SlideShare a Scribd company logo
 
     
Design  Final  Report  
Senior  Design:  CHEN  4120  
10  December  2013  
Michael  Oseth,  Jack  Stringer,  &  Sarah  Waldner  
UNIVERSITY   OF  COLORADO   AT  BOULDER  
1  
  
Contents  
Table  of  Figures  ..................................................................................................................................1  
Table  of  Tables  ...................................................................................................................................2  
Executive  Summary  ............................................................................................................................4  
Introduction  .......................................................................................................................................5  
Background  ........................................................................................................................................6  
Safety,  Environmental,  &  Health  Concerns  .........................................................................................  10  
Project  Premises...............................................................................................................................  14  
Approach  and  Process  Description.....................................................................................................  15  
Syngas  Unit  Design........................................................................................................................  15  
Fischer-­‐Tropsch  Reactor  Design  and  Optimization...........................................................................  17  
Separation  Unit  Implementation....................................................................................................  28  
Hydro-­‐isomerization  Unit  ..............................................................................................................  34  
Heat  Integration  ...........................................................................................................................  37  
Equipment  Specifications  ..................................................................................................................  43  
Utility  Summary................................................................................................................................  47  
Economic  Analysis  ............................................................................................................................  51  
Equipment  Cost  ............................................................................................................................  51  
Profitability  Analysis  .........................................................................................................................  54  
Profitability  ..................................................................................................................................  54  
Estimation  of  the  Total  Capital  Investment..................................................................................  54  
Estimation  of  Operating  Costs  and  Sales  .....................................................................................  55  
Calculation  of  NPV,  ROI,  and  PBP................................................................................................  56  
Sensitivity  Analysis  ........................................................................................................................  57  
References  .......................................................................................................................................  59  
Appendices  ......................................................................................................................................  60  
Appendix  A:  Full  Process  Flow  Diagram  ..........................................................................................  60  
Appendix  B:  Separation  Unit  Stream  Tables  ....................................................................................  61  
Appendix  C:  Economics  Excel  Spreadsheets  ....................................................................................  64  
  
Table  of  Figures  
Figure  1:  A  PFD  of  the  Syngas  Unit  .....................................................................................................  16  
Figure  2:  Tornado  plot  for  the  sensitivity  analysis  of  overall  reactor  cost..............................................  25  
2  
  
Figure  3:  Tornado  plot  for  the  sensitivity  analysis  of  the  conversion  of  the  reaction  .............................  25  
Figure  4:  Tornado  plot  for  the  sensitivity  analysis  of  the  average  carbon  chain  length  of  the  products...  26  
Figure  5:  A  PFD  of  the  FTR  unit  ..........................................................................................................  27  
Figure  6:  PFD  for  the  Separation  unit  .................................................................................................  32  
Figure  7:  Hydroisomerization  unit  PFD  ...............................................................................................  36  
Figure  8:  Diagram  of  the  Temperature  Interval  Method  ......................................................................  39  
Figure  9:  Final  Heat  integration  Diagram  ............................................................................................  41  
Figure  10:  Process  flow  diagram  of  the  integrated  heat  streams..........................................................  43  
Figure  11:  Sensitivity  Analysis  on  the  NPV  ..........................................................................................  58  
Figure  12:  PFD  of  Entire  Process  ........................................................................................................  60  
  
