectthetonethatis 
closestinpitchtotheirtinnitus[foramethodologicalreview, 
seeRef.(26)]. Anumberofstudieshavedemonstratedalink 
betweenthepitchoftinnitusandtheconfigurationofanindivid- 
ual’shearingloss.Tinnituspitchmeasurementshavebeenmade 
in individualsimmediatelyfollowingexposuretoloudsounds 
(27–29) andinindividualswithlong-standingtinnitus(30–33). 
Followingacuteexposuretoloudsound,thepitchoftinnitus 
was foundtooccurabovethefrequencyofthenoiseexposure, 
eitherinthehigh-frequencyedgeofasharplylocalizedhearing 
loss (27) orclosetotheregionofmaximumhearinglosspro- 
ducedbythenoiseexposure(28, 29) (Figure1A). Similarly,in 
individualswithlong-standinghearinglossandtinnitus,thetin- 
nituspitchwasmatchedeithertothefrequenciesattheedgeof 
the hearingloss(31), ortothefrequencyregionofmaximalhear- 
ing loss(32) (Figure1B). Tinnituspitchmatchingmeasureshave 
also beencompletedinindividualsexposedtosodiumsalicylate,a 
drugknowntoreliablyinducetemporaryhearinglossandtinnitus 
in humansandanimalswhentakenathighdoses[forreview,see 
Ref.(34, 35)]. Althoughsomestudieshavematchedthepitchof 
salicylate-inducedtinnitusandhearinglossacrossabroadrangeof 
frequencies,salicylate-inducedtinnitusandhearinglossareboth 
most commonlyreportedtooccuratthehighfrequencies(34). In 
general,thepitchoftinnitusresultingfromacutenoiseexposureor 
long-standinghearinglosscommonlyoccurswithintheregionof 
hearinglossandabovethefrequencyofthenoiseexposureused 
toinducehearingloss(36). However,measurementsoftinnitus 
pitcharecomplicatedbyfindingsthattinnituspitchalsodepends 
ontheetiologyofthetinnitus(37) andthattinnituspitchtends 
tobelowerinfrequencyforindividualswithnormalaudiometric 
profiles,i.e.,normalthresholdsat250–8000Hz(30). 
FIGURE 1|Measurementsoftinnituspitchinhumansubjectswithacute 
noise-induced tinnitusorlong-standingtinnitus. (A) Followingacutenoise 
exposure,tinnituspitchhasbeenfoundtooccurabovethefrequencyofthe 
noise exposureclosetotheregionofmaximalhearinglossgeneratedbythe 
noise exposure[fromRef.(29) withpermission;NIST,noise-inducedshort 
duration tinnitus;MTS,maximumthresholdshift]. (B) Similarly,tinnituspitch 
has beenmatchedtofrequenciesintheregionofmaximumhearinglossfor 
individuals withlong-standingtinnitus[fromRef.(32)]. 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 2
Hayesetal. Animal modelsoftinnitusandhyperacusis 
Loudnessmatchinghasalsobeenconductedonindividu- 
als experiencingtinnitusfollowingexposuretoloudsoundsor 
sodiumsalicylate,aswellasinindividualswithlong-standing 
hearinglossandtinnitus.Themedianintensityoftinnitusresult- 
ing fromacuteexposuretoloudnoisewasfoundtobe9dBSL, 
whereasthetinnitusresultingfromsodiumsalicylatewasmatched 
at 5–15dBSL(29, 34). Inindividualswithlong-standingtinnitus, 
the intensityreportedbyindividualsrangesfrom7.1to18.9dBSL 
(31). However,loudnessrecruitment,steeperthannormalloud- 
ness growthfunctionsfoundinpatientswithhearingloss(5), can 
contaminatetinnitus-loudnessmatchesbyunderestimatingthe 
perceivedloudnessoftinnitus(26). 
Additionalfactorstoconsiderregardingtinnitusinthehuman 
populationarethetimecourseforonsetfollowingexposureto 
noiseorsodiumsalicylateandthevariabilityofitsinduction.For 
individualsexposedbrieflytoloudnoise,tinnitusonsetisreported 
tooccurimmediatelyfollowingtheexposure(28, 29). Giventhe 
shortdurationofnoiseexposureinsomeofthesestudies(5min), 
tinnituswasreportedtolastfornearly15minfollowingtheexpo- 
sure(29). However,followingexposuretoahighdoseofsodium 
salicylate,tinnitusonsetoccursbetween1and3hpostexposure 
and typicallydissipateswithin1–2daysfollowingtheexposure 
(34). Despitethedifferencesintinnitusonsetforacutenoise 
exposureandsalicylate,bothmethodsresultinvariabilityinthe 
inductionoftinnitus.Followingacutenoiseorsalicylateexposure, 
not allindividualsdeveloptinnitus(28, 29, 34). Interestingly,some 
individualswithapreexistinghearinglossexposedtohighcon- 
centrationsofsalicylatefailedtoexperiencetinnitus,suggestingan 
individualvariabilityforsusceptibilitytosalicylate-inducedtinni- 
tusinthispopulation(34). Thus,tinnituspitch,intensity,onset, 
and variabilityinthehumanpopulationareimportantfactorsto 
considerwhenevaluatinganimalmodelsoftinnitus. 
ANIMAL MODELSOFTINNITUS 
JASTREBOFF 
Thefirstbehavioralmodeloftinnitusinanimalswasdeveloped 
byJastreboffetal.(10). Inthis conditionedlick-suppressionpara- 
digm, ratsweretrainedtolickforwaterduringperiodsinwhich 
a steadybackgroundnoisewaspresent,andtosuppresstheirlick- 
ing duringbriefperiodsofsilence(conditionedstimulus),which 
werefollowedbyafoot-shock(unconditionedstimulus).Inthe 
initialstudy,tinnituswasinducedusinganinjectionofsodium 
salicylatefollowingtraining.Duringthetestingphase,thefoot- 
shockwasturnedoffresultingintheeventualextinctionofthe 
lick-suppressionbehavior.Therateofextinctionwasassessedover 
multipletestdaysandwasusedasanindicatorforthepresence 
oftinnitus;specifically,animalsgiventhetinnitusinducersalicy- 
latebeganlickingduringthesilentintervalsearlierthananimals 
givensalinepresumablybecausetheyheardtheirtinnitusduring 
the quietintervals.Therapidextinctionofthelick-suppression 
behaviorinthesalicylate-treatedratswasinterpretedasthepres- 
enceoftinnitusbecauseanimalswithtinnitusdonotexperience 
silenceandwereexpectedtobehaveasifasoundisbeingpresented. 
A seriesofimportantcontrolswereperformedusingthispar- 
adigmtoensurethattheobservedbehaviorwasrepresentative 
oftinnitusandnotanotherconfoundingfactorassociatedwith 
salicylateadministration.First,todemonstratethattheobserved 
resultswereauditory-specific,alightstimuluswasusedinplace 
ofthebackgroundsoundandanimalsweretrainedtosuppress 
lickingwhenthelightwasturnedoff.Salicylateadministration 
followingtrainingwiththelightstimulushadnoeffectonthe 
behavior,indicatingthattheeffectsofsalicylateareauditory- 
specific.Theeffectsofsalicylateonthirstandmotivationwere 
also controlledbyadministeringsalicylateduringtrainingaswell 
as duringtesting.Ratsgivensalicylateduringtrainingassociated 
theirtinnitusperceivedduringthesilentintervalswiththefoot- 
shockandsuppressedtheirlickingduringthesilent(tinnitus) 
intervalsduringtesting.Salicylateadministrationdidnotresultin 
a generaleffectondrinkingbehaviorsinceratsadministeredsali- 
cylateduringtraining decreased theirlickingduringsilentintervals 
whereasratsadministeredsalicylateaftertraining increased their 
lickingduringsilentintervals.Furthermore,hearinglossasacon- 
foundingfactorwasalsoinvestigatedbydecreasingtheintensity 
ofthebackgroundsound,whichdidnotaffectthebehavior. 
Theconditionedlick-suppressionparadigmoffersanumber 
ofadvantagesincludingitsrelativelyshorttrainingtimeandthe 
observationthatitisnotaffectedbyconfoundingfactorsrelated 
totinnitusinductionsuchashearinglossandnon-auditoryeffects 
ofsalicylate.However,thislick-suppressionparadigmisnotuseful 
forlong-termstudiesoftinnitusbecausethebehaviorextin- 
guishes. Sincetheanimalsaretestedinextinctionoveraperiodof 
severaldays,theynolongerremainunderstimuluscontrolwhen 
the shockisturnedoff.Additionally,theparadigmrequirescom- 
parisonofgroupsofanimals(tinnitusversuscontrol)andhas 
not beenusedforassessingthepresenceoftinnitusinindividual 
animals. 
BAUER ANDBROZOSKI 
Asmentionedabove,onelimitationoftheJastrebofflick- 
suppressionparadigmwasitsinabilitytotestforlong-termtinni- 
tusinrodents.Motivatedbytheneedtotestpharmaceuticalsfor 
treatingtinnitus,BauerandBrozoskidevelopedanaversivecondi- 
tioningbehavioralparadigmderivedfromtheJastreboffmodelin 
ordertoprovidelong-termquantitativeandqualitativeassessment 
oftinnitusperceptioninrats(11). 
SimilartotheJastreboffmodel,BauerandBrozoskideveloped 
a shock-avoidanceparadigminwhichratsweretrainedtodis- 
criminatesound(whitenoiseortonesofvariousfrequenciesand 
intensities)fromsilence(0dBSPL).Initially,therat’sbehaviorwas 
shapedtofrequentlypressaleverwhileawhitenoiseoratonewas 
presented.Thisbehaviorwasreinforcedbyavariableintervalof 
reinforcementwithafoodpellet.Oneminutesilentperiodsinter- 
ruptedthewhitenoiseandwerefollowedbyabrieffoot-shock 
if theleverwaspressed.Thisprocedurequicklytrainedtheratto 
avoidpressingtheleveronlyduringthesilentperiods.Following 
initialtraining,thefoot-shockwasturnedoninfrequently,occur- 
ringapproximatelyonceperweekperrat.Aleversuppression 
ratio, R D B 
.ACB/ , wasusedtoquantifywhetherornotthenumber 
ofleverpressesduringthecurrent1minperiod, A, differedfrom 
the immediatelyprecedingperiod, B. Avalueof R D0.0 indicated 
completesuppressionofleverpressing(i.e.,ratsreportednosound 
was present),whereasavalueof RD0.5 indicatednosuppression 
ofleverpressingcomparedtothepreviouswhitenoisestimulus 
(i.e., asoundwaspresent). 
www.frontiersin.org September 2014|Volume5|Article179 | 3
Hayesetal. Animal modelsoftinnitusandhyperacusis 
Behavioralperformanceonthistaskhasbeenobservedfollow- 
ing chronicexposuretoeithersodiumsalicylateindrinkingwater 
(11) oracuteunilateralnoisetrauma(38). Intheinitialstudyusing 
sodiumsalicylate,blood-serumlevelsofsalicylateweresimilarto 
those measuredinhumanswithsalicylate-inducedtinnitus.Rats 
treatedwithsalicylatedemonstratednodifferenceinleverpress- 
ing duringsilentintervalscomparedtocontrolanimals,butdid 
demonstratehigher R values(moreleverpressing)totonestimuli, 
withthemaximumincreasein R valueoccurringwiththe15-kHz 
tonalstimulus.Thiswasinterpretedtorepresentthepresenceof 
tinnitusinthesalicylate-treatedsubjects,asamaximalinterac- 
tionwasexpectedtooccurattonalfrequenciesthatmostclosely 
resembledthetinnitusfrequency.Theexplanationforthebehav- 
ioralshifttotonalstimuliwasthatthesalicylate-treatedsubjects 
heardthetonesdifferentlythancontrolsubjectsandperceivedthe 
tonesasmorenoise-likeduetotheirtinnitus.Inotherwords,the 
tinnitusperceptwasexpectedtointeractwiththeperceptionofthe 
externallypresentedtonalstimulitoproducea“noisy”perceptif 
the tonesweresimilartothetinnituspitch.Sincetheanimalswere 
trainedtopressduringnoisestimuli,theanimalswereexpected 
topressmoreoftenwhenthetesttonesinteractedwiththeirtin- 
nitustocreatethisnoise-likepercept.Thetinnitus-likebehavior 
was reversedintheexperimentalgroupsoonaftertreatmentwith 
salicylatewasstopped. 
Inasubsequentstudy(38), a1-or2-hunilateraltraumatizing 
noiseexposurecenteredat16kHzwasusedtoinducetinnitusin 
ratstrainedonthisbehavioralparadigm.Followingthe1-hnoise 
exposure,themaximumshiftin R valueoccurredduringtest- 
ing sessionswherethe20-kHztesttonestimuluswaspresented. 
However,unlikethepreviousstudyinwhichsalicylate-induced 
increases in R valuewereinterpretedastheevidenceoftinnitus, 
unilateralnoiseexposureresultedinasignificant decrease in R 
valuefortonalstimuliwhichwasinterpretedasthepresenceof 
tinnitus.Thereductionin R valueinthenoise-exposedanimals 
was reportedforupto17monthsfollowingnoiseexposure,i.e., 
persistenttinnitus. 
Importantly,inthesamestudy,thepossibleconfoundingeffects 
ofhearinglosswerecontrolledbyincludinganadditionalexperi- 
mentalgroup,whichwerenotnoise-exposedbutwereoutfitted 
withfoamearplugsfixedintheearcanalwithcyanoacrylate. 
Thesuppressionratio, R, ofthisgroupwasunaffectedbythe 
~40 dBconductivehearinglossduetotheearplug.Thisisstrong 
evidencethatthebehavioralparadigmisrobusttoamoderate 
unilateralconductivehearingloss;however,thisdoesnotexclude 
the possibilitythatunilateralsensori-neuralhearingloss,andthe 
subsequentloudnessrecruitment,maybeaconfoundingfactor. 
Thereareafewnotablestrengthsofthisbehavioralparadigm 
fortheassessmentoftinnitusinratsincludingtheabilitytotest 
subjectsoverlongperiodsoftime,itsresiliencetounilateralcon- 
ductivehearingloss,abilitytodeterminetinnituspitch,andthe 
rigorthroughwhichtheparadigmhasbeentestedbyitscreators. 
One limitationoftheparadigmisthattheresultsarepresented 
as ameanofallanimalsperformingwithinagroup.Whilethis 
approachmaybeeffectiveandappropriatefortestingtheviability 
ofvariouspharmaceuticalsusinggroupstatistics,itislesseffective 
in assessingtinnitusinanindividualsubject,andthetimecourseof 
tinnitusonset.Anotherdisadvantageoftheparadigmisthatsince 
onlyonetonefrequencyispresentedduringeachsession,many 
testingsessionsarerequiredtodeterminethepitchoftinnitus. 
Additionally,usingthisparadigm,tinnitus-likebehaviordoesnot 
appearuntilweeksfollowingexposuretounilateralnoisetrauma, 
a resultatoddswiththehumanliteratureinwhichtinnitusonset 
typicallyoccursimmediatelyfollowingexposuretointensenoise 
(27–29). Furthermore,thereislittleevidenceinthehumanlit- 
eratureindicatingthattinnitusinterfereswiththeperceptionof 
externaltonesassuggestedbytheauthors.Indeed,externalsounds 
~5–15 dBabovethresholdsmaybequiteeffectiveinsuppressing 
tinnitus(26). 
HEFFNER 
InanattempttoimproveupontheJastrebofflick-suppression 
paradigm,HeffnerandHarrington(12) trainedhamstersina con- 
ditionedsuppression/avoidanceprocedure todrinkinthepresence 
ofabroad-bandnoiseorvarioustones,andtostopdrinkingin 
the absenceofthesesounds(silence)toavoidashock.Although 
the lick-suppressionmethodsweresimilar,twocrucialdifferences 
existbetweentheJastreboffandHeffnerparadigms.Forone,the 
animals intheHeffnerconditionedsuppressionparadigmunder- 
wentextensivetraininginthehopesoftestingindividualanimals 
fortinnitus.Jastreboff,ontheotherhand,tooklesstimetotrain 
eachanimalbutcouldonlyassessgroupsofanimalsfortinni- 
tus.Anotherkeydifferencebetweenthetwoparadigmsisthat 
the shockwasavoidableintheHeffnerconditionedsuppression 
paradigmwhereastheelectricshockwasunavoidableintheJas- 
treboffparadigm.Despitethesedifferences,thehypothesisfor 
bothproceduresremainedthesame.Namely,whentheshock 
was turnedoffduringtesting,animalswithnoise-induced(12) or 
salicylate-induced(10) tinnituswerehypothesizedtoextinguish 
fasterthananimalswithouttinnitus,becauseanimalswithtinni- 
tusnolongerexperiencesilence,andtherefore,shouldnotknow 
whentosuppresstheirlicking. 
Althoughtinnituscouldbeassessedinindividualanimals,the 
majordrawbackoftheHeffnerconditionedsuppressionpara- 
digmwasthatasignificantoverlapinperformanceexistedbetween 
the controlandnoise-exposedanimals(25). Moreover,sincethis 
paradigmusedextinctionasitsbehavioralmeasureoftinnitus, 
this paradigmcannotbeusedtodetectchronictinnitus(21). For 
these reasons,Heffnerandcolleaguesdevelopedanothertinnitus 
paradigmusinga two-choicesoundlocalizationprocedure. 
Duringthesoundlocalizationprocedure,animalsweretrained 
tolateralizesoundsbyrespondingtotherightsideofatestboxfor 
sounds comingfromaspeakerontherightsideandtorespondto 
the leftsideofatestboxforsoundscomingfromtheleftside(16, 
39). Animalsweregivenwaterrewardforcorrectresponsesand 
wereshockedforincorrectresponses.Importantly,silenttrials,or 
probes,wereinterspersedon~24%oftrials,whichwereneither 
reinforcednorpunishedbuttheanimalswereforcedtochoosea 
side.Thesidepreferenceduringsilenttrialswasdeterminedfor 
eachanimalpriortonoiseexposure. 
Tinnituswasinducedbysound-exposingtheearoppositeeach 
animal’ssidepreferenceduringsilenttrials(16). Forinstance,an 
animal witharight-sidebiasforsilenttrialsduringtrainingwould 
begivenaleftearsoundexposure.Accordingly,animalswithtinni- 
tusshouldswitchtheirsidepreferenceduringsilenttrialsfromthe 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 4
Hayesetal. Animal modelsoftinnitusandhyperacusis 
sidepreferredpriortonoiseexposure(therightsideintheabove 
example)totheopposite,noise-exposedside(theleftsideinthe 
aboveexample)becausetheanimalsnowhearaphantomsound 
onthatexposedside.Inaccordancewiththeirhypothesis,the 
researchersfoundthathamsters(16) andrats(39) willshifttheir 
sidepreferenceonsilenttrialstothenoise-exposed,previously 
non-preferredear,suggestingthattheyperceiveaphantomsound 
in thatear.Asanimportantcontrolcondition,simplyplugging 
oneearandproducingaconductivehearinglossdoesnotresultin 
a shiftinbehavioronsilenttrials.However,thekeyassumptionof 
this paradigmisthatexposingoneeartoloudsoundwillalways 
inducetinnituslateralizedtothatearandneverproducebilat- 
eraltinnitusortinnitusintheoppositeear.Therefore,amajor 
drawbackofthisparadigmisthatitcannotbeusedtotestdrug- 
inducedtinnitusorbinauralnoiseexposuresthatwouldlikely 
inducebilateraltinnitus. 
Yet,theadvantageofusingatwo-choiceparadigmtodetect 
tinnitusisthatanimalswithtinnitusmakea qualitatively different 
responsethananimalswithouttinnitus,whereasanimalswithtin- 
nitusinlick-suppressionparadigmslickmoreorlessthananimals 
withouttinnitus,resultingin quantitative differencesbetweenthe 
twogroupsthatmaybetheresultofotherfactors,suchashearing 
loss, thataccompanydrugornoise-inducedtinnitus(12). Inother 
words,animalsperceivingtinnitusinatwo-choiceparadigmgo 
toadifferentside,orpressadifferentlever,thananimalswith- 
outtinnitus,whereasanimalsperceivingtinnitusinsuppression 
paradigmslickmoreorlessthananimalswithouttinnitusbut 
stillperformthesamelickingbehaviorinbothcases.Sincetin- 
nitusanimalsintwo-choicetasksmakeaqualitativelydifferent 
responsethannon-tinnitusanimals,thebehaviorintwo-choice 
experimentsismoreresistanttochangesinmotivation,stress, 
hearingloss,orhyperacusisthatfrequentlyco-occurwithdrugor 
noise-inducedtinnitus(12, 17). 
RÜTTIGER 
Rüttigerandcolleagueshavedevelopedawater-reinforcedcondi- 
tionedavoidanceparadigmforratswiththegoaloflimitingthe 
needforlongperiodsofwaterdeprivationaswellasunavoid- 
ableshock(13). Animalsaretrainedtoshuttlebetweentwowater 
spoutsduringthepresentationofa70-dBSPLwhitenoiseback- 
groundsoundinordertoreceivearewardof3%sugarwater. 
Duringsilentperiods,however,theanimalsreceiveamildfoot- 
shockiftheyaccessthewaterspouts.Theanimalsaretrained 
overaperiodofweeksuntiltheirresponsestothewaterspouts 
duringsilentperiodsaresufficientlysuppressedcomparedto 
the responsesduringwhitenoisebackgroundsoundpresenta- 
tion.Importantly,avariablereinforcementrateisintroduced 
duringthefinalstagesoftraininginordertoreduceextinc- 
tionoftheresponses,giventhatboththereward(sugarwater) 
and foot-shockareturnedoffduringthetestingphase.Ani- 
mals withtinnitusareexpectedtoincreasetheirresponsesat 
the waterspoutsduringsilentperiodsindicatingthattheyare 
experiencingaphantomsound.Thisparadigmhasbeenused 
todeterminethepresenceofbothsalicylateandnoise-induced 
tinnitus(13, 40). Ithasalsobeenusedtodeterminetheinten- 
sityoftinnitusbycomparingtheresponserateofratstreated 
withsalicylatetothatofanimalsinwhichthebackground 
sound waspresentedatvaryingintensities,andwasestimated 
tobe~30dBSPL. 
Thisparadigmhasanumberofadvantages.Asmentionedpre- 
viously,itdoesnotrequirelong-termdeprivationofwateror 
presentationofanunavoidablefoot-shock.Itcanbeusedtotest 
individualanimalsfortinnitusbyinjectingsaline,asacontrol,or 
salicylateinthesameanimalsondifferentdaysandcomparing 
behavioralperformance.However,althoughtrainedanimalsare 
reportedtogo6–8monthswithouttrainingandstillperformthe 
task tocriterion,itcannotbeusedtotestanimalsrepeatedlyfortin- 
nitusoverlongdurationsduetoextinctionoftheresponsewhen 
reward/punishmentisturnedoffduringtestingandwhenper- 
sistenttinnitusispresentfollowingnoiseexposure.Furthermore, 
althoughtheparadigmhasbeenusedtodeterminetheintensity 
oftinnitus,ithasnotbeenusedtodeterminethefrequencyof 
tinnitus. 
LOBARINAS 
Lobarinasandcolleaguesintroducedaschedule-inducedpolydip- 
sia avoidanceconditioning(SIP-AC)paradigmtoassessratsfor 
salicylate-inducedtinnitus(14). Thisparadigmdifferedfromthe 
previouslymentionedlick-suppressionparadigmsintwoways. 
Forone,theanimalswerenotwaterrestricted,butwerefood 
restrictedandtrainedtolickawaterspoutwhilewaitingfora 
foodpellettodropintoatrough.IntheSIP-ACparadigm,ani- 
malswouldreceiveonefoodpelletperminuteandwouldconsume 
water,eventhoughtheywerenotwaterdeprived,whilewaiting 
foranotherpellettodrop.Thisbehaviorisreferredtoaspolydip- 
sia becausetheanimalsdrankthewatereventhoughtheywere 
not waterdeprived(14). Second,unliketheotherlick-suppression 
paradigmswheretheanimalsweretrainedtostoplickinginthe 
absenceofsound(quiet),animalsintheSIP-ACparadigmwere 
trainedtostoplickinginthepresenceofsounds.Inotherwords, 
animals couldlickforwaterinquietbutwereshockedforlicking 
duringsoundtrials.Therefore,ifanimalsexperiencetinnitusin 
the SIP-ACparadigm,theyshouldceaselickingduringquiettrials 
becausetheynowhearasound.Thebenefitofthisprocedureis 
that theshockneverhastobeturnedoffbecauseananimalwith 
tinnitusshouldnotlickduringsoundorquiettrials,andtherefore, 
wouldnotgetincorrectlyshocked.Sincetheshockisneverturned 
off,extinctionisnotaproblemwiththisparadigm;therefore,it 
can potentiallybeusedtomeasurechronictinnitus. 
However,likeallofthepreviouslick-suppressionparadigms, 
SIP-ACisnotrobusttochangesinmotivationorhearingloss 
that accompanysalicylateand/ornoise-inducedtinnitus(23). For 
instance,ananimalgivenalargedoseofsalicylatemightbecome 
sickandlessmotivatedtodrinkoverallregardlessofwhetherit 
has tinnitusornot.Similarly,ananimalwithasubstantialdrugor 
noise-inducedhearinglossmightmistakenlylickduringasound 
trial,perceivingitasaquiettrial,andreceiveashock.Sincethe 
animal isnotwaterdeprived,theanimalmightstoplickingalto- 
gethertoavoidtheshock.Therefore,ananimalwithhearingloss 
couldconceivablytestpositivefortinnitus(23). 
SEDERHOLM ANDSWEDBERG 
Recently,SederholmandSwedberg(17) trainedratsina two-choice 
operantconditioningprocedure toidentifyratswithsalicylateand 
www.frontiersin.org September 2014|Volume5|Article179 | 5
Hayesetal. Animal modelsoftinnitusandhyperacusis 
noise-inducedtinnitus.Forthisprocedure,eachratwastrained 
topressa“tone”leverwhenitheardatoneandtopressa“0Hz” 
(silence)leverwhennosoundwaspresented.Correctresponses 
wererewardedwithfoodandincorrectresponsesresultedinareset 
ofthefixedratiorequirement(20additionalleverpresses)onthe 
appropriatelever.Aftertheanimalsweretrainedtocriterion,the 
animals weretestedfollowingsalicylateadministrationorintense 
noiseexposureinaquietchamberwheretheirleverpressestothe 
“tone”leverwerecounted(17). Animalswithtinnitusshouldhave 
a greaternumberof“tone”leverpressesthan“0Hz”leverpresses 
duringtestingeventhoughnosoundispresented. 
Thebenefitsofthisprocedurearethatnoshockisrequiredto 
traintheanimals;and,giventhatthisisatwo-choiceparadigm,itis 
moreresistanttoconfoundingfactorsintinnitusinduction,such 
as hearingloss,hyperacusis,motorimpairment,andlossofmoti- 
vation,sincetheanimalsmakeaqualitativelydifferentresponse 
whentheyexperiencetinnitus(12, 17). However,thisprocedure 
requiresextensivetraining(2–3months)andtheauthorscould 
onlytraintheiranimalstocriterionusinghighstimuluslevels 
(55–65 dBSL)thatarelikelymuchhigherthantheperceivedtin- 
nitusintensity.Furthermore,sincetheratswerealwaysreinforced 
forrespondingduringtesting,itisnotclearhowlongtheanimals 
remainunderstimuluscontrol.Forinstance,afterseveraltesting 
sessions,itispossiblethattheanimalswouldrandomlypresseither 
leversincebothleversresultinfoodreward,makingthispara- 
digmproblematicforstudiesofchronictinnitus(17). Inaddition, 
leverpressingduringtestingappearshighlyvariableacrossanimals 
making tinnitusassessmentdifficult(Figures2A,B). However, 
despitethesecriticisms,thisisanewtinnitusparadigmthat,with 
moretesting,mightproveusefulinfuturetinnitusstudies. 
STOLZBERG 
A centralgoaloftinnitusresearchistoidentifyaputativeneuro- 
physiologicalcorrelateoftinnitusperception.Majoradvanceshave 
beenmadetowardthisobjectiveinelectrophysiologicalstudiesin 
humantinnituspatients(41). Whilemanyreportsexistonneu- 
