Over the years there has been ongoing interest in detecting authorship of a text based on statistical properties of the
text, such as by using occurrence rates of noncontextual words. In previous work, these techniques have been used,
for example, to determine authorship of all of The Federalist Papers. Such methods may be useful in more modern
times to detect fake or AI authorship. Progress in statistical natural language parsers introduces the possibility of
using grammatical structure to detect authorship. In this paper we explore a new possibility for detecting authorship
using grammatical structural information extracted using a statistical natural language parser. This paper provides a
proof of concept, testing author classification based on grammatical structure on a set of “proof texts,” The Federalist
Papers and Sanditon which have been as test cases in previous authorship detection studies. Several features extracted
of some depth, part of speech, and part of speech by level in the parse tree. It was found to be helpful to project the
features into a lower dimensional space. Statistical experiments on these documents demonstrate that information
from a statistical parser can, in fact, assist in distinguishing authors.