Table  of  Tables  
Table  1:  Personal  Equipment.............................................................................................................  10  
Table  2:  Composition  of  Waste  Streams.............................................................................................  10  
Table  3:  Material  and  Safety  Data  for  all  Components  ........................................................................  12  
Table  4:  The  stream  tables  and  mass  balance  of  the  Syngas  unit  .........................................................  16  
Table  5:  First  set  of  FTR  Optimization  Parameters...............................................................................  23  
Table  6:  Table  of  FTR  Optimized  Parameters  ......................................................................................  24  
Table  7:  Stream  Tables  for  the  FTR  Unit  .............................................................................................  27  
Table  8:  Inlet  and  Outlet  Stream  Tables  for  the  Separation  Unit  ..........................................................  33  
Table  9:  Mass  Balance  for  the  Separation  Unit.  ..................................................................................  33  
Table  10:  Mass  Flow  rates  of  Hydrocarbons  from  the  Hydroisomerization  Unit  ....................................  34  
Table  11:  A  Summary  of  the  Separation  in  Distillation  Column  1..........................................................  35  
Table  12:  A  Summary  of  the  Separation  in  Distillation  Column  2..........................................................  35  
Table  13:  Stream  tables  and  Mass  Balance  for  the  Hydroisomerization  Unit.........................................  36  
Table  14:  Streams  Considered  for  Heat  Integration.............................................................................  38  
Table  15:  Calculated  Enthalpies  for  the  Temperature  Interval  Method  ................................................  40  
Table  16:  Flash  Column  Equipment  Specifications  ..............................................................................  44  
Table  17:  Distillation  Column:  Condenser/Top  Stage  Performance  ......................................................  44  
Table  18:  Distillation  Column:  Reboiler/  Bottom  Stage  Performance....................................................  44  
Table  19:  Distillation  Column  Equipment  Specifications  ......................................................................  44  
Table  20:  Compressor  Equipment  Specifications.................................................................................  44  
Table  21:  Decanter  Equipment  Specifications  .....................................................................................  45  
Table  22:  Heat  Exchanger  Equipment  Specifications  ...........................................................................  45  
Table  23:  Valve  Equipment  Specifications  ..........................................................................................  45  
Table  24:  Syngas  Reactor  Specifications  .............................................................................................  46  
Table  25:  HI  Distillation  Column:  Condenser/Top  Stage  Performance  ..................................................  46  
Table  26:  HI  Distillation  Column:  Reboiler/  Bottom  Stage  Performance................................................  46  
Table  27:  HI  Distillation  Column  Specifications  ...................................................................................  46  
Table  28:  HI  Compressor  Equipment  Specifications  ............................................................................  46  
Table  29:  FTR  Equipment  Specifications  .............................................................................................  47  
Table  30:  Utility  Summary:  Heat  integration.......................................................................................  47  
3  
  
Table  31:  Utility  Summary  for  Syngas  Unit..........................................................................................  48  
Table  32:  Utility  Summary  for  Separation  Unit....................................................................................  49  
Table  33:  Utility  Summary  for  Air  Separation  Unit  ..............................................................................  49  
Table  34:  Utility  Summary  for  HI  Unit.................................................................................................  50  
Table  35:  Utility  Summary  for  the  HI  Unit...........................................................................................  50  
Table  36:  Equipment  and  Installation  Costs  for  Flash  Drums  and  Heaters.............................................  51  
Table  37:  Equipment  and  Installation  Costs  of  Other  Separation  Equipment  ........................................  52  
Table  38:  Bare-­‐Module  Costs  and  Total  Capital  Investment  .................................................................  53  
Table  39:  Investment  Summary  .........................................................................................................  54  
Table  40:    Associated  Credits  and  Costs  for  Plant  Operation  ................................................................  55  
Table  41:  Sales  and  Costs  for  the  First  Three  Years  of  Plant  Operation  .................................................  56  
Table  42:  NPV,  ROI,  PBP  Values  .........................................................................................................  56  
Table  43:  Separation  Unit  Stream  Table  .............................................................................................  61  
Table  44:  Bare  Module  Costs  .............................................................................................................  64  
Table  45:  Utilities  .............................................................................................................................  65  
Table  46:  Profitability  Analysis...........................................................................................................  65  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
4  
  