rophysiologicalchangesfollowinginductionoftinnitusinanimal 
models,onlyasmallsubsethavedonesowithbehavioralconfirma- 
tionoftinnitusinalertanimalswithouttheinfluenceofanesthesia 
[e.g.,Ref.(42)]. Inanattempttoovercomethisissue,Stolzberg 
and colleaguesdevelopedanovelappetitive two-alternativeforced 
choice assay,whichisbettersuitedtoinvestigatepossibleneuro- 
physiologicalcorrelatesoftinnitusinananimalmodelbyallowing 
neuralactivitytoberecordedwhiletheanimalisactivelyexhibiting 
tinnitus-likebehavior(18). 
Stolzbergandcolleaguestrainedratstoaccessaleftfeeder 
portinthepresenceofasteady,unmodulatednarrow-bandnoise 
(NBN; 1/8thoctaveband-passnoisewithafrequencycenter 
selectedrandomlyacrosstrials),andtoaccessarightfeederport 
in thepresenceofasinusoidallyamplitudemodulatednoise(AM; 
broad-bandnoisewithamplitudemodulated100%at5Hz)or 
silence(Quiet)(Figure3B). Oneofthethreeacousticcondi- 
tions(NBN,AM,Quiet)wascontinuouslypresentinthetesting 
chamberatthestartofeachtrial.Ratsinitiatedatrialbynose- 
pokingintoacenterport(Figure3A) andmaintainedthisposition 
forarandomizedperiodof4–8suntilalightcuedthem(“go 
cue”)torespondtoafeederportbasedontheacousticcondi- 
tion.Correctresponseswerereinforcedwithafoodpelletand 
incorrectresponsesresultedina“time-out”inwhichtheratwas 
unabletoinitiateanewtrial.Duringtraining,thereinforcement 
ratewasreducedfrom100to70%inordertominimizeextinc- 
tionofthelearnedbehavior,andthepercentageoftrialtypeswas 
dividedevenlybetweenthetwofeeders(NBNat50%;AMat30%; 
Quietat20%). 
On testingdays,inwhichratsreceivedeitheraninjectionof 
saline orahighdoseofsalicylatetoinducetinnitus,Quiettrials 
wereneitherreinforcednorpunished.Tinnitus-likebehaviorwas 
indicatedbytheratshiftingitsresponseduringQuiettrialsfrom 
the rightfeederassociatedwithAMandQuietduringtraining,to 
the leftfeederassociatedwiththesteadyNBN(Figure3C). Follow- 
ing treatmentwithsalicylate,ratsincorrectlyidentifiedtheQuiet 
conditionasaNBNsignificantlymorethanbaselineorsaline, 
indicatingthepresenceofasteadyNBN-likephantomsound 
(i.e., tinnitus)duringQuiettrials(Figure3D). Importantly,this 
FIGURE 2|Ratstrainedinatwo-choiceoperantconditioningparadigm 
topressa“tone”leverwhentoneswerepresentedora“0Hz”(silence) 
leverduringperiodsinwhichnosoundwaspresentedinordertoreceive 
a foodreward. Changesintoneleverpressingduringsilentintervalswere 
observedfollowingexposuretosalicylate (A) or unilateralacoustictrauma 
(B). Thinlinesrepresentindividualanimaldatawhileboldlinesdepictgroup 
data.Anincreaseintoneleverpressingduringsilencewasusedtoindicate 
the presenceoftinnitusfollowingexposure[fromRef.(17), withpermission]. 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 6
Hayesetal. Animal modelsoftinnitusandhyperacusis 
FIGURE 3|IllustrationofbehavioraltinnitusassayreportedinRef. 
(18). (A) One ofthethreeconditions(AM,NBN,Quiet)ispresent.Therat 
self-initiates atrialbynose-pokinginthecenterport. (B) Afteravariable 
delay,alightcuestherattorespondtoafeedertroughlocatedtotheleftor 
right ofthecenterport.TheNBNconditionispairedwiththeleftfeeder 
trough. AMandQuietconditionsarepairedwiththerightfeedertrough. 
(C) Followinginductionoftinnitus,ifarathearsasteadyphantomsoundit 
should respondtotheleftfeederduringtheQuietconditionwhilestill 
correctlyidentifyingAMandNBNconditions. (D) Comparison of 
performanceofrats(nD7; eachcircle–squarepairrepresentsonerat) 
betweensalineandsalicylatetreatments.FollowingsalinetreatmentAM 
and QuietconditionswereinfrequentlymisidentifiedasNBN,whereas 
NBN wasidentifiedcorrectly.FollowingsalicylatetreatmentQuiet 
conditions weresignificantlymorelikelytobemisidentifiedasNBN, 
indicating thatsalicylateinducedaphantomsoundperception(nsDnot 
significant, p <0.001)[fromRef.(18), withpermission]. 
changeinbehaviorduringQuiettrialswasonlyobservedfollowing 
injectionofsalicylateandnotfollowinginjectionwithsaline.Fur- 
thermore,theratsstillcorrectlyidentifiedAMandNBNstimuli 
suggestingthattheywerenotperformingrandomly(Figure3D). 
Thisnoveltinnitusbehavioralassayhassomedistinctadvan- 
tagesoverothertinnitusparadigms,includingtheabilitytoiden- 
tifytinnitus-likebehaviorinindividualanimalsandthespecific 
designforsimultaneousacquisitionofelectrophysiologicaldata. 
Duringthe4–8speriodinwhichtheanimalsholdtheirheadin 
the centerporttoinitiateatrial,neuralactivityfromchronically 
implantedelectrodescanberecordedwithminimalartifactwhen 
the animalislargelyimmobilewithitsheadinafixedpositionin 
the soundfield.Inaddition,thisparadigmisveryrobusttothesec- 
ondaryeffectsofsalicylate-inducedtinnitus,suchashearingloss, 
hyperacusis,andhyper-reactivity,becausetheratsstillmaintain 
correctperformanceonAMandNBNstimulisoitisclearthatthe 
animals areunderstimuluscontrol.Furthermore,asintheother 
two-choiceparadigms(16, 17), animalswithtinnitusmakea qual-itatively 
differentresponsethananimalswithouttinnitus,unlike 
in thesuppressionparadigmswhereitisdifficulttodifferenti- 
atetinnitusfromhearingloss,stress,orotherfactorsassociated 
withdrugornoiseexposure(12). However,itisuncertainifthe 
paradigminitspresentformisappropriateforassessingchronic 
tinnitus.Additionally,thisparadigmdoesnotprovideinformation 
regardingtinnituspitchorloudness. 
TURNER (GAPPRE-PULSEINHIBITION) 
In2006,Turnerandcolleaguesintroducedanoveltinnitusbehav- 
ioralparadigm,referredtoasgappre-pulseinhibitionofthe 
acousticstartlereflex(GPIAS),whichutilizesananimal’smotoric 
response(startlereflex)toasuddenloudsound(startlestimulus) 
that isrecordedbyamotionsensitivetransducer(15). Presenta- 
tionoftheacousticstartlestimulusevokesarobustacousticstartle 
reflex(ASR);however,thisreflexcanbesuppressedbyinsertion 
ofashortdurationsilentgapinacontinuousbackgroundsound 
justpriortothestartle-elicitingstimulus(15, 43). Inmoststud- 
ies, theratiobetweenthestartleamplitudeduringtrialsinwhich 
the startlestimulusispresentedalone(no-gaptrials)andtrials 
in whichagapispresentedpriortothestartle-elicitingstimulus 
(gaptrials)iscalculatedastheGPIASratio.Thisratioisusedas 
an indicatoroftheeffectivenessofthesilentgaptoinhibitthe 
startlereflex.Forananimalwithtinnitus,itisexpectedthatifthe 
backgroundsoundinwhichthegapisembeddedisqualitatively 
similar totheanimal’stinnitus,thentinnituswill‘fillin’thegap 
resultinginanimpairedabilityofthesilentgaptoinhibitthe 
startlereflex.Bycomparingtheabilityofsilentgapsincontinu- 
ous backgroundsoundsofvaryingfrequencyandbandwidthto 
inhibitthestartlereflex,theparadigmhasbeenusedtodetermine 
the pitchofananimal’stinnitus.Usingthisparadigm,tinnitushas 
beenassessedfollowingexposuretosalicylateaswellasnoiseina 
varietyofspeciesincludingrats,mice,guineapigs,andhamsters 
(15, 44–47). 
GPIAShasquicklybecomethemostwidelyusedtinnitus 
behavioralparadigmbecauseitcarriesanumberofadvantages 
overtheotherpreviouslyreportedtinnitusparadigms.Itrequires 
no behavioraltraining,nofoodorwaterdeprivation,canassess 
tinnituspitch,andallowsforhigh-throughputscreeningfortin- 
nitus.Because,thereisnotraininginvolved,itcanalsobeused 
tomonitoranimalsfortinnitusrepeatedlyoverlongdurations. 
InTurner’soriginalpublication,groupdatawaspresentedsince 
baselineGPIASmeasureswerenotcompletedpriortotinnitus 
inductionviaunilateralnoiseexposure(15). However,bycol- 
lectingbaselineandpost-tinnitusinductionGPIASmeasures,the 
paradigmcanbeusedtoidentifyindividualanimalswithtinnitus 
allowingforanimalstobeseparatedintotinnitus-positiveand 
tinnitus-negativegroups(48, 49). 
www.frontiersin.org September 2014|Volume5|Article179 | 7
Hayesetal. Animal modelsoftinnitusandhyperacusis 
However,despitetheseadvantages,anumberofconcernshave 
recentlybeenraisedregardingtheGPIASparadigmanditsuse 
forscreeninganimalsfortinnitus.Oneconcernisthediscrepancy 
in tinnituspitchreportedinanimalsusingtheGPIASparadigm 
followinginductionoftinnitusviaexposuretohigh-frequency 
noise.Somestudies,includingtheoriginalTurnerstudy,have 
reportedthetinnituspitchtofallbelowthenoiseexposurefre- 
quency(15, 50),whileothersreportthetinnituspitchtofallabove 
the noiseexposurefrequency(44, 48, 51–53). Equallyinteresting 
is thefindingthatimmediatelyfollowingnoiseexposure,tinnitus 
has beenfoundtooccuracrossawiderangeoffrequenciesbut 
thenbecomesspecifictoalimitedfrequencybandoverthefollow- 
ing weeks(54). Incontrast,thetinnituspitchinhumansubjects 
exposedtoloudsoundmostfrequentlyoccursatorabovethe 
noiseexposurefrequency(28, 29). 
Anotherissueistheeffectofhearinglossfollowingexposure 
tonoiseorototoxicdrugsonthestartlereflexamplitudeused 
toassesspre-pulseinhibition.Hearinglosscanpotentiallyaffect 
the outcomeofGPIASscreeninginanumberways:byinterfering 
withaudibilityofthebackgroundsoundinwhichthesilentgaps 
areimbeddedorbyalteringtheamplitudeofthestartlereflexto 
the startlestimulusalone(no-gapcondition).Previousstudiesin 
bothrodents(55) andhumans(56) havedemonstratedthathear- 
ing lossalone,inducedbysodiumsalicylateexposure,caninterfere 
in detectionofgapsinlow-levelcontinuousnoise.Thisissuehas 
beenaddressedintheGPIASparadigmbyusingintensitiesof 
backgroundsounds(60dBSPL)showntoberesilienttotheeffects 
ofhearingloss,andbycarryingoutnoise-burstpre-pulsedetection 
measures.Duringnoise-burstdetectionmeasures,ashortdura- 
tionnoise-burstofthesameintensityasthebackgroundsound 
usedinGPIAStestingispresentedpriortothestartle-eliciting 
stimulustoserveasthepre-pulsecue.Itisassumedthatifthe 
noise-burstreliablyinhibitsthestartlereflex,thenaudibilityofthe 
backgroundsoundinwhichthesilentgapsareembeddedduring 
GPIAStestingshouldnotbeanissue. 
Inadditiontothepotentialconfoundingeffectsofhearingloss 
onaudibilityofthebackgroundsound,anotherissueisthatunilat- 
eralnoiseexposurecanreducetheamplitudeofthestartlereflex 
duringstartle-alone(no-gap)trials(2, 44, 47, 50). Inonestudy 
using rats,unilateralnoiseexposureresultedina57%reduction 
in thestartleamplitudeduringstartle-alonetrials(2), whilein 
anotherstudyusingmice,unilateralnoiseexposureresultedin 
a 52%reductionoftheacousticstartlereflexevenafterhearing 
thresholdsrecoveredtopre-noiseexposurelevels(44). Alterations 
in startlereactivityposeanumberofissues.First,asthedependent 
measureintheGPIASparadigm,arobuststartlereflexisneededin 
ordertoobserveitsinhibition.Ifanimalsfailtostartlefollowing 
manipulationstoinducetinnitus,theywillneedtobeexcluded 
fromfurtheranalysis,apracticereportedinsomepreviousstudies 
using thisparadigm(2, 50). Exclusionofanimalsfromanalysisnot 
onlyreducesthehigh-throughputnatureoftheparadigmbutmay 
also resultintheexclusionofanimalsthatactuallyhavetinnitus, 
butcannotbetestedduetotheabsenceofarobuststartlereflex. 
Second,alterationsinbaselinestartlemagnitude(i.e.,no-gap 
trials)canpotentiallyconfoundtheinterpretationofpre-pulse 
inhibitionmeasuresforbothrodentsandhumansubjects(2, 
57). GiventhatGPIASiscalculatedasaratiobetweenthestartle 
amplitudeinno-gapversusgaptrials,achangeineitherparame- 
tercanresultinachangeintheGPIASratio.Traditionally,itwas 
assumedthatachangeintheGPIASratioindicativeoftinnituswas 
the resultofan increase in thestartleamplitudeduringgaptrialsif 
animals failedtodetectthesilentgapduetotinnitus“filling-in”the 
gap(Figures4A,B; ScenarioA).However,achangeintheGPAIS 
ratioindicativeoftinnituscanalsooccuriftheno-gap-startle 
FIGURE 4|Effectsofalterationsinstartlemagnitudeongappre-pulse 
inhibition oftheacousticstartlereflex(GPIAS)interpretation. (A,B) A 
changeinstartleamplitudeforeithergaptrials(ScenarioA,gap-startle 
amplitudeincreases)orno-gaptrials(ScenarioB,no-gap-startleamplitude 
decreases) canresultinchangesintheGPIAS-Startleratioindicativeof 
tinnitus. (C) A decreaseinno-gaptrialstartleamplitude,similartothe 
schematicofScenarioB,followingtemporaryunilateralconductivehearing 
loss viaanearplughasbeenshowntoresultinafalse-positivescreening 
fortinnitusinratsusingtheGPIASparadigm.Thefalse-positivescreening 
fortinnituscouldbeeliminatedbyreplacingtheacousticstartlestimulus 
with amulti-modalairpuffstartlestimuluswhichwasmoreresilienttothe 
effectsofunilateralhearinglossonstartlereflexamplitude(fromRef.(2), 
with permission;*indicatessignificantdifferencebetweenstartle 
amplitudesingapversusno-gaptrials; † indicates significantdifferences 
betweenstartleratiovaluesbetweenbaselineandpostearplugmeasures; 
n.s. indicatesnosignificantdifference). 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 8
Hayesetal. Animal modelsoftinnitusandhyperacusis 
amplitude decreases, similartowhatisseenfollowingunilateral 
noiseexposure(Figures4A,B; ScenarioB).Moreover,unilateral 
conductivehearinglossviaanearplughasbeenshowntoresult 
in afalse-positivescreeningfortinnitusinratsasaresultofa 
reductioninstartlemagnitudeduringno-gaptrials(Figure4C) 
(2). Importantly,thefalse-positivescreeningfortinnituscouldbe 
eliminatedbyreplacingtheacousticstimuluswithamulti-modal 
airpuffstimulus(acousticandsomatosensorystimulation),which 
was moreresilienttotheeffectsofhearingloss(Figure4C). Any 
changesintheno-gap-startlemagnitudepost-tinnitusinduction 
needtobeaccountedforwhenusingtheGPIASratioasanindi- 
catorfortinnitusinordertoensurethatGPIASratiochangesare 
trulyreflectiveofimpaireddetectionofsilentgaps,andnotsimply 
duetohearingloss(2). Closeinspectionofrawstartleampli- 
tudesbeforeandaftertinnitusinduction,aswellascontrolling 
formethodologicalissuessuchasstimulusparametersandanimal 
handlingisstronglyrecommendedwhenusingandinterpreting 
behavioralmeasuresusingtheGPIASparadigm(58). 
InadditiontothepotentialeffectsofhearinglossonGPIAS 
measures,anotherissueiswhetherthehypothesisthattinnitus 
“fillsinthegap”isaccurate.Recentstudiesinbothhumans(59, 
60) androdents(61, 62) haveaddressedthisissue.InoneGPIAS 
study,humanpatientswithhigh-frequencytinnituswerefoundto 
haveimpairedgapdetectionforgapspresentedinbothlowand 
high-frequencybackgroundstimulicomparedtocontrolsubjects 
(60) (Figure5A). Sincethesepatientswithhigh-frequencyhear- 
ing lossalsohadhigh-frequencytinnitus,GPIASshouldonlybe 
impairedathighfrequencies,notatlowfrequencies.Becausetheir 
tinnituspatientswerefoundtohavesignificantlylessinhibition 
ofthestartleresponseirrespectiveoffrequency,theauthorssug- 
gestthattheimpairedgapdetectionmaybereflectiveofamore 
generalcorticalprocessingdisorderratherthantinnitus“fillingin 
the gaps.” 
Inanotherstudy,gapdetectionabilitywasassessedinhuman 
tinnituspatientsbyaskingwhethertheycouldperceive50msgaps 
in 15dBSLbackgroundsoundspresentedeitherattheirtinni- 
tuspitch,oroneoctaveaboveandbelowtheirtinnituspitch(59) 
(Figure5B). Bothcontrolandtinnitussubjectshadnodifficulty 
detectingthesilentgapsirrespectiveofbackgroundfrequency(i.e., 
tinnitusdidnot“fillin”thesilentgapsatfrequenciesabove,below, 
oratthetinnituspitch).Itisimportanttonote,however,that 
a directcomparisoningapdetectioncannotbemadebetween 
the tinnitusandno-tinnitussubjectsinthisstudybecausethe 
twogroupsweretestedwithdifferentbackgroundstimuli(con- 
trolsubjectsdidnothavetinnitusandthereforecouldnothave 
backgroundstimulimatchedtotheirtinnituspitch).Instead,by 
comparingwithinthegroupoftinnitussubjectsacrossfrequency, 
the datademonstratedthattinnitusdidnot“fillin”orinterfere 
withdetectionofsilentgapsinbackgroundsoundsatthetinni- 
tusfrequencyoratfrequenciesoneoctaveaboveandbelowthe 
matchedtinnitusfrequency(Figure5B, comparegraybarsfor 
eachfrequency).Inasimilarstudy,Boyenetal.(63) recentlyfound 
that humantinnituspatientshadsimilargapdetectionthresholds 
comparedtoamatchednon-tinnituscontrolgroupevenwhenthe 
testfrequencymatchedthepatient’stinnitusfrequency(63). 
Inadditiontohumanstudies,anumberofanimalstudies 
havealsoinvestigatedthe“tinnitusfillingthegap”hypothesis. 
FIGURE 5|Recentstudiesaddressingthe“tinnitusgapfilling” 
hypothesis. (A) Gap pre-pulseinhibitionoftheacousticstartlereflex 
measures inhumantinnitusandcontrolsubjects.Tinnitussubjects 
demonstrate impairedgapdetection(lowerinhibition)forbothlowand 
high-frequency backgroundsoundscomparedtocontrolsubjects[fromRef. 
(60), withpermission]. (B) Subjectivegapdetectionabilityassessedin 
human tinnitusandcontrolsubjects.Bothcontrolandtinnitussubjectshad 
no difficultydetecting50msgapspresentedinnoiseat15dBSPL. 
Narrow-bandnoiseswerepresented1octaveabove,beloworatthe 
matchedtinnituspitchfortinnitussubjectsandat1.2,8,and12kHzfor 
control subjectswithouttinnitus[datafromRef.(59)]. (C) Gap detection 
assessed inratstrainedonago/no-gooperantgapdetectiontaskto 
identify silentgapsembeddedincontinuousbroad-bandnoise(BBN)and 
10–20or15–17kHznarrow-bandnoise(NBN)presentedat60dBSPL. 
Salicylate hadnosignificanteffectongapdetection,asgapduration 
thresholds remainedbelow6ms[datafromRef.(62)]. 
HickoxandLiberman(61) demonstratedthatgapdetection 
deficitsinnoise-exposedrodentstestedwiththeGPIASpar- 
adigmaredependentontheintervalbetweenthesilentgap 
and thestartle-elicitingstimulus(43). Noise-exposedanimals 
demonstratedGPIASdeficitsonlywhenthesilentgapwasplaced 
www.frontiersin.org September 2014|Volume5|Article179 | 9
Hayesetal. Animal modelsoftinnitusandhyperacusis 
immediatelybeforethestartlestimulus,butnotwhenitwasplaced 
80 msbeforethestartlestimulus.Theauthorsconcludedthatthese 
resultsareinconsistentwiththe“tinnitusfillingthegap”hypothe- 
sis, asgapdetectiondeficitsfromtinnitusfillinginthegapshould 
beseenirrespectiveofwherethesilentgapisplaced(i.e.,atany 
placementwhereGPIASwouldnormallybeobserved)(61). 
Lastly,gapdetectionhasalsobeenassessedinrodentstrainedon 
a go/no-gooperantgapdetectiontasktodeterminethethreshold 
forsilentgapsembeddedincontinuousbackgroundsounds(62) 
(Figure5C). Inthisstudy,ratsweretreatedwithadoseofsodium 
salicylateknowntoreliablyinducetinnitus(18). Followingsali- 
cylateadministration,gapdetectionthresholdswereunchanged 
forgapsembeddedinbroad-bandnoiseornarrow-bandnoises 
presentedat60dBSPL(thesameintensitybackgroundnoise 
commonlyusedintheGPIASparadigm).Theseresultsindicate 
that salicylate-inducedtinnitusdoesnot“fillinthesilentgaps.” 
Takentogether,theresultssuggestthattinnitusassessmentwith 
the GPIASparadigmshouldbeinterpretedwithconsiderablecau- 
tion.Ultimately,therationaleforusingGPIASasabehavioral 
testfortinnitusinanimalsshouldbebasedontheabilityofthe 
paradigmtoaccuratelyassesstinnitusinhumanpatients. 
HUMAN STUDIESOFHYPERACUSIS 
Hyperacusis,definedasahypersensitivitytomoderate-intensity 
sounds orabnormalloudnessperception(4–7), oftenco-occurs 
withtinnitus(6, 64–66). Theprevalenceofhyperacusisinthe 
tinnituspopulationwasestimatedtobe~80%(8). Thefrequent 
co-occurrenceofthesetwoperceptualdisorderssuggestsacom- 
monmechanism(s)ofdysfunction(7, 64, 66), suchasanincrease 
in centralgainfollowinghearingloss(67–69). Giventhehighrate 
ofoverlapbetweenthesetwodisorders,itisimportanttodiscuss 
hyperacusiswhenassessingmodelsoftinnitus(24, 66, 70). 
Toclarify,hyperacusisisdistinctfromloudnessrecruitment, 
the abnormallyrapidgrowthinperceivedloudnesswithincreas- 
ing intensity,inthatitdoesnotnecessarilycoincidewiththreshold 
elevationandhaircelldamage,butdoesfeaturereducedloud- 
ness discomfortlevels(6, 61, 71). Inaddition,hyperacusisisnot 
sound-specificandanxietycanaggravatesymptoms(5, 71). 
Generally,hyperacusisismeasuredusingloudnessratingscales 
becausetheprimaryfeatureofthisauditoryperceptualdisorder 
is areducedtoleranceformoderate-levelandintensesounds(6, 
7, 47). Toassessalistener’ssensitivitytosounds,participantsare 
typicallyinstructedtoratesoundsaccordingtopre-determined 
categoriesofloudness(suchas1forquietand10forpainfully 
loud) (72, 73). Althoughthesesubjectiveratingscalesareuseful 
measuresinhumans,thesemethodsareimpossibletouseinani- 
mals becausetheyrequirealistener’sabilitytofollowinstructions 
and adjust,orrate,stimuliaccordingly(74). Therefore,researchers 
haveturnedtoobjectivebehavioralmeasuresofloudnesspercep- 
tion,suchastheamplitudeoftheASRandoperantconditioning 
techniquesusingreactiontime(RT)measures,asmethodsfor 
estimatingperceivedloudnessinbothanimalsandhumans. 
ANIMAL MODELSOFHYPERACUSIS 
ACOUSTIC STARTLEREFLEXPARADIGM 
Theacousticstartlereflex(ASR)paradigmhasbeenusedby 
a numberofresearcherstoassessanimalsforage-related(75), 
drug-induced(76, 77), andnoise-induced(47, 61, 78, 79) hyper- 
acusis.Accordingtothesestudies,ananimalisthoughttohave 
hyperacusisiftheamplitudeofitsstartlereflex,ashort-latency, 
robustmotoricresponse(80, 81), increasesaftersomemanipula- 
tion,suchasaninjectionofsodiumsalicylateoranoiseexposure 
(47, 77) (Figures6A,B). LiketheGPIASreflexparadigmforassess- 
ing tinnitus,theASRparadigmisanefficient,high-throughput 
behavioralmethodbecauseitrequiresnotrainingorlearning.In 
addition,theASRparadigmisattractivebecauseitdoesnotrequire 
anyfoodorwaterrestrictionortheuseofelectricshock. 
However,theASRparadigmcanbeproblematicforseveral 
reasons.Forone,itisdifficulttodiscriminatehyperacusisfrom 
generalized,non-auditory-specifichyperactivitywithASRalone 
FIGURE 6|Animalmodelsofhyperacusisusingtheacoustic 
startlereflex(ASR)paradigm. (A) Mean ASRamplitudesinrats 
pre-sodium salicylateinjection(opencircles)and1hpost-sodium 
salicylate injection(250mg/kgi.p.)(opentriangles).Startleamplitudes 
increased significantlyathighsoundintensities1haftersalicylate 
injection [fromRef.(77), withpermission]. (B) Mean ASRamplitudes 
in hamstersfollowingnoiseexposure(10kHz,115dBSPL,4h)(black 
circles) orinunexposedcontrolhamsters(opencircles).Startle 
amplitudesweresignificantlyhigherathighsoundintensitiesin 
noise-exposedhamstersthaninunexposedhamsters,suggesting 
increased loudnesssensitivityinnoise-exposedanimals[fromRef. 
(47), withpermission]. 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 10
Hayesetal. Animal modelsoftinnitusandhyperacusis 
(23, 82). Secondly,enhancedASRshavebeenreportedtobemore 
predictiveoftinnitusratherthanhyperacusisinhumans,ques- 
tioningASR’susefulnessinassessinghyperacusisinanimals(83). 
Inaddition,itisunclearhowtheASRparadigmcanbeusedtodif- 
ferentiatehyperacusisfromloudnessrecruitment.Lastly,changes 
in theASRtendtooccuronlyforhigh-intensitysounds(90dB 
SPL orhigher),whichsuggeststhatthismethodmaynotbesen- 
sitivetochangesinloudnessperceptionatmoderatesoundlevels, 
oneofthedefiningfeaturesofhyperacusis(78, 84). Although 
these potentiallimitationsneedtobeaddressed,theASRparadigm 
appears,fornow,tobeaneffectivetoolforestimatingloudnessper- 
ception,hyperacusis,orsound-evokedhyper-reactivityinanimals 
at intensitiesgreaterthan80dBSPL. 
OPERANT CONDITIONINGMETHODSWITHREACTIONTIMEMEASURES 
SinceRTisareliablesurrogateofperceivedloudness(72, 85–89), 
and loudnessgrowthfunctionsappeartobetheperceptualcorre- 
lateofhyperacusisinhumans(7), researchershaveobtainedRT 
measuresusingoperantconditioningtechniquestoassessloudness 
perceptionandhyperacusisinbothanimalsandhumans(74). 
Thefirststudytoexaminehyperacusisinanimalsandhumans 
using RTmeasureswasLauerandDooling(74). Theymeasured 
RTsinbothnormal-hearingcanariesandaninbredstrainof 
canarywithapermanenthereditaryhigh-frequencyhearingloss, 
the BelgianWaterslager(BWS).Theyhypothesizedthatanimals 
withhyperacusisshouldshowfasterthannormalRTsbecause 
sound stimuliareperceivedasbeinglouderthaninnormal- 
hearinganimals.Inaccordancewiththathypothesis,theyfound 
that BWScanarieshadnear-normalRTsatlowersoundlevels 
butmuchfasterRTsthannormalcanariesathighersoundlevels 
(74). Importantly,LauerandDooling(74) verifiedthesemethods 
bytestingtwohumans,onewithhyperacusisandonewithout, 
using thesamebehavioralmethodsasinthecanaryexperiment 
