Dynamic programming is an algorithmic technique that solves problems by breaking them down into smaller subproblems and storing the results of subproblems to avoid recomputing them. It is useful for optimization problems with overlapping subproblems. The key steps are to characterize the structure of an optimal solution, recursively define the value of an optimal solution, compute that value, and construct the optimal solution. Examples discussed include rod cutting, longest increasing subsequence, longest palindrome subsequence, and palindrome partitioning. Other problems that can be solved with dynamic programming include edit distance, shortest paths, optimal binary search trees, the traveling salesman problem, and reliability design.