Executive  Summary  
The  gas  to  liquids  synthesis  process  described  in  this  report  was  found  to  be  a  profitable  
venture.  Syngas,  FTR,  separation,  and  hydrocracking  units  were  used  to  convert  raw  materials,  including  
methane,  to  hydrocarbons  as  fuel.  Implementing  a  grass-­‐roots  plant,  with  mixed  indoor  and  outdoor  
process  facilities  produced  an  overwhelming  profit  in  the  production  of  liquid  hydrocarbons:  LPG,  diesel,  
and  naptha.  Data  indicated  that  the  production  process  was  favorable  for  investors  even  at  high  interest  
rates,  with  a  profit  occurring  after  the  first  year  of  plant  operation.  
  Raw  materials  of  methane,  steam,  oxygen,  and  carbon  dioxide  obtained  from  locations  ideally  
located  in  close  proximity  to  the  plant  were  inputted  as  follows.  Methane  feed  was  fed  at  a  rate  of  500  
MSCFD,  steam  at  12  klb/day,  carbon  dioxide  at  34  MSCFD,  and  oxygen  at  100  ton/day.  Specifically,  a  15-­‐
year,  300  day  per  year  plant  life  was  interpreted  to  produce  naptha  product  at  a  rate  of  10  barrels/day,  
diesel  product  at  a  rate  of  35  barrels/day,  and  LPG  product  at  a  rate  of  640  lb/day.    
These  production  rates  equate  to  an  annual  net  earnings  of  $770,000,000   at  full  plant  capacity,  
indicating  a  net  present  value  at  the  end  of  the  15  year  period  of  $6  billion  for  an  interest  rate  of  8.5%,  
using  straight  line  depreciation.  The  pay-­‐back  period  at  full  plant  capacity  was  found  to  be  23  days  when  
total  depreciable  capital  was  $50  million.  Return  on  investment  tremendously  exceeded  the  target  of  
20%,  and  at  full  plant  capacity,  equated  to  a  return  of  840%,  given  a  total  capital  investment  of  $92  
million.  The  internal  rate  of  return  was  determined  to  be  466%.    
Sensitivity  analysis  indicated  that  sales  chiefly  determined  the  net  present  value.  Heat  
generated  in  the  syngas  unit  was  integrated  into  the  separation  unit  as  steam,  with  left-­‐over  quantities  
generating  a  year  to  year  credit.  Bare-­‐module  costs  for  equipment  used  was  determined  from  ASPEN  
PLUS  software.  A  recommendation  for  further  calculations  is  to  maintain  the  accuracy  of  the  cost  of  
sales  when  altering  raw  feed  inputs.    
5  
  
Introduction  
The  plant  designed  and  evaluated  by  this  report  is  a  gas  to  liquid  fuels  production  facility  that  
employs  a  Fischer-­‐Tropsch  Reactor  for  the  conversion  of  synthetic  gas  (syngas)  to  liquid  hydrocarbons.  
Syngas  is  produced  via  auto-­‐thermal  reforming  technologies  where  steam  and  methane  gas  are  
reformed  to  produce  a  reactant  stream  that  is  mainly  hydrogen  gas  and  carbon  monoxide.  This  works  by  
combining  steam  methane  reforming  and  partial  oxidation  technologies.  This  will  be  described  more  in-­‐
depth  in  the  background  section.  The  Syngas  Unit  was  designed  and  tested  using  ASPEN  PLUS  programs.  
The  reactant  stream  is  then  sent  to  the  Fischer-­‐Tropsch  Reactor  where  hydrogen  and  carbon  monoxide  
are  catalytically  reacted  to  form  fuel.  The  FT  reactor  was  designed  and  optimized  using  MATLAB.  This  
optimization  process  is  discussed  in  detail  in  the  Approach  and  Process  Description  section.  The  product  
stream  from  the  FT  unit  is  then  sent  to  the  Separation  Unit.  The  product  stream  from  the  FT  unit  
contains  hydrocarbons  of  carbon  length  one  to  sixty.  They  can  be  divided  based  on  carbon  chain  into  the  
following  categories:  methane,  ethane,  propane,  butane,  naptha,  diesel,  and  carbon  chain  length  21+.  
The  stream  is  separated  into  naptha,  diesel,  and  wax.  Wax  is  sent  to  the  Hydroisomerization  Unit  and  
  to  produce  naptha,  diesel,  and  LPG  gas  (methane     butane)  which  are  sold  as  product.  
The  Separation  Unit  was  designed  and  optimized  in  ASPEN  PLUS  by  an  external  group  called  the  NERDs.  
The  Hydroisomerization  Unit  was  also  designed  in  ASPEN  PLUS.  Both  of  these  units  are  discussed  in  
detail  in  the  Approach  and  Process  Description  section.  Safety,  Environmental,  and  Health  concerns  are  
discussed  in  the  Safety,  Environmental,  &  Health  Concerns  section.  All  equipment  involved  in  the  
process  was  designed  (sized,  unit  operations,  material  of  construction)  using  ASPEN  PLUS.  These  details  
are  discussed  in  the  Equipment  Specifications  section  and  the  cost  of  individual  equipment  components  
are  located  in  the  Equipment  Cost  Section.  An  Economic  Analysis  was  performed  and  the  total  capital  
investment,  operating  costs,  and  sales  were  estimated  and  the  NPV,  ROI,  and  PBP  values  were  
calculated  for  the  life  of  the  plant;  all  values  are  located  in  the  Profitability  Analysis  section.  A  sensitivity  
6  
  