(Figures7A,B). 
Recently,Chenetal.(84) measuredRTsinratsbothbeforeand 
afteralargedoseofsodiumsalicylatethatisknowntoinduce 
hearinglossandtinnitusinanimals(18). Briefly,theratswere 
trainedtodetectbroad-bandnoiseburstsinanotherwisequiet 
chamberusingaGo/no-gooperantconditioningparadigm. RTmea- 
suresweretakenfromtheonsetofthenoisebursttothetimethe 
ratmadearesponse,andonlyRTsfor“hits”(whentheanimal 
correctlydetectedthestimulus)wereincludedintheanalysis(84). 
Chenetal.(84) foundthatRTspost-salicylatewerefasterthan 
pre-salicylatefornoisebursts70dBSPLorgreaterbutwerethe 
same orevenslowertorespondtonoiseburstsat50dBSPLor 
less (84) (Figure8A). Importantly,thisgo/no-goparadigmcan 
differentiatehyperacusisfromloudnessrecruitment.Hyperacusis 
is evidencedbyfasterRTsthannormalformoderatetointense 
sounds, whileloudnessrecruitmentassociatedwithhearingloss 
is characterizedbyslowerRTsforlow-levelsoundswitharapid 
loudness growthfunctionandnormalRTstomoderatetointense 
sounds (Figure8B). 
Inanotheroperantconditioningparadigm,Sunetal.(91) 
testedadultratswithtympanicmembrane(TM)damageaspups, 
and Zhangetal.(90) testedratsbeforeandafteralargedose 
ofsodiumsalicylateforhyperacusisina two-alternativeforced 
choice(2AFC)operantconditioningtask. Inbothexperiments,ani- 
mals weretrainedtomakearesponsetotherightnose-poke 
hole whentheyhearda100-dBSPLsoundandtotheleftside 
whentheyhearda60-dBSPLsound.Aftertheratswerecorrectly 
identifyingthesetwostimuli,probestimuliwereincludedfrom 
40 to110dBSPLthatwerealwaysreinforcedwithafoodpellet 
regardlessofwhichsidetheanimalschose(90, 91). Theyfound 
that ratswithTMdamageaspups,and40%ofratsgivensalicy- 
late,labeledmid-intensitystimuli(70and80dBSPL)as100dB 
SPL moreoftenthancontrolrats,suggestingthatratswithprior 
TM damageandratsgivensalicylateperceivedthesestimulias 
louderthannormal(Figure8C). Interestingly,severalratsgiven 
salicylateappearedtoexperienceloudnessrecruitmentfollowing 
an injectionofsalicylate.Insteadofrespondingmorefrequently 
tothe100-dBSPLfeeder,theseratsrespondedmorefrequently 
tothe60-dBSPLfeeder,indicatingalossinsensitivityatlower 
sound levelsandanabnormallysteeploudnessgrowthfunction 
(Figure8D). 
Althoughtheabove-mentionedgo/no-goand2AFCoperant 
conditioningtasksdeliverreliableandstablemeasuresinanimals 
FIGURE 7|Medianreactiontimes(RT)foranormal-hearinghuman 
listener(Subject1,blackcircles)andalistenerwithreducedloudness 
tolerance(Subject2,blacksquares). MedianRTsforbothlistenersfor 
(A) 1000Hztonesand (B) 4000Hztonespresentedatvariousintensities. 
Subject 2hadsignificantlyfasterRTstomoderateandhigh-intensitysounds 
than Subject1,suggestingthattheparticipantwithhyperacusisperceived 
these soundsaslouderthanthenormal-hearingparticipant,andthatRTcan 
potentially measurehyperacusisinhumans[modifiedfromRef.(74)]. 
www.frontiersin.org September 2014|Volume5|Article179 | 11
Hayesetal. Animal modelsoftinnitusandhyperacusis 
FIGURE 8|Animalmodelsofhyperacusisusingoperantconditioning 
procedures. (A) Mean reactiontimes(RT)inratstobroad-bandnoisebursts 
forbaseline(opencircles),saline(opentriangles),andsalicylate(200mg/kg 
i.p.) (filledsquares)conditions.RTsdecreasedsignificantlyfor70,80,and 
90 dBSPLnoiseburstsfollowingtheinjectionofsalicylate,suggestingan 
increased sensitivitytoloudsounds[modifiedfromRef.(84)]. 
(B) Hypothetical dataindicatinghyperacusis(reddashes)andloudness 
recruitment(greendots)usingthego/no-goreactiontimemodel.Toparrow 
indicates steeploudnessgrowthfunctionseeninlistenerswithloudness 
recruitment.Bottomarrowshowsfasterreactiontimesformoderateto 
intense sounds,indicativeofincreasedloudnessperceptioninlistenerswith 
hyperacusis. (C,D) Mean numberofresponsestothe100-dBSPLfeeder 
pre-salicylate (opencircles)and1hpost-salicylate(250mg/kgi.p.)(red 
triangles) forindividualrats. (C) Thenumberofresponsestothe 
high-intensity(100dBSPL)feederincreasedsignificantlyfollowingsalicylate 
administration (arrowindicatesshifttotheleft),suggestingincreased 
loudness sensitivityandhyperacusis. (D) Thenumberofresponsestothe 
high-intensity(100dBSPL)feederdecreasedsignificantlyfollowing 
salicylate administration(arrowshowsshifttotheright),indicativeof 
loudness recruitment[fromRef.(90), withpermission]. 
and humans,thesetasksrequireweeksofanimalbehavioraltrain- 
ing andtheanimalsneedtobefoodorwater-restrictedinorder 
toperforminthetask.Nevertheless,theRTparadigmhasbeen 
extensivelyvalidatedasameasureofloudness(72, 85–89) andit 
mayprovidethemostreliableandsensitiveestimatesofloudness 
perceptionin both animals andhumans. 
CONCLUSION 
A reliablebehavioralparadigmisvitalforidentifyingtheunder- 
lyingneuralmechanismsandpotentialtherapeutictreatments 
fortinnitusandhyperacusis.Ultimately,anybehavioralmodel 
ofhyperacusisortinnitusshouldcloselymirrorwhatweknow 
aboutthesedisordersinthehumanpopulation.Giventherange 
ofbehavioraltrainingtechniquesandmethodologiesusedto 
assess tinnitusandhyperacusis,thereareanumberofimportant 
characteristicstoconsiderwhenevaluatingtheirutilityandcon- 
sistencywithhumandata.Anidealbehavioralparadigmshould 
beabletoidentifythepresenceoftheconditioninindividual 
animals, allowforlong-termtestingofanimalsforstudiesof 
chronictinnitusandhyperacusis,shouldberesilienttoanysec- 
ondaryeffectsoftheinductionmethodincludinghearingloss, 
and wouldhavearelativelyshorttrainingandtestingtime.Addi- 
tionally,anidealmodeloftinnituswouldalsoallowformea- 
surementsoftinnituspitchandloudness,whileanidealmodel 
ofhyperacusisshouldallowforthedifferentiationbetweenthe 
presenceofhyperacusisandloudnessrecruitment.Clearly,the 
advancementsinanimalmodelsfortinnitusandhyperacusishave 
comealongwayandwillcontinuetoplayanimportantrolein 
revealingtheunderlyingmechanismsandtreatmentsfortinnitus 
and hyperacusis. 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 12
Hayesetal. Animal modelsoftinnitusandhyperacusis 
AUTHOR CONTRIBUTIONS 
SarahH.Hayes,KellyE.Radziwon,DanielJ.Stolzberg,andRichard 
J.Salviwrotethemanuscriptandapprovedthefinalversion. 
ACKNOWLEDGMENTS 
SupportedinpartbyNIHNationalInstituteonDeafness 
and OtherCommunicationDisorders(R01DC011808and 
R01DC009219)andtheOfficeofNavalResearch(N000141210731). 
SarahH.HayeswassupportedbytheNationalDefenseScienceand 
EngineeringGraduateResearchFellowship. 
REFERENCES 
1. McFaddenD. Tinnitus:Facts,Theories,andTreatments. Washington,DC: 
NationalAcademyPress(1982). 
2. LobarinasE,HayesSH,AllmanBL.Thegap-startleparadigmfortinnitusscreen- 
ing inanimalmodels:limitationsandoptimization.HearRes (2013) 295:150–60. 
doi:10.1016/j.heares.2012.06.001 
3. HellerAJ.Classificationandepidemiologyoftinnitus. OtolaryngolClinNorth 
Am (2003) 36:239–48.doi:10.1016/S0030-6665(02)00160-3 
4. AnderssonG,LindvallN,HurstiT,CarlbringP.Hypersensitivitytosound 
(hyperacusis):aprevalencestudyconductedviatheinternetandpost. Int 
J Audiol (2002) 41:545–54.doi:10.3109/14992020209056075 
5. BaguleyDM.Hyperacusis. J RSocMed (2003) 96:582–5.doi:10.1258/jrsm.96. 
12.582 
6. GuJW,HalpinCF,NamE-C,LevineRA,MelcherJR.Tinnitus,diminished 
sound-leveltolerance,andelevatedauditoryactivityinhumanswithclinically 
normalhearingsensitivity. J Neurophysiol (2010) 104:3361–70.doi:10.1152/jn. 
00226.2010 
7. HébertS,FournierP,NoreñaA.Theauditorysensitivityisincreasedintinnitus 
ears. J Neurosci (2013) 33:2356–64.doi:10.1523/JNEUROSCI.3461-12.2013 
8. Dauman R,Bouscau-FaureF.Assessmentandameliorationofhyperacu- 
sis intinnituspatients. ActaOtolaryngol (2005) 125:503–9.doi:10.1080/ 
00016480510027565 
9. RobertsLE,EggermontJJ,CasparyDM,ShoreSE,MelcherJR,Kaltenbach 
JA.Ringingears:theneuroscienceoftinnitus. J Neurosci (2010) 30:14972–9. 
doi:10.1523/JNEUROSCI.4028-10.2010 
10. JastreboffPJ,BrennanJF,ColemanJK,SasakiCT.Phantomauditorysensa- 
tioninrats:ananimalmodelfortinnitus. BehavNeurosci (1988) 102:811–22. 
doi:10.1037/0735-7044.102.6.811 
11. BauerCA,BrozoskiTJ,RojasR,BoleyJ,WyderM.Behavioralmodelof 
chronictinnitusinrats. OtolaryngolHeadNeckSurg (1999) 121:457–62. 
doi:10.1016/S0194-5998(99)70237-8 
12. HeffnerHE,HarringtonIA.Tinnitusinhamstersfollowingexposuretointense 
sound. HearRes (2002) 170:83–95.doi:10.1016/S0378-5955(02)00343-X 
13. RüttigerL,CiuffaniJ,ZennerH-P,KnipperM.Abehavioralparadigmtojudge 
acutesodiumsalicylate-inducedsoundexperienceinrats:anewapproachfor 
an animalmodelontinnitus. HearRes (2003) 180:39–50.doi:10.1016/S0378- 
5955(03)00075-3 
14. LobarinasE,SunW,CushingR,SalviR.Anovelbehavioralparadigmforassess- 
ing tinnitususingschedule-inducedpolydipsiaavoidanceconditioning(SIP- 
AC). HearRes (2004) 190:109–14.doi:10.1016/S0378-5955(04)00019-X 
15. TurnerJG,BrozoskiTJ,BauerCA,ParrishJL,MyersK,HughesLF,etal.Gap 
detectiondeficitsinratswithtinnitus:apotentialnovelscreeningtool. Behav 
Neurosci (2006) 120:188–95.doi:10.1037/0735-7044.120.1.188 
16. HeffnerHE,KoayG.Tinnitusandhearinglossinhamsters(Mesocricetusaura- 
tus) exposedtoloudsound. BehavNeurosci (2005) 119:734–42.doi:10.1037/ 
0735-7044.119.3.734 
17. SederholmF,SwedbergMD.Establishmentofauditorydiscriminationand 
detectionoftinnitusinducedbysalicylicacidandintensetoneexposureinthe 
rat. BrainRes (2013) 1510:48–62.doi:10.1016/j.brainres.2013.03.013 
18. StolzbergD,HayesSH,KashanianN,RadziwonK,SalviRJ,AllmanBL.A 
novelbehavioralassayfortheassessmentofacutetinnitusinratsoptimizedfor 
simultaneousrecordingofoscillatoryneuralactivity. J NeurosciMethods (2013) 
219:224–32.doi:10.1016/j.jneumeth.2013.07.021 
19. MoodyDB.Animalmodelsoftinnitus.In:SnowJB,editor. Tinnitus:Theoryand 
Management. Hamilton,ON:BCDeckerInc(2004).p.80–96. 
20. TurnerJG.Behavioralmeasuresoftinnitusinlaboratoryanimals. ProgBrain 
Res (2007) 166:147–56.doi:10.1016/S0079-6123(07)66013-0 
21. SalviR,LobarinasE,SunW.Behavioralanimalmodelsoftinnitus,pharmacol- 
ogy,andtreatment.In:MollerA,LangguthB,DeRidderD,KleinjungT,editors. 
TextbookofTinnitus. NewYork,NY:Springer(2010).p.133–45. 
22. KaltenbachJA.Tinnitus:modelsandmechanisms. HearRes (2011) 276:52–60. 
doi:10.1016/j.heares.2010.12.003 
23. HeffnerHE,HeffnerRS.Behavioraltestsfortinnitusinanimals.In:Burkard 
RF,EggermontJJ,DonM,editors. Tinnitus. NewYork,NY:SpringerSci- 
ence+BusinessMedia(2012).p.21–58. 
24. EggermontJJ.Hearingloss,hyperacusis,ortinnitus:whatismodeledinanimal 
research? HearRes (2013) 295:140–9.doi:10.1016/j.heares.2012.01.005 
25. vonderBehrensW.Animalmodelsofsubjectivetinnitus. NeuralPlast (2014) 
2014:741452.doi:10.1155/2014/741452 
26. HenryJA,DennisKC,SchechterMA.Generalreviewoftinnitus:preva- 
lence,mechanisms,effects,andmanagement. J SpeechLangHearRes (2005) 
48:1204–35.doi:10.1044/1092-4388(2005/084) 
27. DavisH,MorganCT,HawkinsJEJr,GalambosR,SmithFW.Temporarydeaf- 
ness followingexposuretoloudtonesandnoise. ActaOtolaryngolSuppl (1950) 
88:1–57. 
28. LoebM,SmithRP.Relationofinducedtinnitustophysicalcharacteristicsofthe 
inducingstimuli. J AcoustSocAm (1967) 42:453–5.doi:10.1121/1.1910600 
29. AtherleyGRC,HempstockTI,NobleWG.Studyoftinnitusinducedtemporarily 
bynoise. J AcoustSocAm (1968) 44:1503–6.doi:10.1121/1.1911288 
30. CahaniM,PaulG,ShaharA.Tinnituspitchandacoustictrauma. Audiology 
(1983) 22:357–63.doi:10.3109/00206098309072795 
31. MooreBCJ,VinayS.Therelationshipbetweentinnituspitchandtheedgefre- 
quencyoftheaudiograminindividualswithhearingimpairmentandtonaltin- 
nitus. HearRes (2010) 261:51–6.doi:10.1016/j.heares.2010.01.003 
32. SchecklmannM,VielsmeierV,SteffensT,LandgrebeM,LangguthB,KleinjungT. 
Relationshipbetweenaudiometricslopeandtinnituspitchintinnituspatients: 
insightsintothemechanismsoftinnitusgeneration. PLoSOne (2012) 7:e34878. 
doi:10.1371/journal.pone.0034878 
33. BasileC-E,FournierP,HutchinsS,HébertS.Psychoacousticassessmentto 
improvetinnitusdiagnosis. PLoSOne (2013) 8:e82995.doi:10.1371/journal. 
pone.0082995 
34. CazalsY.Auditorysensori-neuralalterationsinducedbysalicylate. ProgNeuro- 
biol (2000) 62:583–631.doi:10.1016/S0301-0082(00)00027-7 
35. StolzbergD,SalviRJ,AllmanBL.Salicylatetoxicitymodeloftinnitus. FrontSyst 
Neurosci (2012) 6:28.doi:10.3389/fnsys.2012.00028 
36. HenryJA,MeikleMB.Psychoacousticmeasuresoftinnitus. J AmAcadAudiol 
(2000) 11:138–55. 
37. ZagólskiO,StrekP.Tinnituspitchandminimummaskinglevelsindifferent 
etiologies. IntJAudiol (2014) 53:482–9.doi:10.3109/14992027.2014.893377 
38. BauerCA,BrozoskiTJ.Assessingtinnitusandprospectivetinnitustherapeutics 
using apsychophysicalanimalmodel. J AssocResOtolaryngol (2001) 2:54–64. 
doi:10.1007/s101620010030 
39. HeffnerHE.Atwo-choicesoundlocalizationprocedurefordetectinglateralized 
tinnitusinanimals. BehavResMethods (2011) 43:577–89.doi:10.3758/s13428- 
011-0061-4 
40. TanJ,RüttigerL,Panford-WalshR,SingerW,SchulzeH,KilianSB,etal.Tinni- 
tusbehaviorandhearingfunctioncorrelatewiththereciprocalexpressionpat- 
ternsofBDNFandArg3.1/arcinauditoryneuronsfollowingacoustictrauma. 
Neuroscience (2007) 145:715–26.doi:10.1016/j.neuroscience.2006.11.067 
41. WeiszN,DohrmannK,ElbertT.Therelevanceofspontaneousactivity 
forthecodingofthetinnitussensation. ProgBrainRes (2007) 166:61–70. 
doi:10.1016/S0079-6123(07)66006-3 
42. YangG,LobarinasE,ZhangL,TurnerJ,StolzbergD,SalviR,etal.Salicylate 
inducedtinnitus:behavioralmeasuresandneuralactivityinauditorycortexof 
awakerats. HearRes (2007) 226:244–53.doi:10.1016/j.heares.2006.06.013 
43. IsonJR,AllenPD,RivoliPJ,MooreJT.Thebehavioralresponseofmicetogaps 
in noisedependsonitsspectralcomponentsanditsbandwidth. J AcoustSocAm 
(2005) 117:3944–51.doi:10.1121/1.1904387 
44. LongeneckerRJ,GalazyukAV.DevelopmentoftinnitusinCBA/CaJmicefol- 
lowingsoundexposure. J AssocResOtolaryngol (2011) 12:647–58.doi:10.1007/ 
s10162-011-0276-1 
45. DehmelS,EisingerD,ShoreSE.Gapprepulseinhibitionandauditory 
brainstem-evokedpotentialsasobjectivemeasuresfortinnitusinguineapigs. 
FrontSystNeurosci (2012) 6:42.doi:10.3389/fnsys.2012.00042 
www.frontiersin.org September 2014|Volume5|Article179 | 13
Hayesetal. Animal modelsoftinnitusandhyperacusis 
46. BergerJI,CoomberB,ShackletonTM,PalmerAR,WallaceMN.Anovelbehav- 
iouralapproachtodetectingtinnitusintheguineapig. JNeurosciMethods (2013) 
213(2):188–95.doi:10.1016/j.jneumeth.2012.12.023 
47. ChenG,LeeC,SandridgeSA,ButlerHM,ManzoorNF,KaltenbachJA.Behav- 
ioralevidenceforpossiblesimultaneousinductionofhyperacusisandtinnitus 
followingintensesoundexposure. J AssocResOtolaryngol (2013) 14:413–24. 
doi:10.1007/s10162-013-0375-2 
48. Li S,ChoiV,TzounopoulosT.PathogenicplasticityofKv7.2/3channelactiv- 
ityisessentialfortheinductionoftinnitus. ProcNatlAcadSciUSA (2013) 
110:9980–5.doi:10.1073/pnas.1302770110 
49. CoomberB,BergerJI,KowalkowskiVL,ShackletonTM,PalmerAR,Wal- 
laceMN.Neuralchangesaccompanyingtinnitusfollowingunilateralacoustic 
traumaintheguineapig. EurJNeurosci (2014) 40(2):2427–41.doi:10.1111/ejn. 
12580 
50. EngineerND,RileyJR,SealeJD,VranaWA,ShetakeJA,SudanaguntaSP,etal. 
Reversingpathologicalneuralactivityusingtargetedplasticity. Nature (2011) 
470:101–6.doi:10.1038/nature09656 
51. WangH,BrozoskiTJ,TurnerJG,LingL,ParrishJL,HughesLF,etal.Plasticityat 
glycinergicsynapsesindorsalcochlearnucleusofratswithbehavioralevidence 
oftinnitus. Neuroscience (2009) 164:747–59.doi:10.1016/j.neuroscience.2009. 
08.026 
52. HoltAG,BissigD,MirzaN,RajahG,BerkowitzB.Evidenceofkeytinnitus- 
relatedbrainregionsdocumentedbyauniquecombinationofmanganese- 
enhancedMRIandacousticstartlereflextesting. PLoSOne (2010) 5:e14260. 
doi:10.1371/journal.pone.0014260 
53. TurnerJ,LarsenD,HughesL,MoecharsD,ShoreS.Timecourseoftinnitus 
developmentfollowingnoiseexposureinmice. JNeurosciRes (2012) 90:1480–8. 
doi:10.1002/jnr.22827 
54. MaoJC,PaceE,PierozynskiP,KouZ,ShenY,VandeVordP,etal.Blast-induced 
tinnitusandhearinglossinrats:behavioralandimagingassays. J Neurotrauma 
(2012) 29:430–44.doi:10.1089/neu.2011.1934 
55. DengA,LuJ,SunW.Temporalprocessingininferiorcolliculusandaudi- 
torycortexaffectedbyhighdosesofsalicylate. BrainRes (2010) 1344:96–103. 
doi:10.1016/j.brainres.2010.04.077 
56. McFaddenD,PlattsmierHS,PasanenEG.Aspirin-inducedhearinglossasa 
modelofsensorineuralhearingloss. HearRes (1984) 16:251–60.doi:10.1016/ 
0378-5955(84)90114-X 
57. CsomorPA,YeeBK,VollenweiderFX,FeldonJ,NicoletT,QuednowBB.Onthe 
influenceofbaselinestartlereactivityontheindexationofprepulseinhibition. 
BehavNeurosci (2008) 122:885–900.doi:10.1037/0735-7044.122.4.885 
58. LongeneckerRJ,GalazyukAV.Methodologicaloptimizationoftinnitusassess- 
mentusingprepulseinhibitionoftheacousticstartlereflex. BrainRes (2012) 
1485:54–62.doi:10.1016/j.brainres.2012.02.067 
59. CampoloJ,LobarinasE,SalviR.Doestinnitus“fillin”thesilentgaps? Noise 
Health (2013) 15:398–405.doi:10.4103/1463-1741.121232 
60. FournierP,HébertS.Gapdetectiondeficitsinhumanswithtinnitusasassessed 
withtheacousticstartleparadigm:doestinnitusfillinthegap? HearRes (2013) 
295:16–23.doi:10.1016/j.heares.2012.05.011 
61. HickoxAE,LibermanMC.Isnoise-inducedcochlearneuropathykeytothe 
generationofhyperacusisortinnitus? J Neurophysiol (2014) 111:552–64. 
doi:10.1152/jn.00184.2013 
62. RadziwonKE,StolzbergDJ,SalviRJ.Salicylate-inducedhearinglossandgap 
detectiondeficitsinrats. AssociationforResearchinOtolaryngology37thAnnual 
MidwinterMeeting. SanDiego,CA:AssociationforResearchinOtolaryngology 
(2014). 
63. BoyenK,BaskentD,vanDijkP.Gapdetectionthresholdsintinnitussubjects: 
doestinnitusfillinthesilentgaps? 8th InternationalTRITinnitusConference. 
Auckland:TinnitusResearchInitiative(2014). 
64. JastreboffPJ,HazellJWP.Aneurophysiologicalapproachtotinnitus:clinical 
applications. Br JAudiol (1993) 27:7–17.doi:10.3109/03005369309077884 
65. AnariM,AxelssonA,EliassonA,MagnussonL.Hypersensitivitytosound:ques- 
tionnairedata,audiometryandclassification. Scand Audiol (1999) 28:219–30. 
doi:10.1080/010503999424653 
66. NelsonJJ,ChenK.Therelationshipoftinnitus,hyperacusis,andhearingloss. 
EarNoseThroatJ (2004) 83:472–6. 
67. SykaJ,RybalkoN,PopelárJ.Enhancementoftheauditorycortexevoked 
responsesinawakeguineapigsafternoiseexposure.HearRes (1994) 78:158–68. 
doi:10.1016/0378-5955(94)90021-3 
68. SalviRJ,WangJ,DingD.Auditoryplasticityandhyperactivityfollowing 
cochleardamage. HearRes (2000) 147:261–74.doi:10.1016/S0378-5955(00) 
00136-2 
69. NoreñaAJ,Chery-CrozeS.Enrichedacousticenvironmentrescalesauditorysen- 
sitivity. Neuroreport (2007) 18:1251–5.doi:10.1097/WNR.0b013e3282202c35 
70. KnipperM,vanDijkP,NunesI,RüttigerL,ZimmermannU.Advancesinthe 
neurobiologyofhearingdisorders:recentdevelopmentsregardingthebasis 
oftinnitusandhyperacusis. ProgNeurobiol (2013) 111:17–33.doi:10.1016/j. 
pneurobio.2013.08.002 
71. KatzenellU,SegalS.Hyperacusis:reviewandclinicalguidelines. OtolNeurotol 
(2001) 22:321–7.doi:10.1097/00129492-200105000-00009 
72. MarshallL,BrandtJF.Therelationshipbetweenloudnessandreactiontime 
in normalhearinglisteners. ActaOtolaryngol (1980) 90:244–9.doi:10.3109/ 
00016488009131721 
73. FormbyC,SherlockLP,GoldSL.Adaptiveplasticityofloudnessinducedby 
chronicattenuationandenhancementoftheacousticbackground. J AcoustSoc 
Am (2003) 114:55–8.doi:10.1121/1.1582860 
74. LauerAM,DoolingRJ.Evidenceofhyperacusisincanarieswithperma- 
nenthereditaryhigh-frequencyhearingloss. SeminHear (2007) 28:319–26. 
doi:10.1055/s-2007-990718 
75. IsonJR,AllenPD,O’NeillWE.Age-relatedhearinglossinC57BL/6Jmicehas 
bothfrequency-specificandnon-frequency-specificcomponentsthatproducea 
hyperacusis-likeexaggerationoftheacousticstartlereflex. J AssocResOtolaryn- 
gol (2007) 8:539–50.doi:10.1007/s10162-007-0098-3 
76. TurnerJG,ParrishJ.Gapdetectionmethodsforassessingsalicylate-induced 
tinnitusandhyperacusisinrats. AmJAudiol (2008) 17:S185–92.doi:10.1044/ 
1059-0889(2008/08-0006) 
77. SunW,LuJ,StolzbergD,GrayL,DengA,LobarinasE,etal.Salicylateincreases 
the gainofthecentralauditorysystem. Neuroscience (2009) 159:325–34. 
doi:10.1016/j.neuroscience.2008.12.024 
78. SunW,DengA,JayaramA,GibsonB.Noiseexposureenhancesauditorycor- 
texresponsesrelatedtohyperacusisbehavior. BrainRes (2012) 1485:108–16. 
doi:10.1016/j.brainres.2012.02.008 
79. PaceE,ZhangJ.Noise-inducedtinnitususingindividualizedgapdetection 
analysisanditsrelationshipwithhyperacusis,anxiety,andspatialcognition. 
PLoSOne (2013) 8:e75011.doi:10.1371/journal.pone.0075011 
80. DavisM,GendelmanDS,TischlerMD,GendelmanPM.Aprimaryacoustic 
startlecircuit:lesionandstimulationstudies. J Neurosci (1982) 2:791–805. 
81. YeomansJS,LiL,ScottBW,FranklandPW.Tactile,acousticandvestibular 
systemssumtoelicitthestartlereflex. NeurosciBiobehavRev (2002) 26:1–11. 
doi:10.1016/S0149-7634(01)00057-4 
82. CacaceA,McFarlandD.Hyperacusisisatheoreticalconstruct;notabehavior: 
reconcilinghumanandanimaldata. AssociationforResearchinOtolaryngology 
MidwinterMeeting. SanDiego,CA:AssociationforResearchinOtolaryngology 
(2014). 
83. KnudsenI,MelcherJR.Acousticstartleresponseinhumanswithtinnitusand 
hyperacusis. AssociationforResearchinOtolaryngologyMidwinterMeeting. San 
Diego,CA:AssociationforResearchinOtolaryngology(2014). 
84. ChenG-D,RadziwonKE,KashanianN,ManoharS,SalviR.Salicylate-induced 
auditoryperceptualdisordersandplasticchangesinnonclassicalauditorycen- 
tersinrats. NeuralPlast (2014) 2014:658741.doi:10.1155/2014/658741 
85. StebbinsWC,MillerJM.Reactiontimeasafunctionofstimulusintensity 
forthemonkey. J ExpAnalBehav (1964) 7:309–12.doi:10.1901/jeab.1964.7-309 
86. LeiboldLJ,WernerLA.Relationshipbetweenintensityandreactiontimein 
normal-hearinginfantsandadults. EarHear (2002) 23:92–7.doi:10.1097/ 
00003446-200204000-00002 
87. AriehY,MarksLE.Recalibratingtheauditorysystem:aspeed-accuracyanalysis 
ofintensityperception. J ExpPsycholHumPerceptPerform (2003) 29:523–36. 
doi:10.1037/0096-1523.29.3.523 
88. WagnerE,FlorentineM,BuusS,McCormackJ.Spectralloudnesssummation 
and simplereactiontime. J AcoustSocAm (2004) 116:1681–6.doi:10.1121/1. 
1780573 
89. MayBJ,LittleN,SaylorS.Loudnessperceptioninthedomesticcat:reaction 
timeestimatesofequalloudnesscontoursandrecruitmenteffects. J AssocRes 
Otolaryngol (2009) 10:295–308.doi:10.1007/s10162-009-0157-z 
90. Zhang C,FlowersE,LiJ-X,WangQ,SunW.Loudnessperceptionaffectedby 
highdosesofsalicylate–abehavioralmodelofhyperacusis. BehavBrainRes 
(2014) 271:16–22.doi:10.1016/j.bbr.2014.05.045 
FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 14
Hayesetal. Animal modelsoftinnitusandhyperacusis 
91. SunW,FuQ,ZhangC,ManoharS,KumaraguruA,LiJ.Loudnessperception 
affectedbyearlyagehearingloss. HearRes (2014) 313:18–25.doi:10.1016/j. 
heares.2014.04.002 
ConflictofInterestStatement: Theauthorsdeclarethattheresearchwasconducted 
in theabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstrued 
as apotentialconflictofinterest. 
Received:14July2014;accepted:02September2014;publishedonline:17September 
2014. 
Citation:HayesSH,RadziwonKE,StolzbergDJandSalviRJ(2014)Behav- 
ioralmodelsoftinnitusandhyperacusisinanimals.Front.Neurol. 5:179. doi: 
10.3389/fneur.2014.00179 
This articlewassubmittedtoNeuro-otology,asectionofthejournalFrontiersin 
Neurology. 
Copyright©2014Hayes,Radziwon,StolzbergandSalvi.Thisisanopen-accessarticle 
distributedunderthetermsofthe CreativeCommonsAttributionLicense(CCBY). 
The use,distributionorreproductioninotherforumsispermitted,providedtheoriginal 
author(s) orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited, 
in accordancewithacceptedacademicpractice.Nouse,distributionorreproductionis 
permittedwhichdoesnotcomplywiththeseterms. 
www.frontiersin.org September 2014|Volume5|Article179 | 15

