SlideShare a Scribd company logo
1 of 34
Download to read offline
 
1	
  
	
  
Investigating	
  the	
  effects	
  of	
  processing	
  conditions	
  
and	
  material	
  properties	
  on	
  the	
  particle	
  size	
  
distributions	
  of	
  oil	
  in	
  water	
  emulsions	
  in	
  high	
  
shear	
  rotor-­‐stator	
  emulsifications.	
  
	
  
	
   	
  
 
2	
  
	
  
Table	
  of	
  Contents	
  
1.	
  Abstract	
  ..............................................................................................................................................	
  4	
  
2.	
  Introduction	
  .......................................................................................................................................	
  5	
  
2.1	
  Aims	
  and	
  Objectives	
  .....................................................................................................................	
  6	
  
2.2	
  Limitations	
  ...................................................................................................................................	
  6	
  
2.3	
  Abbreviations	
  and	
  Symbology	
  .....................................................................................................	
  6	
  
3.	
  Literature	
  Report	
  ...............................................................................................................................	
  7	
  
3.1	
  Emulsions	
  .....................................................................................................................................	
  7	
  
3.1.1	
  Types	
  of	
  Emulsions	
  ................................................................................................................	
  8	
  
3.2	
  Surfactants	
  .................................................................................................................................	
  10	
  
3.2.1	
  Types	
  of	
  Surfactants	
  ............................................................................................................	
  10	
  
3.2.2	
  Selection	
  of	
  Surfactants	
  ......................................................................................................	
  11	
  
3.3	
  Techniques	
  for	
  Creating	
  Emulsions	
  in	
  Industry	
  ..........................................................................	
  12	
  
3.3.1	
  Rotor-­‐stator	
  homogenizers	
  .................................................................................................	
  12	
  
3.3.2	
  Ultrasound	
  Emulsification	
  ...................................................................................................	
  13	
  
3.3.3	
  High	
  Pressure	
  Emulsification	
  ...............................................................................................	
  14	
  
3.4	
  Interactions	
  between	
  droplets	
  ..................................................................................................	
  15	
  
3.5	
  Destabilizing	
  Mechanisms	
  in	
  Emulsions	
  .....................................................................................	
  16	
  
3.6	
  Rheological	
  properties	
  of	
  Emulsions	
  ..........................................................................................	
  18	
  
3.6.1	
  Viscosity	
  of	
  the	
  continuous	
  phase	
  ......................................................................................	
  18	
  
3.6.2	
  Volume	
  fraction	
  of	
  the	
  dispersed	
  phase	
  .............................................................................	
  19	
  
3.6.3	
  Surfactant	
  Properties	
  ..........................................................................................................	
  19	
  
3.6.4	
  Droplet	
  size	
  distribution	
  ......................................................................................................	
  19	
  
4.	
  Methodology	
  ...................................................................................................................................	
  20	
  
4.1	
  Materials	
  ....................................................................................................................................	
  20	
  
4.2	
  Equipment	
  ..................................................................................................................................	
  20	
  
4.2.1	
  Brookfield	
  DV-­‐II	
  Pro	
  Programmable	
  Viscometer.	
  ...............................................................	
  20	
  
4.2.2	
  High	
  Shear	
  Rotor	
  Stator	
  Mixer	
  ............................................................................................	
  21	
  
4.2.3	
  Malvern	
  Mastersizer	
  2000	
  ..................................................................................................	
  21	
  
4.3	
  Experimental	
  Procedure	
  ............................................................................................................	
  22	
  
4.3.1	
  First	
  Phase	
  ...........................................................................................................................	
  22	
  
4.3.2	
  Second	
  Phase	
  ......................................................................................................................	
  22	
  
4.3.3	
  Third	
  Phase	
  .........................................................................................................................	
  23	
  
5.	
  Safety	
  Hazards	
  .................................................................................................................................	
  23	
  
6.	
  Results	
  ..............................................................................................................................................	
  24	
  
 
3	
  
	
  
6.1	
  Experimental	
  Results	
  .................................................................................................................	
  24	
  
6.2	
  Treatment	
  of	
  results	
  ..................................................................................................................	
  26	
  
7.	
  Discussion	
  and	
  conclusion	
  ...............................................................................................................	
  32	
  
8.	
  References	
  .......................................................................................................................................	
  33	
  
	
  
	
   	
  
 
4	
  
	
  
	
  
1.	
  Abstract	
  
The	
  droplet	
  size	
  distribution	
  is	
  of	
  prime	
  importance	
  in	
  emulsion	
  technology	
  due	
  to	
  its	
  direct	
  link	
  with	
  
the	
  stability	
  of	
  emulsions.	
  The	
  ability	
  to	
  predict	
  droplet	
  sizes	
  at	
  varying	
  conditions	
  that	
  influence	
  
droplet	
  sizes	
  will	
  save	
  researchers	
  time	
  and	
  companies	
  resources	
  by	
  avoiding	
  the	
  derivation	
  of	
  
undesired	
  products.	
  What	
  this	
  study	
  attempts	
  to	
  do	
  is	
  relate	
  three	
  variables	
  that	
  influence	
  droplet	
  
size	
  and	
  condense	
  them	
  into	
  one	
  variable	
  known	
  as	
  “D”.	
  
Four	
  oils	
  were	
  used	
  in	
  this	
  study;	
  liquid	
  paraffin,	
  rapeseed	
  oil,	
  flax	
  oil	
  and	
  groundnut	
  oil.	
  The	
  
surfactants	
  used	
  in	
  the	
  production	
  of	
  oil	
  in	
  water	
  emulsions	
  were	
  sodium	
  dodecyl	
  sulfate	
  and	
  tween	
  
80.	
  The	
  three	
  factors	
  studied	
  were	
  the	
  viscosity	
  of	
  the	
  dispersed	
  phase,	
  the	
  time	
  spent	
  mixing	
  and	
  
the	
  rotation	
  speed.	
  This	
  variables	
  were	
  condensed	
  by	
  modifying	
  power	
  number.	
  The	
  power	
  number	
  
of	
  an	
  impeller	
  is	
  a	
  method	
  of	
  relating	
  the	
  different	
  conditions	
  of	
  mixing.	
  Modifying	
  this	
  to	
  take	
  time	
  
into	
  account	
  allows	
  a	
  way	
  of	
  relating	
  work	
  done	
  on	
  the	
  emulsion	
  as	
  opposed	
  to	
  the	
  amount	
  of	
  
power	
  used.	
  This	
  was	
  then	
  modified	
  further	
  to	
  take	
  the	
  different	
  viscosities	
  of	
  the	
  oil	
  into	
  account	
  
thereby	
  allowing	
  a	
  method	
  in	
  which	
  the	
  mean	
  particle	
  size	
  can	
  be	
  predicted.	
  
Whilst	
  the	
  results	
  were	
  as	
  expected,	
  analysis	
  proved	
  difficult	
  in	
  that	
  not	
  all	
  variables	
  could	
  be	
  
condensed	
  into	
  one	
  variable.	
  The	
  rotational	
  speed	
  variable	
  proved	
  difficult	
  because	
  once	
  the	
  
modified	
  power	
  number	
  was	
  created	
  as	
  the	
  relationship	
  with	
  mean	
  particle	
  size	
  was	
  not	
  feasible.	
  
Which	
  meant	
  D	
  was	
  limited	
  in	
  that	
  rotational	
  speed	
  had	
  to	
  be	
  kept	
  constant.	
  The	
  time	
  and	
  viscosity	
  
variables	
  however	
  proved	
  easier	
  to	
  condense	
  however	
  the	
  values	
  of	
  D	
  only	
  gave	
  a	
  rough	
  estimate	
  of	
  
the	
  predicted	
  mean	
  particle	
  size.	
   	
  
 
5	
  
	
  
	
  
2.	
  Introduction	
  
Emulsion	
  technology	
  has	
  become	
  a	
  tool	
  of	
  great	
  importance	
  in	
  a	
  number	
  of	
  industries.	
  The	
  
applications	
  of	
  which	
  can	
  be	
  seen	
  daily	
  in	
  areas	
  as	
  diverse	
  as	
  mayonnaise	
  used	
  to	
  improve	
  the	
  
quality	
  of	
  a	
  meal	
  down	
  to	
  pesticides	
  which	
  repel	
  unwanted	
  pests.	
  The	
  ever	
  increasing	
  applications	
  of	
  
emulsions	
  include:	
  their	
  use	
  as	
  vehicles	
  for	
  the	
  delivery	
  of	
  lipid-­‐soluble	
  drugs	
  in	
  the	
  pharmaceutical	
  
industry	
  [1];	
  in	
  road	
  construction	
  industry,	
  Bitumen	
  emulsions	
  are	
  used	
  to	
  carry	
  an	
  active	
  material,	
  
mainly	
  bitumen,	
  for	
  road	
  application	
  while	
  avoiding	
  solvents	
  [3];	
  and	
  finally	
  in	
  the	
  paint	
  industry,	
  the	
  
development	
  of	
  emulsion	
  paints	
  allow	
  for	
  the	
  advantages	
  of	
  both	
  oil	
  and	
  water	
  paints,	
  while	
  
diminishing	
  their	
  disadvantages	
  [2].	
  Emulsions	
  are	
  also	
  present	
  in	
  nature.	
  Milk	
  is	
  perhaps	
  one	
  of	
  the	
  
most	
  stable	
  emulsions	
  produced	
  in	
  nature,	
  although	
  it	
  is	
  not	
  well	
  understood	
  why	
  milk	
  is	
  produced	
  
in	
  nature	
  as	
  an	
  emulsion	
  [3].	
  	
  
Emulsions	
  are	
  formed	
  from	
  the	
  mixture	
  of	
  two	
  immiscible	
  liquids	
  with	
  the	
  help	
  of	
  surfactants,	
  more	
  
commonly	
  known	
  as	
  emulsifiers.	
  One	
  liquid	
  constitutes	
  the	
  droplets	
  which	
  are	
  dispersed	
  into	
  
another	
  liquid.	
  These	
  are	
  known	
  respectively	
  as	
  the	
  dispersed	
  phase	
  and	
  the	
  continuous	
  phase.	
  This	
  
dispersion	
  must	
  remain	
  perfectly	
  stable	
  and	
  homogenous	
  over	
  a	
  certain	
  period	
  of	
  time.	
  This	
  length	
  
of	
  time	
  is	
  dependent	
  on	
  the	
  intended	
  application	
  of	
  the	
  emulsion	
  [3].	
  	
  
Emulsions	
  are	
  thermodynamically	
  unstable	
  structures	
  given	
  kinetic	
  stability	
  by	
  the	
  material	
  
adsorbed	
  at	
  the	
  interface	
  [4].	
  The	
  mechanisms	
  by	
  which	
  an	
  emulsified	
  oil	
  can	
  return	
  to	
  
thermodynamic	
  stability	
  include	
  creaming,	
  flocculation,	
  coalescence,	
  and,	
  frequently	
  less	
  
significantly,	
  disproportionation	
  [5].	
  Creaming	
  occurs	
  because	
  of	
  the	
  density	
  difference	
  between	
  the	
  
dispersed	
  phase	
  and	
  the	
  continuous	
  phase	
  and	
  leads	
  to	
  a	
  bulk	
  separation	
  under	
  gravity	
  [5].	
  During	
  
flocculation	
  several	
  droplets	
  aggregate	
  to	
  form	
  a	
  cluster	
  (floc)	
  but	
  each	
  droplet	
  remains	
  intact	
  [5].	
  
Coalescence	
  is	
  similar	
  to	
  flocculation	
  in	
  that	
  it	
  requires	
  droplet–droplet	
  contact	
  but	
  in	
  this	
  case	
  the	
  
contents	
  of	
  the	
  individual	
  droplets	
  merge	
  and	
  the	
  Laplace	
  pressure	
  forces	
  the	
  doublet	
  to	
  rapidly	
  take	
  
on	
  a	
  spherical	
  shape	
  [5].	
  	
  
When	
  emulsions	
  are	
  prepared,	
  be	
  it	
  in	
  industry	
  or	
  in	
  a	
  laboratory,	
  one	
  of	
  the	
  aims	
  of	
  preparation	
  is	
  
to	
  get	
  the	
  smallest	
  possible	
  droplet	
  sizes	
  of	
  the	
  dispersed	
  phase.	
  Droplet	
  size	
  is	
  among	
  the	
  main	
  
factors	
  that	
  determine	
  the	
  stability	
  of	
  an	
  emulsion.	
  The	
  smaller	
  the	
  droplet	
  size,	
  the	
  more	
  stable	
  the	
  
emulsion	
  and	
  vice	
  versa	
  as	
  smaller	
  droplets	
  will	
  coalesce	
  at	
  a	
  much	
  slower	
  rate	
  than	
  bigger	
  droplets.	
  
There	
  are	
  many	
  methods	
  of	
  making	
  emulsions;	
  one	
  of	
  the	
  more	
  common	
  methods	
  of	
  emulsification	
  
used	
  in	
  most	
  industries	
  and	
  the	
  method	
  used	
  in	
  this	
  study	
  is	
  the	
  high	
  shear	
  rotor	
  stator	
  mixer.	
  The	
  
properties	
  of	
  which	
  is	
  discussed	
  in	
  further	
  detail	
  in	
  chapter	
  3.	
  Rotor-­‐stator	
  devices	
  provide	
  a	
  focused	
  
delivery	
  of	
  energy,	
  power	
  and	
  shear	
  to	
  accelerate	
  physical	
  processes	
  such	
  as	
  mixing,	
  dissolution,	
  and	
  
emulsification	
  and	
  deagglomeration	
  [6].	
  
	
  
	
  
	
  
 
6	
  
	
  
	
  
2.1	
  Aims	
  and	
  Objectives	
  
The	
  aim	
  of	
  this	
  study	
  is	
  to	
  determine	
  the	
  mean	
  particle	
  size	
  of	
  emulsion	
  droplets	
  with	
  varying	
  
variables	
  such	
  as	
  the	
  viscosity	
  of	
  the	
  oils	
  in	
  the	
  dispersed	
  phase,	
  the	
  rotational	
  speed	
  of	
  the	
  rotor	
  
stator	
  homogenizer	
  as	
  well	
  as	
  time	
  spent	
  homogenizing.	
  This	
  will	
  then	
  allow	
  for	
  the	
  production	
  of	
  a	
  
correlation	
  graph	
  of	
  particle	
  size	
  against	
  an	
  unknown	
  variable,	
  “D”,	
  which	
  will	
  combine	
  all	
  variables.	
  
Thereby	
  allowing	
  for	
  the	
  prediction	
  of	
  the	
  mean	
  particle	
  once	
  the	
  D	
  value	
  is	
  replicated	
  using	
  any	
  
various	
  combination	
  of	
  the	
  aforementioned	
  variables.	
  
2.2	
  Limitations	
  
Due	
  to	
  time	
  constraints,	
  only	
  four	
  oils	
  were	
  studied	
  thereby	
  limiting	
  the	
  research	
  involved	
  in	
  
determining	
  the	
  effect	
  of	
  the	
  viscosity	
  of	
  the	
  oils	
  on	
  the	
  mean	
  particle	
  size.	
  The	
  mixer	
  used	
  in	
  this	
  
study	
  does	
  not	
  take	
  into	
  account	
  the	
  varying	
  viscosity	
  of	
  the	
  materials,	
  therefore	
  the	
  power	
  
determined	
  is	
  an	
  estimate.	
  
2.3	
  Abbreviations	
  and	
  Symbology	
  
Abbreviations	
   Meaning	
  
RPM	
  	
   Revolutions	
  Per	
  Minute	
  
SMC	
  	
   Spindle	
  Multiplier	
  Constant	
  
TK	
  	
   Viscometer	
  Torque	
  Constant	
  
SDS	
  	
   Sodium	
  Dodecyl	
  Sulfate	
  
OSC	
  	
   Oil	
  Soluble	
  Content	
  
WSC	
   Water	
  Soluble	
  Content	
  
HLB	
   Hydrophilic	
  Lipophilic	
  Balance	
  
SOP	
   Standard	
  Operating	
  Procedure(s)	
  
cP	
  	
   Centipoise	
  
f	
   Volume	
  fraction	
  
η	
   Viscosity	
  	
  
φ	
   volume	
  fraction	
  of	
  the	
  dispersed	
  phase	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
7	
  
	
  
3.	
  Literature	
  Report	
  
This	
  section	
  of	
  the	
  study	
  shall	
  focus	
  extensively	
  on	
  emulsions	
  and	
  surfactants.	
  This	
  will	
  include	
  the	
  
different	
  types	
  of	
  emulsions,	
  interactions	
  between	
  droplets	
  and	
  the	
  destabilizing	
  mechanisms	
  that	
  
take	
  place	
  in	
  the	
  breakdown	
  of	
  emulsion	
  systems.	
  The	
  nature	
  and	
  types	
  of	
  surfactants	
  shall	
  also	
  be	
  
covered	
  and	
  their	
  roles	
  in	
  the	
  production	
  and	
  stabilisation	
  of	
  emulsion.	
  In	
  addition	
  to	
  that,	
  the	
  
factors	
  that	
  come	
  into	
  play	
  when	
  selecting	
  of	
  surfactants	
  will	
  be	
  studies.	
  Methods	
  in	
  which	
  
emulsions	
  are	
  created	
  shall	
  be	
  highlighted	
  as	
  well	
  as	
  the	
  effect	
  of	
  certain	
  conditions	
  on	
  the	
  rheology	
  
of	
  the	
  emulsion.	
  
3.1	
  Emulsions	
  
An	
  emulsion	
  is	
  a	
  heterogeneous	
  system	
  consisting	
  of	
  at	
  least	
  one	
  immiscible	
  liquid	
  intimately	
  
dispersed	
  in	
  another	
  in	
  the	
  form	
  of	
  droplets,	
  whose	
  diameter,	
  in	
  general	
  exceed	
  0.1	
  µm	
  [2].	
  	
  The	
  
phase	
  which	
  is	
  present	
  in	
  the	
  form	
  of	
  finely	
  divided	
  droplets	
  is	
  called	
  the	
  dispersed	
  or	
  internal	
  phase;	
  
the	
  phase	
  which	
  forms	
  the	
  matrix	
  in	
  which	
  these	
  droplets	
  are	
  suspended	
  is	
  called	
  the	
  continuous	
  or	
  
external	
  phase	
  [2].	
  Emulsions	
  can	
  be	
  classified	
  in	
  order	
  of	
  droplet	
  size.	
  Droplet	
  sizes	
  which	
  exceed	
  1	
  
µm	
  are	
  considered	
  to	
  be	
  macro	
  emulsions,	
  those	
  between	
  100	
  nm	
  and	
  1	
  µm	
  are	
  classed	
  as	
  mini	
  
emulsions	
  whilst	
  those	
  between	
  10	
  nm	
  and	
  100	
  nm	
  are	
  nano	
  emulsions.	
  For	
  the	
  purpose	
  of	
  this	
  
study	
  only	
  macro	
  emulsions	
  will	
  be	
  discussed.	
  
	
  
	
  
	
  
Figure	
  1	
  showing	
  the	
  interface	
  between	
  two	
  immiscible	
  liquids	
  
When	
  two	
  immiscible	
  liquids	
  are	
  placed	
  in	
  contact,	
  an	
  interface	
  is	
  created	
  as	
  a	
  result	
  [2].	
  The	
  
interfacial	
  free	
  energy	
  is	
  the	
  minimum	
  amount	
  of	
  work	
  required	
  to	
  create	
  an	
  interface	
  and	
  is	
  a	
  
measure	
  of	
  the	
  interfacial	
  tension	
  between	
  two	
  liquids	
  [9].	
  The	
  interfacial	
  tension	
  is	
  also	
  a	
  measure	
  
of	
  the	
  difference	
  in	
  nature	
  of	
  the	
  two	
  phases	
  meeting	
  at	
  the	
  interface,	
  the	
  greater	
  the	
  dissimilarity,	
  
the	
  greater	
  the	
  interfacial	
  tension	
  [9].	
  	
  Due	
  to	
  the	
  large	
  area	
  of	
  interface	
  between	
  the	
  two	
  phases	
  
that	
  must	
  be	
  created	
  and	
  maintained,	
  emulsions	
  are	
  thermodynamically	
  unstable	
  [8].	
  	
  
	
  
 
8	
  
	
  
	
  
Figure	
  2	
  showing	
  emulsion	
  formation	
  and	
  break	
  down	
  [10]	
  
The	
  change	
  in	
  free	
  energy	
  in	
  going	
  from	
  state	
  I	
  to	
  state	
  II	
  is	
  made	
  from	
  two	
  contributions:	
  A	
  positive	
  
surface	
  energy	
  term	
  and	
  a	
  positive	
  entropy	
  term	
  due	
  to	
  an	
  increase	
  in	
  the	
  number	
  of	
  droplets	
  [10].	
  
The	
  surface	
  energy	
  term	
  is	
  the	
  change	
  in	
  surface	
  area	
  (ΔA)	
  multiplied	
  by	
  the	
  interfacial	
  tension	
  ( 𝛶)	
  
[10].	
  	
  
∆𝐺!"#$
=   ∆𝐴𝛶 − 𝑇∆𝑆!"#$
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  1	
  	
  	
  	
  	
  
When	
  an	
  emulsion	
  if	
  formed,	
  with	
  the	
  exception	
  of	
  micro	
  emulsions,	
  ΔAΥ	
  is	
  much	
  positive	
  and	
  much	
  
greater	
  than	
  -­‐TΔSconf
	
  which	
  means	
  that	
  ΔGform
	
  is	
  in	
  turn	
  positive,	
  therefore	
  the	
  formation	
  of	
  
emulsions	
  is	
  nonspontaneous	
  and	
  the	
  system	
  is	
  thermodynamically	
  unstable	
  [10].	
  This	
  is	
  due	
  to	
  the	
  
formation	
  of	
  droplets	
  which	
  leads	
  to	
  an	
  increase	
  in	
  the	
  surface	
  area	
  which	
  in	
  turn	
  increases	
  ΔAΥ.	
  
3.1.1	
  Types	
  of	
  Emulsions	
  
Based	
  on	
  the	
  dispersion	
  of	
  water	
  or	
  oil	
  in	
  continuous	
  phase	
  and	
  on	
  the	
  number	
  of	
  phases	
  present	
  in	
  
the	
  system,	
  macro	
  emulsions	
  can	
  be	
  subdivided	
  into	
  two	
  categories	
  [11].	
  These	
  are	
  single	
  emulsions	
  
and	
  Double	
  (or	
  multiple)	
  emulsions.	
  	