analysis  was  performed  to  explore  how  certain  variables  effect  the  final  NPV  of  the  plant.  This  analysis  is  
located  in  the  Sensitivity  Analysis  section.  
  
Background  
As  crude  oil  reserves  near  exhaustion  around  the  world,  gas  to  liquid  fuel  production  via  
synthetic  gas  has  increased  in  viability.  The  Fischer-­‐Tropsch  process,  which  has  been  around  for  nearly  
ninety  years,  provides  a  feasible  option  for  the  production  of  these  fuels.(1)
  The  FT  process  involves  the  
synthesis  of  synthetic  gas  from  hydrocarbon  feedstock  (natural  gas,  coal,  naptha,  petroleum  coke,  and  
biomass)  and  catalytic  conversion  of  this  gas  into  liquid  fuel.  Franz  Fischer  developed  the  process  in  
plants  were  built  and  operating  in  Germany,  however,  the  plants  were  closed  shortly  thereafter  as  the  
FT  process  was  not  economically  practical  at  the  time.(2)
  The  FT  production  of  hydrocarbons  is  only  
practical  if  the  price  per  barrel  of  crude  oil  is  low  enough  for  FT  production  of  fuel  to  be  similarly  
affordable.  Interest  in  the  FT  process  disappeared  after  World  War  II,  but  resurfaced  during  the  oil  crisis  
(2)
  A  company  called  Sasol  in  South  Africa  constructed  the  two  largest  FT  complexes  ever  
built  and  the  company  flourished  
the  next  two  decades  the  price  of  crude  oil  per/barrel  continued  to  fluctuate  and  the  number  of  FT  
plants  slowly  increased  across  the  world.(3)  
  Syngas  is  the  mixture  of  hydrogen  and  carbon  monoxide  gas  and  can  be  generated  by  different  
technologies.  Generation  of  syngas  usually  encompasses  60%  -­‐  70%  of  the  total  capital  investment  
required  to  implement  a  grass-­‐roots  FT  plant.(4)
  It  is  preferable  to  use  methane  gas  when  it  is  available  
rather  than  coal  as  it  is  less  expensive,  more  efficient,  and  leaves  a  smaller  carbon  footprint.  The  
technologies  for  syngas  generation:  catalytic  steam  methane  reforming  (SMR),  heat  exchange  
reforming,  partial  oxidation  (POX)  and  auto-­‐thermal  reforming  (ATR)  will  be  reviewed.  The  most  
7  
  