More Related Content

Viewers also liked

Viewers also liked (9)

Middle ear myoclonus
Middle ear myoclonusMiddle ear myoclonus
Middle ear myoclonus
 
Middle ear myoclonus
Middle ear myoclonusMiddle ear myoclonus
Middle ear myoclonus
 
Informes mentals
Informes mentalsInformes mentals
Informes mentals
 
text
texttext
text
 
Mioclonia palatal y mioclonia oido medio
Mioclonia palatal y mioclonia oido medioMioclonia palatal y mioclonia oido medio
Mioclonia palatal y mioclonia oido medio
 
Proyecto prode AFundación para la hiperacusia y acufenos.
Proyecto prode AFundación para la hiperacusia y acufenos.Proyecto prode AFundación para la hiperacusia y acufenos.
Proyecto prode AFundación para la hiperacusia y acufenos.
 
Respuesta de la subvención de la Generalitat de catalunya
Respuesta de la subvención de la Generalitat de catalunyaRespuesta de la subvención de la Generalitat de catalunya
Respuesta de la subvención de la Generalitat de catalunya
 
Documentació jurídica/clínica/sintesis del caso
Documentació jurídica/clínica/sintesis del casoDocumentació jurídica/clínica/sintesis del caso
Documentació jurídica/clínica/sintesis del caso
 
Botox treatment
Botox treatmentBotox treatment
Botox treatment
 

Similar to Falten més estudis conductuals amb animals afectats de tinnitus i hiperacúsia

MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docxMINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
annandleola
 
Olive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_theOlive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_the
angelicaRAMIREZALTAM
 
Physiological and ethological effects of antidepressants: a study using ants ...
Physiological and ethological effects of antidepressants: a study using ants ...Physiological and ethological effects of antidepressants: a study using ants ...
Physiological and ethological effects of antidepressants: a study using ants ...
inventionjournals
 
SHK Poster Expected Background Findings IT SOT 2016
SHK Poster Expected Background Findings IT SOT 2016SHK Poster Expected Background Findings IT SOT 2016
SHK Poster Expected Background Findings IT SOT 2016
Sven Korte, Dr. PhD.
 