  
In	
  the	
  case	
  of	
  simple	
  emulsions,	
  droplets	
  of	
  one	
  liquid	
  phase	
  are	
  dispersed	
  in	
  another	
  immiscible	
  
liquid	
  phase	
  [12].	
  Simple	
  emulsions	
  could	
  be	
  of	
  two	
  types;	
  water-­‐in-­‐oil	
  emulsions,	
  and	
  oil	
  in-­‐water	
  
emulsions,	
  known	
  respectively	
  as	
  W/O	
  and	
  O/W	
  emulsions	
  [12].	
  Double	
  emulsions,	
  as	
  the	
  name	
  
indicates	
  is	
  one	
  in	
  which	
  both	
  types	
  of	
  emulsions	
  exist	
  simultaneously	
  [2].	
  Termed	
  'emulsions	
  of	
  
emulsions',	
  the	
  droplets	
  of	
  the	
  dispersed	
  phase	
  themselves	
  contain	
  even	
  smaller	
  dispersed	
  droplets	
  
[15].	
  	
  Two	
  main	
  types	
  of	
  double	
  emulsions	
  can	
  be	
  distinguished:	
  water-­‐in-­‐oil-­‐in-­‐water	
  (W/O/W)	
  
emulsions,	
  in	
  which	
  a	
  W/O	
  emulsion	
  is	
  dispersed	
  as	
  droplets	
  in	
  an	
  aqueous	
  phase,	
  and	
  oil-­‐in-­‐water-­‐
in-­‐oil	
  (O/W/O)	
  emulsions,	
  in	
  which	
  an	
  O/W	
  emulsion	
  is	
  dispersed	
  in	
  an	
  oil	
  phase	
  [13].	
  The	
  type	
  of	
  
emulsion	
  formed	
  is	
  usually	
  determined	
  by	
  the	
  surfactants	
  added	
  to	
  the	
  system.	
  Illustrations	
  of	
  both	
  
simple	
  and	
  double	
  emulsions	
  are	
  shown	
  in	
  figures	
  3	
  and	
  4.	
  
	
  
	
  
	
  
Figure	
  3	
  showing	
  simple	
  emulsions	
  
 
9	
  
	
  
	
  
Figure	
  4	
  showing	
  double	
  emulsions	
  
Simple	
  emulsions	
  can	
  be	
  classified	
  into	
  three	
  groups	
  depending	
  on	
  the	
  volume	
  fraction	
  of	
  the	
  
dispersed	
  phase	
  [14].	
  These	
  are	
  low	
  dispersed	
  phase	
  ratio,	
  medium	
  dispersed	
  phase	
  ratio	
  and	
  high	
  
dispersed	
  phase	
  ratio.	
  Emulsions	
  in	
  which	
  the	
  disperse	
  phase	
  accounts	
  for	
  30%	
  or	
  less	
  of	
  the	
  total	
  
volume	
  of	
  the	
  emulsion	
  are	
  classified	
  as	
  low	
  dispersed	
  phase	
  ratio,	
  whilst	
  medium	
  dispersed	
  phase	
  
ratio	
  is	
  in	
  the	
  range	
  of	
  30%	
  and	
  70%,	
  finally	
  emulsions	
  in	
  which	
  the	
  disperse	
  phase	
  accounts	
  for	
  more	
  
than	
  70%	
  of	
  the	
  emulsion	
  volume	
  are	
  classified	
  as	
  high	
  disperse	
  phase	
  ratio	
  [14].	
  
Double	
  emulsions	
  contain	
  more	
  interfaces	
  and	
  are	
  even	
  more	
  thermodynamically	
  unstable	
  than	
  
single	
  emulsions	
  [13].	
  Double	
  emulsions	
  are	
  prepared	
  in	
  a	
  two-­‐step	
  emulsification	
  process	
  using	
  two	
  
surfactants;	
  a	
  hydrophobic	
  one	
  designed	
  to	
  stabilize	
  the	
  interface	
  of	
  the	
  W/O	
  internal	
  emulsion	
  and	
  
a	
  hydrophilic	
  one	
  for	
  the	
  external	
  interface	
  of	
  the	
  oil	
  globules	
  (for	
  W/O/W	
  emulsions)	
  [13].	
  The	
  
primary	
  W/O	
  emulsion	
  is	
  prepared	
  under	
  high-­‐shear	
  conditions	
  to	
  obtain	
  small	
  droplets	
  while	
  the	
  
secondary	
  emulsification	
  step	
  is	
  carried	
  out	
  with	
  less	
  shear	
  to	
  avoid	
  rupture	
  of	
  the	
  internal	
  droplets	
  
[15].	
  The	
  applications	
  of	
  double	
  emulsions	
  are	
  limited	
  due	
  to	
  problems	
  with	
  manufacture	
  and	
  
control	
  among	
  others.	
  For	
  example,	
  they	
  consist	
  of	
  relatively	
  large	
  droplets	
  that	
  coalesce	
  either	
  
quiescently	
  or	
  due	
  to	
  commonly	
  encountered	
  processing	
  regimes	
  (e.g.,	
  shear,	
  sterilization),	
  and	
  have	
  
a	
  strong	
  tendency	
  to	
  release	
  entrapped	
  compounds	
  in	
  an	
  uncontrolled	
  manner	
  [16].	
  Usage	
  of	
  
double	
  emulsions	
  for	
  food	
  applications	
  is	
  further	
  limited	
  by	
  the	
  lack	
  of	
  suitable	
  food-­‐grade	
  
emulsifiers	
  and	
  stabilizers	
  for	
  the	
  inner	
  and	
  outer	
  emulsions	
  [17].	
  However,	
  double	
  emulsions	
  have	
  
been	
  used	
  in	
  cosmetics	
  and	
  pharmaceuticals	
  for	
  applications	
  such	
  as	
  drug	
  controlled	
  release	
  and	
  
targeted	
  delivery	
  [18].	
  	
  In	
  addition	
  to	
  that,	
  other	
  applications	
  have	
  included	
  the	
  removal	
  of	
  toxic	
  
materials	
  via	
  entrapment	
  and	
  solubility	
  enhancement	
  of	
  poorly-­‐soluble	
  materials	
  [19].	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
10	
  
	
  
3.2	
  Surfactants	
  
An	
  emulsion	
  is	
  the	
  result	
  of	
  two	
  competing	
  processes,	
  the	
  disruption	
  of	
  bulk	
  liquids	
  to	
  produce	
  fine	
  
droplets	
  and	
  the	
  recombination	
  of	
  the	
  droplets	
  to	
  give	
  back	
  the	
  bulk	
  liquids	
  [7].	
  An	
  emulsion	
  is	
  
thermodynamically	
  unstable	
  and	
  the	
  latter	
  process	
  is	
  the	
  natural	
  one	
  [7].	
  The	
  success	
  of	
  emulsion	
  
technology	
  lies	
  in	
  keeping	
  the	
  system	
  in	
  a	
  metastable	
  state	
  by	
  opposing	
  the	
  recombination	
  of	
  
droplets	
  [7].	
  This	
  is	
  where	
  surfactants	
  come	
  into	
  play.	
  A	
  surfactant	
  used	
  as	
  an	
  emulsifier	
  has	
  two	
  
main	
  functions:	
  allowing	
  emulsion	
  formation	
  and	
  providing	
  stability	
  to	
  the	
  emulsion	
  once	
  made	
  [20].	
  
A	
  surfactant	
  (a	
  contraction	
  of	
  the	
  term	
  surface-­‐active	
  agent)	
  is	
  a	
  substance	
  that,	
  when	
  present	
  in	
  a	
  
system,	
  has	
  the	
  property	
  of	
  adsorbing	
  onto	
  the	
  interfaces	
  of	
  the	
  system	
  and	
  of	
  altering	
  to	
  a	
  marked	
  
degree	
  the	
  interfacial	
  tension	
  of	
  those	
  interfaces	
  [9].	
  Surfactants	
  also	
  play	
  various	
  roles	
  in	
  addition	
  
to	
  this.	
  They	
  can	
  increase	
  resistance	
  to	
  deformation	
  and	
  in	
  some	
  cases,	
  they	
  can	
  facilitate	
  droplet	
  
break	
  up	
  by	
  means	
  of	
  surface	
  forces	
  [20].	
  The	
  formation	
  of	
  a	
  surfactant	
  film	
  around	
  the	
  droplets	
  
facilitates	
  the	
  process	
  of	
  emulsification	
  [11].	
  Most	
  importantly,	
  they	
  counteract	
  the	
  (re)coalescence	
  
of	
  newly	
  formed	
  droplets	
  during	
  emulsification	
  [20].	
  Surfactants	
  have	
  a	
  characteristic	
  molecular	
  
structure	
  consisting	
  of	
  a	
  structural	
  group	
  that	
  has	
  very	
  little	
  attraction	
  for	
  the	
  aqueous	
  phase,	
  known	
  
as	
  a	
  hydrophobic	
  group,	
  together	
  with	
  a	
  group	
  that	
  has	
  strong	
  attraction	
  for	
  the	
  aqueous	
  phase,	
  
called	
  the	
  hydrophilic	
  group	
  [9].	
  This	
  is	
  known	
  as	
  an	
  amphipathic	
  structure	
  [9].	
  Because	
  of	
  its	
  dual	
  
affinity,	
  an	
  amphipathic	
  molecule	
  would	
  be	
  out	
  of	
  place	
  in	
  any	
  solvent,	
  be	
  it	
  polar	
  or	
  non-­‐polar,	
  since	
  
there	
  is	
  always	
  one	
  of	
  the	
  groups	
  which	
  "does	
  not	
  like"	
  the	
  solvent	
  environment	
  [21].	
  This	
  is	
  why	
  
amphipathic	
  molecules	
  exhibit	
  a	
  very	
  strong	
  tendency	
  to	
  migrate	
  to	
  interfaces	
  and	
  to	
  orientate	
  in	
  a	
  
manner	
  in	
  which	
  the	
  polar	
  group	
  lies	
  in	
  water	
  and	
  the	
  non-­‐polar	
  group	
  in	
  oil	
  [21].	
  
3.2.1	
  Types	
  of	
  Surfactants	
  
Different	
  types	
  of	
  surfactants	
  are	
  required	
  under	
  different	
  conditions,	
  namely	
  the	
  solvent.	
  For	
  
example,	
  in	
  a	
  highly	
  polar	
  solvent	
  such	
  as	
  water,	
  the	
  hydrophobic	
  group	
  may	
  be	
  a	
  hydrocarbon	
  or	
  
fluorocarbon	
  chain	
  of	
  proper	
  length,	
  whereas	
  in	
  a	
  less	
  polar	
  solvent	
  only	
  some	
  of	
  these	
  may	
  be	
  
suitable	
  [9].	
  Therefore,	
  for	
  surface	
  activity	
  in	
  a	
  particular	
  system	
  the	
  surfactant	
  molecule	
  must	
  have	
  
a	
  chemical	
  structure	
  that	
  is	
  amphipathic	
  in	
  that	
  solvent	
  under	
  the	
  conditions	
  of	
  use	
  [9].	
  Surfactants	
  
are	
  classified	
  by	
  the	
  type	
  of	
  hype	
  of	
  hydrophilic	
  group	
  in	
  the	
  molecules.	
  There	
  are	
  four	
  main	
  groups	
  
of	
  classification.	
  
Anionic	
  surfactants	
  
In	
  anionic	
  surfactants,	
  the	
  hydrophilic	
  portion	
  of	
  the	
  molecule	
  bears	
  a	
  negative	
  charge	
  [9].	
  They	
  
dissociate	
  in	
  aqueous	
  solution	
  to	
  form	
  an	
  amphipathic	
  anion	
  and	
  a	
  cation,	
  they	
  are	
  the	
  most	
  
commonly	
  used	
  surfactants	
  [21].	
  The	
  oldest	
  and	
  best	
  known	
  example	
  of	
  anionic	
  surfactants	
  are	
  the	
  
soaps	
  [2].	
  Common	
  examples	
  of	
  these	
  include	
  lauryl	
  sulfates,	
  alkylbenzene	
  sulfonates	
  and	
  
lignosulfonates.	
  They	
  account	
  for	
  approximately	
  half	
  of	
  the	
  world	
  production	
  [21].	
  
Cationic	
  surfactants	
  	
  
In	
  cationic	
  surfactants,	
  the	
  hydrophilic	
  portion	
  bears	
  a	
  positive	
  charge	
  [9].	
  They	
  dissociate	
  in	
  
aqueous	
  solution	
  to	
  form	
  an	
  amphipathic	
  cation	
  and	
  an	
  anion	
  [21].	
  They	
  are	
  typically	
  more	
  
expensive	
  than	
  anionic	
  surfactants	
  because	
  of	
  the	
  high	
  pressure	
  hydrogenation	
  reaction	
  carried	
  out	
  
during	
  their	
  synthesis	
  [21].	
  As	
  a	
  result,	
  they	
  are	
  only	
  employed	
  as	
  bactericides	
  or	
  as	
  positively	
  
charged	
  substance,	
  able	
  to	
  adsorb	
  on	
  negatively	
  charged	
  substrates	
  [21].	
  Cationic	
  surfactants	
  mainly	
  
consist	
  of	
  amine	
  salts	
  and	
  quaternary	
  ammonium	
  compounds.	
  
	
  
 
11	
  
	
  
	
  
Amphoteric	
  (Zwitterionic)	
  surfactants	
  	
  
In	
  amphoteric	
  surfactants,	
  both	
  positive	
  and	
  negative	
  charges	
  may	
  be	
  present	
  in	
  the	
  hydrophilic	
  
portion	
  [9].	
  They	
  exhibit	
  both	
  anionic	
  and	
  cationic	
  dissociation	
  in	
  aqueous	
  solution	
  [21].	
  Amphoteric	
  
surfactants	
  are	
  quite	
  expensive	
  and	
  are	
  therefore	
  not	
  practical	
  for	
  regular	
  usage;	
  as	
  a	
  result	
  their	
  use	
  
is	
  limited	
  to	
  very	
  special	
  applications	
  such	
  as	
  cosmetics	
  [21].	
  Examples	
  of	
  amphoteric	
  surfactants	
  
include	
  betaines	
  or	
  sulfobetaines	
  [21].	
  
Nonionic	
  surfactants	
  
In	
  non-­‐ionic	
  surfactants,	
  the	
  surface-­‐active	
  portion	
  bears	
  no	
  ionic	
  charge	
  [9].	
  They	
  do	
  not	
  ionize	
  in	
  
aqueous	
  solution,	
  because	
  their	
  hydrophilic	
  group	
  is	
  of	
  a	
  nondissociable	
  type,	
  such	
  as	
  alcohol	
  [21].	
  In	
  
many	
  cases,	
  the	
  effectiveness	
  of	
  the	
  hydrophobic	
  and	
  hydrophilic	
  portions	
  of	
  the	
  molecule	
  can	
  be	
  
modified,	
  so	
  they	
  can,	
  in	
  effect,	
  be	
  made	
  to	
  fit	
  any	
  particular	
  application	
  [2].	
  Nonionic	
  surfactants	
  
account	
  for	
  approximately	
  45%	
  of	
  industrial	
  production	
  [21].	
  	
  
	
  
	
  
Figure	
  5	
  showing	
  the	
  four	
  main	
  classes	
  of	
  surfactants	
  	
  
Some	
  relatively	
  new	
  types	
  of	
  surfactants	
  have	
  been	
  introduced	
  in	
  recent	
  years,	
  the	
  most	
  prominent	
  
of	
  which	
  is	
  the	
  surface	
  active	
  polymers.	
  These	
  result	
  from	
  the	
  association	
  of	
  one	
  or	
  several	
  
macromolecular	
  structures	
  exhibiting	
  hydrophilic	
  and	
  lipophilic	
  characters.	
  They	
  are	
  now	
  very	
  
commonly	
  used	
  in	
  formulating	
  products	
  as	
  different	
  as	
  cosmetics	
  and	
  foodstuffs	
  [21].	
  	
  
3.2.2	
  Selection	
  of	
  Surfactants	
  
When	
  selecting	
  surfactants	
  for	
  use	
  in	
  emulsification,	
  all	
  conditions	
  of	
  the	
  system	
  have	
  to	
  be	
  taken	
  
into	
  account.	
  Examples	
  of	
  these	
  are,	
  stability	
  of	
  the	
  surfactants	
  under	
  the	
  temperature	
  and	
  pH	
  
conditions	
  and	
  the	
  type	
  of	
  emulsion	
  which	
  must	
  be	
  produced	
  as	
  a	
  result	
  among	
  many	
  others.	
  The	
  
selection	
  of	
  different	
  surfactants	
  in	
  the	
  preparation	
  of	
  emulsions	
  is	
  often	
  made	
  on	
  an	
  empirical	
  
basis,	
  one	
  such	
  empirical	
  scale	
  for	
  selecting	
  surfactants	
  is	
  the	
  hydrophilic-­‐lipophilic	
  balance	
  (HLB)	
  
number	
  developed	
  by	
  Griffin	
  in	
  1949	
  [10].This	
  scale	
  is	
  based	
  on	
  the	
  relative	
  percentage	
  of	
  
hydrophilic	
  to	
  lipophilic	
  groups	
  in	
  the	
  surfactant	
  molecule	
  [10].	
  HLB	
  values	
  range	
  from	
  0	
  to	
  20	
  on	
  an	
  
arbitrary	
  scale	
  [1].	
  At	
  the	
  higher	
  end	
  of	
  the	
  scale,	
  the	
  surfactants	
  are	
  hydrophilic,	
  these	
  include	
  
solubilising	
  agents	
  and	
  detergents	
  [1].	
  	
  
 
12	
  
	
  
Surfactants	
  on	
  the	
  higher	
  end	
  of	
  the	
  scale	
  are	
  water	
  soluble	
  and	
  are	
  used	
  in	
  the	
  production	
  of	
  o/w	
  
emulsions.	
  At	
  the	
  lower	
  end,	
  the	
  surfactants	
  are	
  hydrophobic,	
  these	
  include	
  antifoaming	
  agents.	
  
These	
  are	
  oil	
  soluble	
  and	
  are	
  employed	
  in	
  the	
  production	
  of	
  w/o	
  emulsions.	
  
Table	
  1	
  showing	
  the	
  range	
  of	
  HLB	
  values	
  required	
  for	
  different	
  purposes	
  
HLB	
  range	
  of	
  value	
   Use	
  
0	
  –	
  2	
   Antifoaming	
  agents	
  
2	
  –	
  7	
   w/o	
  surfactants	
  	
  
8	
  –	
  16	
   o/w	
  surfactants	
  
12	
  –	
  17	
   Detergents	
  
17	
  –	
  19	
  	
   Solubilising	
  agents	
  
	
  
In	
  practice,	
  a	
  mixture	
  of	
  surfactants	
  of	
  high	
  HLB	
  and	
  low	
  HLB	
  gives	
  more	
  stable	
  emulsions	
  than	
  a	
  
single	
  surfactant	
  [1].	
  In	
  the	
  experimental	
  determination	
  of	
  optimum	
  HLB,	
  creaming	
  of	
  the	
  phases	
  is	
  
taken	
  as	
  a	
  sign	
  of	
  instability,	
  the	
  system	
  with	
  minimum	
  creaming	
  is	
  deemed	
  to	
  be	
  of	
  optimal	
  HLB	
  [1].	
  
The	
  HLB	
  value	
  of	
  a	
  mixture	
  of	
  surfactants	
  can	
  be	
  determined	
  using	
  equation	
  1.	
  
𝐻𝑙𝑏 = 𝑓 𝑂𝑆𝐶   𝑋  𝐻𝑙𝑏 𝑂𝑆𝐶 + 1 − 𝑓 𝑊𝑆𝐶   𝑋  𝐻𝑙𝑏[𝑊𝑆𝐶]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  1	
  
A	
  major	
  disadvantage	
  of	
  the	
  HLB	
  concept	
  is	
  that	
  it	
  does	
  not	
  take	
  into	
  account	
  the	
  effect	
  of	
  
temperature	
  on	
  the	
  surfactants.	
  With	
  increasing	
  temperature,	
  the	
  hydration	
  of	
  lipophilic	
  groups	
  
decrease	
  and	
  the	
  surfactant	
  becomes	
  less	
  hydrophilic	
  thus	
  decreasing	
  its	
  HLB	
  [30].	
  
3.3 Techniques	
  for	
  Creating	
  Emulsions	
  in	
  Industry	
  
In	
  industry,	
  there	
  are	
  a	
  number	
  of	
  techniques	
  available	
  in	
  order	
  to	
  create	
  different	
  types	
  of	
  
emulsions,	
  some	
  more	
  complex	
  than	
  others.	
  The	
  aim	
  is	
  however	
  always	
  the	
  same;	
  to	
  achieve	
  the	
  
smallest	
  possible	
  droplet	
  sizes.	
  Examples	
  of	
  these	
  techniques	
  include	
  rotor-­‐stator	
  devices,	
  colloid	
  
mills,	
  high	
  pressure	
  systems,	
  membrane	
  systems	
  and	
  ultrasound	
  techniques.	
  
3.3.1	
  Rotor-­‐stator	
  homogenizers	
  	
  
Modern	
  emulsions	
  have	
  been	
  prepared	
  on	
  an	
  industrial	
  scale	
  by	
  a	
  variety	
  of	
  emulsification	
  
equipment	
  based	
  on	
  a	
  similar	
  operating	
  principle,	
  agitation.	
  Rotor-­‐stator	
  homogenization	
  belongs	
  in	
  
this	
  category	
  [22].	
  	
  
Homogenizers	
  are	
  used	
  to	
  mechanically	
  mix	
  a	
  plurality	
  of	
  liquids	
  having	
  no	
  mutual	
  compatibility	
  as	
  in	
  
the	
  case	
  of	
  water	
  and	
  oil	
  to	
  thereby	
  homogenize	
  them	
  into	
  an	
  emulsion	
  [23].	
  In	
  addition,	
  they	
  are	
  
also	
  used	
  in	
  solid-­‐liquid	
  suspensions	
  and	
  chemical	
  reactions.	
  The	
  rotor-­‐stator	
  assembly	
  consists	
  of	
  a	
  
rotor	
  of	
  two	
  or	
  more	
  blades	
  and	
  a	
  stator	
  with	
  either	
  vertical	
  or	
  slant	
  slots	
  around	
  the	
  wall	
  of	
  the	
  
homogenizer	
  cell.	
  The	
  rotor	
  is	
  housed	
  inside	
  the	
  stator	
  [22].	
  
When	
  two	
  liquids	
  are	
  supplied	
  to	
  the	
  hollow	
  of	
  the	
  rotor	
  by	
  a	
  pump,	
  the	
  rotor	
  starts	
  to	
  rotate	
  in	
  the	
  
state	
  where	
  these	
  liquids	
  are	
  being	
  supplied.	
  A	
  centrifugal	
  force	
  is	
  applied	
  to	
  the	
  liquids,	
  which	
  are	
  
ejected	
  from	
  the	
  radial	
  flow	
  passages	
  formed	
  in	
  the	
  rotor	
  to	
  enter	
  the	
  gap	
  between	
  the	
  rotor	
  and	
  
stator,	
  entering	
  radial	
  flow	
  passages	
  of	
  the	
  stator.	
  The	
  stator	
  does	
  not	
  rotate	
  but	
  remains	
  stationary,	
  
so	
  that	
  when	
  the	
  rotor	
  starts	
  to	
  rotate,	
  a	
  vortex	
  flow	
  is	
  generated	
  in	
  the	
  liquids	
  existing	
  in	
  the	
  radial	
  
flow	
  passages	
  of	
  the	
  rotor	
  and	
  the	
  stator	
  [23].	
  
Homogenization	
  intensity	
  (power)	
  and	
  the	
  residence	
  time	
  that	
  emulsion	
  droplets	
  stay	
  in	
  the	
  
shearing	
  field	
  are	
  the	
  primary	
  parameters	
  for	
  controlling	
  emulsion	
  droplet	
  size.	
  Other	
  parameters	
  
 
13	
  
	
  
that	
  might	
  affect	
  the	
  performance	
  of	
  rotor-­‐stator	
  homogenization	
  are	
  the	
  viscosity	
  of	
  the	
  two	
  
liquids,	
  surfactant,	
  rotor-­‐stator	
  design,	
  volume	
  size,	
  and	
  volume	
  ratio	
  of	
  the	
  two	
  phases	
  [22].	
  	
  
	
  
	
  
	
  
Figure	
  6	
  various	
  rotors	
  
3.3.2	
  Ultrasound	
  Emulsification	
  
The	
  use	
  of	
  mixing	
  and	
  shearing	
  devices	
  represent	
  a	
  simple	
  way	
  of	
  introducing	
  energy	
  for	
  the	
  
formation	
  of	
  emulsions,	
  it	
  is	
  however	
  not	
  the	
  only	
  method	
  [2].	
  	
  
Under	
  the	
  influence	
  of	
  ultrasound,	
  emulsions	
  can	
  be	
  formed.	
  There	
  are	
  two	
  main	
  views	
  as	
  to	
  why	
  
emulsions	
  are	
  formed	
  when	
  irradiated	
  by	
  ultrasounds.	
  Firstly,	
  there	
  is	
  the	
  view	
  that	
  cavitation	
  may	
  
be	
  responsible	
  for	
  this,	
  the	
  other	
  being	
  that	
  capillary	
  waves	
  at	
  the	
  interface	
  is	
  responsible	
  for	
  droplet	
  
formation.	
  	
  
There	
  are	
  several	
  possible	
  mechanisms	
  of	
  droplet	
  formation	
  and	
  disruption	
  under	
  the	
  influence	
  of	
  
ultrasound.	
  This	
  can	
  be	
  done	
  by	
  the	
  formation	
  of	
  droplets	
  as	
  a	
  consequence	
  of	
  unstable	
  oscillations	
  
of	
  the	
  interface.	
  These	
  capillary	
  waves	
  may	
  occur	
  and	
  contribute	
  to	
  dispersion,	
  only	
  if	
  the	
  diameter	
  
of	
  droplets	
  to	
  be	
  disrupted	
  is	
  larger	
  than	
  the	
  wavelength	
  of	
  the	
  capillary	
  waves.	
  This	
  mechanism	
  has	
  
to	
  be	
  taken	
  into	
  account	
  as	
  one	
  cause	
  of	
  droplet	
  disruption	
  in	
  an	
  acoustic	
  field,	
  but	
  only	
  for	
  a	
  small	
  
fraction	
  of	
  droplets	
  with	
  diameters	
  exactly	
  in	
  the	
  corresponding	
  range	
  [25].	
  
Cavitation	
  occurs	
  when	
  a	
  sound	
  wave	
  travels	
  through	
  the	
  liquid	
  thereby	
  compressing	
  and	
  stretching	
  
it.	
  When	
  there	
  is	
  insufficient	
  stretch	
  or	
  the	
  liquid	
  contains	
  no	
  gas,	
  nothing	
  happens,	
  however	
  if	
  the	
  
liquid	
  is	
  saturated	
  with	
  gas,	
  bubbles	
  appear.	
  The	
  disruption	
  of	
  the	
  liquids	
  under	
  the	
  vibrations	
  cause	
  
the	
  formation	
  of	
  cavities	
  [2].	
  
Cavitation	
  also	
  occurs	
  when	
  the	
  pressure	
  amplitude	
  of	
  the	
  applied	
  sound	
  source	
  reaches	
  a	
  certain	
  
minimum.	
  This	
  is	
  known	
  as	
  the	
  cavitation	
  threshold.	
  In	
  o/w	
  system,	
  the	
  process	
  of	
  emulsification	
  
initiates	
  when	
  the	
  cavitation	
  threshold	
  is	
  attained	
  [24].	
  	
  
 
14	
  
	
  
One	
  disadvantage	
  of	
  cavitation	
  is	
  that	
  the	
  intense	
  agitations	
  brought	
  about	
  has	
  the	
  effect	
  of	
  
increasing	
  the	
  number	
  of	
  collisions	
  amongst	
  dispersed	
  droplets	
  thus	
  increasing	
  the	
  possibility	
  of	
  
coalescence	
  [2].	
  
	
  
	
  
	
  
Figure	
  7	
  showing	
  an	
  ultrasonic	
  homogenizer	
  
	
  
3.3.3	
  High	
  Pressure	
  Emulsification	
  
High	
  pressure	
  homogenizers	
  are	
  one	
  of	
  the	
  most	
  widely	
  used	
  tools	
  for	
  the	
  preparation	
  of	
  emulsions	
  
in	
  industry.	
  Until	
  a	
  few	
  years	
  ago,	
  high-­‐pressure	
  homogenization	
  of	
  emulsions	
  meant	
  10	
  to	
  40	
  MPa,	
  
but	
  today,	
  100	
  MPa	
  is	
  not	
  unusual	
  [27].	
  
In	
  a	
  high-­‐pressure	
  homogenizer,	
  the	
  oil	
  and	
  water	
  mixture	
  is	
  subjected	
  to	
  intense	
  turbulent	
  and	
  
shear	
  flow	
  fields.	
  Turbulence	
  is	
  said	
  to	
  be	
  the	
  predominant	
  mechanism	
  even	
  through	
  laminar	
  shear	
  
and	
  cavitation	
  may	
  also	
  play	
  an	
  important	
  role	
  in	
  droplet	
  formation	
  of	
  the	
  dispersed	
  phase	
  [27].	
  
High	
  pressure	
  homogenizers	
  essentially	
  consist	
  of	
  a	
  high	
  pressure	
  pump	
  and	
  a	
  homogenizing	
  nozzle.	
  
The	
  pump	
  is	
  used	
  to	
  compress	
  the	
  crude	
  emulsion	
  to	
  the	
  homogenizing	
  pressure.	
  The	
  pressurized	
  
crude	
  emulsion	
  is	
  depressurized	
  in	
  a	
  homogenizing	
  nozzle	
  and	
  in	
  doing	
  so	
  the	
  drops	
  are	
  disrupted	
  
[26].	
  
The	
  homogenizing	
  nozzle	
  is	
  decisive	
  for	
  the	
  efficiency	
  of	
  disruption	
  when	
  producing	
  emulsions	
  using	
  
high-­‐pressure	
  homogenizers,	
  depending	
  on	
  the	
  type	
  of	
  nozzle,	
  the	
  homogenizer	
  is	
  classified	
  into	
  
either	
  standard	
  nozzle,	
  microfluidizer,	
  jet	
  disperser	
  or	
  orifice	
  valve	
  [26].	
  	
  
	
  
	
  
 
15	
  
	
  
	
  
Figure	
  8	
  showing	
  high	
  pressure	
  emulsification	
  with	
  different	
  nozzles	
  
3.4 Interactions	
  between	
  droplets	
  	
  
In	
  Chapter	
  3.3,	
  three	
  of	
  the	
  most	
  common	
  methods	
  of	
  producing	
  emulsions	
  in	
  industry	
  were	
  
highlighted,	
  however	
  this	
  becomes	
  moot	
  if	
  the	
  emulsions	
  are	
  of	
  no	
  use	
  due	
  to	
  their	
  unstable	
  nature.	
  
The	
  stability	
  of	
  emulsions	
  is	
  largely	
  dependent	
  on	
  the	
  interaction	
  of	
  droplets	
  in	
  the	
  dispersed	
  phase.	
  	
  
When	
  two	
  droplets	
  approach	
  one	
  another,	
  a	
  number	
  of	
  colloidal	
  interactions	
  come	
  into	
  play,	
  the	
  
most	
  important	
  being	
  the	
  Van	
  der	
  Waals,	
  steric	
  and	
  electrostatic	
  interactions.	
  The	
  main	
  mechanisms	
  
for	
  emulsion	
  droplet	
  stabilization	
  are	
  electrostatic	
  and	
  steric	
  interactions	
  [28].	
  
Van	
  der	
  Waals	
  attraction	
  
There	
  are	
  three	
  different	
  types	
  of	
  van	
  der	
  waals	
  interaction	
  between	
  molecules;	
  dipole	
  –	
  dipole,	
  
dipole	
  -­‐	
  induced	
  dipole	
  and	
  London	
  dispersion	
  forces.	
  Dipole	
  –	
  dipole	
  and	
  dipole	
  –	
  induced	
  dipole	
  
attractions	
  tend	
  to	
  cancel	
  one	
  another,	
  therefore	
  the	
  most	
  important	
  are	
  the	
  London	
  dispersion	
  
interactions	
  that	
  arise	
  from	
  variations	
  in	
  charge.	
  Hamaker	
  suggests	
  that	
  the	
  sum	
  of	
  the	
  London	
  
dispersion	
  interaction	
  between	
  droplets	
  results	
  in	
  strong	
  van	
  der	
  waals	
  attractions,	
  this	
  increases	
  as	
  
the	
  droplets	
  draw	
  closer	
  [10].	
  
In	
  order	
  to	
  counteract	
  van	
  der	
  waals	
  attraction,	
  which	
  will	
  lead	
  to	
  flocculation,	
  repulsive	
  forces	
  have	
  
to	
  be	
  introduced.	
  These	
  exist	
  in	
  the	
  form	
  of	
  electrostatic	
  and	
  steric	
  repulsion	
  and	
  is	
  dependent	
  on	
  
the	
  type	
  of	
  the	
  surfactant	
  used	
  [10].	
  	
  
Electrostatic	
  Repulsion	
  
This	
  occurs	
  due	
  to	
  the	
  interaction	
  between	
  ionic	
  surfactant	
  molecules	
  in	
  an	
  emulsion	
  system.	
  As	
  
mentioned	
  in	
  chapter	
  3.2,	
  surfactants	
  will	
  exist	
  at	
  the	
  interfaces	
  between	
  the	
  dispersed	
  and	
  
continuous	
  phase.	
  Using	
  an	
  o/w	
  emulsion	
  as	
  an	
  example,	
  the	
  surfactant	
  hydrophobic	
  group	
  will	
  
remain	
  within	
  the	
  droplets	
  whilst	
  the	
  hydrophilic	
  group	
  will	
  remain	
  in	
  the	
  aqueous	
  phase.	
  This	
  has	
  
the	
  effect	
  of	
  forming	
  a	
  layer	
  around	
  the	
  droplets	
  as	
  shown	
  in	
  figure	
  8.	
  As	
  droplets	
  approach	
  one	
  
another,	
  repulsive	
  forces	
  increase	
  due	
  to	
  the	
  similar	
  charge	
  on	
  the	
  hydrophilic	
  layer.	
  This	
  prevents	
  
the	
  coalescence	
  of	
  droplets.	
  
 
16	
  
	
  
	
  
Figure	
  9	
  Surfactant	
  layer	
  formed	
  around	
  a	
  droplet	
  
Steric	
  Repulsion	
  	
  
This	
  is	
  produced	
  by	
  using	
  nonionic	
  surfactants.	
  The	
  thick	
  tails	
  of	
  the	
  surfactant	
  in	
  the	
  continuous	
  
phase	
  promote	
  repulsion	
  between	
  droplets	
  as	
  a	
  result	
  of	
  unfavourable	
  mixing	
  of	
  the	
  tails	
  and	
  
volume	
  restrictions	
  upon	
  approach	
  [10].	
  	
  
3.5 Destabilizing	
  Mechanisms	
  in	
  Emulsions	
  
Due	
  to	
  the	
  metastable	
  nature	
  of	
  emulsions,	
  the	
  return	
  to	
  thermodynamic	
  stability	
  is	
  inevitable.	
  This	
  
occurs	
  in	
  a	
  certain	
  order	
  in	
  which	
  the	
  dispersed	
  droplets	
  return	
  to	
  their	
  original	
  phase	
  and	
  the	
  two	
  
separate	
  phases	
  are	
  visible	
  to	
  the	
  naked	
  eyes.	
  The	
  steps	
  by	
  which	
  the	
  emulsion	
  returns	
  to	
  
thermodynamic	
  stability	
  are	
  creaming	
  and	
  sedimentation,	
  flocculation,	
  Ostwald	
  ripening,	
  
coalescence	
  and	
  phase	
  inversion.	
  
Creaming	
  and	
  Sedimentation	
  
Creaming	
  is	
  the	
  separation	
  of	
  an	
  emulsion	
  into	
  a	
  concentrated	
  and	
  a	
  dilute	
  fraction,	
  by	
  centrifuging,	
  
gravity	
  or	
  conceivably	
  spontaneously.	
  The	
  concentrated	
  fraction	
  (cream)	
  is	
  rich	
  in	
  the	
  disperse	
  phase	
  
but	
  not	
  necessarily	
  near	
  100	
  percent.	
  Similarly	
  the	
  dilute	
  fraction	
  (serum)	
  is	
  usually	
  turbid	
  with	
  the	
  
remaining	
  droplets	
  of	
  the	
  disperse	
  phase	
  [29].	
  Although	
  creaming	
  may	
  be	
  undesirable	
  in	
  a	
  number	
  
of	
  cases,	
  it	
  does	
  not	
  represent	
  a	
  breaking	
  of	
  the	
  emulsions	
  [2].	
  The	
  droplets	
  remain	
  intact,	
  only	
  their	
  
position	
  changes.	
  	
  
The	
  difference	
  between	
  creaming	
  and	
  sedimentation	
  lies	
  in	
  the	
  fact	
  that	
  in	
  creaming	
  ,	
  droplets	
  in	
  the	
  
disperse	
  phase	
  has	
  a	
  lower	
  density	
  than	
  the	
  continuous	
  phase	
  thereby	
  causing	
  the	
  droplets	
  to	
  rise	
  
whilst	
  the	
  opposite	
  is	
  true	
  in	
  sedimentation.	
  
	
  
Stokes’	
  law	
  suggests	
  that	
  the	
  creaming	
  rate	
  will	
  depend	
  on	
  the	
  density	
  difference	
  and	
  the	
  square	
  of	
  
the	
  droplet	
  radius	
  [29].	
  This	
  is	
  given	
  by:	
  
𝑢 =
!!!! !!!!!
!!!
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  2	
  	
  
Where	
  U	
  is	
  the	
  rate	
  of	
  creaming	
  (sedimentation),	
  g	
  is	
  the	
  acceleration	
  of	
  gravity,	
  r	
  the	
  droplet	
  radius,	
  
d1	
  is	
  the	
  density	
  of	
  the	
  droplet,	
  d2	
  the	
  density	
  of	
  the	
  continuous	
  phase	
  and	
  η2	
  is	
  the	
  viscosity	
  of	
  the	
  
continuous	
  phase	
  [2].	
  From	
  stokes’	
  equation,	
  the	
  conditions	
  that	
  increase	
  the	
  rate	
  of	
  creaming	
  are	
  
large	
  droplet	
  radius,	
  a	
  high	
  density	
  difference	
  between	
  the	
  droplet	
  and	
  the	
  continuous	
  phase	
  and	
  a	
  
low	
  viscosity	
  of	
  the	
  continuous	
  phase.	
  
 
17	
  
	
  
The	
  impression	
  of	
  stokes’	
  equation	
  is	
  that	
  it	
  determines	
  the	
  rate	
  of	
  creaming	
  in	
  an	
  emulsion,	
  
however	
  Greenwald	
  has	
  indicated	
  that	
  it	
  only	
  indicates	
  the	
  rate	
  of	
  creaming	
  for	
  a	
  single	
  droplet	
  in	
  
the	
  system	
  [2].	
  
Flocculation	
  
Flocculation	
  refers	
  to	
  aggregation	
  of	
  the	
  droplets	
  into	
  larger	
  units	
  (flocs).	
  Each	
  droplet	
  retains	
  its	
  size	
  
and	
  integrity.	
  It	
  is	
  the	
  results	
  of	
  van	
  der	
  waals	
  attraction	
  and	
  occurs	
  when	
  there	
  is	
  not	
  sufficient	
  
repulsion	
  to	
  keep	
  the	
  droplets	
  apart	
  to	
  a	
  distance	
  in	
  which	
  van	
  der	
  waals	
  attraction	
  is	
  weak	
  [10].	
  	
  
Ostwald	
  ripening	
  
Ostwald	
  ripening	
  is	
  the	
  process	
  by	
  which	
  the	
  Gibbs	
  free	
  energy	
  of	
  a	
  two	
  phase	
  system	
  (such	
  as	
  an	
  
emulsion)	
  can	
  be	
  decreased	
  via	
  a	
  decrease	
  in	
  the	
  total	
  interfacial	
  area	
  thus	
  allowing	
  for	
  
thermodynamic	
  equilibrium	
  [31].	
  	
  
This	
  occurs	
  as	
  a	
  result	
  of	
  the	
  difference	
  in	
  solubility	
  between	
  the	
  small	
  and	
  large	
  droplets.	
  The	
  
smaller	
  droplets	
  have	
  higher	
  Laplace	
  pressure	
  and	
  higher	
  solubility	
  than	
  the	
  larger	
  ones.	
  With	
  time,	
  
the	
  smaller	
  droplets	
  disappear	
  and	
  their	
  molecules	
  diffuse	
  to	
  the	
  bulk	
  and	
  become	
  deposited	
  on	
  the	
  
larger	
  droplets.	
  The	
  droplet	
  size	
  distribution	
  shifts	
  to	
  larger	
  values	
  [10].	
  
Coalescence	
  	
  
At	
  this	
  stage,	
  each	
  floc	
  combines	
  to	
  form	
  a	
  single	
  droplet.	
  It	
  is	
  an	
  irreversible	
  process	
  that	
  leads	
  to	
  a	
  
decrease	
  in	
  the	
  number	
  of	
  droplets	
  [2].	
  This	
  occurs	
  by	
  the	
  process	
  of	
  thinning	
  and	
  disruption	
  of	
  the	
  
liquid	
  film	
  between	
  the	
  droplets	
  with	
  the	
  result	
  of	
  fusion	
  of	
  two	
  or	
  more	
  droplets	
  into	
  larger	
  ones.	
  
The	
  driving	
  force	
  for	
  coalescence	
  is	
  the	
  film	
  fluctuations	
  which	
  results	
  in	
  close	
  approach	
  of	
  the	
  
droplets	
  whereby	
  strong	
  van	
  der	
  Waals	
  forces	
  prevent	
  their	
  separation	
  [10].	
  
Phase	
  inversion	
  
This	
  refers	
  to	
  the	
  process	
  whereby	
  there	
  will	
  be	
  an	
  exchange	
  between	
  the	
  disperse	
  phase	
  and	
  the	
  
medium.	
  For	
  example,	
  an	
  O/W	
  emulsion	
  may	
  with	
  time	
  or	
  change	
  of	
  conditions	
  invert	
  to	
  a	
  W/O	
  
emulsion.	
  Phase	
  inversion	
  of	
  emulsions	
  can	
  be	
  one	
  of	
  two	
  types:	
  transitional	
  inversion	
  induced	
  by	
  
changing	
  the	
  facers	
  that	
  affect	
  the	
  HLB	
  of	
  the	
  system,	
  for	
  example,	
  temperature	
  and/or	
  electrolyte	
  
concentration	
  and	
  catastrophic	
  inversion,	
  which	
  is	
  induced	
  by	
  increasing	
  the	
  volume	
  fraction	
  of	
  the	
  
disperse	
  phase	
  [10].	
  
	
  
 
18	
  
	
  
	
  
Figure	
  10	
  showing	
  the	
  different	
  destabilizing	
  mechanisms	
  
	
  
	
  
	
  
	
  
	
  
3.6 Rheological	
  properties	
  of	
  Emulsions	
  
Rheology	
  is	
  the	
  science	
  of	
  deformation	
  and	
  flow	
  of	
  matter,	
  and	
  its	
  study	
  has	
  contributed	
  towards	
  
clarifying	
  ideas	
  concerning	
  the	
  nature	
  of	
  emulsion	
  systems.	
  It	
  is	
  a	
  subject	
  of	
  tremendous	
  
technological	
  importance	
  in	
  many	
  industries	
  as	
  the	
  suitability	
  of	
  the	
  final	
  products	
  is	
  to	
  a	
  large	
  
extent	
  judged	
  by	
  their	
  rheological	
  properties	
  [30].	
  