Pediatrics 2004--1412-29
Pediatrics 2004--1412-29Pediatrics 2004--1412-29
Pediatrics 2004--1412-29
Ahmed Naser
 

Similar to Falten més estudis conductuals amb animals afectats de tinnitus i hiperacúsia (20)

Ototoxic PPT Dr.dr.HR Yusa Herwanto, MKed(ORL-HNS), Sp.THTKL(K)
Ototoxic PPT Dr.dr.HR Yusa Herwanto, MKed(ORL-HNS), Sp.THTKL(K)Ototoxic PPT Dr.dr.HR Yusa Herwanto, MKed(ORL-HNS), Sp.THTKL(K)
Ototoxic PPT Dr.dr.HR Yusa Herwanto, MKed(ORL-HNS), Sp.THTKL(K)
 
How to broach a muscle tension dysphonia case
How to broach a muscle tension dysphonia caseHow to broach a muscle tension dysphonia case
How to broach a muscle tension dysphonia case
 
MUSCLE TENSION DYSPHONIA CASE
MUSCLE TENSION DYSPHONIA CASEMUSCLE TENSION DYSPHONIA CASE
MUSCLE TENSION DYSPHONIA CASE
 
Vocal cord polyps
Vocal cord polypsVocal cord polyps
Vocal cord polyps
 
Voice therapy
Voice therapyVoice therapy
Voice therapy
 
Voice Therapy: Management Of Benign Voice Disorders
Voice Therapy: Management Of Benign Voice DisordersVoice Therapy: Management Of Benign Voice Disorders
Voice Therapy: Management Of Benign Voice Disorders
 
Hearing loss among elderly patients in an ear clinic in nigeria
Hearing loss among elderly patients in an ear clinic in nigeriaHearing loss among elderly patients in an ear clinic in nigeria
Hearing loss among elderly patients in an ear clinic in nigeria
 
Speech Disorders
Speech DisordersSpeech Disorders
Speech Disorders
 
The role of hyperbaric oxygen therapy in Sudden Sensorineural Hearing Loss: A...
The role of hyperbaric oxygen therapy in Sudden Sensorineural Hearing Loss: A...The role of hyperbaric oxygen therapy in Sudden Sensorineural Hearing Loss: A...
The role of hyperbaric oxygen therapy in Sudden Sensorineural Hearing Loss: A...
 
Animalsc
AnimalscAnimalsc
Animalsc
 
MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docxMINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
MINI REVIEW ARTICLEpublished 04 March 2015doi 10.3389.docx
 
Misophonia Guide for Doctors & Other Cinicians
Misophonia Guide for Doctors & Other CiniciansMisophonia Guide for Doctors & Other Cinicians
Misophonia Guide for Doctors & Other Cinicians
 
Olive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_theOlive palpation sonography_and_barium_study_in_the
Olive palpation sonography_and_barium_study_in_the
 
9..pdf
9..pdf9..pdf
9..pdf
 
Humane charity presentation
Humane charity presentationHumane charity presentation
Humane charity presentation
 
Physiological and ethological effects of antidepressants: a study using ants ...
Physiological and ethological effects of antidepressants: a study using ants ...Physiological and ethological effects of antidepressants: a study using ants ...
Physiological and ethological effects of antidepressants: a study using ants ...
 
Tens en mujer con disfonia
Tens en mujer con disfoniaTens en mujer con disfonia
Tens en mujer con disfonia
 
Selective Attention Paper
Selective Attention PaperSelective Attention Paper
Selective Attention Paper
 
SHK Poster Expected Background Findings IT SOT 2016
SHK Poster Expected Background Findings IT SOT 2016SHK Poster Expected Background Findings IT SOT 2016
SHK Poster Expected Background Findings IT SOT 2016
 
Pediatrics 2004--1412-29
Pediatrics 2004--1412-29Pediatrics 2004--1412-29
Pediatrics 2004--1412-29
 

Recently uploaded

Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
adilkhan87451
 

Recently uploaded (20)

Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
 
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
 
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
 
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
 
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
 
Call Girls Vasai Virar Just Call 9630942363 Top Class Call Girl Service Avail...
Call Girls Vasai Virar Just Call 9630942363 Top Class Call Girl Service Avail...Call Girls Vasai Virar Just Call 9630942363 Top Class Call Girl Service Avail...
Call Girls Vasai Virar Just Call 9630942363 Top Class Call Girl Service Avail...
 