The	
  viscosity	
  of	
  a	
  liquid	
  is	
  defined	
  as	
  the	
  shearing	
  stress	
  exerted	
  across	
  an	
  area	
  when	
  there	
  is	
  unit	
  
velocity	
  gradient	
  normal	
  to	
  the	
  area.	
  In	
  most	
  liquids,	
  shearing	
  stress	
  is	
  proportional	
  to	
  the	
  change	
  in	
  
shear	
  with	
  time.	
  This	
  means	
  the	
  viscosity	
  is	
  independent	
  of	
  the	
  rate	
  of	
  shear;	
  the	
  liquid	
  is	
  
Newtonian.	
  Most	
  emulsions	
  however	
  exhibit	
  Non-­‐Newtonian	
  properties	
  as	
  viscosity	
  is	
  a	
  function	
  of	
  
the	
  rate	
  of	
  shear	
  [2].	
  	
  
The	
  rheological	
  properties	
  of	
  an	
  emulsion	
  is	
  dependent	
  on	
  droplet	
  interaction	
  which	
  	
  in	
  turn	
  is	
  
dependent	
  on	
  factors	
  such	
  as	
  volume	
  fraction	
  of	
  the	
  dispersed	
  phase,	
  viscosity	
  of	
  the	
  continuous	
  
phase,	
  droplet	
  size	
  distribution	
  and	
  the	
  surfactant	
  properties	
  among	
  others	
  [32].	
  For	
  the	
  purpose	
  of	
  
this	
  study	
  only	
  the	
  four	
  factors	
  mentioned	
  shall	
  be	
  considered.	
  
3.6.1	
  Viscosity	
  of	
  the	
  continuous	
  phase	
  	
  
All	
  treatments	
  of	
  emulsion	
  viscosity	
  consider	
  the	
  viscosity	
  of	
  the	
  continuous	
  (η0)	
  phase	
  to	
  have	
  a	
  
direct	
  effect	
  on	
  the	
  final	
  viscosity	
  of	
  the	
  emulsion.	
  This	
  is	
  best	
  illustrated	
  in	
  equation	
  three	
  
𝜂 = 𝜂!(𝑥)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  3	
  
 
19	
  
	
  
Where	
  x	
  represents	
  the	
  sum	
  of	
  all	
  other	
  factors	
  that	
  affect	
  the	
  viscosity	
  of	
  the	
  emulsion.	
  In	
  many	
  
emulsions	
  the	
  surfactant	
  is	
  dissolved	
  in	
  the	
  continuous	
  phase	
  hence	
  η0	
  is	
  usually	
  referred	
  to	
  as	
  the	
  
viscosity	
  of	
  the	
  solution	
  rather	
  than	
  that	
  of	
  the	
  liquid	
  in	
  the	
  continuous	
  phase	
  [2].	
  
3.6.2	
  Volume	
  fraction	
  of	
  the	
  dispersed	
  phase	
  
The	
  disperse	
  phase	
  fraction	
  is	
  directly	
  related	
  to	
  the	
  dispersion	
  rheology	
  because	
  an	
  increase	
  in	
  the	
  
volume	
  fraction	
  means	
  an	
  increase	
  in	
  the	
  frequency	
  of	
  droplet	
  interaction	
  and	
  vice	
  versa	
  [32].	
  An	
  
equation	
  relating	
  the	
  viscosity	
  of	
  the	
  dispersed	
  phase	
  with	
  that	
  of	
  the	
  continuous	
  phase	
  and	
  the	
  
volume	
  fraction	
  was	
  developed	
  by	
  Albert	
  Einstein	
  [2].	
  
𝜂 = 𝜂!(1 + 2.5𝜙)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  4	
  
Where	
  φ	
  is	
  the	
  volume	
  fraction	
  of	
  the	
  dispersed	
  phase.	
  The	
  applications	
  of	
  Equation	
  4	
  are	
  however	
  
extremely	
  limited	
  in	
  that	
  it	
  only	
  applies	
  to	
  volume	
  fractions	
  of	
  0.02	
  or	
  less.	
  There	
  have	
  been	
  
numerous	
  modifications	
  to	
  this	
  equation	
  in	
  order	
  to	
  increase	
  its	
  application	
  [2].	
  
When	
  the	
  volume	
  fraction	
  is	
  below	
  0.3,	
  droplets	
  can	
  move	
  freely	
  past	
  one	
  another,	
  however	
  as	
  the	
  
volume	
  fraction	
  increases,	
  this	
  interaction	
  increases.	
  Volume	
  fractions	
  above	
  0.74	
  will	
  see	
  the	
  
droplets	
  become	
  tightly	
  packed	
  and	
  the	
  movement	
  of	
  droplets	
  become	
  severely	
  impaired.	
  The	
  
increase	
  in	
  dispersed	
  phase	
  volume	
  fraction	
  sees	
  the	
  rheology	
  of	
  a	
  liquid	
  consequently	
  change	
  from	
  
Newtonian,	
  to	
  shear	
  thinning,	
  to	
  a	
  viscoelastic	
  type	
  of	
  behaviour	
  [32].	
  
3.6.3	
  Surfactant	
  Properties	
  
The	
  interfacial	
  rheology	
  of	
  the	
  droplets	
  can	
  significantly	
  influence	
  droplet	
  interactions,	
  which	
  are	
  
enhanced	
  by	
  the	
  presence	
  of	
  a	
  surfactant.	
  When	
  the	
  concentration	
  of	
  surfactant	
  is	
  high,	
  excess	
  
surfactant	
  molecules	
  are	
  formed	
  in	
  the	
  continuous	
  phase,	
  this	
  thereby	
  influences	
  the	
  rheology	
  of	
  the	
  
dispersion	
  by	
  inducing	
  depletion	
  flocculation	
  [32].	
  
	
  The	
  presence	
  of	
  surfactants	
  also	
  leads	
  to	
  the	
  existence	
  of	
  an	
  interfacial	
  film	
  which	
  may	
  affect	
  
emulsion	
  viscosity.	
  This	
  is	
  because	
  of	
  the	
  effect	
  of	
  the	
  film	
  on	
  the	
  internal	
  circulation	
  of	
  the	
  droplet.	
  
In	
  an	
  attempt	
  to	
  relate	
  the	
  viscosity	
  of	
  an	
  emulsion	
  with	
  the	
  concentration	
  of	
  the	
  surfactant	
  and	
  the	
  
volume	
  fraction	
  of	
  the	
  dispersed	
  phase,	
  Sherman	
  empirically	
  derived	
  the	
  equation	
  [2].	
  	
  	
  
𝑙𝑛𝜂 = 𝑎𝐶𝜙 + 𝑏	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  5	
  
Where	
  C	
  is	
  the	
  concentration	
  of	
  the	
  surfactant	
  whilst	
  a	
  and	
  b	
  are	
  constants	
  [2].	
  
3.6.4	
  Droplet	
  size	
  distribution	
  	
  	
  	
  
In	
  an	
  emulsion	
  system	
  with	
  a	
  given	
  dispersed	
  phase	
  volume	
  fraction,	
  the	
  smaller	
  the	
  droplet	
  size,	
  
the	
  greater	
  the	
  number	
  of	
  droplet	
  interaction,	
  therefore	
  increasing	
  the	
  droplet	
  size	
  of	
  a	
  
monodisperse	
  emulsion	
  system	
  increases	
  the	
  viscosity	
  of	
  the	
  emulsion	
  [32].	
  This	
  goes	
  hand	
  in	
  hand	
  
with	
  the	
  presence	
  and	
  concentration	
  of	
  a	
  surfactant	
  as	
  that	
  propagates	
  the	
  presence	
  of	
  smaller	
  
droplets	
  [2].	
  
	
   	
  
 
20	
  
	
  
	
  
4.	
  Methodology	
  
This	
  project	
  is	
  based	
  on	
  experiments	
  divided	
  in	
  three	
  phases	
  and	
  shall	
  be	
  explain	
  in	
  this	
  section	
  in	
  
full	
  detail.	
  The	
  first	
  phase	
  involves	
  the	
  measurement	
  of	
  the	
  viscosity	
  of	
  several	
  different	
  oils	
  and	
  
selection	
  of	
  suitable	
  oils.	
  The	
  second	
  consists	
  of	
  making	
  o/w	
  emulsions	
  using	
  four	
  of	
  the	
  oils	
  of	
  which	
  
their	
  viscosities	
  have	
  previously	
  been	
  measured	
  as	
  well	
  as	
  deriving	
  the	
  appropriate	
  combinations	
  of	
  
chosen	
  surfactants	
  that	
  will	
  ensure	
  the	
  emulsions	
  remain	
  stable	
  enough	
  to	
  be	
  analysed.	
  Included	
  in	
  
the	
  second	
  phase	
  is	
  the	
  measurement	
  of	
  the	
  densities	
  of	
  all	
  liquid	
  components	
  used	
  in	
  the	
  
production	
  of	
  the	
  emulsions.	
  Finally	
  the	
  third	
  involves	
  the	
  derivation	
  of	
  the	
  particle	
  size	
  distribution	
  
of	
  the	
  previously	
  mentioned	
  emulsions	
  and	
  more	
  importantly,	
  the	
  mean	
  particle	
  size.	
  
4.1	
  Materials	
  
• Liquid	
  Paraffin	
  
• Rapeseed	
  Oil	
  
• Flax	
  Oil	
  
• Groundnut	
  Oil	
  
• Span	
  80	
  
• Sodium	
  Dodecyl	
  Sulfate	
  
4.2	
  Equipment	
  
4.2.1	
  Brookfield	
  DV-­‐II	
  Pro	
  Programmable	
  Viscometer.	
  
This	
  viscometer	
  works	
  by	
  measuring	
  torque	
  whilst	
  inserted	
  in	
  an	
  aqueous	
  material.	
  The	
  viscosity	
  of	
  
the	
  material	
  is	
  then	
  calculated	
  by	
  using	
  the	
  equation	
  6.	
  
𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦   𝑐𝑃 =
!!!
!"#
  𝑋  𝑆𝑀𝐶  𝑋  𝑇𝐾  𝑋  𝑇𝑜𝑟𝑞𝑢𝑒	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  6	
  
	
   	
  
This	
  machine	
  is	
  fairly	
  simple	
  to	
  use	
  as	
  the	
  spindle	
  constant	
  is	
  already	
  given	
  depending	
  on	
  the	
  choice	
  
of	
  spindle.	
  Rotational	
  speed	
  is	
  a	
  variable	
  which	
  can	
  be	
  fixed	
  whilst	
  torque	
  is	
  given	
  on	
  a	
  screen.	
  The	
  
machine	
  also	
  allows	
  for	
  the	
  measurement	
  of	
  the	
  temperature	
  of	
  the	
  chosen	
  material	
  using	
  a	
  probe.	
  
This	
  allows	
  for	
  continuity	
  whilst	
  comparing	
  the	
  viscosities	
  of	
  different	
  materials	
  as	
  temperature	
  is	
  
inversely	
  proportional	
  to	
  viscosity.	
  
	
  
Figure	
  11	
  Brookfield	
  viscometer	
  and	
  a	
  variety	
  of	
  spindles	
  
 
21	
  
	
  
	
  
4.2.2	
  High	
  Shear	
  Rotor	
  Stator	
  Mixer	
  
This	
  piece	
  of	
  equipment	
  allows	
  for	
  the	
  emulsification	
  of	
  a	
  mixture	
  of	
  liquids.	
  It	
  has	
  a	
  maximum	
  
rotational	
  speed	
  of	
  10,000	
  RPM	
  and	
  a	
  minimum	
  of	
  a	
  100	
  RPM	
  thereby	
  allowing	
  the	
  effect	
  of	
  a	
  huge	
  
range	
  of	
  rotational	
  speeds	
  to	
  be	
  monitored.	
  	
  
	
  
	
  
Figure	
  12	
  Silverston	
  high	
  shear	
  rotor	
  stator	
  mixer	
  
4.2.3	
  Malvern	
  Mastersizer	
  2000	
  
The	
  Malvern	
  Mastersizer	
  works	
  not	
  by	
  measuring	
  particle	
  size	
  but	
  by	
  measuring	
  low	
  angle	
  laser	
  light	
  
scattering	
  (LALLS)	
  which	
  then	
  allows	
  for	
  the	
  production	
  of	
  a	
  particle	
  size	
  distribution	
  curve.	
  A	
  42	
  
element	
  composite	
  array	
  and	
  two	
  backscattering	
  detectors	
  allow	
  for	
  the	
  collection	
  of	
  scattered	
  light.	
  
Scattered	
  intensities	
  can	
  be	
  measured	
  at	
  a	
  range	
  of	
  scattering	
  angles	
  from	
  0	
  to	
  135	
  degrees	
  by	
  the	
  
light	
  source.	
  This	
  is	
  then	
  analysed	
  using	
  Mie	
  Theory	
  (1908).	
  In	
  order	
  to	
  do	
  this,	
  the	
  real	
  and	
  
imaginary	
  index	
  of	
  both	
  the	
  dispersant	
  and	
  sample	
  is	
  required.	
  Figure	
  13	
  is	
  an	
  example	
  of	
  a	
  resulting	
  
particle	
  size	
  distribution	
  curve.	
  	
  
 
22	
  
	
  
	
  
Figure	
  13	
  showing	
  a	
  standard	
  particle	
  size	
  distribution	
  curve
4.3	
  Experimental	
  Procedure	
  
4.3.1	
  First	
  Phase	
  
As	
  viscosity	
  was	
  one	
  of	
  the	
  variables	
  studied	
  in	
  this	
  project	
  is	
  was	
  imperative	
  that	
  the	
  viscosity	
  of	
  the	
  
chosen	
  oils	
  were	
  measured	
  before	
  proceeding.	
  A	
  100	
  ml	
  beaker	
  was	
  filled	
  with	
  liquid	
  paraffin	
  and	
  
spindle	
  three	
  was	
  chosen	
  as	
  an	
  appropriate	
  spindle.	
  The	
  viscometer	
  was	
  then	
  switched	
  on	
  and	
  
allowed	
  to	
  calibrate.	
  The	
  spindle	
  was	
  then	
  attached	
  to	
  the	
  viscometer	
  and	
  allowed	
  to	
  recalibrate.	
  
The	
  spindle	
  was	
  then	
  inserted	
  into	
  the	
  beaker	
  of	
  paraffin	
  until	
  the	
  mark	
  on	
  the	
  spindle	
  was	
  level	
  
with	
  the	
  surface	
  of	
  the	
  liquid	
  paraffin.	
  The	
  temperature	
  probe	
  was	
  then	
  inserted	
  in	
  the	
  beaker	
  and	
  
the	
  temperature	
  taken	
  down.	
  The	
  rotational	
  speed	
  was	
  then	
  set	
  to	
  a	
  value	
  of	
  100	
  and	
  the	
  torque	
  
measured	
  and	
  recorded.	
  This	
  was	
  repeated	
  a	
  total	
  of	
  three	
  times	
  in	
  order	
  to	
  improve	
  the	
  accuracy	
  of	
  
the	
  results.	
  The	
  spindle	
  was	
  then	
  wiped	
  down	
  with	
  blue	
  roll	
  and	
  the	
  same	
  was	
  done	
  for	
  the	
  rest	
  of	
  
the	
  oils.	
  	
  
4.3.2	
  Second	
  Phase	
  
In	
  order	
  to	
  make	
  a	
  stock	
  solution	
  of	
  2%	
  SDS	
  solution,	
  a	
  5	
  l	
  beaker	
  was	
  filled	
  with	
  2940	
  ml	
  of	
  water	
  
and	
  heated	
  slowly	
  to	
  75o
C	
  using	
  a	
  hot	
  plate.	
  60	
  g	
  of	
  SDS	
  was	
  measured	
  out	
  into	
  a	
  500	
  ml	
  beaker	
  on	
  a	
  
top	
  pan	
  balance.	
  Using	
  an	
  overhead	
  stirrer	
  to	
  stir	
  the	
  mixture,	
  the	
  beaker	
  of	
  SDS	
  solution	
  was	
  then	
  
slowly	
  inserted	
  into	
  the	
  beaker	
  of	
  water	
  using	
  a	
  spatula.	
  The	
  stirrer	
  was	
  stopped	
  when	
  all	
  the	
  SDS	
  
had	
  dissolved.	
  98	
  ml	
  of	
  liquid	
  paraffin	
  was	
  then	
  measured	
  out	
  into	
  a	
  beaker	
  and	
  using	
  a	
  pipette,	
  2	
  ml	
  
of	
  span	
  80	
  was	
  then	
  introduced	
  into	
  the	
  beaker	
  filled	
  with	
  liquid	
  paraffin.	
  A	
  magnetic	
  stirrer	
  was	
  
used	
  to	
  stir	
  the	
  mixture	
  until	
  all	
  the	
  span	
  80	
  which	
  had	
  settled	
  at	
  the	
  bottom	
  had	
  dissolved.	
  In	
  order	
  
to	
  create	
  stable	
  oil	
  in	
  water	
  emulsions,	
  an	
  HLB	
  value	
  between	
  8	
  and	
  18	
  was	
  required.	
  However	
  even	
  
in	
  that	
  range,	
  the	
  emulsions	
  had	
  to	
  stay	
  stable	
  long	
  enough	
  for	
  the	
  Mastersizer	
  to	
  determine	
  the	
  
particle	
  size	
  distribution.	
  Four	
  mixtures	
  of	
  varying	
  volumes	
  of	
  liquid	
  paraffin,	
  liquid	
  paraffin	
  doped	
  
with	
  2%	
  span	
  80,	
  water	
  and	
  water	
  doped	
  with	
  2%	
  SDS	
  solution	
  as	
  shown	
  in	
  Table	
  1	
  were	
  then	
  made.	
  
The	
  HLB	
  values	
  of	
  the	
  resulting	
  emulsions	
  were	
  determined	
  using	
  the	
  equation	
  1:	
  
Table	
  2	
  HLB	
  values	
  of	
  different	
  volumes	
  of	
  reagents	
  
Oil	
  +	
  2%	
  Span	
  80	
  
(ml)	
  
Oil	
  (ml)	
   Water	
  +	
  2%	
  SDS	
  
(ml)	
  
Water	
  (ml)	
   HLB	
  Value	
  
7.0	
   3.0	
   3.0	
   7.0	
   15.0	
  
7.5	
   2.5	
   2.5	
   7.5	
   13.2	
  
8.0	
   2.0	
   2.0	
   8.0	
   11.4	
  
8.5	
   1.5	
   1.5	
   8.5	
   9.7	
  
	
  
 
23	
  
	
  
Once	
  the	
  four	
  mixtures	
  were	
  made,	
  they	
  were	
  allowed	
  to	
  homogenise	
  for	
  1	
  minute	
  each	
  at	
  1000	
  
rpm	
  and	
  set	
  aside	
  for	
  two	
  hours	
  in	
  order	
  to	
  study	
  the	
  stability	
  of	
  the	
  resulting	
  emulsions.	
  Once	
  the	
  
most	
  stable	
  emulsion	
  was	
  selected,	
  the	
  combination	
  of	
  volumes	
  of	
  the	
  reagents	
  used	
  to	
  make	
  said	
  
emulsion	
  was	
  used	
  to	
  make	
  all	
  other	
  emulsions	
  in	
  this	
  study.	
  Using	
  the	
  right	
  combination	
  of	
  volumes	
  
of	
  reagents,	
  ten	
  mixtures	
  of	
  liquid	
  paraffin,	
  liquid	
  paraffin	
  doped	
  with	
  2%	
  span	
  80,	
  water	
  and	
  water	
  
doped	
  with	
  2%	
  SDS	
  solution	
  was	
  made	
  in	
  50	
  ml	
  beakers.	
  The	
  same	
  was	
  done	
  using	
  flax	
  oil,	
  Rapeseed	
  
oil	
  and	
  groundnut	
  oil.	
  The	
  HLB	
  value	
  of	
  9.7	
  was	
  found	
  to	
  be	
  the	
  most	
  stable	
  and	
  was	
  selected.	
  
Afterwards,	
  6	
  beakers	
  were	
  weighed	
  out	
  using	
  a	
  top	
  pan	
  balance	
  accurate	
  to	
  three	
  significant	
  
figures.	
  1	
  ml	
  of	
  each	
  oil	
  was	
  measured	
  out	
  into	
  each	
  of	
  these	
  beakers	
  and	
  weighed	
  on	
  the	
  top	
  
balance.	
  The	
  difference	
  between	
  the	
  mass	
  of	
  the	
  beakers	
  before	
  the	
  oil	
  was	
  inserted	
  and	
  after	
  the	
  
oil	
  was	
  inserted	
  was	
  noted	
  as	
  the	
  density	
  of	
  each	
  oil.	
  The	
  same	
  was	
  then	
  done	
  for	
  the	
  2%	
  SDS	
  
solution	
  in	
  water	
  as	
  well	
  as	
  the	
  surfactant	
  Span	
  80.	
  The	
  measurements	
  of	
  all	
  densities	
  were	
  done	
  at	
  
room	
  temperature.	
  
	
  
4.3.3	
  Third	
  Phase	
  
Using	
  the	
  high	
  shear	
  homogeniser,	
  5	
  emulsions	
  were	
  made	
  using	
  the	
  liquid	
  paraffin	
  and	
  water	
  
mixtures	
  at	
  1000,	
  2000,	
  3000,	
  4000	
  and	
  5000	
  rpm.	
  This	
  done	
  whilst	
  keeping	
  the	
  time	
  constant	
  to	
  
one	
  minute.	
  The	
  other	
  5	
  emulsions	
  were	
  made	
  by	
  keeping	
  the	
  rpm	
  to	
  a	
  constant	
  value	
  of	
  3000rpm	
  
but	
  using	
  time	
  as	
  the	
  variable.	
  The	
  times	
  used	
  were	
  1,	
  2,	
  6,	
  8	
  and	
  10	
  minutes.	
  Once	
  the	
  emulsions	
  
were	
  made,	
  they	
  were	
  taken	
  up	
  to	
  the	
  Mastersizer	
  in	
  order	
  to	
  measure	
  the	
  particle	
  size	
  and	
  particle	
  
size	
  distribution	
  of	
  the	
  emulsions.	
  The	
  refractive	
  indices	
  of	
  the	
  continuous	
  phase,	
  liquid	
  paraffin,	
  and	
  
the	
  dispersant,	
  deionised	
  water	
  was	
  entered	
  in	
  order	
  to	
  create	
  a	
  new	
  standard	
  operating	
  procedure	
  
(SOP).	
  Once	
  this	
  was	
  done,	
  using	
  a	
  plastic	
  pipette,	
  a	
  few	
  drops	
  of	
  the	
  sample	
  to	
  be	
  tested	
  was	
  added	
  
to	
  the	
  unit.	
  Once	
  the	
  obscuration	
  was	
  in	
  the	
  right	
  range,	
  the	
  Mastersizer	
  was	
  allowed	
  to	
  start	
  
testing,	
  running	
  a	
  minimum	
  of	
  5	
  different	
  tests	
  and	
  the	
  average	
  of	
  those	
  taken	
  and	
  the	
  mean	
  
particle	
  size	
  recorded.	
  