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
 

Falten més estudis conductuals amb animals afectats de tinnitus i hiperacúsia

  • 1. REVIEW ARTICLE published: 17 September 2014 doi: 10.3389/fneur.2014.00179 Behavioral models of tinnitus and hyperacusis in animals Sarah H. Hayes1*, Kelly E. Radziwon1, Daniel J. Stolzberg2 and Richard J. Salvi 1 1 Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of NewYork, Buffalo, NY, USA 2 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University ofWestern Ontario, London, ON, Canada Edited by: Arnaud Norena, Université de Provence, France Reviewed by: Martin Pienkowski, Salus University, USA Alexander Galazyuk, Northest Ohio Medical University, USA *Correspondence: Sarah H. Hayes, Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of NewYork, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA e-mail: shhayes@buffalo.edu The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. Keywords: tinnitus, hyperacusis, lick suppression, operant conditioning, startle reflex, reaction time, behavior INTRODUCTION Subjective tinnitus refers to the perception of a sound in one or both ears, or from inside the head, in the absence of an external acoustic source (1, 2). The phantom sound of tinnitus is a serious condition affecting 10–15% of the general population, with ~1% of the population experiencing a debilitating form of chronic tin-nitus that interferes with daily life (3). Hyperacusis, defined as a hypersensitivity to moderate-intensity sounds (4–7), is a condi-tion affecting ~6% of the general population and often co-occurs with tinnitus (4). The prevalence of hyperacusis in the tinnitus population has been estimated to be as high as 80% (8), suggest-ing a common mechanism of dysfunction for these two perceptual disorders. At present, the neural basis of tinnitus and hyperacusis remains elusive, and there are no widely accepted treatments or cures for individuals suffering from these conditions. However, studies in both humans and animals have led to a number of proposed neurophysiological models thought to underlie these conditions including tonotopic map reorganization, changes in spontaneous activity, or altered neural synchrony along the auditory pathway [for review, see Ref. (9)]. Rigorous testing of these hypotheses, as well as screening for potential therapeutic treatments, requires a reliable animal behavioral paradigm that not only identifies ani-mals with tinnitus and/or hyperacusis but also allows for the use of invasive techniques, such as electrophysiological recordings from the brain and neuroanatomy, which are inappropriate for use in human patients. In order to identify and investigate potential underlying mech-anisms of tinnitus and hyperacusis, a number of animal models have been developed (10–15). Since an animal cannot directly communicate its subjective experiences,behavioral paradigmsthat extrapolate an animal’s perception based on changes in behavioral performance have been devised to indicate whether an animal is experiencing tinnitus and/or hyperacusis. Such paradigms have utilized a number of behavioral training techniques including lick or lever pressing suppression (10–14), two-choice operant con-ditioning (16–18), and reflex modification (15). Ultimately, any behavioral model of hyperacusis or tinnitus should closely mirror what we know about these disorders in the human population. When evaluating animal models of tinnitus and hyperacusis, a number of important factors should be considered, including whether the method, time-course, and variability of tinnitus or hyperacusis induction, aswell as any measures of pitch or loudness, are consistent with evidence from human tinnitus/hyperacusis patients. Furthermore, behavioral paradigms should be resis-tant to confounding influences, such as hearing loss, that often accompany noise or drug-induced tinnitus/hyperacusis. Thus, the goal of this review will be to evaluate current ani-mal behavioral models of tinnitus and hyperacusis with a focus on the most widely used and newest paradigms in the literature. For each paradigm, a brief summary will be provided as well as a discussion of the paradigm’s major advantages and disadvantages. Important factors such as consistency with the human condition and resilience to the secondary effects of drug or noise exposure will also be discussed. Although previous reviews have thoroughly evaluated many of the proposed animal models of tinnitus (19– 25), to our knowledge, this review will be the first to incorporate evaluations of animal models of hyperacusis, as well as models of tinnitus, which is necessary given the frequent co-occurrence of these two disorders. HUMAN STUDIES OF TINNITUS In order to evaluate animal models of tinnitus, it is important to have an understanding of the key characteristics of tinnitus in the human population. Much of what we know about the fea-tures of tinnitus comes from subjective descriptions by tinnitus www.frontiersin.org September 2014 | Volume 5 | Article 179 | 1
  • 2. Hayesetal. Animal modelsoftinnitusandhyperacusis patients.Studiesinwhichtinnitusisinducedinindividualsfol- lowingexposuretoloudsoundorototoxicagents,aswellasstudies ofindividualswithlong-standingtinnitus,provideuswithinfor- mationregardingtinnituspitch,intensity,timecourseforonset followingexposure,andvariabilityofinduction. Measurementsoftinnituspitcharecommonlyconductedusing pitchmatchingtechniquesinwhichindividualsarepresentedwith tonesofvaryingfrequencyandaskedtoselectthetonethatis closestinpitchtotheirtinnitus[foramethodologicalreview, seeRef.(26)]. Anumberofstudieshavedemonstratedalink betweenthepitchoftinnitusandtheconfigurationofanindivid- ual’shearingloss.Tinnituspitchmeasurementshavebeenmade in individualsimmediatelyfollowingexposuretoloudsounds (27–29) andinindividualswithlong-standingtinnitus(30–33). Followingacuteexposuretoloudsound,thepitchoftinnitus was foundtooccurabovethefrequencyofthenoiseexposure, eitherinthehigh-frequencyedgeofasharplylocalizedhearing loss (27) orclosetotheregionofmaximumhearinglosspro- ducedbythenoiseexposure(28, 29) (Figure1A). Similarly,in individualswithlong-standinghearinglossandtinnitus,thetin- nituspitchwasmatchedeithertothefrequenciesattheedgeof the hearingloss(31), ortothefrequencyregionofmaximalhear- ing loss(32) (Figure1B). Tinnituspitchmatchingmeasureshave also beencompletedinindividualsexposedtosodiumsalicylate,a drugknowntoreliablyinducetemporaryhearinglossandtinnitus in humansandanimalswhentakenathighdoses[forreview,see Ref.(34, 35)]. Althoughsomestudieshavematchedthepitchof salicylate-inducedtinnitusandhearinglossacrossabroadrangeof frequencies,salicylate-inducedtinnitusandhearinglossareboth most commonlyreportedtooccuratthehighfrequencies(34). In general,thepitchoftinnitusresultingfromacutenoiseexposureor long-standinghearinglosscommonlyoccurswithintheregionof hearinglossandabovethefrequencyofthenoiseexposureused toinducehearingloss(36). However,measurementsoftinnitus pitcharecomplicatedbyfindingsthattinnituspitchalsodepends ontheetiologyofthetinnitus(37) andthattinnituspitchtends tobelowerinfrequencyforindividualswithnormalaudiometric profiles,i.e.,normalthresholdsat250–8000Hz(30). FIGURE 1|Measurementsoftinnituspitchinhumansubjectswithacute noise-induced tinnitusorlong-standingtinnitus. (A) Followingacutenoise exposure,tinnituspitchhasbeenfoundtooccurabovethefrequencyofthe noise exposureclosetotheregionofmaximalhearinglossgeneratedbythe noise exposure[fromRef.(29) withpermission;NIST,noise-inducedshort duration tinnitus;MTS,maximumthresholdshift]. (B) Similarly,tinnituspitch has beenmatchedtofrequenciesintheregionofmaximumhearinglossfor individuals withlong-standingtinnitus[fromRef.(32)]. FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 2
  • 3. Hayesetal. Animal modelsoftinnitusandhyperacusis Loudnessmatchinghasalsobeenconductedonindividu- als experiencingtinnitusfollowingexposuretoloudsoundsor sodiumsalicylate,aswellasinindividualswithlong-standing hearinglossandtinnitus.Themedianintensityoftinnitusresult- ing fromacuteexposuretoloudnoisewasfoundtobe9dBSL, whereasthetinnitusresultingfromsodiumsalicylatewasmatched at 5–15dBSL(29, 34). Inindividualswithlong-standingtinnitus, the intensityreportedbyindividualsrangesfrom7.1to18.9dBSL (31). However,loudnessrecruitment,steeperthannormalloud- ness growthfunctionsfoundinpatientswithhearingloss(5), can contaminatetinnitus-loudnessmatchesbyunderestimatingthe perceivedloudnessoftinnitus(26). Additionalfactorstoconsiderregardingtinnitusinthehuman populationarethetimecourseforonsetfollowingexposureto noiseorsodiumsalicylateandthevariabilityofitsinduction.For individualsexposedbrieflytoloudnoise,tinnitusonsetisreported tooccurimmediatelyfollowingtheexposure(28, 29). Giventhe shortdurationofnoiseexposureinsomeofthesestudies(5min), tinnituswasreportedtolastfornearly15minfollowingtheexpo- sure(29). However,followingexposuretoahighdoseofsodium salicylate,tinnitusonsetoccursbetween1and3hpostexposure and typicallydissipateswithin1–2daysfollowingtheexposure (34). Despitethedifferencesintinnitusonsetforacutenoise exposureandsalicylate,bothmethodsresultinvariabilityinthe inductionoftinnitus.Followingacutenoiseorsalicylateexposure, not allindividualsdeveloptinnitus(28, 29, 34). Interestingly,some individualswithapreexistinghearinglossexposedtohighcon- centrationsofsalicylatefailedtoexperiencetinnitus,suggestingan individualvariabilityforsusceptibilitytosalicylate-inducedtinni- tusinthispopulation(34). Thus,tinnituspitch,intensity,onset, and variabilityinthehumanpopulationareimportantfactorsto considerwhenevaluatinganimalmodelsoftinnitus. ANIMAL MODELSOFTINNITUS JASTREBOFF Thefirstbehavioralmodeloftinnitusinanimalswasdeveloped byJastreboffetal.(10). Inthis conditionedlick-suppressionpara- digm, ratsweretrainedtolickforwaterduringperiodsinwhich a steadybackgroundnoisewaspresent,andtosuppresstheirlick- ing duringbriefperiodsofsilence(conditionedstimulus),which werefollowedbyafoot-shock(unconditionedstimulus).Inthe initialstudy,tinnituswasinducedusinganinjectionofsodium salicylatefollowingtraining.Duringthetestingphase,thefoot- shockwasturnedoffresultingintheeventualextinctionofthe lick-suppressionbehavior.Therateofextinctionwasassessedover multipletestdaysandwasusedasanindicatorforthepresence oftinnitus;specifically,animalsgiventhetinnitusinducersalicy- latebeganlickingduringthesilentintervalsearlierthananimals givensalinepresumablybecausetheyheardtheirtinnitusduring the quietintervals.Therapidextinctionofthelick-suppression behaviorinthesalicylate-treatedratswasinterpretedasthepres- enceoftinnitusbecauseanimalswithtinnitusdonotexperience silenceandwereexpectedtobehaveasifasoundisbeingpresented. A seriesofimportantcontrolswereperformedusingthispar- adigmtoensurethattheobservedbehaviorwasrepresentative oftinnitusandnotanotherconfoundingfactorassociatedwith salicylateadministration.First,todemonstratethattheobserved resultswereauditory-specific,alightstimuluswasusedinplace ofthebackgroundsoundandanimalsweretrainedtosuppress lickingwhenthelightwasturnedoff.Salicylateadministration followingtrainingwiththelightstimulushadnoeffectonthe behavior,indicatingthattheeffectsofsalicylateareauditory- specific.Theeffectsofsalicylateonthirstandmotivationwere also controlledbyadministeringsalicylateduringtrainingaswell as duringtesting.Ratsgivensalicylateduringtrainingassociated theirtinnitusperceivedduringthesilentintervalswiththefoot- shockandsuppressedtheirlickingduringthesilent(tinnitus) intervalsduringtesting.Salicylateadministrationdidnotresultin a generaleffectondrinkingbehaviorsinceratsadministeredsali- cylateduringtraining decreased theirlickingduringsilentintervals whereasratsadministeredsalicylateaftertraining increased their lickingduringsilentintervals.Furthermore,hearinglossasacon- foundingfactorwasalsoinvestigatedbydecreasingtheintensity ofthebackgroundsound,whichdidnotaffectthebehavior. Theconditionedlick-suppressionparadigmoffersanumber ofadvantagesincludingitsrelativelyshorttrainingtimeandthe observationthatitisnotaffectedbyconfoundingfactorsrelated totinnitusinductionsuchashearinglossandnon-auditoryeffects ofsalicylate.However,thislick-suppressionparadigmisnotuseful forlong-termstudiesoftinnitusbecausethebehaviorextin- guishes. Sincetheanimalsaretestedinextinctionoveraperiodof severaldays,theynolongerremainunderstimuluscontrolwhen the shockisturnedoff.Additionally,theparadigmrequirescom- parisonofgroupsofanimals(tinnitusversuscontrol)andhas not beenusedforassessingthepresenceoftinnitusinindividual animals. BAUER ANDBROZOSKI Asmentionedabove,onelimitationoftheJastrebofflick- suppressionparadigmwasitsinabilitytotestforlong-termtinni- tusinrodents.Motivatedbytheneedtotestpharmaceuticalsfor treatingtinnitus,BauerandBrozoskidevelopedanaversivecondi- tioningbehavioralparadigmderivedfromtheJastreboffmodelin ordertoprovidelong-termquantitativeandqualitativeassessment oftinnitusperceptioninrats(11). SimilartotheJastreboffmodel,BauerandBrozoskideveloped a shock-avoidanceparadigminwhichratsweretrainedtodis- criminatesound(whitenoiseortonesofvariousfrequenciesand intensities)fromsilence(0dBSPL).Initially,therat’sbehaviorwas shapedtofrequentlypressaleverwhileawhitenoiseoratonewas presented.Thisbehaviorwasreinforcedbyavariableintervalof reinforcementwithafoodpellet.Oneminutesilentperiodsinter- ruptedthewhitenoiseandwerefollowedbyabrieffoot-shock if theleverwaspressed.Thisprocedurequicklytrainedtheratto avoidpressingtheleveronlyduringthesilentperiods.Following initialtraining,thefoot-shockwasturnedoninfrequently,occur- ringapproximatelyonceperweekperrat.Aleversuppression ratio, R D B .ACB/ , wasusedtoquantifywhetherornotthenumber ofleverpressesduringthecurrent1minperiod, A, differedfrom the immediatelyprecedingperiod, B. Avalueof R D0.0 indicated completesuppressionofleverpressing(i.e.,ratsreportednosound was present),whereasavalueof RD0.5 indicatednosuppression ofleverpressingcomparedtothepreviouswhitenoisestimulus (i.e., asoundwaspresent). www.frontiersin.org September 2014|Volume5|Article179 | 3
  • 4. Hayesetal. Animal modelsoftinnitusandhyperacusis Behavioralperformanceonthistaskhasbeenobservedfollow- ing chronicexposuretoeithersodiumsalicylateindrinkingwater (11) oracuteunilateralnoisetrauma(38). Intheinitialstudyusing sodiumsalicylate,blood-serumlevelsofsalicylateweresimilarto those measuredinhumanswithsalicylate-inducedtinnitus.Rats treatedwithsalicylatedemonstratednodifferenceinleverpress- ing duringsilentintervalscomparedtocontrolanimals,butdid demonstratehigher R values(moreleverpressing)totonestimuli, withthemaximumincreasein R valueoccurringwiththe15-kHz tonalstimulus.Thiswasinterpretedtorepresentthepresenceof tinnitusinthesalicylate-treatedsubjects,asamaximalinterac- tionwasexpectedtooccurattonalfrequenciesthatmostclosely resembledthetinnitusfrequency.Theexplanationforthebehav- ioralshifttotonalstimuliwasthatthesalicylate-treatedsubjects heardthetonesdifferentlythancontrolsubjectsandperceivedthe tonesasmorenoise-likeduetotheirtinnitus.Inotherwords,the tinnitusperceptwasexpectedtointeractwiththeperceptionofthe externallypresentedtonalstimulitoproducea“noisy”perceptif the tonesweresimilartothetinnituspitch.Sincetheanimalswere trainedtopressduringnoisestimuli,theanimalswereexpected topressmoreoftenwhenthetesttonesinteractedwiththeirtin- nitustocreatethisnoise-likepercept.Thetinnitus-likebehavior was reversedintheexperimentalgroupsoonaftertreatmentwith salicylatewasstopped. Inasubsequentstudy(38), a1-or2-hunilateraltraumatizing noiseexposurecenteredat16kHzwasusedtoinducetinnitusin ratstrainedonthisbehavioralparadigm.Followingthe1-hnoise exposure,themaximumshiftin R valueoccurredduringtest- ing sessionswherethe20-kHztesttonestimuluswaspresented. However,unlikethepreviousstudyinwhichsalicylate-induced increases in R valuewereinterpretedastheevidenceoftinnitus, unilateralnoiseexposureresultedinasignificant decrease in R valuefortonalstimuliwhichwasinterpretedasthepresenceof tinnitus.Thereductionin R valueinthenoise-exposedanimals was reportedforupto17monthsfollowingnoiseexposure,i.e., persistenttinnitus. Importantly,inthesamestudy,thepossibleconfoundingeffects ofhearinglosswerecontrolledbyincludinganadditionalexperi- mentalgroup,whichwerenotnoise-exposedbutwereoutfitted withfoamearplugsfixedintheearcanalwithcyanoacrylate. Thesuppressionratio, R, ofthisgroupwasunaffectedbythe ~40 dBconductivehearinglossduetotheearplug.Thisisstrong evidencethatthebehavioralparadigmisrobusttoamoderate unilateralconductivehearingloss;however,thisdoesnotexclude the possibilitythatunilateralsensori-neuralhearingloss,andthe subsequentloudnessrecruitment,maybeaconfoundingfactor. Thereareafewnotablestrengthsofthisbehavioralparadigm fortheassessmentoftinnitusinratsincludingtheabilitytotest subjectsoverlongperiodsoftime,itsresiliencetounilateralcon- ductivehearingloss,abilitytodeterminetinnituspitch,andthe rigorthroughwhichtheparadigmhasbeentestedbyitscreators. One limitationoftheparadigmisthattheresultsarepresented as ameanofallanimalsperformingwithinagroup.Whilethis approachmaybeeffectiveandappropriatefortestingtheviability ofvariouspharmaceuticalsusinggroupstatistics,itislesseffective in assessingtinnitusinanindividualsubject,andthetimecourseof tinnitusonset.Anotherdisadvantageoftheparadigmisthatsince onlyonetonefrequencyispresentedduringeachsession,many testingsessionsarerequiredtodeterminethepitchoftinnitus. Additionally,usingthisparadigm,tinnitus-likebehaviordoesnot appearuntilweeksfollowingexposuretounilateralnoisetrauma, a resultatoddswiththehumanliteratureinwhichtinnitusonset typicallyoccursimmediatelyfollowingexposuretointensenoise (27–29). Furthermore,thereislittleevidenceinthehumanlit- eratureindicatingthattinnitusinterfereswiththeperceptionof externaltonesassuggestedbytheauthors.Indeed,externalsounds ~5–15 dBabovethresholdsmaybequiteeffectiveinsuppressing tinnitus(26). HEFFNER InanattempttoimproveupontheJastrebofflick-suppression paradigm,HeffnerandHarrington(12) trainedhamstersina con- ditionedsuppression/avoidanceprocedure todrinkinthepresence ofabroad-bandnoiseorvarioustones,andtostopdrinkingin the absenceofthesesounds(silence)toavoidashock.Although the lick-suppressionmethodsweresimilar,twocrucialdifferences existbetweentheJastreboffandHeffnerparadigms.Forone,the animals intheHeffnerconditionedsuppressionparadigmunder- wentextensivetraininginthehopesoftestingindividualanimals fortinnitus.Jastreboff,ontheotherhand,tooklesstimetotrain eachanimalbutcouldonlyassessgroupsofanimalsfortinni- tus.Anotherkeydifferencebetweenthetwoparadigmsisthat the shockwasavoidableintheHeffnerconditionedsuppression paradigmwhereastheelectricshockwasunavoidableintheJas- treboffparadigm.Despitethesedifferences,thehypothesisfor bothproceduresremainedthesame.Namely,whentheshock was turnedoffduringtesting,animalswithnoise-induced(12) or salicylate-induced(10) tinnituswerehypothesizedtoextinguish fasterthananimalswithouttinnitus,becauseanimalswithtinni- tusnolongerexperiencesilence,andtherefore,shouldnotknow whentosuppresstheirlicking. Althoughtinnituscouldbeassessedinindividualanimals,the majordrawbackoftheHeffnerconditionedsuppressionpara- digmwasthatasignificantoverlapinperformanceexistedbetween the controlandnoise-exposedanimals(25). Moreover,sincethis paradigmusedextinctionasitsbehavioralmeasureoftinnitus, this paradigmcannotbeusedtodetectchronictinnitus(21). For these reasons,Heffnerandcolleaguesdevelopedanothertinnitus paradigmusinga two-choicesoundlocalizationprocedure. Duringthesoundlocalizationprocedure,animalsweretrained tolateralizesoundsbyrespondingtotherightsideofatestboxfor sounds comingfromaspeakerontherightsideandtorespondto the leftsideofatestboxforsoundscomingfromtheleftside(16, 39). Animalsweregivenwaterrewardforcorrectresponsesand wereshockedforincorrectresponses.Importantly,silenttrials,or probes,wereinterspersedon~24%oftrials,whichwereneither reinforcednorpunishedbuttheanimalswereforcedtochoosea side.Thesidepreferenceduringsilenttrialswasdeterminedfor eachanimalpriortonoiseexposure. Tinnituswasinducedbysound-exposingtheearoppositeeach animal’ssidepreferenceduringsilenttrials(16). Forinstance,an animal witharight-sidebiasforsilenttrialsduringtrainingwould begivenaleftearsoundexposure.Accordingly,animalswithtinni- tusshouldswitchtheirsidepreferenceduringsilenttrialsfromthe FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 4
  • 5. Hayesetal. Animal modelsoftinnitusandhyperacusis sidepreferredpriortonoiseexposure(therightsideintheabove example)totheopposite,noise-exposedside(theleftsideinthe aboveexample)becausetheanimalsnowhearaphantomsound onthatexposedside.Inaccordancewiththeirhypothesis,the researchersfoundthathamsters(16) andrats(39) willshifttheir sidepreferenceonsilenttrialstothenoise-exposed,previously non-preferredear,suggestingthattheyperceiveaphantomsound in thatear.Asanimportantcontrolcondition,simplyplugging oneearandproducingaconductivehearinglossdoesnotresultin a shiftinbehavioronsilenttrials.However,thekeyassumptionof this paradigmisthatexposingoneeartoloudsoundwillalways inducetinnituslateralizedtothatearandneverproducebilat- eraltinnitusortinnitusintheoppositeear.Therefore,amajor drawbackofthisparadigmisthatitcannotbeusedtotestdrug- inducedtinnitusorbinauralnoiseexposuresthatwouldlikely inducebilateraltinnitus. Yet,theadvantageofusingatwo-choiceparadigmtodetect tinnitusisthatanimalswithtinnitusmakea qualitatively different responsethananimalswithouttinnitus,whereasanimalswithtin- nitusinlick-suppressionparadigmslickmoreorlessthananimals withouttinnitus,resultingin quantitative differencesbetweenthe twogroupsthatmaybetheresultofotherfactors,suchashearing loss, thataccompanydrugornoise-inducedtinnitus(12). Inother words,animalsperceivingtinnitusinatwo-choiceparadigmgo toadifferentside,orpressadifferentlever,thananimalswith- outtinnitus,whereasanimalsperceivingtinnitusinsuppression paradigmslickmoreorlessthananimalswithouttinnitusbut stillperformthesamelickingbehaviorinbothcases.Sincetin- nitusanimalsintwo-choicetasksmakeaqualitativelydifferent responsethannon-tinnitusanimals,thebehaviorintwo-choice experimentsismoreresistanttochangesinmotivation,stress, hearingloss,orhyperacusisthatfrequentlyco-occurwithdrugor noise-inducedtinnitus(12, 17). RÜTTIGER Rüttigerandcolleagueshavedevelopedawater-reinforcedcondi- tionedavoidanceparadigmforratswiththegoaloflimitingthe needforlongperiodsofwaterdeprivationaswellasunavoid- ableshock(13). Animalsaretrainedtoshuttlebetweentwowater spoutsduringthepresentationofa70-dBSPLwhitenoiseback- groundsoundinordertoreceivearewardof3%sugarwater. Duringsilentperiods,however,theanimalsreceiveamildfoot- shockiftheyaccessthewaterspouts.Theanimalsaretrained overaperiodofweeksuntiltheirresponsestothewaterspouts duringsilentperiodsaresufficientlysuppressedcomparedto the responsesduringwhitenoisebackgroundsoundpresenta- tion.Importantly,avariablereinforcementrateisintroduced duringthefinalstagesoftraininginordertoreduceextinc- tionoftheresponses,giventhatboththereward(sugarwater) and foot-shockareturnedoffduringthetestingphase.Ani- mals withtinnitusareexpectedtoincreasetheirresponsesat the waterspoutsduringsilentperiodsindicatingthattheyare experiencingaphantomsound.Thisparadigmhasbeenused todeterminethepresenceofbothsalicylateandnoise-induced tinnitus(13, 40). Ithasalsobeenusedtodeterminetheinten- sityoftinnitusbycomparingtheresponserateofratstreated withsalicylatetothatofanimalsinwhichthebackground sound waspresentedatvaryingintensities,andwasestimated tobe~30dBSPL. Thisparadigmhasanumberofadvantages.Asmentionedpre- viously,itdoesnotrequirelong-termdeprivationofwateror presentationofanunavoidablefoot-shock.Itcanbeusedtotest individualanimalsfortinnitusbyinjectingsaline,asacontrol,or salicylateinthesameanimalsondifferentdaysandcomparing behavioralperformance.However,althoughtrainedanimalsare reportedtogo6–8monthswithouttrainingandstillperformthe task tocriterion,itcannotbeusedtotestanimalsrepeatedlyfortin- nitusoverlongdurationsduetoextinctionoftheresponsewhen reward/punishmentisturnedoffduringtestingandwhenper- sistenttinnitusispresentfollowingnoiseexposure.Furthermore, althoughtheparadigmhasbeenusedtodeterminetheintensity oftinnitus,ithasnotbeenusedtodeterminethefrequencyof tinnitus. LOBARINAS Lobarinasandcolleaguesintroducedaschedule-inducedpolydip- sia avoidanceconditioning(SIP-AC)paradigmtoassessratsfor salicylate-inducedtinnitus(14). Thisparadigmdifferedfromthe previouslymentionedlick-suppressionparadigmsintwoways. Forone,theanimalswerenotwaterrestricted,butwerefood restrictedandtrainedtolickawaterspoutwhilewaitingfora foodpellettodropintoatrough.IntheSIP-ACparadigm,ani- malswouldreceiveonefoodpelletperminuteandwouldconsume water,eventhoughtheywerenotwaterdeprived,whilewaiting foranotherpellettodrop.Thisbehaviorisreferredtoaspolydip- sia becausetheanimalsdrankthewatereventhoughtheywere not waterdeprived(14). Second,unliketheotherlick-suppression paradigmswheretheanimalsweretrainedtostoplickinginthe absenceofsound(quiet),animalsintheSIP-ACparadigmwere trainedtostoplickinginthepresenceofsounds.Inotherwords, animals couldlickforwaterinquietbutwereshockedforlicking duringsoundtrials.Therefore,ifanimalsexperiencetinnitusin the SIP-ACparadigm,theyshouldceaselickingduringquiettrials becausetheynowhearasound.Thebenefitofthisprocedureis that theshockneverhastobeturnedoffbecauseananimalwith tinnitusshouldnotlickduringsoundorquiettrials,andtherefore, wouldnotgetincorrectlyshocked.Sincetheshockisneverturned off,extinctionisnotaproblemwiththisparadigm;therefore,it can potentiallybeusedtomeasurechronictinnitus. However,likeallofthepreviouslick-suppressionparadigms, SIP-ACisnotrobusttochangesinmotivationorhearingloss that accompanysalicylateand/ornoise-inducedtinnitus(23). For instance,ananimalgivenalargedoseofsalicylatemightbecome sickandlessmotivatedtodrinkoverallregardlessofwhetherit has tinnitusornot.Similarly,ananimalwithasubstantialdrugor noise-inducedhearinglossmightmistakenlylickduringasound trial,perceivingitasaquiettrial,andreceiveashock.Sincethe animal isnotwaterdeprived,theanimalmightstoplickingalto- gethertoavoidtheshock.Therefore,ananimalwithhearingloss couldconceivablytestpositivefortinnitus(23). SEDERHOLM ANDSWEDBERG Recently,SederholmandSwedberg(17) trainedratsina two-choice operantconditioningprocedure toidentifyratswithsalicylateand www.frontiersin.org September 2014|Volume5|Article179 | 5