	
  
5.	
  Safety	
  Hazards	
  
Threat	
  to	
  Safety	
   Dangers	
   Precautions	
  taken	
  
SDS	
   • Flammable	
  
solid	
  
• Harmful	
  if	
  
swallowed	
  
• Harmful	
  if	
  
inhaled	
  
• Causes	
  serious	
  
eye	
  damage	
  
• Keep	
  away	
  
from	
  heat	
  
• Wear	
  
protective	
  
gloves	
  
• Wear	
  safety	
  
goggles	
  
• Wear	
  Mask	
  
	
  
	
  
	
  
	
  
 
24	
  
	
  
6.	
  Results	
  	
  
In	
  this	
  section,	
  the	
  experimental	
  results	
  shall	
  be	
  presented	
  in	
  various	
  tables.	
  These	
  shall	
  then	
  be	
  
treated	
  to	
  derive	
  a	
  value	
  of	
  D.	
  Following	
  this	
  will	
  be	
  a	
  discussion	
  of	
  the	
  results.	
  
6.1	
  Experimental	
  Results	
  
Results	
  of	
  viscosity	
  measurement	
  
Table	
  3	
  Viscosity	
  of	
  different	
  oils	
  
Oil	
   Revolutions	
  
per	
  minute	
  
Torque	
  1	
  	
  
(%)	
  
Torque	
  2	
  
(%)	
  
Torque	
  3	
  
(%)	
  
Average	
  
Torque	
  
(%)	
  
Viscosity	
  
(cP)	
  
Liquid	
  Paraffin	
   100	
   26.3	
   26.3	
   26.4	
   26.3	
   263	
  
Sesame	
  Oil	
   100	
   12.4	
   12.6	
   12.6	
   12.5	
   125	
  
Groundnut	
  Oil	
   100	
   14.0	
   14.1	
   14.0	
   14.0	
   140	
  
Flax	
  Oil	
   100	
   7.5	
   7.5	
   7.5	
   7.5	
   75	
  
Almond	
  Oil	
   100	
   12.1	
   12.4	
   12.3	
   12.3	
   123	
  
Olive	
  Oil	
   100	
   13.5	
   13.7	
   13.8	
   13.7	
   137	
  
Rapeseed	
  Oil	
   100	
   11.4	
   11.4	
   11.4	
   11.4	
   114	
  
	
  
The	
  four	
  oils	
  chosen	
  were	
  Liquid	
  paraffin,	
  Flax	
  oil,	
  Rapeseed	
  oil,	
  and	
  Groundnut	
  oil	
  as	
  they	
  are	
  evenly	
  
spread	
  between	
  the	
  range	
  of	
  75	
  and	
  263	
  cP.	
  When	
  measured,	
  the	
  temperature	
  of	
  these	
  oils	
  were	
  ±	
  
0.1o
C	
  of	
  each	
  other	
  which	
  meant	
  the	
  effect	
  of	
  this	
  temperature	
  difference	
  on	
  the	
  viscosities	
  of	
  the	
  
oil	
  would	
  have	
  been	
  small	
  enough	
  to	
  ignore.	
  	
  
Results	
  of	
  rotational	
  speed	
  and	
  time	
  measurement	
  
Tables	
  4,	
  6,	
  8	
  and	
  10	
  present	
  the	
  results	
  of	
  the	
  effect	
  of	
  rotational	
  speed	
  on	
  mean	
  particle	
  size	
  
conducted	
  at	
  a	
  constant	
  time	
  of	
  one	
  minute	
  whilst	
  tables	
  5,	
  7,	
  9	
  and	
  11	
  present	
  the	
  results	
  of	
  the	
  
effects	
  of	
  time	
  spent	
  homogenizing	
  on	
  mean	
  particle	
  size,	
  this	
  was	
  conducted	
  at	
  a	
  constant	
  
rotational	
  speed	
  of	
  3000	
  RPM.	
  
Liquid	
  Paraffin	
  
Table	
  4	
  showing	
  the	
  relationship	
  between	
  rotational	
  speed	
  and	
  mean	
  particle	
  size	
  
Revolutions	
  per	
  minute	
   Mean	
  particle	
  size	
  (µm)	
  
1000	
   113.697	
  
2000	
   63.893	
  
3000	
   47.855	
  
4000	
   37.719	
  
5000	
   28.451	
  
	
  
	
  
	
  
	
  
	
  
 
25	
  
	
  
Table	
  5	
  showing	
  the	
  relationship	
  between	
  time	
  and	
  mean	
  particle	
  size	
  
Time	
  (minutes)	
   Mean	
  particle	
  size	
  (µm)	
  
1	
   47.855	
  
2	
   34.402	
  
6	
   26.081	
  
8	
   25.479	
  
10	
   22.935	
  
	
  
Groundnut	
  Oil	
  
Table	
  6	
  showing	
  the	
  relationship	
  between	
  rotational	
  speed	
  and	
  mean	
  particle	
  size	
  
Revolutions	
  per	
  minute	
   Mean	
  particle	
  size	
  (µm)	
  
1000	
   104.849	
  
2000	
   54.348	
  
3000	
   39.923	
  
4000	
   31.102	
  
5000	
   23.094	
  
	
  
Table	
  7	
  showing	
  the	
  relationship	
  between	
  time	
  and	
  mean	
  particle	
  size	
  
Time	
  (minutes)	
   Mean	
  particle	
  size	
  (µm)	
  
1	
   39.923	
  
2	
   34.738	
  
6	
   24.273	
  
8	
   22.348	
  
10	
   21.863	
  
	
  
Rapeseed	
  Oil	
  
Table	
  8	
  showing	
  the	
  relationship	
  between	
  rotational	
  speed	
  and	
  mean	
  particle	
  size	
  
Revolutions	
  per	
  minute	
   Mean	
  particle	
  size	
  (µm)	
  
1000	
   99.676	
  
2000	
   44.294	
  
3000	
   24.777	
  
4000	
   20.738	
  
5000	
   14.364	
  
Table	
  9	
  showing	
  the	
  relationship	
  between	
  time	
  and	
  mean	
  particle	
  size	
  
Time	
  (minutes)	
   Mean	
  particle	
  size	
  (µm)	
  
1	
   24.777	
  
2	
   24.308	
  
6	
   17.402	
  
8	
   16.847	
  
10	
   16.178	
  
	
  
	
  
 
26	
  
	
  
Flax	
  Oil	
  
Table	
  10	
  showing	
  the	
  relationship	
  between	
  rotational	
  speed	
  and	
  mean	
  particle	
  size	
  
Revolutions	
  per	
  minute	
   Mean	
  particle	
  size	
  (µm)	
  
1000	
   79.893	
  
2000	
   38.409	
  
3000	
   18.746	
  
4000	
   16.973	
  
5000	
   15.632	
  
	
  
Table	
  11	
  showing	
  the	
  relationship	
  between	
  time	
  and	
  mean	
  particle	
  size	
  
Time	
  (minutes)	
   Mean	
  particle	
  size	
  (µm)	
  
1	
   18.746	
  
2	
   17.356	
  
6	
   14.078	
  
8	
   13.847	
  
10	
   13.574	
  
	
  
	
  
6.2	
  Treatment	
  of	
  results	
  
Power	
  number	
  (Np)	
  can	
  be	
  calculated	
  using	
  equation	
  3	
  
𝑁! =
!
!!!!!
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  7	
  
Where:	
  
	
  P	
  is	
  the	
  Power	
  in	
  Watts,	
  ρ	
  is	
  total	
  fluid	
  density	
  of	
  the	
  emulsion	
  in	
  kilogram	
  per	
  metre	
  cubed,	
  n	
  is	
  
rotational	
  speed	
  in	
  seconds	
  and	
  d	
  is	
  the	
  diameter	
  of	
  the	
  stirrer	
  in	
  meters.	
  	
  
Table	
  12	
  Corresponding	
  power	
  at	
  different	
  rotational	
  speeds	
  
Revolutions	
  per	
  minute	
   Revolution	
  per	
  second	
   Power	
  (Watts)	
  
1000	
   16.67	
   125	
  
2000	
   33.34	
   250	
  
3000	
   50.00	
   375	
  
4000	
   66.67	
   500	
  
5000	
   83.34	
   625	
  
	
  
In	
  this	
  study,	
  the	
  overall	
  work	
  done	
  on	
  the	
  different	
  systems	
  is	
  more	
  relevant	
  than	
  the	
  rate	
  at	
  which	
  
the	
  work	
  is	
  done.	
  Therefore	
  in	
  order	
  to	
  take	
  time	
  into	
  account,	
  the	
  P	
  variable	
  will	
  be	
  multiplied	
  by	
  
time	
  in	
  seconds.	
  The	
  modified	
  power	
  (MNp)	
  is	
  no	
  longer	
  a	
  dimensionless	
  number.	
  In	
  order	
  to	
  
compensate	
  for	
  this,	
  rather	
  than	
  having	
  the	
  rotational	
  speed	
  cubed,	
  it	
  will	
  be	
  squared	
  therefore	
  all	
  
units	
  will	
  cancel	
  out	
  therefore	
  making	
  the	
  modified	
  power	
  a	
  dimensionless	
  number.	
  
Modified	
  power	
  number	
  is	
  calculated	
  using	
  equation	
  8.	
  
𝑀𝑁! =
!"
!!!!!
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  8	
  
 
27	
  
	
  
	
  
𝑑! =  
!!  !  !! ! !!  !  !! !⋯!(!!  !  !!)
!!!!!!⋯!!!
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  9	
  
Table	
  13	
  showing	
  the	
  density	
  of	
  each	
  of	
  each	
  component	
  in	
  the	
  resulting	
  emulsions	
  
Component	
   	
   Density	
  (kgm-­‐3
)	
   Volume	
  in	
  solution	
  (m3
)	
  
Liquid	
  Paraffin	
   707	
   9.83	
  
Groundnut	
  Oil	
   835	
   9.83	
  
Rapeseed	
  Oil	
   880	
   9.83	
  
Flax	
  Oil	
   911	
   9.83	
  
SDS	
  	
   1071	
   0.03	
  
Span	
  80	
   984	
   0.17	
  
Deionised	
  Water	
   1000	
   9.97	
  
	
  
Equation	
  9	
  allows	
  for	
  the	
  calculation	
  of	
  the	
  density	
  of	
  an	
  overall	
  mixture	
  once	
  the	
  densities	
  and	
  
volumes	
  of	
  the	
  individual	
  components	
  are	
  known.	
  The	
  fluid	
  density	
  of	
  all	
  emulsions	
  are	
  presented	
  in	
  
table	
  14.	
  	
  The	
  diameter	
  of	
  the	
  stirrer	
  was	
  found	
  to	
  be	
  0.0185m.	
  	
  
	
  
Table	
  14	
  showing	
  the	
  densities	
  of	
  the	
  emulsions	
  prepared	
  
Emulsion	
   Fluid	
  Density	
  (kgm-­‐3
)	
  
Liquid	
  Paraffin	
  in	
  water	
   856	
  
Groundnut	
  Oil	
  in	
  water	
  	
   919	
  
Rapeseed	
  Oil	
  in	
  water	
   941	
  
Flax	
  Oil	
  in	
  water	
   956	
  
	
  
Using	
  all	
  the	
  information	
  above,	
  the	
  modified	
  power	
  number	
  can	
  now	
  be	
  calculated.	
  The	
  modified	
  
power	
  number	
  at	
  different	
  rotational	
  speeds	
  and	
  the	
  corresponding	
  particle	
  size	
  are	
  shown	
  below.	
  
Tables	
  15	
  to	
  18	
  presents	
  the	
  results	
  derived	
  whilst	
  changing	
  the	
  rotational	
  speed	
  and	
  keeping	
  the	
  
time	
  spent	
  homogenizing	
  at	
  one	
  minute.	
  Tables	
  19	
  to	
  22	
  present	
  the	
  results	
  derived	
  whilst	
  changing	
  
the	
  time	
  spent	
  homogenizing	
  and	
  keeping	
  rotational	
  speed	
  at	
  a	
  constant	
  3000	
  RPM	
  
Liquid	
  Paraffin	
  
Table	
  15	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   Mean	
  particle	
  size	
  (µm)	
  
14250168.15	
   113.697	
  
7125084.08	
   63.893	
  
4751956.26	
   47.855	
  
3563610.83	
   37.719	
  
2850717.63	
   28.451	
  
	
  
	
  
	
  
	
  
 
28	
  
	
  
	
  
Groundnut	
  Oil	
  
Table	
  16	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   Mean	
  particle	
  size	
  (µm)	
  
13435433.62	
   104.849	
  
6717716.81	
   54.348	
  
4480269.44	
   39.923	
  
3359866.09	
   31.102	
  
2687731.61	
   23.094	
  
	
  
Rapeseed	
  Oil	
  
Table	
  17	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   Mean	
  particle	
  size	
  (µm)	
  
13165588.76	
   99.676	
  
6582794.38	
   44.294	
  
4390285.17	
   24.777	
  
3292384.63	
   20.738	
  
2633749.69	
   14.364	
  
	
  
Flax	
  Oil	
  
Table	
  18	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   Mean	
  particle	
  size	
  (µm)	
  
12987118.84	
   79.893	
  
6493559.42	
   38.409	
  
4330771.40	
   18.746	
  
3247753.77	
   16.973	
  
2598047.14	
   15.632	
  
	
  
	
  
Figure	
  14	
  showing	
  the	
  relationship	
  between	
  Modified	
  power	
  number	
  and	
  mean	
  particle	
  size	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
0	
   5000000	
   10000000	
   15000000	
  
Mean	
  partcle	
  size	
  (µm)	
  
Modified	
  Power	
  Number	
  
Graph	
  of	
  Power	
  number	
  against	
  mean	
  partcle	
  size	
  
Liquid	
  Paraffin	
  
Groundnut	
  Oil	
  
Rapeseed	
  Oil	
  
Flax	
  Oil	
  
 
29	
  
	
  
	
  
Liquid	
  Paraffin	
  
Table	
  19	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   	
   Mean	
  particle	
  size	
  (µm)	
  
4751956.26	
   47.855	
  
9503912.53	
   34.402	
  
28511737.58	
   26.081	
  
38015650.11	
   25.479	
  
47519562.63	
   22.935	
  
	
  
Groundnut	
  Oil	
  
Table	
  20	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   	
   Mean	
  particle	
  size	
  (µm)	
  
4480269.44	
   39.923	
  
8960538.89	
   34.738	
  
26881616.66	
   24.273	
  
35842155.55	
   22.348	
  
44802694.44	
   21.863	
  
	
  
Rapeseed	
  Oil	
  
Table	
  21	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   	
   Mean	
  particle	
  size	
  (µm)	
  
4390285.17	
   24.777	
  
8780570.35	
   24.308	
  
26341711.04	
   17.402	
  
35122281.39	
   16.847	
  
43902851.74	
   16.178	
  
	
  
Flax	
  Oil	
  
Table	
  22	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
Modified	
  Power	
  Number	
  	
   	
   Mean	
  particle	
  size	
  (µm)	
  
4330771.40	
   18.746	
  
8661542.80	
   17.356	
  
25984628.41	
   14.078	
  
34646171.21	
   13.847	
  
43307714.02	
   13.574	
  
	
  
	
  
	
  
 
30	
  
	
  
	
  
Figure	
  15	
  showing	
  the	
  relationship	
  between	
  Modified	
  power	
  number	
  and	
  mean	
  particle	
  size	
  
As	
  the	
  aim	
  is	
  to	
  also	
  take	
  the	
  viscosity	
  of	
  the	
  oil	
  into	
  account,	
  the	
  modified	
  power	
  number	
  can	
  be	
  
divided	
  by	
  the	
  viscosities	
  of	
  the	
  different	
  oils	
  (in	
  cP).	
  This	
  allows	
  a	
  correlation	
  graph	
  of	
  multiple	
  
points	
  to	
  be	
  plotted.	
  This	
  variable	
  shall	
  be	
  called	
  “D”,	
  units	
  of	
  which	
  shall	
  be	
  cP-­‐1
.	
  
	
  
𝐷 =
!"
!!!!!η
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Equation	
  10	
  
Liquid	
  Paraffin	
  
Table	
  23	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
D	
  (cP-­‐1
)	
   Mean	
  particle	
  size	
  (µm)	
  
18068	
   47.855	
  
36137	
   34.402	
  
108410	
   26.081	
  
144546	
   25.479	
  
180683	
   22.935	
  
	
  
Groundnut	
  Oil	
  
Table	
  24	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
D	
  (cP-­‐1
)	
   	
   Mean	
  particle	
  size	
  (µm)	
  
32002	
   39.923	
  
64004	
   34.738	
  
192012	
   24.273	
  
256015	
   22.348	
  
320019	
   21.863	
  
0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
0	
   10000000	
   20000000	
   30000000	
   40000000	
   50000000	
  
Mean	
  Partce	
  size	
  (µm)	
  
Modified	
  Power	
  Number	
  
Graph	
  of	
  Modified	
  Power	
  number	
  against	
  Mean	
  Partcle	
  size	
  
Liquid	
  Paraffin	
  
Groundnut	
  Oil	
  
Rapeseed	
  Oil	
  
Flax	
  Oil	
  
 
31	
  
	
  
Rapeseed	
  Oil	
  
Table	
  25	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
D	
  (cP-­‐1
)	
   Mean	
  particle	
  size	
  (µm)	
  
38511	
   24.777	
  
77023	
   24.308	
  
231068	
   17.402	
  
308090	
   16.847	
  
385113	
   16.178	
  
	
  
Flax	
  Oil	
  
Table	
  26	
  Modified	
  power	
  number	
  and	
  corresponding	
  mean	
  particle	
  size	
  
D	
  (cP-­‐1
)	
   	
   Mean	
  particle	
  size	
  (µm)	
  
57744	
   18.746	
  
115487	
   17.356	
  
346462	
   14.078	
  
461949	
   13.847	
  
577436	
   13.574	
  
	
  
	
  
Figure	
  16	
  Correlation	
  graph	
  between	
  D	
  and	
  Mean	
  particle	
  size	
  
	
   	
  
y	
  =	
  31.717e-­‐2E-­‐06x	
  
R²	
  =	
  0.6255	
  
0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
0	
   100000	
   200000	
   300000	
   400000	
   500000	
   600000	
   700000	
  
Mean	
  partcle	
  size	
  (µm)	
  
D	
  (cP-­‐1)	
  
Graph	
  of	
  D	
  against	
  Mean	
  Partcle	
  Size	
  
Dissertation
Dissertation
Dissertation

More Related Content

Viewers also liked (11)

էներգիա
էներգիաէներգիա
էներգիա
 
Розквіт і занепад Афін
Розквіт і занепад Афін Розквіт і занепад Афін
Розквіт і занепад Афін
 
Formas de Energia e Transformação de Energia
Formas de Energia e Transformação de Energia Formas de Energia e Transformação de Energia
Formas de Energia e Transformação de Energia
 
Rifaxin
RifaxinRifaxin
Rifaxin
 
Derechos de autor
Derechos de autorDerechos de autor
Derechos de autor
 
skydrive_word_doc
skydrive_word_docskydrive_word_doc
skydrive_word_doc
 
13_pdfsam_150828
13_pdfsam_15082813_pdfsam_150828
13_pdfsam_150828
 
inter_commerce
inter_commerceinter_commerce
inter_commerce
 
Razas de perros
Razas de perrosRazas de perros
Razas de perros
 
GFlanders_Portfolio
GFlanders_PortfolioGFlanders_Portfolio
GFlanders_Portfolio
 
Degree
DegreeDegree
Degree
 

Similar to Dissertation

235770727 bitumen-safety-code
235770727 bitumen-safety-code235770727 bitumen-safety-code
235770727 bitumen-safety-codeSameer Ahmed
 
Oral Strip Technology Overview & Future Potential (1)
Oral Strip Technology   Overview & Future Potential (1)Oral Strip Technology   Overview & Future Potential (1)
Oral Strip Technology Overview & Future Potential (1)ssirajd
 
Environmental liability and life-cycle management
Environmental liability and life-cycle managementEnvironmental liability and life-cycle management
Environmental liability and life-cycle managementTurlough Guerin
 
Environmental Liability and Life-cycle Management of Used Lubricating Oils
Environmental Liability and Life-cycle Management of Used Lubricating OilsEnvironmental Liability and Life-cycle Management of Used Lubricating Oils
Environmental Liability and Life-cycle Management of Used Lubricating OilsTurlough Guerin GAICD FGIA
 
2008 biodiesel handling & use guidelines
2008 biodiesel handling & use guidelines2008 biodiesel handling & use guidelines
2008 biodiesel handling & use guidelinesBiodiesel Automotive
 
Georgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualGeorgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualD6Z
 
Georgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualGeorgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualK9T
 
Guam: Stormwater Management Manual
Guam: Stormwater Management ManualGuam: Stormwater Management Manual
Guam: Stormwater Management ManualSotirakou964
 
Extract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyExtract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyTACook Consultants
 
Extract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyExtract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyMateus Siwek
 
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 Years
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 YearsStudy Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 Years
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 YearsMarcellus Drilling News
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanPinjamanTanpaJaminan
 
Industrial Training Report
Industrial Training Report Industrial Training Report
Industrial Training Report Kandarp Mavani
 

Similar to Dissertation (20)

235770727 bitumen-safety-code
235770727 bitumen-safety-code235770727 bitumen-safety-code
235770727 bitumen-safety-code
 
Helicopter Safety Study 3 (HSS-3)
Helicopter Safety Study 3 (HSS-3)Helicopter Safety Study 3 (HSS-3)
Helicopter Safety Study 3 (HSS-3)
 
Oral Strip Technology Overview & Future Potential (1)
Oral Strip Technology   Overview & Future Potential (1)Oral Strip Technology   Overview & Future Potential (1)
Oral Strip Technology Overview & Future Potential (1)
 
Environmental liability and life-cycle management
Environmental liability and life-cycle managementEnvironmental liability and life-cycle management
Environmental liability and life-cycle management
 
Environmental Liability and Life-cycle Management of Used Lubricating Oils
Environmental Liability and Life-cycle Management of Used Lubricating OilsEnvironmental Liability and Life-cycle Management of Used Lubricating Oils
Environmental Liability and Life-cycle Management of Used Lubricating Oils
 
2008 biodiesel handling & use guidelines
2008 biodiesel handling & use guidelines2008 biodiesel handling & use guidelines
2008 biodiesel handling & use guidelines
 
DNV Liquified Gas Terminal
DNV Liquified Gas TerminalDNV Liquified Gas Terminal
DNV Liquified Gas Terminal
 
Gem report
Gem reportGem report
Gem report
 
621
621621
621
 
Georgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualGeorgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting Manual
 
Georgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting ManualGeorgia Rainwater Harvesting Manual
Georgia Rainwater Harvesting Manual
 
Guam: Stormwater Management Manual
Guam: Stormwater Management ManualGuam: Stormwater Management Manual
Guam: Stormwater Management Manual
 
Extract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyExtract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance Study
 
Extract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance StudyExtract | T.A. Cook Offshore Wind Maintenance Study
Extract | T.A. Cook Offshore Wind Maintenance Study
 
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 Years
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 YearsStudy Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 Years
Study Showing U.S. Shale Drilling will Create 1.6M Jobs & $245B in 10 Years
 
Coatings
CoatingsCoatings
Coatings
 
Kirubanandan final chapter
Kirubanandan final chapterKirubanandan final chapter
Kirubanandan final chapter
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
 
Industrial Training Report
Industrial Training Report Industrial Training Report
Industrial Training Report
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 