  • 6. Hayesetal. Animal modelsoftinnitusandhyperacusis noise-inducedtinnitus.Forthisprocedure,eachratwastrained topressa“tone”leverwhenitheardatoneandtopressa“0Hz” (silence)leverwhennosoundwaspresented.Correctresponses wererewardedwithfoodandincorrectresponsesresultedinareset ofthefixedratiorequirement(20additionalleverpresses)onthe appropriatelever.Aftertheanimalsweretrainedtocriterion,the animals weretestedfollowingsalicylateadministrationorintense noiseexposureinaquietchamberwheretheirleverpressestothe “tone”leverwerecounted(17). Animalswithtinnitusshouldhave a greaternumberof“tone”leverpressesthan“0Hz”leverpresses duringtestingeventhoughnosoundispresented. Thebenefitsofthisprocedurearethatnoshockisrequiredto traintheanimals;and,giventhatthisisatwo-choiceparadigm,itis moreresistanttoconfoundingfactorsintinnitusinduction,such as hearingloss,hyperacusis,motorimpairment,andlossofmoti- vation,sincetheanimalsmakeaqualitativelydifferentresponse whentheyexperiencetinnitus(12, 17). However,thisprocedure requiresextensivetraining(2–3months)andtheauthorscould onlytraintheiranimalstocriterionusinghighstimuluslevels (55–65 dBSL)thatarelikelymuchhigherthantheperceivedtin- nitusintensity.Furthermore,sincetheratswerealwaysreinforced forrespondingduringtesting,itisnotclearhowlongtheanimals remainunderstimuluscontrol.Forinstance,afterseveraltesting sessions,itispossiblethattheanimalswouldrandomlypresseither leversincebothleversresultinfoodreward,makingthispara- digmproblematicforstudiesofchronictinnitus(17). Inaddition, leverpressingduringtestingappearshighlyvariableacrossanimals making tinnitusassessmentdifficult(Figures2A,B). However, despitethesecriticisms,thisisanewtinnitusparadigmthat,with moretesting,mightproveusefulinfuturetinnitusstudies. STOLZBERG A centralgoaloftinnitusresearchistoidentifyaputativeneuro- physiologicalcorrelateoftinnitusperception.Majoradvanceshave beenmadetowardthisobjectiveinelectrophysiologicalstudiesin humantinnituspatients(41). Whilemanyreportsexistonneu- rophysiologicalchangesfollowinginductionoftinnitusinanimal models,onlyasmallsubsethavedonesowithbehavioralconfirma- tionoftinnitusinalertanimalswithouttheinfluenceofanesthesia [e.g.,Ref.(42)]. Inanattempttoovercomethisissue,Stolzberg and colleaguesdevelopedanovelappetitive two-alternativeforced choice assay,whichisbettersuitedtoinvestigatepossibleneuro- physiologicalcorrelatesoftinnitusinananimalmodelbyallowing neuralactivitytoberecordedwhiletheanimalisactivelyexhibiting tinnitus-likebehavior(18). Stolzbergandcolleaguestrainedratstoaccessaleftfeeder portinthepresenceofasteady,unmodulatednarrow-bandnoise (NBN; 1/8thoctaveband-passnoisewithafrequencycenter selectedrandomlyacrosstrials),andtoaccessarightfeederport in thepresenceofasinusoidallyamplitudemodulatednoise(AM; broad-bandnoisewithamplitudemodulated100%at5Hz)or silence(Quiet)(Figure3B). Oneofthethreeacousticcondi- tions(NBN,AM,Quiet)wascontinuouslypresentinthetesting chamberatthestartofeachtrial.Ratsinitiatedatrialbynose- pokingintoacenterport(Figure3A) andmaintainedthisposition forarandomizedperiodof4–8suntilalightcuedthem(“go cue”)torespondtoafeederportbasedontheacousticcondi- tion.Correctresponseswerereinforcedwithafoodpelletand incorrectresponsesresultedina“time-out”inwhichtheratwas unabletoinitiateanewtrial.Duringtraining,thereinforcement ratewasreducedfrom100to70%inordertominimizeextinc- tionofthelearnedbehavior,andthepercentageoftrialtypeswas dividedevenlybetweenthetwofeeders(NBNat50%;AMat30%; Quietat20%). On testingdays,inwhichratsreceivedeitheraninjectionof saline orahighdoseofsalicylatetoinducetinnitus,Quiettrials wereneitherreinforcednorpunished.Tinnitus-likebehaviorwas indicatedbytheratshiftingitsresponseduringQuiettrialsfrom the rightfeederassociatedwithAMandQuietduringtraining,to the leftfeederassociatedwiththesteadyNBN(Figure3C). Follow- ing treatmentwithsalicylate,ratsincorrectlyidentifiedtheQuiet conditionasaNBNsignificantlymorethanbaselineorsaline, indicatingthepresenceofasteadyNBN-likephantomsound (i.e., tinnitus)duringQuiettrials(Figure3D). Importantly,this FIGURE 2|Ratstrainedinatwo-choiceoperantconditioningparadigm topressa“tone”leverwhentoneswerepresentedora“0Hz”(silence) leverduringperiodsinwhichnosoundwaspresentedinordertoreceive a foodreward. Changesintoneleverpressingduringsilentintervalswere observedfollowingexposuretosalicylate (A) or unilateralacoustictrauma (B). Thinlinesrepresentindividualanimaldatawhileboldlinesdepictgroup data.Anincreaseintoneleverpressingduringsilencewasusedtoindicate the presenceoftinnitusfollowingexposure[fromRef.(17), withpermission]. FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 6
  • 7. Hayesetal. Animal modelsoftinnitusandhyperacusis FIGURE 3|IllustrationofbehavioraltinnitusassayreportedinRef. (18). (A) One ofthethreeconditions(AM,NBN,Quiet)ispresent.Therat self-initiates atrialbynose-pokinginthecenterport. (B) Afteravariable delay,alightcuestherattorespondtoafeedertroughlocatedtotheleftor right ofthecenterport.TheNBNconditionispairedwiththeleftfeeder trough. AMandQuietconditionsarepairedwiththerightfeedertrough. (C) Followinginductionoftinnitus,ifarathearsasteadyphantomsoundit should respondtotheleftfeederduringtheQuietconditionwhilestill correctlyidentifyingAMandNBNconditions. (D) Comparison of performanceofrats(nD7; eachcircle–squarepairrepresentsonerat) betweensalineandsalicylatetreatments.FollowingsalinetreatmentAM and QuietconditionswereinfrequentlymisidentifiedasNBN,whereas NBN wasidentifiedcorrectly.FollowingsalicylatetreatmentQuiet conditions weresignificantlymorelikelytobemisidentifiedasNBN, indicating thatsalicylateinducedaphantomsoundperception(nsDnot significant, p <0.001)[fromRef.(18), withpermission]. changeinbehaviorduringQuiettrialswasonlyobservedfollowing injectionofsalicylateandnotfollowinginjectionwithsaline.Fur- thermore,theratsstillcorrectlyidentifiedAMandNBNstimuli suggestingthattheywerenotperformingrandomly(Figure3D). Thisnoveltinnitusbehavioralassayhassomedistinctadvan- tagesoverothertinnitusparadigms,includingtheabilitytoiden- tifytinnitus-likebehaviorinindividualanimalsandthespecific designforsimultaneousacquisitionofelectrophysiologicaldata. Duringthe4–8speriodinwhichtheanimalsholdtheirheadin the centerporttoinitiateatrial,neuralactivityfromchronically implantedelectrodescanberecordedwithminimalartifactwhen the animalislargelyimmobilewithitsheadinafixedpositionin the soundfield.Inaddition,thisparadigmisveryrobusttothesec- ondaryeffectsofsalicylate-inducedtinnitus,suchashearingloss, hyperacusis,andhyper-reactivity,becausetheratsstillmaintain correctperformanceonAMandNBNstimulisoitisclearthatthe animals areunderstimuluscontrol.Furthermore,asintheother two-choiceparadigms(16, 17), animalswithtinnitusmakea qual-itatively differentresponsethananimalswithouttinnitus,unlike in thesuppressionparadigmswhereitisdifficulttodifferenti- atetinnitusfromhearingloss,stress,orotherfactorsassociated withdrugornoiseexposure(12). However,itisuncertainifthe paradigminitspresentformisappropriateforassessingchronic tinnitus.Additionally,thisparadigmdoesnotprovideinformation regardingtinnituspitchorloudness. TURNER (GAPPRE-PULSEINHIBITION) In2006,Turnerandcolleaguesintroducedanoveltinnitusbehav- ioralparadigm,referredtoasgappre-pulseinhibitionofthe acousticstartlereflex(GPIAS),whichutilizesananimal’smotoric response(startlereflex)toasuddenloudsound(startlestimulus) that isrecordedbyamotionsensitivetransducer(15). Presenta- tionoftheacousticstartlestimulusevokesarobustacousticstartle reflex(ASR);however,thisreflexcanbesuppressedbyinsertion ofashortdurationsilentgapinacontinuousbackgroundsound justpriortothestartle-elicitingstimulus(15, 43). Inmoststud- ies, theratiobetweenthestartleamplitudeduringtrialsinwhich the startlestimulusispresentedalone(no-gaptrials)andtrials in whichagapispresentedpriortothestartle-elicitingstimulus (gaptrials)iscalculatedastheGPIASratio.Thisratioisusedas an indicatoroftheeffectivenessofthesilentgaptoinhibitthe startlereflex.Forananimalwithtinnitus,itisexpectedthatifthe backgroundsoundinwhichthegapisembeddedisqualitatively similar totheanimal’stinnitus,thentinnituswill‘fillin’thegap resultinginanimpairedabilityofthesilentgaptoinhibitthe startlereflex.Bycomparingtheabilityofsilentgapsincontinu- ous backgroundsoundsofvaryingfrequencyandbandwidthto inhibitthestartlereflex,theparadigmhasbeenusedtodetermine the pitchofananimal’stinnitus.Usingthisparadigm,tinnitushas beenassessedfollowingexposuretosalicylateaswellasnoiseina varietyofspeciesincludingrats,mice,guineapigs,andhamsters (15, 44–47). GPIAShasquicklybecomethemostwidelyusedtinnitus behavioralparadigmbecauseitcarriesanumberofadvantages overtheotherpreviouslyreportedtinnitusparadigms.Itrequires no behavioraltraining,nofoodorwaterdeprivation,canassess tinnituspitch,andallowsforhigh-throughputscreeningfortin- nitus.Because,thereisnotraininginvolved,itcanalsobeused tomonitoranimalsfortinnitusrepeatedlyoverlongdurations. InTurner’soriginalpublication,groupdatawaspresentedsince baselineGPIASmeasureswerenotcompletedpriortotinnitus inductionviaunilateralnoiseexposure(15). However,bycol- lectingbaselineandpost-tinnitusinductionGPIASmeasures,the paradigmcanbeusedtoidentifyindividualanimalswithtinnitus allowingforanimalstobeseparatedintotinnitus-positiveand tinnitus-negativegroups(48, 49). www.frontiersin.org September 2014|Volume5|Article179 | 7
  • 8. Hayesetal. Animal modelsoftinnitusandhyperacusis However,despitetheseadvantages,anumberofconcernshave recentlybeenraisedregardingtheGPIASparadigmanditsuse forscreeninganimalsfortinnitus.Oneconcernisthediscrepancy in tinnituspitchreportedinanimalsusingtheGPIASparadigm followinginductionoftinnitusviaexposuretohigh-frequency noise.Somestudies,includingtheoriginalTurnerstudy,have reportedthetinnituspitchtofallbelowthenoiseexposurefre- quency(15, 50),whileothersreportthetinnituspitchtofallabove the noiseexposurefrequency(44, 48, 51–53). Equallyinteresting is thefindingthatimmediatelyfollowingnoiseexposure,tinnitus has beenfoundtooccuracrossawiderangeoffrequenciesbut thenbecomesspecifictoalimitedfrequencybandoverthefollow- ing weeks(54). Incontrast,thetinnituspitchinhumansubjects exposedtoloudsoundmostfrequentlyoccursatorabovethe noiseexposurefrequency(28, 29). Anotherissueistheeffectofhearinglossfollowingexposure tonoiseorototoxicdrugsonthestartlereflexamplitudeused toassesspre-pulseinhibition.Hearinglosscanpotentiallyaffect the outcomeofGPIASscreeninginanumberways:byinterfering withaudibilityofthebackgroundsoundinwhichthesilentgaps areimbeddedorbyalteringtheamplitudeofthestartlereflexto the startlestimulusalone(no-gapcondition).Previousstudiesin bothrodents(55) andhumans(56) havedemonstratedthathear- ing lossalone,inducedbysodiumsalicylateexposure,caninterfere in detectionofgapsinlow-levelcontinuousnoise.Thisissuehas beenaddressedintheGPIASparadigmbyusingintensitiesof backgroundsounds(60dBSPL)showntoberesilienttotheeffects ofhearingloss,andbycarryingoutnoise-burstpre-pulsedetection measures.Duringnoise-burstdetectionmeasures,ashortdura- tionnoise-burstofthesameintensityasthebackgroundsound usedinGPIAStestingispresentedpriortothestartle-eliciting stimulustoserveasthepre-pulsecue.Itisassumedthatifthe noise-burstreliablyinhibitsthestartlereflex,thenaudibilityofthe backgroundsoundinwhichthesilentgapsareembeddedduring GPIAStestingshouldnotbeanissue. Inadditiontothepotentialconfoundingeffectsofhearingloss onaudibilityofthebackgroundsound,anotherissueisthatunilat- eralnoiseexposurecanreducetheamplitudeofthestartlereflex duringstartle-alone(no-gap)trials(2, 44, 47, 50). Inonestudy using rats,unilateralnoiseexposureresultedina57%reduction in thestartleamplitudeduringstartle-alonetrials(2), whilein anotherstudyusingmice,unilateralnoiseexposureresultedin a 52%reductionoftheacousticstartlereflexevenafterhearing thresholdsrecoveredtopre-noiseexposurelevels(44). Alterations in startlereactivityposeanumberofissues.First,asthedependent measureintheGPIASparadigm,arobuststartlereflexisneededin ordertoobserveitsinhibition.Ifanimalsfailtostartlefollowing manipulationstoinducetinnitus,theywillneedtobeexcluded fromfurtheranalysis,apracticereportedinsomepreviousstudies using thisparadigm(2, 50). Exclusionofanimalsfromanalysisnot onlyreducesthehigh-throughputnatureoftheparadigmbutmay also resultintheexclusionofanimalsthatactuallyhavetinnitus, butcannotbetestedduetotheabsenceofarobuststartlereflex. Second,alterationsinbaselinestartlemagnitude(i.e.,no-gap trials)canpotentiallyconfoundtheinterpretationofpre-pulse inhibitionmeasuresforbothrodentsandhumansubjects(2, 57). GiventhatGPIASiscalculatedasaratiobetweenthestartle amplitudeinno-gapversusgaptrials,achangeineitherparame- tercanresultinachangeintheGPIASratio.Traditionally,itwas assumedthatachangeintheGPIASratioindicativeoftinnituswas the resultofan increase in thestartleamplitudeduringgaptrialsif animals failedtodetectthesilentgapduetotinnitus“filling-in”the gap(Figures4A,B; ScenarioA).However,achangeintheGPAIS ratioindicativeoftinnituscanalsooccuriftheno-gap-startle FIGURE 4|Effectsofalterationsinstartlemagnitudeongappre-pulse inhibition oftheacousticstartlereflex(GPIAS)interpretation. (A,B) A changeinstartleamplitudeforeithergaptrials(ScenarioA,gap-startle amplitudeincreases)orno-gaptrials(ScenarioB,no-gap-startleamplitude decreases) canresultinchangesintheGPIAS-Startleratioindicativeof tinnitus. (C) A decreaseinno-gaptrialstartleamplitude,similartothe schematicofScenarioB,followingtemporaryunilateralconductivehearing loss viaanearplughasbeenshowntoresultinafalse-positivescreening fortinnitusinratsusingtheGPIASparadigm.Thefalse-positivescreening fortinnituscouldbeeliminatedbyreplacingtheacousticstartlestimulus with amulti-modalairpuffstartlestimuluswhichwasmoreresilienttothe effectsofunilateralhearinglossonstartlereflexamplitude(fromRef.(2), with permission;*indicatessignificantdifferencebetweenstartle amplitudesingapversusno-gaptrials; † indicates significantdifferences betweenstartleratiovaluesbetweenbaselineandpostearplugmeasures; n.s. indicatesnosignificantdifference). FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 8
  • 9. Hayesetal. Animal modelsoftinnitusandhyperacusis amplitude decreases, similartowhatisseenfollowingunilateral noiseexposure(Figures4A,B; ScenarioB).Moreover,unilateral conductivehearinglossviaanearplughasbeenshowntoresult in afalse-positivescreeningfortinnitusinratsasaresultofa reductioninstartlemagnitudeduringno-gaptrials(Figure4C) (2). Importantly,thefalse-positivescreeningfortinnituscouldbe eliminatedbyreplacingtheacousticstimuluswithamulti-modal airpuffstimulus(acousticandsomatosensorystimulation),which was moreresilienttotheeffectsofhearingloss(Figure4C). Any changesintheno-gap-startlemagnitudepost-tinnitusinduction needtobeaccountedforwhenusingtheGPIASratioasanindi- catorfortinnitusinordertoensurethatGPIASratiochangesare trulyreflectiveofimpaireddetectionofsilentgaps,andnotsimply duetohearingloss(2). Closeinspectionofrawstartleampli- tudesbeforeandaftertinnitusinduction,aswellascontrolling formethodologicalissuessuchasstimulusparametersandanimal handlingisstronglyrecommendedwhenusingandinterpreting behavioralmeasuresusingtheGPIASparadigm(58). InadditiontothepotentialeffectsofhearinglossonGPIAS measures,anotherissueiswhetherthehypothesisthattinnitus “fillsinthegap”isaccurate.Recentstudiesinbothhumans(59, 60) androdents(61, 62) haveaddressedthisissue.InoneGPIAS study,humanpatientswithhigh-frequencytinnituswerefoundto haveimpairedgapdetectionforgapspresentedinbothlowand high-frequencybackgroundstimulicomparedtocontrolsubjects (60) (Figure5A). Sincethesepatientswithhigh-frequencyhear- ing lossalsohadhigh-frequencytinnitus,GPIASshouldonlybe impairedathighfrequencies,notatlowfrequencies.Becausetheir tinnituspatientswerefoundtohavesignificantlylessinhibition ofthestartleresponseirrespectiveoffrequency,theauthorssug- gestthattheimpairedgapdetectionmaybereflectiveofamore generalcorticalprocessingdisorderratherthantinnitus“fillingin the gaps.” Inanotherstudy,gapdetectionabilitywasassessedinhuman tinnituspatientsbyaskingwhethertheycouldperceive50msgaps in 15dBSLbackgroundsoundspresentedeitherattheirtinni- tuspitch,oroneoctaveaboveandbelowtheirtinnituspitch(59) (Figure5B). Bothcontrolandtinnitussubjectshadnodifficulty detectingthesilentgapsirrespectiveofbackgroundfrequency(i.e., tinnitusdidnot“fillin”thesilentgapsatfrequenciesabove,below, oratthetinnituspitch).Itisimportanttonote,however,that a directcomparisoningapdetectioncannotbemadebetween the tinnitusandno-tinnitussubjectsinthisstudybecausethe twogroupsweretestedwithdifferentbackgroundstimuli(con- trolsubjectsdidnothavetinnitusandthereforecouldnothave backgroundstimulimatchedtotheirtinnituspitch).Instead,by comparingwithinthegroupoftinnitussubjectsacrossfrequency, the datademonstratedthattinnitusdidnot“fillin”orinterfere withdetectionofsilentgapsinbackgroundsoundsatthetinni- tusfrequencyoratfrequenciesoneoctaveaboveandbelowthe matchedtinnitusfrequency(Figure5B, comparegraybarsfor eachfrequency).Inasimilarstudy,Boyenetal.(63) recentlyfound that humantinnituspatientshadsimilargapdetectionthresholds comparedtoamatchednon-tinnituscontrolgroupevenwhenthe testfrequencymatchedthepatient’stinnitusfrequency(63). Inadditiontohumanstudies,anumberofanimalstudies havealsoinvestigatedthe“tinnitusfillingthegap”hypothesis. FIGURE 5|Recentstudiesaddressingthe“tinnitusgapfilling” hypothesis. (A) Gap pre-pulseinhibitionoftheacousticstartlereflex measures inhumantinnitusandcontrolsubjects.Tinnitussubjects demonstrate impairedgapdetection(lowerinhibition)forbothlowand high-frequency backgroundsoundscomparedtocontrolsubjects[fromRef. (60), withpermission]. (B) Subjectivegapdetectionabilityassessedin human tinnitusandcontrolsubjects.Bothcontrolandtinnitussubjectshad no difficultydetecting50msgapspresentedinnoiseat15dBSPL. Narrow-bandnoiseswerepresented1octaveabove,beloworatthe matchedtinnituspitchfortinnitussubjectsandat1.2,8,and12kHzfor control subjectswithouttinnitus[datafromRef.(59)]. (C) Gap detection assessed inratstrainedonago/no-gooperantgapdetectiontaskto identify silentgapsembeddedincontinuousbroad-bandnoise(BBN)and 10–20or15–17kHznarrow-bandnoise(NBN)presentedat60dBSPL. Salicylate hadnosignificanteffectongapdetection,asgapduration thresholds remainedbelow6ms[datafromRef.(62)]. HickoxandLiberman(61) demonstratedthatgapdetection deficitsinnoise-exposedrodentstestedwiththeGPIASpar- adigmaredependentontheintervalbetweenthesilentgap and thestartle-elicitingstimulus(43). Noise-exposedanimals demonstratedGPIASdeficitsonlywhenthesilentgapwasplaced www.frontiersin.org September 2014|Volume5|Article179 | 9
  • 10. Hayesetal. Animal modelsoftinnitusandhyperacusis immediatelybeforethestartlestimulus,butnotwhenitwasplaced 80 msbeforethestartlestimulus.Theauthorsconcludedthatthese resultsareinconsistentwiththe“tinnitusfillingthegap”hypothe- sis, asgapdetectiondeficitsfromtinnitusfillinginthegapshould beseenirrespectiveofwherethesilentgapisplaced(i.e.,atany placementwhereGPIASwouldnormallybeobserved)(61). Lastly,gapdetectionhasalsobeenassessedinrodentstrainedon a go/no-gooperantgapdetectiontasktodeterminethethreshold forsilentgapsembeddedincontinuousbackgroundsounds(62) (Figure5C). Inthisstudy,ratsweretreatedwithadoseofsodium salicylateknowntoreliablyinducetinnitus(18). Followingsali- cylateadministration,gapdetectionthresholdswereunchanged forgapsembeddedinbroad-bandnoiseornarrow-bandnoises presentedat60dBSPL(thesameintensitybackgroundnoise commonlyusedintheGPIASparadigm).Theseresultsindicate that salicylate-inducedtinnitusdoesnot“fillinthesilentgaps.” Takentogether,theresultssuggestthattinnitusassessmentwith the GPIASparadigmshouldbeinterpretedwithconsiderablecau- tion.Ultimately,therationaleforusingGPIASasabehavioral testfortinnitusinanimalsshouldbebasedontheabilityofthe paradigmtoaccuratelyassesstinnitusinhumanpatients. HUMAN STUDIESOFHYPERACUSIS Hyperacusis,definedasahypersensitivitytomoderate-intensity sounds orabnormalloudnessperception(4–7), oftenco-occurs withtinnitus(6, 64–66). Theprevalenceofhyperacusisinthe tinnituspopulationwasestimatedtobe~80%(8). Thefrequent co-occurrenceofthesetwoperceptualdisorderssuggestsacom- monmechanism(s)ofdysfunction(7, 64, 66), suchasanincrease in centralgainfollowinghearingloss(67–69). Giventhehighrate ofoverlapbetweenthesetwodisorders,itisimportanttodiscuss hyperacusiswhenassessingmodelsoftinnitus(24, 66, 70). Toclarify,hyperacusisisdistinctfromloudnessrecruitment, the abnormallyrapidgrowthinperceivedloudnesswithincreas- ing intensity,inthatitdoesnotnecessarilycoincidewiththreshold elevationandhaircelldamage,butdoesfeaturereducedloud- ness discomfortlevels(6, 61, 71). Inaddition,hyperacusisisnot sound-specificandanxietycanaggravatesymptoms(5, 71). Generally,hyperacusisismeasuredusingloudnessratingscales becausetheprimaryfeatureofthisauditoryperceptualdisorder is areducedtoleranceformoderate-levelandintensesounds(6, 7, 47). Toassessalistener’ssensitivitytosounds,participantsare typicallyinstructedtoratesoundsaccordingtopre-determined categoriesofloudness(suchas1forquietand10forpainfully loud) (72, 73). Althoughthesesubjectiveratingscalesareuseful measuresinhumans,thesemethodsareimpossibletouseinani- mals becausetheyrequirealistener’sabilitytofollowinstructions and adjust,orrate,stimuliaccordingly(74). Therefore,researchers haveturnedtoobjectivebehavioralmeasuresofloudnesspercep- tion,suchastheamplitudeoftheASRandoperantconditioning techniquesusingreactiontime(RT)measures,asmethodsfor estimatingperceivedloudnessinbothanimalsandhumans. ANIMAL MODELSOFHYPERACUSIS ACOUSTIC STARTLEREFLEXPARADIGM Theacousticstartlereflex(ASR)paradigmhasbeenusedby a numberofresearcherstoassessanimalsforage-related(75), drug-induced(76, 77), andnoise-induced(47, 61, 78, 79) hyper- acusis.Accordingtothesestudies,ananimalisthoughttohave hyperacusisiftheamplitudeofitsstartlereflex,ashort-latency, robustmotoricresponse(80, 81), increasesaftersomemanipula- tion,suchasaninjectionofsodiumsalicylateoranoiseexposure (47, 77) (Figures6A,B). LiketheGPIASreflexparadigmforassess- ing tinnitus,theASRparadigmisanefficient,high-throughput behavioralmethodbecauseitrequiresnotrainingorlearning.In addition,theASRparadigmisattractivebecauseitdoesnotrequire anyfoodorwaterrestrictionortheuseofelectricshock. However,theASRparadigmcanbeproblematicforseveral reasons.Forone,itisdifficulttodiscriminatehyperacusisfrom generalized,non-auditory-specifichyperactivitywithASRalone FIGURE 6|Animalmodelsofhyperacusisusingtheacoustic startlereflex(ASR)paradigm. (A) Mean ASRamplitudesinrats pre-sodium salicylateinjection(opencircles)and1hpost-sodium salicylate injection(250mg/kgi.p.)(opentriangles).Startleamplitudes increased significantlyathighsoundintensities1haftersalicylate injection [fromRef.(77), withpermission]. (B) Mean ASRamplitudes in hamstersfollowingnoiseexposure(10kHz,115dBSPL,4h)(black circles) orinunexposedcontrolhamsters(opencircles).Startle amplitudesweresignificantlyhigherathighsoundintensitiesin noise-exposedhamstersthaninunexposedhamsters,suggesting increased loudnesssensitivityinnoise-exposedanimals[fromRef. (47), withpermission]. FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 10