Dissertation

  • 1.   1     Investigating  the  effects  of  processing  conditions   and  material  properties  on  the  particle  size   distributions  of  oil  in  water  emulsions  in  high   shear  rotor-­‐stator  emulsifications.        
  • 2.   2     Table  of  Contents   1.  Abstract  ..............................................................................................................................................  4   2.  Introduction  .......................................................................................................................................  5   2.1  Aims  and  Objectives  .....................................................................................................................  6   2.2  Limitations  ...................................................................................................................................  6   2.3  Abbreviations  and  Symbology  .....................................................................................................  6   3.  Literature  Report  ...............................................................................................................................  7   3.1  Emulsions  .....................................................................................................................................  7   3.1.1  Types  of  Emulsions  ................................................................................................................  8   3.2  Surfactants  .................................................................................................................................  10   3.2.1  Types  of  Surfactants  ............................................................................................................  10   3.2.2  Selection  of  Surfactants  ......................................................................................................  11   3.3  Techniques  for  Creating  Emulsions  in  Industry  ..........................................................................  12   3.3.1  Rotor-­‐stator  homogenizers  .................................................................................................  12   3.3.2  Ultrasound  Emulsification  ...................................................................................................  13   3.3.3  High  Pressure  Emulsification  ...............................................................................................  14   3.4  Interactions  between  droplets  ..................................................................................................  15   3.5  Destabilizing  Mechanisms  in  Emulsions  .....................................................................................  16   3.6  Rheological  properties  of  Emulsions  ..........................................................................................  18   3.6.1  Viscosity  of  the  continuous  phase  ......................................................................................  18   3.6.2  Volume  fraction  of  the  dispersed  phase  .............................................................................  19   3.6.3  Surfactant  Properties  ..........................................................................................................  19   3.6.4  Droplet  size  distribution  ......................................................................................................  19   4.  Methodology  ...................................................................................................................................  20   4.1  Materials  ....................................................................................................................................  20   4.2  Equipment  ..................................................................................................................................  20   4.2.1  Brookfield  DV-­‐II  Pro  Programmable  Viscometer.  ...............................................................  20   4.2.2  High  Shear  Rotor  Stator  Mixer  ............................................................................................  21   4.2.3  Malvern  Mastersizer  2000  ..................................................................................................  21   4.3  Experimental  Procedure  ............................................................................................................  22   4.3.1  First  Phase  ...........................................................................................................................  22   4.3.2  Second  Phase  ......................................................................................................................  22   4.3.3  Third  Phase  .........................................................................................................................  23   5.  Safety  Hazards  .................................................................................................................................  23   6.  Results  ..............................................................................................................................................  24  
  • 3.   3     6.1  Experimental  Results  .................................................................................................................  24   6.2  Treatment  of  results  ..................................................................................................................  26   7.  Discussion  and  conclusion  ...............................................................................................................  32   8.  References  .......................................................................................................................................  33        
  • 4.   4       1.  Abstract   The  droplet  size  distribution  is  of  prime  importance  in  emulsion  technology  due  to  its  direct  link  with   the  stability  of  emulsions.  The  ability  to  predict  droplet  sizes  at  varying  conditions  that  influence   droplet  sizes  will  save  researchers  time  and  companies  resources  by  avoiding  the  derivation  of   undesired  products.  What  this  study  attempts  to  do  is  relate  three  variables  that  influence  droplet   size  and  condense  them  into  one  variable  known  as  “D”.   Four  oils  were  used  in  this  study;  liquid  paraffin,  rapeseed  oil,  flax  oil  and  groundnut  oil.  The   surfactants  used  in  the  production  of  oil  in  water  emulsions  were  sodium  dodecyl  sulfate  and  tween   80.  The  three  factors  studied  were  the  viscosity  of  the  dispersed  phase,  the  time  spent  mixing  and   the  rotation  speed.  This  variables  were  condensed  by  modifying  power  number.  The  power  number   of  an  impeller  is  a  method  of  relating  the  different  conditions  of  mixing.  Modifying  this  to  take  time   into  account  allows  a  way  of  relating  work  done  on  the  emulsion  as  opposed  to  the  amount  of   power  used.  This  was  then  modified  further  to  take  the  different  viscosities  of  the  oil  into  account   thereby  allowing  a  method  in  which  the  mean  particle  size  can  be  predicted.   Whilst  the  results  were  as  expected,  analysis  proved  difficult  in  that  not  all  variables  could  be   condensed  into  one  variable.  The  rotational  speed  variable  proved  difficult  because  once  the   modified  power  number  was  created  as  the  relationship  with  mean  particle  size  was  not  feasible.   Which  meant  D  was  limited  in  that  rotational  speed  had  to  be  kept  constant.  The  time  and  viscosity   variables  however  proved  easier  to  condense  however  the  values  of  D  only  gave  a  rough  estimate  of   the  predicted  mean  particle  size.    
  • 5.   5       2.  Introduction   Emulsion  technology  has  become  a  tool  of  great  importance  in  a  number  of  industries.  The   applications  of  which  can  be  seen  daily  in  areas  as  diverse  as  mayonnaise  used  to  improve  the   quality  of  a  meal  down  to  pesticides  which  repel  unwanted  pests.  The  ever  increasing  applications  of   emulsions  include:  their  use  as  vehicles  for  the  delivery  of  lipid-­‐soluble  drugs  in  the  pharmaceutical   industry  [1];  in  road  construction  industry,  Bitumen  emulsions  are  used  to  carry  an  active  material,   mainly  bitumen,  for  road  application  while  avoiding  solvents  [3];  and  finally  in  the  paint  industry,  the   development  of  emulsion  paints  allow  for  the  advantages  of  both  oil  and  water  paints,  while   diminishing  their  disadvantages  [2].  Emulsions  are  also  present  in  nature.  Milk  is  perhaps  one  of  the   most  stable  emulsions  produced  in  nature,  although  it  is  not  well  understood  why  milk  is  produced   in  nature  as  an  emulsion  [3].     Emulsions  are  formed  from  the  mixture  of  two  immiscible  liquids  with  the  help  of  surfactants,  more   commonly  known  as  emulsifiers.  One  liquid  constitutes  the  droplets  which  are  dispersed  into   another  liquid.  These  are  known  respectively  as  the  dispersed  phase  and  the  continuous  phase.  This   dispersion  must  remain  perfectly  stable  and  homogenous  over  a  certain  period  of  time.  This  length   of  time  is  dependent  on  the  intended  application  of  the  emulsion  [3].     Emulsions  are  thermodynamically  unstable  structures  given  kinetic  stability  by  the  material   adsorbed  at  the  interface  [4].  The  mechanisms  by  which  an  emulsified  oil  can  return  to   thermodynamic  stability  include  creaming,  flocculation,  coalescence,  and,  frequently  less   significantly,  disproportionation  [5].  Creaming  occurs  because  of  the  density  difference  between  the   dispersed  phase  and  the  continuous  phase  and  leads  to  a  bulk  separation  under  gravity  [5].  During   flocculation  several  droplets  aggregate  to  form  a  cluster  (floc)  but  each  droplet  remains  intact  [5].   Coalescence  is  similar  to  flocculation  in  that  it  requires  droplet–droplet  contact  but  in  this  case  the   contents  of  the  individual  droplets  merge  and  the  Laplace  pressure  forces  the  doublet  to  rapidly  take   on  a  spherical  shape  [5].     When  emulsions  are  prepared,  be  it  in  industry  or  in  a  laboratory,  one  of  the  aims  of  preparation  is   to  get  the  smallest  possible  droplet  sizes  of  the  dispersed  phase.  Droplet  size  is  among  the  main   factors  that  determine  the  stability  of  an  emulsion.  The  smaller  the  droplet  size,  the  more  stable  the   emulsion  and  vice  versa  as  smaller  droplets  will  coalesce  at  a  much  slower  rate  than  bigger  droplets.   There  are  many  methods  of  making  emulsions;  one  of  the  more  common  methods  of  emulsification   used  in  most  industries  and  the  method  used  in  this  study  is  the  high  shear  rotor  stator  mixer.  The   properties  of  which  is  discussed  in  further  detail  in  chapter  3.  Rotor-­‐stator  devices  provide  a  focused   delivery  of  energy,  power  and  shear  to  accelerate  physical  processes  such  as  mixing,  dissolution,  and   emulsification  and  deagglomeration  [6].        
  • 6.   6       2.1  Aims  and  Objectives   The  aim  of  this  study  is  to  determine  the  mean  particle  size  of  emulsion  droplets  with  varying   variables  such  as  the  viscosity  of  the  oils  in  the  dispersed  phase,  the  rotational  speed  of  the  rotor   stator  homogenizer  as  well  as  time  spent  homogenizing.  This  will  then  allow  for  the  production  of  a   correlation  graph  of  particle  size  against  an  unknown  variable,  “D”,  which  will  combine  all  variables.   Thereby  allowing  for  the  prediction  of  the  mean  particle  once  the  D  value  is  replicated  using  any   various  combination  of  the  aforementioned  variables.   2.2  Limitations   Due  to  time  constraints,  only  four  oils  were  studied  thereby  limiting  the  research  involved  in   determining  the  effect  of  the  viscosity  of  the  oils  on  the  mean  particle  size.  The  mixer  used  in  this   study  does  not  take  into  account  the  varying  viscosity  of  the  materials,  therefore  the  power   determined  is  an  estimate.   2.3  Abbreviations  and  Symbology   Abbreviations   Meaning   RPM     Revolutions  Per  Minute   SMC     Spindle  Multiplier  Constant   TK     Viscometer  Torque  Constant   SDS     Sodium  Dodecyl  Sulfate   OSC     Oil  Soluble  Content   WSC   Water  Soluble  Content   HLB   Hydrophilic  Lipophilic  Balance   SOP   Standard  Operating  Procedure(s)   cP     Centipoise   f   Volume  fraction   η   Viscosity     φ   volume  fraction  of  the  dispersed  phase                          
  • 7.   7     3.  Literature  Report   This  section  of  the  study  shall  focus  extensively  on  emulsions  and  surfactants.  This  will  include  the   different  types  of  emulsions,  interactions  between  droplets  and  the  destabilizing  mechanisms  that   take  place  in  the  breakdown  of  emulsion  systems.  The  nature  and  types  of  surfactants  shall  also  be   covered  and  their  roles  in  the  production  and  stabilisation  of  emulsion.  In  addition  to  that,  the   factors  that  come  into  play  when  selecting  of  surfactants  will  be  studies.  Methods  in  which   emulsions  are  created  shall  be  highlighted  as  well  as  the  effect  of  certain  conditions  on  the  rheology   of  the  emulsion.   3.1  Emulsions   An  emulsion  is  a  heterogeneous  system  consisting  of  at  least  one  immiscible  liquid  intimately   dispersed  in  another  in  the  form  of  droplets,  whose  diameter,  in  general  exceed  0.1  µm  [2].    The   phase  which  is  present  in  the  form  of  finely  divided  droplets  is  called  the  dispersed  or  internal  phase;   the  phase  which  forms  the  matrix  in  which  these  droplets  are  suspended  is  called  the  continuous  or   external  phase  [2].  Emulsions  can  be  classified  in  order  of  droplet  size.  Droplet  sizes  which  exceed  1   µm  are  considered  to  be  macro  emulsions,  those  between  100  nm  and  1  µm  are  classed  as  mini   emulsions  whilst  those  between  10  nm  and  100  nm  are  nano  emulsions.  For  the  purpose  of  this   study  only  macro  emulsions  will  be  discussed.         Figure  1  showing  the  interface  between  two  immiscible  liquids   When  two  immiscible  liquids  are  placed  in  contact,  an  interface  is  created  as  a  result  [2].  The   interfacial  free  energy  is  the  minimum  amount  of  work  required  to  create  an  interface  and  is  a   measure  of  the  interfacial  tension  between  two  liquids  [9].  The  interfacial  tension  is  also  a  measure   of  the  difference  in  nature  of  the  two  phases  meeting  at  the  interface,  the  greater  the  dissimilarity,   the  greater  the  interfacial  tension  [9].    Due  to  the  large  area  of  interface  between  the  two  phases   that  must  be  created  and  maintained,  emulsions  are  thermodynamically  unstable  [8].      
  • 8.   8       Figure  2  showing  emulsion  formation  and  break  down  [10]   The  change  in  free  energy  in  going  from  state  I  to  state  II  is  made  from  two  contributions:  A  positive   surface  energy  term  and  a  positive  entropy  term  due  to  an  increase  in  the  number  of  droplets  [10].   The  surface  energy  term  is  the  change  in  surface  area  (ΔA)  multiplied  by  the  interfacial  tension  ( 𝛶)   [10].     ∆𝐺!"#$ =  ∆𝐴𝛶 − 𝑇∆𝑆!"#$                                                                                                                                                                                                                              Equation  1           When  an  emulsion  if  formed,  with  the  exception  of  micro  emulsions,  ΔAΥ  is  much  positive  and  much   greater  than  -­‐TΔSconf  which  means  that  ΔGform  is  in  turn  positive,  therefore  the  formation  of   emulsions  is  nonspontaneous  and  the  system  is  thermodynamically  unstable  [10].  This  is  due  to  the   formation  of  droplets  which  leads  to  an  increase  in  the  surface  area  which  in  turn  increases  ΔAΥ.   3.1.1  Types  of  Emulsions   Based  on  the  dispersion  of  water  or  oil  in  continuous  phase  and  on  the  number  of  phases  present  in   the  system,  macro  emulsions  can  be  subdivided  into  two  categories  [11].  These  are  single  emulsions   and  Double  (or  multiple)  emulsions.     In  the  case  of  simple  emulsions,  droplets  of  one  liquid  phase  are  dispersed  in  another  immiscible   liquid  phase  [12].  Simple  emulsions  could  be  of  two  types;  water-­‐in-­‐oil  emulsions,  and  oil  in-­‐water   emulsions,  known  respectively  as  W/O  and  O/W  emulsions  [12].  Double  emulsions,  as  the  name   indicates  is  one  in  which  both  types  of  emulsions  exist  simultaneously  [2].  Termed  'emulsions  of   emulsions',  the  droplets  of  the  dispersed  phase  themselves  contain  even  smaller  dispersed  droplets   [15].    Two  main  types  of  double  emulsions  can  be  distinguished:  water-­‐in-­‐oil-­‐in-­‐water  (W/O/W)   emulsions,  in  which  a  W/O  emulsion  is  dispersed  as  droplets  in  an  aqueous  phase,  and  oil-­‐in-­‐water-­‐ in-­‐oil  (O/W/O)  emulsions,  in  which  an  O/W  emulsion  is  dispersed  in  an  oil  phase  [13].  The  type  of   emulsion  formed  is  usually  determined  by  the  surfactants  added  to  the  system.  Illustrations  of  both   simple  and  double  emulsions  are  shown  in  figures  3  and  4.         Figure  3  showing  simple  emulsions  
  • 9.   9       Figure  4  showing  double  emulsions   Simple  emulsions  can  be  classified  into  three  groups  depending  on  the  volume  fraction  of  the   dispersed  phase  [14].  These  are  low  dispersed  phase  ratio,  medium  dispersed  phase  ratio  and  high   dispersed  phase  ratio.  Emulsions  in  which  the  disperse  phase  accounts  for  30%  or  less  of  the  total   volume  of  the  emulsion  are  classified  as  low  dispersed  phase  ratio,  whilst  medium  dispersed  phase   ratio  is  in  the  range  of  30%  and  70%,  finally  emulsions  in  which  the  disperse  phase  accounts  for  more   than  70%  of  the  emulsion  volume  are  classified  as  high  disperse  phase  ratio  [14].   Double  emulsions  contain  more  interfaces  and  are  even  more  thermodynamically  unstable  than   single  emulsions  [13].  Double  emulsions  are  prepared  in  a  two-­‐step  emulsification  process  using  two   surfactants;  a  hydrophobic  one  designed  to  stabilize  the  interface  of  the  W/O  internal  emulsion  and   a  hydrophilic  one  for  the  external  interface  of  the  oil  globules  (for  W/O/W  emulsions)  [13].  The   primary  W/O  emulsion  is  prepared  under  high-­‐shear  conditions  to  obtain  small  droplets  while  the   secondary  emulsification  step  is  carried  out  with  less  shear  to  avoid  rupture  of  the  internal  droplets   [15].  The  applications  of  double  emulsions  are  limited  due  to  problems  with  manufacture  and   control  among  others.  For  example,  they  consist  of  relatively  large  droplets  that  coalesce  either   quiescently  or  due  to  commonly  encountered  processing  regimes  (e.g.,  shear,  sterilization),  and  have   a  strong  tendency  to  release  entrapped  compounds  in  an  uncontrolled  manner  [16].  Usage  of   double  emulsions  for  food  applications  is  further  limited  by  the  lack  of  suitable  food-­‐grade   emulsifiers  and  stabilizers  for  the  inner  and  outer  emulsions  [17].  However,  double  emulsions  have   been  used  in  cosmetics  and  pharmaceuticals  for  applications  such  as  drug  controlled  release  and   targeted  delivery  [18].    In  addition  to  that,  other  applications  have  included  the  removal  of  toxic   materials  via  entrapment  and  solubility  enhancement  of  poorly-­‐soluble  materials  [19].                
  • 10.   10     3.2  Surfactants   An  emulsion  is  the  result  of  two  competing  processes,  the  disruption  of  bulk  liquids  to  produce  fine   droplets  and  the  recombination  of  the  droplets  to  give  back  the  bulk  liquids  [7].  An  emulsion  is   thermodynamically  unstable  and  the  latter  process  is  the  natural  one  [7].  The  success  of  emulsion   technology  lies  in  keeping  the  system  in  a  metastable  state  by  opposing  the  recombination  of   droplets  [7].  This  is  where  surfactants  come  into  play.  A  surfactant  used  as  an  emulsifier  has  two   main  functions:  allowing  emulsion  formation  and  providing  stability  to  the  emulsion  once  made  [20].   A  surfactant  (a  contraction  of  the  term  surface-­‐active  agent)  is  a  substance  that,  when  present  in  a   system,  has  the  property  of  adsorbing  onto  the  interfaces  of  the  system  and  of  altering  to  a  marked   degree  the  interfacial  tension  of  those  interfaces  [9].  Surfactants  also  play  various  roles  in  addition   to  this.  They  can  increase  resistance  to  deformation  and  in  some  cases,  they  can  facilitate  droplet   break  up  by  means  of  surface  forces  [20].  The  formation  of  a  surfactant  film  around  the  droplets   facilitates  the  process  of  emulsification  [11].  Most  importantly,  they  counteract  the  (re)coalescence   of  newly  formed  droplets  during  emulsification  [20].  Surfactants  have  a  characteristic  molecular   structure  consisting  of  a  structural  group  that  has  very  little  attraction  for  the  aqueous  phase,  known   as  a  hydrophobic  group,  together  with  a  group  that  has  strong  attraction  for  the  aqueous  phase,   called  the  hydrophilic  group  [9].  This  is  known  as  an  amphipathic  structure  [9].  Because  of  its  dual   affinity,  an  amphipathic  molecule  would  be  out  of  place  in  any  solvent,  be  it  polar  or  non-­‐polar,  since   there  is  always  one  of  the  groups  which  "does  not  like"  the  solvent  environment  [21].  This  is  why   amphipathic  molecules  exhibit  a  very  strong  tendency  to  migrate  to  interfaces  and  to  orientate  in  a   manner  in  which  the  polar  group  lies  in  water  and  the  non-­‐polar  group  in  oil  [21].   3.2.1  Types  of  Surfactants   Different  types  of  surfactants  are  required  under  different  conditions,  namely  the  solvent.  For   example,  in  a  highly  polar  solvent  such  as  water,  the  hydrophobic  group  may  be  a  hydrocarbon  or   fluorocarbon  chain  of  proper  length,  whereas  in  a  less  polar  solvent  only  some  of  these  may  be   suitable  [9].  Therefore,  for  surface  activity  in  a  particular  system  the  surfactant  molecule  must  have   a  chemical  structure  that  is  amphipathic  in  that  solvent  under  the  conditions  of  use  [9].  Surfactants   are  classified  by  the  type  of  hype  of  hydrophilic  group  in  the  molecules.  There  are  four  main  groups   of  classification.   Anionic  surfactants   In  anionic  surfactants,  the  hydrophilic  portion  of  the  molecule  bears  a  negative  charge  [9].  They   dissociate  in  aqueous  solution  to  form  an  amphipathic  anion  and  a  cation,  they  are  the  most   commonly  used  surfactants  [21].  The  oldest  and  best  known  example  of  anionic  surfactants  are  the   soaps  [2].  Common  examples  of  these  include  lauryl  sulfates,  alkylbenzene  sulfonates  and   lignosulfonates.  They  account  for  approximately  half  of  the  world  production  [21].   Cationic  surfactants     In  cationic  surfactants,  the  hydrophilic  portion  bears  a  positive  charge  [9].  They  dissociate  in   aqueous  solution  to  form  an  amphipathic  cation  and  an  anion  [21].  They  are  typically  more   expensive  than  anionic  surfactants  because  of  the  high  pressure  hydrogenation  reaction  carried  out   during  their  synthesis  [21].  As  a  result,  they  are  only  employed  as  bactericides  or  as  positively   charged  substance,  able  to  adsorb  on  negatively  charged  substrates  [21].  Cationic  surfactants  mainly   consist  of  amine  salts  and  quaternary  ammonium  compounds.    
  • 11.   11       Amphoteric  (Zwitterionic)  surfactants     In  amphoteric  surfactants,  both  positive  and  negative  charges  may  be  present  in  the  hydrophilic   portion  [9].  They  exhibit  both  anionic  and  cationic  dissociation  in  aqueous  solution  [21].  Amphoteric   surfactants  are  quite  expensive  and  are  therefore  not  practical  for  regular  usage;  as  a  result  their  use   is  limited  to  very  special  applications  such  as  cosmetics  [21].  Examples  of  amphoteric  surfactants   include  betaines  or  sulfobetaines  [21].   Nonionic  surfactants   In  non-­‐ionic  surfactants,  the  surface-­‐active  portion  bears  no  ionic  charge  [9].  They  do  not  ionize  in   aqueous  solution,  because  their  hydrophilic  group  is  of  a  nondissociable  type,  such  as  alcohol  [21].  In   many  cases,  the  effectiveness  of  the  hydrophobic  and  hydrophilic  portions  of  the  molecule  can  be   modified,  so  they  can,  in  effect,  be  made  to  fit  any  particular  application  [2].  Nonionic  surfactants   account  for  approximately  45%  of  industrial  production  [21].         Figure  5  showing  the  four  main  classes  of  surfactants     Some  relatively  new  types  of  surfactants  have  been  introduced  in  recent  years,  the  most  prominent   of  which  is  the  surface  active  polymers.  These  result  from  the  association  of  one  or  several   macromolecular  structures  exhibiting  hydrophilic  and  lipophilic  characters.  They  are  now  very   commonly  used  in  formulating  products  as  different  as  cosmetics  and  foodstuffs  [21].     3.2.2  Selection  of  Surfactants   When  selecting  surfactants  for  use  in  emulsification,  all  conditions  of  the  system  have  to  be  taken   into  account.  Examples  of  these  are,  stability  of  the  surfactants  under  the  temperature  and  pH   conditions  and  the  type  of  emulsion  which  must  be  produced  as  a  result  among  many  others.  The   selection  of  different  surfactants  in  the  preparation  of  emulsions  is  often  made  on  an  empirical   basis,  one  such  empirical  scale  for  selecting  surfactants  is  the  hydrophilic-­‐lipophilic  balance  (HLB)   number  developed  by  Griffin  in  1949  [10].This  scale  is  based  on  the  relative  percentage  of   hydrophilic  to  lipophilic  groups  in  the  surfactant  molecule  [10].  HLB  values  range  from  0  to  20  on  an   arbitrary  scale  [1].  At  the  higher  end  of  the  scale,  the  surfactants  are  hydrophilic,  these  include   solubilising  agents  and  detergents  [1].    
  • 12.   12     Surfactants  on  the  higher  end  of  the  scale  are  water  soluble  and  are  used  in  the  production  of  o/w   emulsions.  At  the  lower  end,  the  surfactants  are  hydrophobic,  these  include  antifoaming  agents.   These  are  oil  soluble  and  are  employed  in  the  production  of  w/o  emulsions.   Table  1  showing  the  range  of  HLB  values  required  for  different  purposes   HLB  range  of  value   Use   0  –  2   Antifoaming  agents   2  –  7   w/o  surfactants     8  –  16   o/w  surfactants   12  –  17   Detergents   17  –  19     Solubilising  agents     In  practice,  a  mixture  of  surfactants  of  high  HLB  and  low  HLB  gives  more  stable  emulsions  than  a   single  surfactant  [1].  In  the  experimental  determination  of  optimum  HLB,  creaming  of  the  phases  is   taken  as  a  sign  of  instability,  the  system  with  minimum  creaming  is  deemed  to  be  of  optimal  HLB  [1].   The  HLB  value  of  a  mixture  of  surfactants  can  be  determined  using  equation  1.   𝐻𝑙𝑏 = 𝑓 𝑂𝑆𝐶  𝑋  𝐻𝑙𝑏 𝑂𝑆𝐶 + 1 − 𝑓 𝑊𝑆𝐶  𝑋  𝐻𝑙𝑏[𝑊𝑆𝐶]                                                                                                            Equation  1   A  major  disadvantage  of  the  HLB  concept  is  that  it  does  not  take  into  account  the  effect  of   temperature  on  the  surfactants.  With  increasing  temperature,  the  hydration  of  lipophilic  groups   decrease  and  the  surfactant  becomes  less  hydrophilic  thus  decreasing  its  HLB  [30].   3.3 Techniques  for  Creating  Emulsions  in  Industry   In  industry,  there  are  a  number  of  techniques  available  in  order  to  create  different  types  of   emulsions,  some  more  complex  than  others.  The  aim  is  however  always  the  same;  to  achieve  the   smallest  possible  droplet  sizes.  Examples  of  these  techniques  include  rotor-­‐stator  devices,  colloid   mills,  high  pressure  systems,  membrane  systems  and  ultrasound  techniques.   3.3.1  Rotor-­‐stator  homogenizers     Modern  emulsions  have  been  prepared  on  an  industrial  scale  by  a  variety  of  emulsification   equipment  based  on  a  similar  operating  principle,  agitation.  Rotor-­‐stator  homogenization  belongs  in   this  category  [22].     Homogenizers  are  used  to  mechanically  mix  a  plurality  of  liquids  having  no  mutual  compatibility  as  in   the  case  of  water  and  oil  to  thereby  homogenize  them  into  an  emulsion  [23].  In  addition,  they  are   also  used  in  solid-­‐liquid  suspensions  and  chemical  reactions.  The  rotor-­‐stator  assembly  consists  of  a   rotor  of  two  or  more  blades  and  a  stator  with  either  vertical  or  slant  slots  around  the  wall  of  the   homogenizer  cell.  The  rotor  is  housed  inside  the  stator  [22].   When  two  liquids  are  supplied  to  the  hollow  of  the  rotor  by  a  pump,  the  rotor  starts  to  rotate  in  the   state  where  these  liquids  are  being  supplied.  A  centrifugal  force  is  applied  to  the  liquids,  which  are   ejected  from  the  radial  flow  passages  formed  in  the  rotor  to  enter  the  gap  between  the  rotor  and   stator,  entering  radial  flow  passages  of  the  stator.  The  stator  does  not  rotate  but  remains  stationary,   so  that  when  the  rotor  starts  to  rotate,  a  vortex  flow  is  generated  in  the  liquids  existing  in  the  radial   flow  passages  of  the  rotor  and  the  stator  [23].   Homogenization  intensity  (power)  and  the  residence  time  that  emulsion  droplets  stay  in  the   shearing  field  are  the  primary  parameters  for  controlling  emulsion  droplet  size.  Other  parameters  
  • 13.   13     that  might  affect  the  performance  of  rotor-­‐stator  homogenization  are  the  viscosity  of  the  two   liquids,  surfactant,  rotor-­‐stator  design,  volume  size,  and  volume  ratio  of  the  two  phases  [22].           Figure  6  various  rotors   3.3.2  Ultrasound  Emulsification   The  use  of  mixing  and  shearing  devices  represent  a  simple  way  of  introducing  energy  for  the   formation  of  emulsions,  it  is  however  not  the  only  method  [2].     Under  the  influence  of  ultrasound,  emulsions  can  be  formed.  There  are  two  main  views  as  to  why   emulsions  are  formed  when  irradiated  by  ultrasounds.  Firstly,  there  is  the  view  that  cavitation  may   be  responsible  for  this,  the  other  being  that  capillary  waves  at  the  interface  is  responsible  for  droplet   formation.     There  are  several  possible  mechanisms  of  droplet  formation  and  disruption  under  the  influence  of   ultrasound.  This  can  be  done  by  the  formation  of  droplets  as  a  consequence  of  unstable  oscillations   of  the  interface.  These  capillary  waves  may  occur  and  contribute  to  dispersion,  only  if  the  diameter   of  droplets  to  be  disrupted  is  larger  than  the  wavelength  of  the  capillary  waves.  This  mechanism  has   to  be  taken  into  account  as  one  cause  of  droplet  disruption  in  an  acoustic  field,  but  only  for  a  small   fraction  of  droplets  with  diameters  exactly  in  the  corresponding  range  [25].   Cavitation  occurs  when  a  sound  wave  travels  through  the  liquid  thereby  compressing  and  stretching   it.  When  there  is  insufficient  stretch  or  the  liquid  contains  no  gas,  nothing  happens,  however  if  the   liquid  is  saturated  with  gas,  bubbles  appear.  The  disruption  of  the  liquids  under  the  vibrations  cause   the  formation  of  cavities  [2].   Cavitation  also  occurs  when  the  pressure  amplitude  of  the  applied  sound  source  reaches  a  certain   minimum.  This  is  known  as  the  cavitation  threshold.  In  o/w  system,  the  process  of  emulsification   initiates  when  the  cavitation  threshold  is  attained  [24].    
  • 14.   14     One  disadvantage  of  cavitation  is  that  the  intense  agitations  brought  about  has  the  effect  of   increasing  the  number  of  collisions  amongst  dispersed  droplets  thus  increasing  the  possibility  of   coalescence  [2].         Figure  7  showing  an  ultrasonic  homogenizer     3.3.3  High  Pressure  Emulsification   High  pressure  homogenizers  are  one  of  the  most  widely  used  tools  for  the  preparation  of  emulsions   in  industry.  Until  a  few  years  ago,  high-­‐pressure  homogenization  of  emulsions  meant  10  to  40  MPa,   but  today,  100  MPa  is  not  unusual  [27].   In  a  high-­‐pressure  homogenizer,  the  oil  and  water  mixture  is  subjected  to  intense  turbulent  and   shear  flow  fields.  Turbulence  is  said  to  be  the  predominant  mechanism  even  through  laminar  shear   and  cavitation  may  also  play  an  important  role  in  droplet  formation  of  the  dispersed  phase  [27].   High  pressure  homogenizers  essentially  consist  of  a  high  pressure  pump  and  a  homogenizing  nozzle.   The  pump  is  used  to  compress  the  crude  emulsion  to  the  homogenizing  pressure.  The  pressurized   crude  emulsion  is  depressurized  in  a  homogenizing  nozzle  and  in  doing  so  the  drops  are  disrupted   [26].   The  homogenizing  nozzle  is  decisive  for  the  efficiency  of  disruption  when  producing  emulsions  using   high-­‐pressure  homogenizers,  depending  on  the  type  of  nozzle,  the  homogenizer  is  classified  into   either  standard  nozzle,  microfluidizer,  jet  disperser  or  orifice  valve  [26].        
  • 15.   15       Figure  8  showing  high  pressure  emulsification  with  different  nozzles   3.4 Interactions  between  droplets     In  Chapter  3.3,  three  of  the  most  common  methods  of  producing  emulsions  in  industry  were   highlighted,  however  this  becomes  moot  if  the  emulsions  are  of  no  use  due  to  their  unstable  nature.   The  stability  of  emulsions  is  largely  dependent  on  the  interaction  of  droplets  in  the  dispersed  phase.     When  two  droplets  approach  one  another,  a  number  of  colloidal  interactions  come  into  play,  the   most  important  being  the  Van  der  Waals,  steric  and  electrostatic  interactions.  The  main  mechanisms   for  emulsion  droplet  stabilization  are  electrostatic  and  steric  interactions  [28].   Van  der  Waals  attraction   There  are  three  different  types  of  van  der  waals  interaction  between  molecules;  dipole  –  dipole,   dipole  -­‐  induced  dipole  and  London  dispersion  forces.  Dipole  –  dipole  and  dipole  –  induced  dipole   attractions  tend  to  cancel  one  another,  therefore  the  most  important  are  the  London  dispersion   interactions  that  arise  from  variations  in  charge.  Hamaker  suggests  that  the  sum  of  the  London   dispersion  interaction  between  droplets  results  in  strong  van  der  waals  attractions,  this  increases  as   the  droplets  draw  closer  [10].   In  order  to  counteract  van  der  waals  attraction,  which  will  lead  to  flocculation,  repulsive  forces  have   to  be  introduced.  These  exist  in  the  form  of  electrostatic  and  steric  repulsion  and  is  dependent  on   the  type  of  the  surfactant  used  [10].     Electrostatic  Repulsion   This  occurs  due  to  the  interaction  between  ionic  surfactant  molecules  in  an  emulsion  system.  As   mentioned  in  chapter  3.2,  surfactants  will  exist  at  the  interfaces  between  the  dispersed  and   continuous  phase.  Using  an  o/w  emulsion  as  an  example,  the  surfactant  hydrophobic  group  will   remain  within  the  droplets  whilst  the  hydrophilic  group  will  remain  in  the  aqueous  phase.  This  has   the  effect  of  forming  a  layer  around  the  droplets  as  shown  in  figure  8.  As  droplets  approach  one   another,  repulsive  forces  increase  due  to  the  similar  charge  on  the  hydrophilic  layer.  This  prevents   the  coalescence  of  droplets.  
  • 16.   16       Figure  9  Surfactant  layer  formed  around  a  droplet   Steric  Repulsion     This  is  produced  by  using  nonionic  surfactants.  The  thick  tails  of  the  surfactant  in  the  continuous   phase  promote  repulsion  between  droplets  as  a  result  of  unfavourable  mixing  of  the  tails  and   volume  restrictions  upon  approach  [10].     3.5 Destabilizing  Mechanisms  in  Emulsions   Due  to  the  metastable  nature  of  emulsions,  the  return  to  thermodynamic  stability  is  inevitable.  This   occurs  in  a  certain  order  in  which  the  dispersed  droplets  return  to  their  original  phase  and  the  two   separate  phases  are  visible  to  the  naked  eyes.  The  steps  by  which  the  emulsion  returns  to   thermodynamic  stability  are  creaming  and  sedimentation,  flocculation,  Ostwald  ripening,   coalescence  and  phase  inversion.   Creaming  and  Sedimentation   Creaming  is  the  separation  of  an  emulsion  into  a  concentrated  and  a  dilute  fraction,  by  centrifuging,   gravity  or  conceivably  spontaneously.  The  concentrated  fraction  (cream)  is  rich  in  the  disperse  phase   but  not  necessarily  near  100  percent.  Similarly  the  dilute  fraction  (serum)  is  usually  turbid  with  the   remaining  droplets  of  the  disperse  phase  [29].  Although  creaming  may  be  undesirable  in  a  number   of  cases,  it  does  not  represent  a  breaking  of  the  emulsions  [2].  The  droplets  remain  intact,  only  their   position  changes.     The  difference  between  creaming  and  sedimentation  lies  in  the  fact  that  in  creaming  ,  droplets  in  the   disperse  phase  has  a  lower  density  than  the  continuous  phase  thereby  causing  the  droplets  to  rise   whilst  the  opposite  is  true  in  sedimentation.     Stokes’  law  suggests  that  the  creaming  rate  will  depend  on  the  density  difference  and  the  square  of   the  droplet  radius  [29].  This  is  given  by:   𝑢 = !!!! !!!!! !!!                                                                                                                                                                                                                                                            Equation  2     Where  U  is  the  rate  of  creaming  (sedimentation),  g  is  the  acceleration  of  gravity,  r  the  droplet  radius,   d1  is  the  density  of  the  droplet,  d2  the  density  of  the  continuous  phase  and  η2  is  the  viscosity  of  the   continuous  phase  [2].  From  stokes’  equation,  the  conditions  that  increase  the  rate  of  creaming  are   large  droplet  radius,  a  high  density  difference  between  the  droplet  and  the  continuous  phase  and  a   low  viscosity  of  the  continuous  phase.  
  • 17.   17     The  impression  of  stokes’  equation  is  that  it  determines  the  rate  of  creaming  in  an  emulsion,   however  Greenwald  has  indicated  that  it  only  indicates  the  rate  of  creaming  for  a  single  droplet  in   the  system  [2].   Flocculation   Flocculation  refers  to  aggregation  of  the  droplets  into  larger  units  (flocs).  Each  droplet  retains  its  size   and  integrity.  It  is  the  results  of  van  der  waals  attraction  and  occurs  when  there  is  not  sufficient   repulsion  to  keep  the  droplets  apart  to  a  distance  in  which  van  der  waals  attraction  is  weak  [10].     Ostwald  ripening   Ostwald  ripening  is  the  process  by  which  the  Gibbs  free  energy  of  a  two  phase  system  (such  as  an   emulsion)  can  be  decreased  via  a  decrease  in  the  total  interfacial  area  thus  allowing  for   thermodynamic  equilibrium  [31].     This  occurs  as  a  result  of  the  difference  in  solubility  between  the  small  and  large  droplets.  The   smaller  droplets  have  higher  Laplace  pressure  and  higher  solubility  than  the  larger  ones.  With  time,   the  smaller  droplets  disappear  and  their  molecules  diffuse  to  the  bulk  and  become  deposited  on  the   larger  droplets.  The  droplet  size  distribution  shifts  to  larger  values  [10].   Coalescence     At  this  stage,  each  floc  combines  to  form  a  single  droplet.  It  is  an  irreversible  process  that  leads  to  a   decrease  in  the  number  of  droplets  [2].  This  occurs  by  the  process  of  thinning  and  disruption  of  the   liquid  film  between  the  droplets  with  the  result  of  fusion  of  two  or  more  droplets  into  larger  ones.   The  driving  force  for  coalescence  is  the  film  fluctuations  which  results  in  close  approach  of  the   droplets  whereby  strong  van  der  Waals  forces  prevent  their  separation  [10].   Phase  inversion   This  refers  to  the  process  whereby  there  will  be  an  exchange  between  the  disperse  phase  and  the   medium.  For  example,  an  O/W  emulsion  may  with  time  or  change  of  conditions  invert  to  a  W/O   emulsion.  Phase  inversion  of  emulsions  can  be  one  of  two  types:  transitional  inversion  induced  by   changing  the  facers  that  affect  the  HLB  of  the  system,  for  example,  temperature  and/or  electrolyte   concentration  and  catastrophic  inversion,  which  is  induced  by  increasing  the  volume  fraction  of  the   disperse  phase  [10].    
  • 18.   18       Figure  10  showing  the  different  destabilizing  mechanisms             3.6 Rheological  properties  of  Emulsions   Rheology  is  the  science  of  deformation  and  flow  of  matter,  and  its  study  has  contributed  towards   clarifying  ideas  concerning  the  nature  of  emulsion  systems.  It  is  a  subject  of  tremendous   technological  importance  in  many  industries  as  the  suitability  of  the  final  products  is  to  a  large   extent  judged  by  their  rheological  properties  [30].   The  viscosity  of  a  liquid  is  defined  as  the  shearing  stress  exerted  across  an  area  when  there  is  unit   velocity  gradient  normal  to  the  area.  In  most  liquids,  shearing  stress  is  proportional  to  the  change  in   shear  with  time.  This  means  the  viscosity  is  independent  of  the  rate  of  shear;  the  liquid  is   Newtonian.  Most  emulsions  however  exhibit  Non-­‐Newtonian  properties  as  viscosity  is  a  function  of   the  rate  of  shear  [2].     The  rheological  properties  of  an  emulsion  is  dependent  on  droplet  interaction  which    in  turn  is   dependent  on  factors  such  as  volume  fraction  of  the  dispersed  phase,  viscosity  of  the  continuous   phase,  droplet  size  distribution  and  the  surfactant  properties  among  others  [32].  For  the  purpose  of   this  study  only  the  four  factors  mentioned  shall  be  considered.   3.6.1  Viscosity  of  the  continuous  phase     All  treatments  of  emulsion  viscosity  consider  the  viscosity  of  the  continuous  (η0)  phase  to  have  a   direct  effect  on  the  final  viscosity  of  the  emulsion.  This  is  best  illustrated  in  equation  three   𝜂 = 𝜂!(𝑥)                                                                                                                                                                                                                                                                                            Equation  3  
  • 19.   19     Where  x  represents  the  sum  of  all  other  factors  that  affect  the  viscosity  of  the  emulsion.  In  many   emulsions  the  surfactant  is  dissolved  in  the  continuous  phase  hence  η0  is  usually  referred  to  as  the   viscosity  of  the  solution  rather  than  that  of  the  liquid  in  the  continuous  phase  [2].   3.6.2  Volume  fraction  of  the  dispersed  phase   The  disperse  phase  fraction  is  directly  related  to  the  dispersion  rheology  because  an  increase  in  the   volume  fraction  means  an  increase  in  the  frequency  of  droplet  interaction  and  vice  versa  [32].  An   equation  relating  the  viscosity  of  the  dispersed  phase  with  that  of  the  continuous  phase  and  the   volume  fraction  was  developed  by  Albert  Einstein  [2].   𝜂 = 𝜂!(1 + 2.5𝜙)                                                                                                                                                                                                                                                                Equation  4   Where  φ  is  the  volume  fraction  of  the  dispersed  phase.  The  applications  of  Equation  4  are  however   extremely  limited  in  that  it  only  applies  to  volume  fractions  of  0.02  or  less.  There  have  been   numerous  modifications  to  this  equation  in  order  to  increase  its  application  [2].   When  the  volume  fraction  is  below  0.3,  droplets  can  move  freely  past  one  another,  however  as  the   volume  fraction  increases,  this  interaction  increases.  Volume  fractions  above  0.74  will  see  the   droplets  become  tightly  packed  and  the  movement  of  droplets  become  severely  impaired.  The   increase  in  dispersed  phase  volume  fraction  sees  the  rheology  of  a  liquid  consequently  change  from   Newtonian,  to  shear  thinning,  to  a  viscoelastic  type  of  behaviour  [32].   3.6.3  Surfactant  Properties   The  interfacial  rheology  of  the  droplets  can  significantly  influence  droplet  interactions,  which  are   enhanced  by  the  presence  of  a  surfactant.  When  the  concentration  of  surfactant  is  high,  excess   surfactant  molecules  are  formed  in  the  continuous  phase,  this  thereby  influences  the  rheology  of  the   dispersion  by  inducing  depletion  flocculation  [32].    The  presence  of  surfactants  also  leads  to  the  existence  of  an  interfacial  film  which  may  affect   emulsion  viscosity.  This  is  because  of  the  effect  of  the  film  on  the  internal  circulation  of  the  droplet.   In  an  attempt  to  relate  the  viscosity  of  an  emulsion  with  the  concentration  of  the  surfactant  and  the   volume  fraction  of  the  dispersed  phase,  Sherman  empirically  derived  the  equation  [2].       𝑙𝑛𝜂 = 𝑎𝐶𝜙 + 𝑏                                                                                                                                                                                                                                                                          Equation  5   Where  C  is  the  concentration  of  the  surfactant  whilst  a  and  b  are  constants  [2].   3.6.4  Droplet  size  distribution         In  an  emulsion  system  with  a  given  dispersed  phase  volume  fraction,  the  smaller  the  droplet  size,   the  greater  the  number  of  droplet  interaction,  therefore  increasing  the  droplet  size  of  a   monodisperse  emulsion  system  increases  the  viscosity  of  the  emulsion  [32].  This  goes  hand  in  hand   with  the  presence  and  concentration  of  a  surfactant  as  that  propagates  the  presence  of  smaller   droplets  [2].      
  • 20.   20       4.  Methodology   This  project  is  based  on  experiments  divided  in  three  phases  and  shall  be  explain  in  this  section  in   full  detail.  The  first  phase  involves  the  measurement  of  the  viscosity  of  several  different  oils  and   selection  of  suitable  oils.  The  second  consists  of  making  o/w  emulsions  using  four  of  the  oils  of  which   their  viscosities  have  previously  been  measured  as  well  as  deriving  the  appropriate  combinations  of   chosen  surfactants  that  will  ensure  the  emulsions  remain  stable  enough  to  be  analysed.  Included  in   the  second  phase  is  the  measurement  of  the  densities  of  all  liquid  components  used  in  the   production  of  the  emulsions.  Finally  the  third  involves  the  derivation  of  the  particle  size  distribution   of  the  previously  mentioned  emulsions  and  more  importantly,  the  mean  particle  size.   4.1  Materials   • Liquid  Paraffin   • Rapeseed  Oil   • Flax  Oil   • Groundnut  Oil   • Span  80   • Sodium  Dodecyl  Sulfate   4.2  Equipment   4.2.1  Brookfield  DV-­‐II  Pro  Programmable  Viscometer.   This  viscometer  works  by  measuring  torque  whilst  inserted  in  an  aqueous  material.  The  viscosity  of   the  material  is  then  calculated  by  using  the  equation  6.   𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦   𝑐𝑃 = !!! !"#  𝑋  𝑆𝑀𝐶  𝑋  𝑇𝐾  𝑋  𝑇𝑜𝑟𝑞𝑢𝑒                                                                                                                                                        Equation  6       This  machine  is  fairly  simple  to  use  as  the  spindle  constant  is  already  given  depending  on  the  choice   of  spindle.  Rotational  speed  is  a  variable  which  can  be  fixed  whilst  torque  is  given  on  a  screen.  The   machine  also  allows  for  the  measurement  of  the  temperature  of  the  chosen  material  using  a  probe.   This  allows  for  continuity  whilst  comparing  the  viscosities  of  different  materials  as  temperature  is   inversely  proportional  to  viscosity.     Figure  11  Brookfield  viscometer  and  a  variety  of  spindles  
  • 21.   21       4.2.2  High  Shear  Rotor  Stator  Mixer   This  piece  of  equipment  allows  for  the  emulsification  of  a  mixture  of  liquids.  It  has  a  maximum   rotational  speed  of  10,000  RPM  and  a  minimum  of  a  100  RPM  thereby  allowing  the  effect  of  a  huge   range  of  rotational  speeds  to  be  monitored.         Figure  12  Silverston  high  shear  rotor  stator  mixer   4.2.3  Malvern  Mastersizer  2000   The  Malvern  Mastersizer  works  not  by  measuring  particle  size  but  by  measuring  low  angle  laser  light   scattering  (LALLS)  which  then  allows  for  the  production  of  a  particle  size  distribution  curve.  A  42   element  composite  array  and  two  backscattering  detectors  allow  for  the  collection  of  scattered  light.   Scattered  intensities  can  be  measured  at  a  range  of  scattering  angles  from  0  to  135  degrees  by  the   light  source.  This  is  then  analysed  using  Mie  Theory  (1908).  In  order  to  do  this,  the  real  and   imaginary  index  of  both  the  dispersant  and  sample  is  required.  Figure  13  is  an  example  of  a  resulting   particle  size  distribution  curve.    
  • 22.   22       Figure  13  showing  a  standard  particle  size  distribution  curve 4.3  Experimental  Procedure   4.3.1  First  Phase   As  viscosity  was  one  of  the  variables  studied  in  this  project  is  was  imperative  that  the  viscosity  of  the   chosen  oils  were  measured  before  proceeding.  A  100  ml  beaker  was  filled  with  liquid  paraffin  and   spindle  three  was  chosen  as  an  appropriate  spindle.  The  viscometer  was  then  switched  on  and   allowed  to  calibrate.  The  spindle  was  then  attached  to  the  viscometer  and  allowed  to  recalibrate.   The  spindle  was  then  inserted  into  the  beaker  of  paraffin  until  the  mark  on  the  spindle  was  level   with  the  surface  of  the  liquid  paraffin.  The  temperature  probe  was  then  inserted  in  the  beaker  and   the  temperature  taken  down.  The  rotational  speed  was  then  set  to  a  value  of  100  and  the  torque   measured  and  recorded.  This  was  repeated  a  total  of  three  times  in  order  to  improve  the  accuracy  of   the  results.  The  spindle  was  then  wiped  down  with  blue  roll  and  the  same  was  done  for  the  rest  of   the  oils.     4.3.2  Second  Phase   In  order  to  make  a  stock  solution  of  2%  SDS  solution,  a  5  l  beaker  was  filled  with  2940  ml  of  water   and  heated  slowly  to  75o C  using  a  hot  plate.  60  g  of  SDS  was  measured  out  into  a  500  ml  beaker  on  a   top  pan  balance.  Using  an  overhead  stirrer  to  stir  the  mixture,  the  beaker  of  SDS  solution  was  then   slowly  inserted  into  the  beaker  of  water  using  a  spatula.  The  stirrer  was  stopped  when  all  the  SDS   had  dissolved.  98  ml  of  liquid  paraffin  was  then  measured  out  into  a  beaker  and  using  a  pipette,  2  ml   of  span  80  was  then  introduced  into  the  beaker  filled  with  liquid  paraffin.  A  magnetic  stirrer  was   used  to  stir  the  mixture  until  all  the  span  80  which  had  settled  at  the  bottom  had  dissolved.  In  order   to  create  stable  oil  in  water  emulsions,  an  HLB  value  between  8  and  18  was  required.  However  even   in  that  range,  the  emulsions  had  to  stay  stable  long  enough  for  the  Mastersizer  to  determine  the   particle  size  distribution.  Four  mixtures  of  varying  volumes  of  liquid  paraffin,  liquid  paraffin  doped   with  2%  span  80,  water  and  water  doped  with  2%  SDS  solution  as  shown  in  Table  1  were  then  made.   The  HLB  values  of  the  resulting  emulsions  were  determined  using  the  equation  1:   Table  2  HLB  values  of  different  volumes  of  reagents   Oil  +  2%  Span  80   (ml)   Oil  (ml)   Water  +  2%  SDS   (ml)   Water  (ml)   HLB  Value   7.0   3.0   3.0   7.0   15.0   7.5   2.5   2.5   7.5   13.2   8.0   2.0   2.0   8.0   11.4   8.5   1.5   1.5   8.5   9.7    
  • 23.   23     Once  the  four  mixtures  were  made,  they  were  allowed  to  homogenise  for  1  minute  each  at  1000   rpm  and  set  aside  for  two  hours  in  order  to  study  the  stability  of  the  resulting  emulsions.  Once  the   most  stable  emulsion  was  selected,  the  combination  of  volumes  of  the  reagents  used  to  make  said   emulsion  was  used  to  make  all  other  emulsions  in  this  study.  Using  the  right  combination  of  volumes   of  reagents,  ten  mixtures  of  liquid  paraffin,  liquid  paraffin  doped  with  2%  span  80,  water  and  water   doped  with  2%  SDS  solution  was  made  in  50  ml  beakers.  The  same  was  done  using  flax  oil,  Rapeseed   oil  and  groundnut  oil.  The  HLB  value  of  9.7  was  found  to  be  the  most  stable  and  was  selected.   Afterwards,  6  beakers  were  weighed  out  using  a  top  pan  balance  accurate  to  three  significant   figures.  1  ml  of  each  oil  was  measured  out  into  each  of  these  beakers  and  weighed  on  the  top   balance.  The  difference  between  the  mass  of  the  beakers  before  the  oil  was  inserted  and  after  the   oil  was  inserted  was  noted  as  the  density  of  each  oil.  The  same  was  then  done  for  the  2%  SDS   solution  in  water  as  well  as  the  surfactant  Span  80.  The  measurements  of  all  densities  were  done  at   room  temperature.     4.3.3  Third  Phase   Using  the  high  shear  homogeniser,  5  emulsions  were  made  using  the  liquid  paraffin  and  water   mixtures  at  1000,  2000,  3000,  4000  and  5000  rpm.  This  done  whilst  keeping  the  time  constant  to   one  minute.  The  other  5  emulsions  were  made  by  keeping  the  rpm  to  a  constant  value  of  3000rpm   but  using  time  as  the  variable.  The  times  used  were  1,  2,  6,  8  and  10  minutes.  Once  the  emulsions   were  made,  they  were  taken  up  to  the  Mastersizer  in  order  to  measure  the  particle  size  and  particle   size  distribution  of  the  emulsions.  The  refractive  indices  of  the  continuous  phase,  liquid  paraffin,  and   the  dispersant,  deionised  water  was  entered  in  order  to  create  a  new  standard  operating  procedure   (SOP).  Once  this  was  done,  using  a  plastic  pipette,  a  few  drops  of  the  sample  to  be  tested  was  added   to  the  unit.  Once  the  obscuration  was  in  the  right  range,  the  Mastersizer  was  allowed  to  start   testing,  running  a  minimum  of  5  different  tests  and  the  average  of  those  taken  and  the  mean   particle  size  recorded.     5.  Safety  Hazards   Threat  to  Safety   Dangers   Precautions  taken   SDS   • Flammable   solid   • Harmful  if   swallowed   • Harmful  if   inhaled   • Causes  serious   eye  damage   • Keep  away   from  heat   • Wear   protective   gloves   • Wear  safety   goggles   • Wear  Mask          
  • 24.   24     6.  Results     In  this  section,  the  experimental  results  shall  be  presented  in  various  tables.  These  shall  then  be   treated  to  derive  a  value  of  D.  Following  this  will  be  a  discussion  of  the  results.   6.1  Experimental  Results   Results  of  viscosity  measurement   Table  3  Viscosity  of  different  oils   Oil   Revolutions   per  minute   Torque  1     (%)   Torque  2   (%)   Torque  3   (%)   Average   Torque   (%)   Viscosity   (cP)   Liquid  Paraffin   100   26.3   26.3   26.4   26.3   263   Sesame  Oil   100   12.4   12.6   12.6   12.5   125   Groundnut  Oil   100   14.0   14.1   14.0   14.0   140   Flax  Oil   100   7.5   7.5   7.5   7.5   75   Almond  Oil   100   12.1   12.4   12.3   12.3   123   Olive  Oil   100   13.5   13.7   13.8   13.7   137   Rapeseed  Oil   100   11.4   11.4   11.4   11.4   114     The  four  oils  chosen  were  Liquid  paraffin,  Flax  oil,  Rapeseed  oil,  and  Groundnut  oil  as  they  are  evenly   spread  between  the  range  of  75  and  263  cP.  When  measured,  the  temperature  of  these  oils  were  ±   0.1o C  of  each  other  which  meant  the  effect  of  this  temperature  difference  on  the  viscosities  of  the   oil  would  have  been  small  enough  to  ignore.     Results  of  rotational  speed  and  time  measurement   Tables  4,  6,  8  and  10  present  the  results  of  the  effect  of  rotational  speed  on  mean  particle  size   conducted  at  a  constant  time  of  one  minute  whilst  tables  5,  7,  9  and  11  present  the  results  of  the   effects  of  time  spent  homogenizing  on  mean  particle  size,  this  was  conducted  at  a  constant   rotational  speed  of  3000  RPM.   Liquid  Paraffin   Table  4  showing  the  relationship  between  rotational  speed  and  mean  particle  size   Revolutions  per  minute   Mean  particle  size  (µm)   1000   113.697   2000   63.893   3000   47.855   4000   37.719   5000   28.451            
  • 25.   25     Table  5  showing  the  relationship  between  time  and  mean  particle  size   Time  (minutes)   Mean  particle  size  (µm)   1   47.855   2   34.402   6   26.081   8   25.479   10   22.935     Groundnut  Oil   Table  6  showing  the  relationship  between  rotational  speed  and  mean  particle  size   Revolutions  per  minute   Mean  particle  size  (µm)   1000   104.849   2000   54.348   3000   39.923   4000   31.102   5000   23.094     Table  7  showing  the  relationship  between  time  and  mean  particle  size   Time  (minutes)   Mean  particle  size  (µm)   1   39.923   2   34.738   6   24.273   8   22.348   10   21.863     Rapeseed  Oil   Table  8  showing  the  relationship  between  rotational  speed  and  mean  particle  size   Revolutions  per  minute   Mean  particle  size  (µm)   1000   99.676   2000   44.294   3000   24.777   4000   20.738   5000   14.364   Table  9  showing  the  relationship  between  time  and  mean  particle  size   Time  (minutes)   Mean  particle  size  (µm)   1   24.777   2   24.308   6   17.402   8   16.847   10   16.178      
  • 26.   26     Flax  Oil   Table  10  showing  the  relationship  between  rotational  speed  and  mean  particle  size   Revolutions  per  minute   Mean  particle  size  (µm)   1000   79.893   2000   38.409   3000   18.746   4000   16.973   5000   15.632     Table  11  showing  the  relationship  between  time  and  mean  particle  size   Time  (minutes)   Mean  particle  size  (µm)   1   18.746   2   17.356   6   14.078   8   13.847   10   13.574       6.2  Treatment  of  results   Power  number  (Np)  can  be  calculated  using  equation  3   𝑁! = ! !!!!!                                                                                                                                                                                                                                                                            Equation  7   Where:    P  is  the  Power  in  Watts,  ρ  is  total  fluid  density  of  the  emulsion  in  kilogram  per  metre  cubed,  n  is   rotational  speed  in  seconds  and  d  is  the  diameter  of  the  stirrer  in  meters.     Table  12  Corresponding  power  at  different  rotational  speeds   Revolutions  per  minute   Revolution  per  second   Power  (Watts)   1000   16.67   125   2000   33.34   250   3000   50.00   375   4000   66.67   500   5000   83.34   625     In  this  study,  the  overall  work  done  on  the  different  systems  is  more  relevant  than  the  rate  at  which   the  work  is  done.  Therefore  in  order  to  take  time  into  account,  the  P  variable  will  be  multiplied  by   time  in  seconds.  The  modified  power  (MNp)  is  no  longer  a  dimensionless  number.  In  order  to   compensate  for  this,  rather  than  having  the  rotational  speed  cubed,  it  will  be  squared  therefore  all   units  will  cancel  out  therefore  making  the  modified  power  a  dimensionless  number.   Modified  power  number  is  calculated  using  equation  8.   𝑀𝑁! = !" !!!!!                                                                                                                                                                                                                                                                      Equation  8  
  • 27.   27       𝑑! =   !!  !  !! ! !!  !  !! !⋯!(!!  !  !!) !!!!!!⋯!!!                                                                                                                                    Equation  9   Table  13  showing  the  density  of  each  of  each  component  in  the  resulting  emulsions   Component     Density  (kgm-­‐3 )   Volume  in  solution  (m3 )   Liquid  Paraffin   707   9.83   Groundnut  Oil   835   9.83   Rapeseed  Oil   880   9.83   Flax  Oil   911   9.83   SDS     1071   0.03   Span  80   984   0.17   Deionised  Water   1000   9.97     Equation  9  allows  for  the  calculation  of  the  density  of  an  overall  mixture  once  the  densities  and   volumes  of  the  individual  components  are  known.  The  fluid  density  of  all  emulsions  are  presented  in   table  14.    The  diameter  of  the  stirrer  was  found  to  be  0.0185m.       Table  14  showing  the  densities  of  the  emulsions  prepared   Emulsion   Fluid  Density  (kgm-­‐3 )   Liquid  Paraffin  in  water   856   Groundnut  Oil  in  water     919   Rapeseed  Oil  in  water   941   Flax  Oil  in  water   956     Using  all  the  information  above,  the  modified  power  number  can  now  be  calculated.  The  modified   power  number  at  different  rotational  speeds  and  the  corresponding  particle  size  are  shown  below.   Tables  15  to  18  presents  the  results  derived  whilst  changing  the  rotational  speed  and  keeping  the   time  spent  homogenizing  at  one  minute.  Tables  19  to  22  present  the  results  derived  whilst  changing   the  time  spent  homogenizing  and  keeping  rotational  speed  at  a  constant  3000  RPM   Liquid  Paraffin   Table  15  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number     Mean  particle  size  (µm)   14250168.15   113.697   7125084.08   63.893   4751956.26   47.855   3563610.83   37.719   2850717.63   28.451          
  • 28.   28       Groundnut  Oil   Table  16  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number     Mean  particle  size  (µm)   13435433.62   104.849   6717716.81   54.348   4480269.44   39.923   3359866.09   31.102   2687731.61   23.094     Rapeseed  Oil   Table  17  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number     Mean  particle  size  (µm)   13165588.76   99.676   6582794.38   44.294   4390285.17   24.777   3292384.63   20.738   2633749.69   14.364     Flax  Oil   Table  18  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number     Mean  particle  size  (µm)   12987118.84   79.893   6493559.42   38.409   4330771.40   18.746   3247753.77   16.973   2598047.14   15.632       Figure  14  showing  the  relationship  between  Modified  power  number  and  mean  particle  size   0   20   40   60   80   100   120   0   5000000   10000000   15000000   Mean  partcle  size  (µm)   Modified  Power  Number   Graph  of  Power  number  against  mean  partcle  size   Liquid  Paraffin   Groundnut  Oil   Rapeseed  Oil   Flax  Oil  
  • 29.   29       Liquid  Paraffin   Table  19  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number       Mean  particle  size  (µm)   4751956.26   47.855   9503912.53   34.402   28511737.58   26.081   38015650.11   25.479   47519562.63   22.935     Groundnut  Oil   Table  20  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number       Mean  particle  size  (µm)   4480269.44   39.923   8960538.89   34.738   26881616.66   24.273   35842155.55   22.348   44802694.44   21.863     Rapeseed  Oil   Table  21  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number       Mean  particle  size  (µm)   4390285.17   24.777   8780570.35   24.308   26341711.04   17.402   35122281.39   16.847   43902851.74   16.178     Flax  Oil   Table  22  Modified  power  number  and  corresponding  mean  particle  size   Modified  Power  Number       Mean  particle  size  (µm)   4330771.40   18.746   8661542.80   17.356   25984628.41   14.078   34646171.21   13.847   43307714.02   13.574        
  • 30.   30       Figure  15  showing  the  relationship  between  Modified  power  number  and  mean  particle  size   As  the  aim  is  to  also  take  the  viscosity  of  the  oil  into  account,  the  modified  power  number  can  be   divided  by  the  viscosities  of  the  different  oils  (in  cP).  This  allows  a  correlation  graph  of  multiple   points  to  be  plotted.  This  variable  shall  be  called  “D”,  units  of  which  shall  be  cP-­‐1 .     𝐷 = !" !!!!!η                                                                                                                                                                                                                                                                      Equation  10   Liquid  Paraffin   Table  23  Modified  power  number  and  corresponding  mean  particle  size   D  (cP-­‐1 )   Mean  particle  size  (µm)   18068   47.855   36137   34.402   108410   26.081   144546   25.479   180683   22.935     Groundnut  Oil   Table  24  Modified  power  number  and  corresponding  mean  particle  size   D  (cP-­‐1 )     Mean  particle  size  (µm)   32002   39.923   64004   34.738   192012   24.273   256015   22.348   320019   21.863   0   10   20   30   40   50   60   0   10000000   20000000   30000000   40000000   50000000   Mean  Partce  size  (µm)   Modified  Power  Number   Graph  of  Modified  Power  number  against  Mean  Partcle  size   Liquid  Paraffin   Groundnut  Oil   Rapeseed  Oil   Flax  Oil  
  • 31.   31     Rapeseed  Oil   Table  25  Modified  power  number  and  corresponding  mean  particle  size   D  (cP-­‐1 )   Mean  particle  size  (µm)   38511   24.777   77023   24.308   231068   17.402   308090   16.847   385113   16.178     Flax  Oil   Table  26  Modified  power  number  and  corresponding  mean  particle  size   D  (cP-­‐1 )     Mean  particle  size  (µm)   57744   18.746   115487   17.356   346462   14.078   461949   13.847   577436   13.574       Figure  16  Correlation  graph  between  D  and  Mean  particle  size       y  =  31.717e-­‐2E-­‐06x   R²  =  0.6255   0   10   20   30   40   50   60   0   100000   200000   300000   400000   500000   600000   700000   Mean  partcle  size  (µm)   D  (cP-­‐1)   Graph  of  D  against  Mean  Partcle  Size