  • 11. Hayesetal. Animal modelsoftinnitusandhyperacusis (23, 82). Secondly,enhancedASRshavebeenreportedtobemore predictiveoftinnitusratherthanhyperacusisinhumans,ques- tioningASR’susefulnessinassessinghyperacusisinanimals(83). Inaddition,itisunclearhowtheASRparadigmcanbeusedtodif- ferentiatehyperacusisfromloudnessrecruitment.Lastly,changes in theASRtendtooccuronlyforhigh-intensitysounds(90dB SPL orhigher),whichsuggeststhatthismethodmaynotbesen- sitivetochangesinloudnessperceptionatmoderatesoundlevels, oneofthedefiningfeaturesofhyperacusis(78, 84). Although these potentiallimitationsneedtobeaddressed,theASRparadigm appears,fornow,tobeaneffectivetoolforestimatingloudnessper- ception,hyperacusis,orsound-evokedhyper-reactivityinanimals at intensitiesgreaterthan80dBSPL. OPERANT CONDITIONINGMETHODSWITHREACTIONTIMEMEASURES SinceRTisareliablesurrogateofperceivedloudness(72, 85–89), and loudnessgrowthfunctionsappeartobetheperceptualcorre- lateofhyperacusisinhumans(7), researchershaveobtainedRT measuresusingoperantconditioningtechniquestoassessloudness perceptionandhyperacusisinbothanimalsandhumans(74). Thefirststudytoexaminehyperacusisinanimalsandhumans using RTmeasureswasLauerandDooling(74). Theymeasured RTsinbothnormal-hearingcanariesandaninbredstrainof canarywithapermanenthereditaryhigh-frequencyhearingloss, the BelgianWaterslager(BWS).Theyhypothesizedthatanimals withhyperacusisshouldshowfasterthannormalRTsbecause sound stimuliareperceivedasbeinglouderthaninnormal- hearinganimals.Inaccordancewiththathypothesis,theyfound that BWScanarieshadnear-normalRTsatlowersoundlevels butmuchfasterRTsthannormalcanariesathighersoundlevels (74). Importantly,LauerandDooling(74) verifiedthesemethods bytestingtwohumans,onewithhyperacusisandonewithout, using thesamebehavioralmethodsasinthecanaryexperiment (Figures7A,B). Recently,Chenetal.(84) measuredRTsinratsbothbeforeand afteralargedoseofsodiumsalicylatethatisknowntoinduce hearinglossandtinnitusinanimals(18). Briefly,theratswere trainedtodetectbroad-bandnoiseburstsinanotherwisequiet chamberusingaGo/no-gooperantconditioningparadigm. RTmea- suresweretakenfromtheonsetofthenoisebursttothetimethe ratmadearesponse,andonlyRTsfor“hits”(whentheanimal correctlydetectedthestimulus)wereincludedintheanalysis(84). Chenetal.(84) foundthatRTspost-salicylatewerefasterthan pre-salicylatefornoisebursts70dBSPLorgreaterbutwerethe same orevenslowertorespondtonoiseburstsat50dBSPLor less (84) (Figure8A). Importantly,thisgo/no-goparadigmcan differentiatehyperacusisfromloudnessrecruitment.Hyperacusis is evidencedbyfasterRTsthannormalformoderatetointense sounds, whileloudnessrecruitmentassociatedwithhearingloss is characterizedbyslowerRTsforlow-levelsoundswitharapid loudness growthfunctionandnormalRTstomoderatetointense sounds (Figure8B). Inanotheroperantconditioningparadigm,Sunetal.(91) testedadultratswithtympanicmembrane(TM)damageaspups, and Zhangetal.(90) testedratsbeforeandafteralargedose ofsodiumsalicylateforhyperacusisina two-alternativeforced choice(2AFC)operantconditioningtask. Inbothexperiments,ani- mals weretrainedtomakearesponsetotherightnose-poke hole whentheyhearda100-dBSPLsoundandtotheleftside whentheyhearda60-dBSPLsound.Aftertheratswerecorrectly identifyingthesetwostimuli,probestimuliwereincludedfrom 40 to110dBSPLthatwerealwaysreinforcedwithafoodpellet regardlessofwhichsidetheanimalschose(90, 91). Theyfound that ratswithTMdamageaspups,and40%ofratsgivensalicy- late,labeledmid-intensitystimuli(70and80dBSPL)as100dB SPL moreoftenthancontrolrats,suggestingthatratswithprior TM damageandratsgivensalicylateperceivedthesestimulias louderthannormal(Figure8C). Interestingly,severalratsgiven salicylateappearedtoexperienceloudnessrecruitmentfollowing an injectionofsalicylate.Insteadofrespondingmorefrequently tothe100-dBSPLfeeder,theseratsrespondedmorefrequently tothe60-dBSPLfeeder,indicatingalossinsensitivityatlower sound levelsandanabnormallysteeploudnessgrowthfunction (Figure8D). Althoughtheabove-mentionedgo/no-goand2AFCoperant conditioningtasksdeliverreliableandstablemeasuresinanimals FIGURE 7|Medianreactiontimes(RT)foranormal-hearinghuman listener(Subject1,blackcircles)andalistenerwithreducedloudness tolerance(Subject2,blacksquares). MedianRTsforbothlistenersfor (A) 1000Hztonesand (B) 4000Hztonespresentedatvariousintensities. Subject 2hadsignificantlyfasterRTstomoderateandhigh-intensitysounds than Subject1,suggestingthattheparticipantwithhyperacusisperceived these soundsaslouderthanthenormal-hearingparticipant,andthatRTcan potentially measurehyperacusisinhumans[modifiedfromRef.(74)]. www.frontiersin.org September 2014|Volume5|Article179 | 11
  • 12. Hayesetal. Animal modelsoftinnitusandhyperacusis FIGURE 8|Animalmodelsofhyperacusisusingoperantconditioning procedures. (A) Mean reactiontimes(RT)inratstobroad-bandnoisebursts forbaseline(opencircles),saline(opentriangles),andsalicylate(200mg/kg i.p.) (filledsquares)conditions.RTsdecreasedsignificantlyfor70,80,and 90 dBSPLnoiseburstsfollowingtheinjectionofsalicylate,suggestingan increased sensitivitytoloudsounds[modifiedfromRef.(84)]. (B) Hypothetical dataindicatinghyperacusis(reddashes)andloudness recruitment(greendots)usingthego/no-goreactiontimemodel.Toparrow indicates steeploudnessgrowthfunctionseeninlistenerswithloudness recruitment.Bottomarrowshowsfasterreactiontimesformoderateto intense sounds,indicativeofincreasedloudnessperceptioninlistenerswith hyperacusis. (C,D) Mean numberofresponsestothe100-dBSPLfeeder pre-salicylate (opencircles)and1hpost-salicylate(250mg/kgi.p.)(red triangles) forindividualrats. (C) Thenumberofresponsestothe high-intensity(100dBSPL)feederincreasedsignificantlyfollowingsalicylate administration (arrowindicatesshifttotheleft),suggestingincreased loudness sensitivityandhyperacusis. (D) Thenumberofresponsestothe high-intensity(100dBSPL)feederdecreasedsignificantlyfollowing salicylate administration(arrowshowsshifttotheright),indicativeof loudness recruitment[fromRef.(90), withpermission]. and humans,thesetasksrequireweeksofanimalbehavioraltrain- ing andtheanimalsneedtobefoodorwater-restrictedinorder toperforminthetask.Nevertheless,theRTparadigmhasbeen extensivelyvalidatedasameasureofloudness(72, 85–89) andit mayprovidethemostreliableandsensitiveestimatesofloudness perceptionin both animals andhumans. CONCLUSION A reliablebehavioralparadigmisvitalforidentifyingtheunder- lyingneuralmechanismsandpotentialtherapeutictreatments fortinnitusandhyperacusis.Ultimately,anybehavioralmodel ofhyperacusisortinnitusshouldcloselymirrorwhatweknow aboutthesedisordersinthehumanpopulation.Giventherange ofbehavioraltrainingtechniquesandmethodologiesusedto assess tinnitusandhyperacusis,thereareanumberofimportant characteristicstoconsiderwhenevaluatingtheirutilityandcon- sistencywithhumandata.Anidealbehavioralparadigmshould beabletoidentifythepresenceoftheconditioninindividual animals, allowforlong-termtestingofanimalsforstudiesof chronictinnitusandhyperacusis,shouldberesilienttoanysec- ondaryeffectsoftheinductionmethodincludinghearingloss, and wouldhavearelativelyshorttrainingandtestingtime.Addi- tionally,anidealmodeloftinnituswouldalsoallowformea- surementsoftinnituspitchandloudness,whileanidealmodel ofhyperacusisshouldallowforthedifferentiationbetweenthe presenceofhyperacusisandloudnessrecruitment.Clearly,the advancementsinanimalmodelsfortinnitusandhyperacusishave comealongwayandwillcontinuetoplayanimportantrolein revealingtheunderlyingmechanismsandtreatmentsfortinnitus and hyperacusis. FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 12
  • 13. Hayesetal. Animal modelsoftinnitusandhyperacusis AUTHOR CONTRIBUTIONS SarahH.Hayes,KellyE.Radziwon,DanielJ.Stolzberg,andRichard J.Salviwrotethemanuscriptandapprovedthefinalversion. ACKNOWLEDGMENTS SupportedinpartbyNIHNationalInstituteonDeafness and OtherCommunicationDisorders(R01DC011808and R01DC009219)andtheOfficeofNavalResearch(N000141210731). SarahH.HayeswassupportedbytheNationalDefenseScienceand EngineeringGraduateResearchFellowship. REFERENCES 1. McFaddenD. Tinnitus:Facts,Theories,andTreatments. Washington,DC: NationalAcademyPress(1982). 2. LobarinasE,HayesSH,AllmanBL.Thegap-startleparadigmfortinnitusscreen- ing inanimalmodels:limitationsandoptimization.HearRes (2013) 295:150–60. doi:10.1016/j.heares.2012.06.001 3. HellerAJ.Classificationandepidemiologyoftinnitus. OtolaryngolClinNorth Am (2003) 36:239–48.doi:10.1016/S0030-6665(02)00160-3 4. AnderssonG,LindvallN,HurstiT,CarlbringP.Hypersensitivitytosound (hyperacusis):aprevalencestudyconductedviatheinternetandpost. Int J Audiol (2002) 41:545–54.doi:10.3109/14992020209056075 5. BaguleyDM.Hyperacusis. J RSocMed (2003) 96:582–5.doi:10.1258/jrsm.96. 12.582 6. GuJW,HalpinCF,NamE-C,LevineRA,MelcherJR.Tinnitus,diminished sound-leveltolerance,andelevatedauditoryactivityinhumanswithclinically normalhearingsensitivity. J Neurophysiol (2010) 104:3361–70.doi:10.1152/jn. 00226.2010 7. HébertS,FournierP,NoreñaA.Theauditorysensitivityisincreasedintinnitus ears. J Neurosci (2013) 33:2356–64.doi:10.1523/JNEUROSCI.3461-12.2013 8. Dauman R,Bouscau-FaureF.Assessmentandameliorationofhyperacu- sis intinnituspatients. ActaOtolaryngol (2005) 125:503–9.doi:10.1080/ 00016480510027565 9. RobertsLE,EggermontJJ,CasparyDM,ShoreSE,MelcherJR,Kaltenbach JA.Ringingears:theneuroscienceoftinnitus. J Neurosci (2010) 30:14972–9. doi:10.1523/JNEUROSCI.4028-10.2010 10. JastreboffPJ,BrennanJF,ColemanJK,SasakiCT.Phantomauditorysensa- tioninrats:ananimalmodelfortinnitus. BehavNeurosci (1988) 102:811–22. doi:10.1037/0735-7044.102.6.811 11. BauerCA,BrozoskiTJ,RojasR,BoleyJ,WyderM.Behavioralmodelof chronictinnitusinrats. OtolaryngolHeadNeckSurg (1999) 121:457–62. doi:10.1016/S0194-5998(99)70237-8 12. HeffnerHE,HarringtonIA.Tinnitusinhamstersfollowingexposuretointense sound. HearRes (2002) 170:83–95.doi:10.1016/S0378-5955(02)00343-X 13. RüttigerL,CiuffaniJ,ZennerH-P,KnipperM.Abehavioralparadigmtojudge acutesodiumsalicylate-inducedsoundexperienceinrats:anewapproachfor an animalmodelontinnitus. HearRes (2003) 180:39–50.doi:10.1016/S0378- 5955(03)00075-3 14. LobarinasE,SunW,CushingR,SalviR.Anovelbehavioralparadigmforassess- ing tinnitususingschedule-inducedpolydipsiaavoidanceconditioning(SIP- AC). HearRes (2004) 190:109–14.doi:10.1016/S0378-5955(04)00019-X 15. TurnerJG,BrozoskiTJ,BauerCA,ParrishJL,MyersK,HughesLF,etal.Gap detectiondeficitsinratswithtinnitus:apotentialnovelscreeningtool. Behav Neurosci (2006) 120:188–95.doi:10.1037/0735-7044.120.1.188 16. HeffnerHE,KoayG.Tinnitusandhearinglossinhamsters(Mesocricetusaura- tus) exposedtoloudsound. BehavNeurosci (2005) 119:734–42.doi:10.1037/ 0735-7044.119.3.734 17. SederholmF,SwedbergMD.Establishmentofauditorydiscriminationand detectionoftinnitusinducedbysalicylicacidandintensetoneexposureinthe rat. BrainRes (2013) 1510:48–62.doi:10.1016/j.brainres.2013.03.013 18. StolzbergD,HayesSH,KashanianN,RadziwonK,SalviRJ,AllmanBL.A novelbehavioralassayfortheassessmentofacutetinnitusinratsoptimizedfor simultaneousrecordingofoscillatoryneuralactivity. J NeurosciMethods (2013) 219:224–32.doi:10.1016/j.jneumeth.2013.07.021 19. MoodyDB.Animalmodelsoftinnitus.In:SnowJB,editor. Tinnitus:Theoryand Management. Hamilton,ON:BCDeckerInc(2004).p.80–96. 20. TurnerJG.Behavioralmeasuresoftinnitusinlaboratoryanimals. ProgBrain Res (2007) 166:147–56.doi:10.1016/S0079-6123(07)66013-0 21. SalviR,LobarinasE,SunW.Behavioralanimalmodelsoftinnitus,pharmacol- ogy,andtreatment.In:MollerA,LangguthB,DeRidderD,KleinjungT,editors. TextbookofTinnitus. NewYork,NY:Springer(2010).p.133–45. 22. KaltenbachJA.Tinnitus:modelsandmechanisms. HearRes (2011) 276:52–60. doi:10.1016/j.heares.2010.12.003 23. HeffnerHE,HeffnerRS.Behavioraltestsfortinnitusinanimals.In:Burkard RF,EggermontJJ,DonM,editors. Tinnitus. NewYork,NY:SpringerSci- ence+BusinessMedia(2012).p.21–58. 24. EggermontJJ.Hearingloss,hyperacusis,ortinnitus:whatismodeledinanimal research? HearRes (2013) 295:140–9.doi:10.1016/j.heares.2012.01.005 25. vonderBehrensW.Animalmodelsofsubjectivetinnitus. NeuralPlast (2014) 2014:741452.doi:10.1155/2014/741452 26. HenryJA,DennisKC,SchechterMA.Generalreviewoftinnitus:preva- lence,mechanisms,effects,andmanagement. J SpeechLangHearRes (2005) 48:1204–35.doi:10.1044/1092-4388(2005/084) 27. DavisH,MorganCT,HawkinsJEJr,GalambosR,SmithFW.Temporarydeaf- ness followingexposuretoloudtonesandnoise. ActaOtolaryngolSuppl (1950) 88:1–57. 28. LoebM,SmithRP.Relationofinducedtinnitustophysicalcharacteristicsofthe inducingstimuli. J AcoustSocAm (1967) 42:453–5.doi:10.1121/1.1910600 29. AtherleyGRC,HempstockTI,NobleWG.Studyoftinnitusinducedtemporarily bynoise. J AcoustSocAm (1968) 44:1503–6.doi:10.1121/1.1911288 30. CahaniM,PaulG,ShaharA.Tinnituspitchandacoustictrauma. Audiology (1983) 22:357–63.doi:10.3109/00206098309072795 31. MooreBCJ,VinayS.Therelationshipbetweentinnituspitchandtheedgefre- quencyoftheaudiograminindividualswithhearingimpairmentandtonaltin- nitus. HearRes (2010) 261:51–6.doi:10.1016/j.heares.2010.01.003 32. SchecklmannM,VielsmeierV,SteffensT,LandgrebeM,LangguthB,KleinjungT. Relationshipbetweenaudiometricslopeandtinnituspitchintinnituspatients: insightsintothemechanismsoftinnitusgeneration. PLoSOne (2012) 7:e34878. doi:10.1371/journal.pone.0034878 33. BasileC-E,FournierP,HutchinsS,HébertS.Psychoacousticassessmentto improvetinnitusdiagnosis. PLoSOne (2013) 8:e82995.doi:10.1371/journal. pone.0082995 34. CazalsY.Auditorysensori-neuralalterationsinducedbysalicylate. ProgNeuro- biol (2000) 62:583–631.doi:10.1016/S0301-0082(00)00027-7 35. StolzbergD,SalviRJ,AllmanBL.Salicylatetoxicitymodeloftinnitus. FrontSyst Neurosci (2012) 6:28.doi:10.3389/fnsys.2012.00028 36. HenryJA,MeikleMB.Psychoacousticmeasuresoftinnitus. J AmAcadAudiol (2000) 11:138–55. 37. ZagólskiO,StrekP.Tinnituspitchandminimummaskinglevelsindifferent etiologies. IntJAudiol (2014) 53:482–9.doi:10.3109/14992027.2014.893377 38. BauerCA,BrozoskiTJ.Assessingtinnitusandprospectivetinnitustherapeutics using apsychophysicalanimalmodel. J AssocResOtolaryngol (2001) 2:54–64. doi:10.1007/s101620010030 39. HeffnerHE.Atwo-choicesoundlocalizationprocedurefordetectinglateralized tinnitusinanimals. BehavResMethods (2011) 43:577–89.doi:10.3758/s13428- 011-0061-4 40. TanJ,RüttigerL,Panford-WalshR,SingerW,SchulzeH,KilianSB,etal.Tinni- tusbehaviorandhearingfunctioncorrelatewiththereciprocalexpressionpat- ternsofBDNFandArg3.1/arcinauditoryneuronsfollowingacoustictrauma. Neuroscience (2007) 145:715–26.doi:10.1016/j.neuroscience.2006.11.067 41. WeiszN,DohrmannK,ElbertT.Therelevanceofspontaneousactivity forthecodingofthetinnitussensation. ProgBrainRes (2007) 166:61–70. doi:10.1016/S0079-6123(07)66006-3 42. YangG,LobarinasE,ZhangL,TurnerJ,StolzbergD,SalviR,etal.Salicylate inducedtinnitus:behavioralmeasuresandneuralactivityinauditorycortexof awakerats. HearRes (2007) 226:244–53.doi:10.1016/j.heares.2006.06.013 43. IsonJR,AllenPD,RivoliPJ,MooreJT.Thebehavioralresponseofmicetogaps in noisedependsonitsspectralcomponentsanditsbandwidth. J AcoustSocAm (2005) 117:3944–51.doi:10.1121/1.1904387 44. LongeneckerRJ,GalazyukAV.DevelopmentoftinnitusinCBA/CaJmicefol- lowingsoundexposure. J AssocResOtolaryngol (2011) 12:647–58.doi:10.1007/ s10162-011-0276-1 45. DehmelS,EisingerD,ShoreSE.Gapprepulseinhibitionandauditory brainstem-evokedpotentialsasobjectivemeasuresfortinnitusinguineapigs. FrontSystNeurosci (2012) 6:42.doi:10.3389/fnsys.2012.00042 www.frontiersin.org September 2014|Volume5|Article179 | 13
  • 14. Hayesetal. Animal modelsoftinnitusandhyperacusis 46. BergerJI,CoomberB,ShackletonTM,PalmerAR,WallaceMN.Anovelbehav- iouralapproachtodetectingtinnitusintheguineapig. JNeurosciMethods (2013) 213(2):188–95.doi:10.1016/j.jneumeth.2012.12.023 47. ChenG,LeeC,SandridgeSA,ButlerHM,ManzoorNF,KaltenbachJA.Behav- ioralevidenceforpossiblesimultaneousinductionofhyperacusisandtinnitus followingintensesoundexposure. J AssocResOtolaryngol (2013) 14:413–24. doi:10.1007/s10162-013-0375-2 48. Li S,ChoiV,TzounopoulosT.PathogenicplasticityofKv7.2/3channelactiv- ityisessentialfortheinductionoftinnitus. ProcNatlAcadSciUSA (2013) 110:9980–5.doi:10.1073/pnas.1302770110 49. CoomberB,BergerJI,KowalkowskiVL,ShackletonTM,PalmerAR,Wal- laceMN.Neuralchangesaccompanyingtinnitusfollowingunilateralacoustic traumaintheguineapig. EurJNeurosci (2014) 40(2):2427–41.doi:10.1111/ejn. 12580 50. EngineerND,RileyJR,SealeJD,VranaWA,ShetakeJA,SudanaguntaSP,etal. Reversingpathologicalneuralactivityusingtargetedplasticity. Nature (2011) 470:101–6.doi:10.1038/nature09656 51. WangH,BrozoskiTJ,TurnerJG,LingL,ParrishJL,HughesLF,etal.Plasticityat glycinergicsynapsesindorsalcochlearnucleusofratswithbehavioralevidence oftinnitus. Neuroscience (2009) 164:747–59.doi:10.1016/j.neuroscience.2009. 08.026 52. HoltAG,BissigD,MirzaN,RajahG,BerkowitzB.Evidenceofkeytinnitus- relatedbrainregionsdocumentedbyauniquecombinationofmanganese- enhancedMRIandacousticstartlereflextesting. PLoSOne (2010) 5:e14260. doi:10.1371/journal.pone.0014260 53. TurnerJ,LarsenD,HughesL,MoecharsD,ShoreS.Timecourseoftinnitus developmentfollowingnoiseexposureinmice. JNeurosciRes (2012) 90:1480–8. doi:10.1002/jnr.22827 54. MaoJC,PaceE,PierozynskiP,KouZ,ShenY,VandeVordP,etal.Blast-induced tinnitusandhearinglossinrats:behavioralandimagingassays. J Neurotrauma (2012) 29:430–44.doi:10.1089/neu.2011.1934 55. DengA,LuJ,SunW.Temporalprocessingininferiorcolliculusandaudi- torycortexaffectedbyhighdosesofsalicylate. BrainRes (2010) 1344:96–103. doi:10.1016/j.brainres.2010.04.077 56. McFaddenD,PlattsmierHS,PasanenEG.Aspirin-inducedhearinglossasa modelofsensorineuralhearingloss. HearRes (1984) 16:251–60.doi:10.1016/ 0378-5955(84)90114-X 57. CsomorPA,YeeBK,VollenweiderFX,FeldonJ,NicoletT,QuednowBB.Onthe influenceofbaselinestartlereactivityontheindexationofprepulseinhibition. BehavNeurosci (2008) 122:885–900.doi:10.1037/0735-7044.122.4.885 58. LongeneckerRJ,GalazyukAV.Methodologicaloptimizationoftinnitusassess- mentusingprepulseinhibitionoftheacousticstartlereflex. BrainRes (2012) 1485:54–62.doi:10.1016/j.brainres.2012.02.067 59. CampoloJ,LobarinasE,SalviR.Doestinnitus“fillin”thesilentgaps? Noise Health (2013) 15:398–405.doi:10.4103/1463-1741.121232 60. FournierP,HébertS.Gapdetectiondeficitsinhumanswithtinnitusasassessed withtheacousticstartleparadigm:doestinnitusfillinthegap? HearRes (2013) 295:16–23.doi:10.1016/j.heares.2012.05.011 61. HickoxAE,LibermanMC.Isnoise-inducedcochlearneuropathykeytothe generationofhyperacusisortinnitus? J Neurophysiol (2014) 111:552–64. doi:10.1152/jn.00184.2013 62. RadziwonKE,StolzbergDJ,SalviRJ.Salicylate-inducedhearinglossandgap detectiondeficitsinrats. AssociationforResearchinOtolaryngology37thAnnual MidwinterMeeting. SanDiego,CA:AssociationforResearchinOtolaryngology (2014). 63. BoyenK,BaskentD,vanDijkP.Gapdetectionthresholdsintinnitussubjects: doestinnitusfillinthesilentgaps? 8th InternationalTRITinnitusConference. Auckland:TinnitusResearchInitiative(2014). 64. JastreboffPJ,HazellJWP.Aneurophysiologicalapproachtotinnitus:clinical applications. Br JAudiol (1993) 27:7–17.doi:10.3109/03005369309077884 65. AnariM,AxelssonA,EliassonA,MagnussonL.Hypersensitivitytosound:ques- tionnairedata,audiometryandclassification. Scand Audiol (1999) 28:219–30. doi:10.1080/010503999424653 66. NelsonJJ,ChenK.Therelationshipoftinnitus,hyperacusis,andhearingloss. EarNoseThroatJ (2004) 83:472–6. 67. SykaJ,RybalkoN,PopelárJ.Enhancementoftheauditorycortexevoked responsesinawakeguineapigsafternoiseexposure.HearRes (1994) 78:158–68. doi:10.1016/0378-5955(94)90021-3 68. SalviRJ,WangJ,DingD.Auditoryplasticityandhyperactivityfollowing cochleardamage. HearRes (2000) 147:261–74.doi:10.1016/S0378-5955(00) 00136-2 69. NoreñaAJ,Chery-CrozeS.Enrichedacousticenvironmentrescalesauditorysen- sitivity. Neuroreport (2007) 18:1251–5.doi:10.1097/WNR.0b013e3282202c35 70. KnipperM,vanDijkP,NunesI,RüttigerL,ZimmermannU.Advancesinthe neurobiologyofhearingdisorders:recentdevelopmentsregardingthebasis oftinnitusandhyperacusis. ProgNeurobiol (2013) 111:17–33.doi:10.1016/j. pneurobio.2013.08.002 71. KatzenellU,SegalS.Hyperacusis:reviewandclinicalguidelines. OtolNeurotol (2001) 22:321–7.doi:10.1097/00129492-200105000-00009 72. MarshallL,BrandtJF.Therelationshipbetweenloudnessandreactiontime in normalhearinglisteners. ActaOtolaryngol (1980) 90:244–9.doi:10.3109/ 00016488009131721 73. FormbyC,SherlockLP,GoldSL.Adaptiveplasticityofloudnessinducedby chronicattenuationandenhancementoftheacousticbackground. J AcoustSoc Am (2003) 114:55–8.doi:10.1121/1.1582860 74. LauerAM,DoolingRJ.Evidenceofhyperacusisincanarieswithperma- nenthereditaryhigh-frequencyhearingloss. SeminHear (2007) 28:319–26. doi:10.1055/s-2007-990718 75. IsonJR,AllenPD,O’NeillWE.Age-relatedhearinglossinC57BL/6Jmicehas bothfrequency-specificandnon-frequency-specificcomponentsthatproducea hyperacusis-likeexaggerationoftheacousticstartlereflex. J AssocResOtolaryn- gol (2007) 8:539–50.doi:10.1007/s10162-007-0098-3 76. TurnerJG,ParrishJ.Gapdetectionmethodsforassessingsalicylate-induced tinnitusandhyperacusisinrats. AmJAudiol (2008) 17:S185–92.doi:10.1044/ 1059-0889(2008/08-0006) 77. SunW,LuJ,StolzbergD,GrayL,DengA,LobarinasE,etal.Salicylateincreases the gainofthecentralauditorysystem. Neuroscience (2009) 159:325–34. doi:10.1016/j.neuroscience.2008.12.024 78. SunW,DengA,JayaramA,GibsonB.Noiseexposureenhancesauditorycor- texresponsesrelatedtohyperacusisbehavior. BrainRes (2012) 1485:108–16. doi:10.1016/j.brainres.2012.02.008 79. PaceE,ZhangJ.Noise-inducedtinnitususingindividualizedgapdetection analysisanditsrelationshipwithhyperacusis,anxiety,andspatialcognition. PLoSOne (2013) 8:e75011.doi:10.1371/journal.pone.0075011 80. DavisM,GendelmanDS,TischlerMD,GendelmanPM.Aprimaryacoustic startlecircuit:lesionandstimulationstudies. J Neurosci (1982) 2:791–805. 81. YeomansJS,LiL,ScottBW,FranklandPW.Tactile,acousticandvestibular systemssumtoelicitthestartlereflex. NeurosciBiobehavRev (2002) 26:1–11. doi:10.1016/S0149-7634(01)00057-4 82. CacaceA,McFarlandD.Hyperacusisisatheoreticalconstruct;notabehavior: reconcilinghumanandanimaldata. AssociationforResearchinOtolaryngology MidwinterMeeting. SanDiego,CA:AssociationforResearchinOtolaryngology (2014). 83. KnudsenI,MelcherJR.Acousticstartleresponseinhumanswithtinnitusand hyperacusis. AssociationforResearchinOtolaryngologyMidwinterMeeting. San Diego,CA:AssociationforResearchinOtolaryngology(2014). 84. ChenG-D,RadziwonKE,KashanianN,ManoharS,SalviR.Salicylate-induced auditoryperceptualdisordersandplasticchangesinnonclassicalauditorycen- tersinrats. NeuralPlast (2014) 2014:658741.doi:10.1155/2014/658741 85. StebbinsWC,MillerJM.Reactiontimeasafunctionofstimulusintensity forthemonkey. J ExpAnalBehav (1964) 7:309–12.doi:10.1901/jeab.1964.7-309 86. LeiboldLJ,WernerLA.Relationshipbetweenintensityandreactiontimein normal-hearinginfantsandadults. EarHear (2002) 23:92–7.doi:10.1097/ 00003446-200204000-00002 87. AriehY,MarksLE.Recalibratingtheauditorysystem:aspeed-accuracyanalysis ofintensityperception. J ExpPsycholHumPerceptPerform (2003) 29:523–36. doi:10.1037/0096-1523.29.3.523 88. WagnerE,FlorentineM,BuusS,McCormackJ.Spectralloudnesssummation and simplereactiontime. J AcoustSocAm (2004) 116:1681–6.doi:10.1121/1. 1780573 89. MayBJ,LittleN,SaylorS.Loudnessperceptioninthedomesticcat:reaction timeestimatesofequalloudnesscontoursandrecruitmenteffects. J AssocRes Otolaryngol (2009) 10:295–308.doi:10.1007/s10162-009-0157-z 90. Zhang C,FlowersE,LiJ-X,WangQ,SunW.Loudnessperceptionaffectedby highdosesofsalicylate–abehavioralmodelofhyperacusis. BehavBrainRes (2014) 271:16–22.doi:10.1016/j.bbr.2014.05.045 FrontiersinNeurology | Neuro-otology September 2014|Volume5|Article179 | 14
  • 15. Hayesetal. Animal modelsoftinnitusandhyperacusis 91. SunW,FuQ,ZhangC,ManoharS,KumaraguruA,LiJ.Loudnessperception affectedbyearlyagehearingloss. HearRes (2014) 313:18–25.doi:10.1016/j. heares.2014.04.002 ConflictofInterestStatement: Theauthorsdeclarethattheresearchwasconducted in theabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstrued as apotentialconflictofinterest. Received:14July2014;accepted:02September2014;publishedonline:17September 2014. Citation:HayesSH,RadziwonKE,StolzbergDJandSalviRJ(2014)Behav- ioralmodelsoftinnitusandhyperacusisinanimals.Front.Neurol. 5:179. doi: 10.3389/fneur.2014.00179 This articlewassubmittedtoNeuro-otology,asectionofthejournalFrontiersin Neurology. Copyright©2014Hayes,Radziwon,StolzbergandSalvi.Thisisanopen-accessarticle distributedunderthetermsofthe CreativeCommonsAttributionLicense(CCBY). The use,distributionorreproductioninotherforumsispermitted,providedtheoriginal author(s) orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited, in accordancewithacceptedacademicpractice.Nouse,distributionorreproductionis permittedwhichdoesnotcomplywiththeseterms. www.frontiersin.org September 2014|Volume5|Article179 | 15