extensively  used  in  industry  is  steam  methane  reforming  (SMR)  where  steam  and  methane  gas  are  
catalytically  converted  to  syngas.  This  process  is  advantageous  as  it  requires  no  oxygen  and  has  the  
lowest  process  temperature.  However,  the  H2/CO  ratio  is  usually  higher  than  the  optimal  ratio  for  fuel  
production  (  >  4)and  it  produces  high  air  emissions.  Heat  exchange  reforming  uses  heat  recovered  from  
the  product  syngas  as  a  portion  of  the  heat  required  for  the  heat  of  reaction.  It  is  more  compact  and  
efficient  than  other  technologies,  reduces  the  plant  footprint  and  capital  cost.  One  disadvantage  of  this  
technology  is  that  it  is  not  usually  implemented  as  the  sole  syngas  generator  and  must  be  used  in  
tandem  with  another  process.  Partial  oxidation  generates  syngas  via  the  highly  exothermic,  non-­‐catalytic  
reaction  of  methane  and  steam.  While  this  technology  does  not  require  a  catalyst,  it  does  require  an  
oxygen  feed.  This  process  is  generally  not  implemented  alone  as  it  produces  a  low  H2/CO  ratio  (<  2)  and  
requires  high  operating  temperatures.  The  auto-­‐thermal  reforming  technology  combines  the  SMR  and  
the  POX  process  to  produce  a  syngas  with  a  favorable  H2/CO  ratio.  This  technology  combines  the  partial  
oxidation  of  reactants  fueled  by  the  internal  combustion  of  some  of  the  feedstock.  While  this  
technology  may  seem  like  the  most  efficient  option,  it  has  experienced  limited  commercial  use.  This  
technology  has  been  shown  to  be  the  least  expensive  option  that  fulfills  the  syngas  composition  
required  for  FT  processing  and  commercial  use  of  the  reforming  technology  is  increasing.(4)(5)(6)
  ATR  is  the  
syngas  generation  technology  discussed  in  this  report.    
The  FT  reactor  catalytically  converts  the  syngas  into  a  stream  of  hydrocarbons.  This  reaction  is  
highly  exothermic  and  requires  cooling  water  to  control  the  temperature  rise.  FT  reactors  can  be  divided  
into  two  general  categories:  high  temperature  FT  and  low  temperature  FT.  High  temperature  FT  (HTFT)  
reactors  (300     350 )  are  mainly  used  to  produce  olefins  and  gasoline.  Low  temperature  FT  (LTFT)  
reactors  (200     240     are  used  for  diesel  and  linear  wax  production.  FT  reactors  may  also  produce  a  
small  amount  of  alcohols,  aldehydes,  carboxylic  acids,  and  other  oxygenated  products,  and  in  addition  
those  operating  at  high  temperatures  may  produce  minute  amounts  of  ketones  and  aromatic  
8  
  
compounds.  Wax  products  are  sent  to  a  hydro-­‐
they  are  reduced  to  naptha  and  diesel  products.(7)(8)
  Catalysts  that  have  been  considered  for  FT  reactors  
include:  Ni,  Co,  Fe,  and  Ru.  Ni  easily  hydrogenates  which  produces  high  methane  concentrations  in  the  
product  stream.  Use  of  Ni  would  also  require  high  operating  temperatures  to  avoid  the  formation  of  
nickel  carbonyls  which  dissipates  the  catalyst  in  the  reactor  during  operation.  For  both  of  these  reasons  
Ni  catalysts  are  not  used  commercially.  Ru  catalysts  are  rare  and  extraordinarily  expensive  which  makes  
it  a  non-­‐viable  option  for  commercial  facilities.  Co  and  Fe  catalysts  are  both  readily  available.  On  
average,  Co  is  about  200  times  the  price  of  Fe,  but  exhibits  an  FT  activity  per  metal  site  3  times  greater  
than  Fe.  This  means  that  one  particle  of  Co  can  catalyzes  the  conversion  of  three  times  as  many  
methane  molecules  as  Fe  particles.(9)
  Despite  the  high  cost,  Co  catalysts  are  still  widely  used.  It  has  been  
shown  that  the  partial  pressure  of  the  water  content  of  the  product  stream  from  a  reactor  that  uses  Fe  
catalyst  has  a  debilitating  effect  on  the  reaction  kinetics.  Co  catalysts  experience  little  to  no  effect.  FT  
reactors  commonly  use  iron  catalysts  and  those  operating  at  low  temperatures  use  iron  or  cobalt  
catalysts  if  the  product  stream  has  high  water  content.(10)  
ame  a  reality  within  the  last  ten  years  as  
companies  are  extracting  oil  at  a  faster  pace  today  than  ever  before.  Other  options  have  had  to  be  
considered  so  that  the  transition  from  crude  oil  dependence  to  alternative  forms  of  energy  is  as  smooth  
as  possible.  Over  the  last  decade  FT  technology  has  experienced  increased  attention.  The  technology  
remains  more  costly  than  processing  and  using  crude  oil.  In  order  for  FT  technology  to  become  
competitive  with  to  crude  oil  while  it  is  still  available,  it  needs  to  be  made  more  cost  effective.  Studies  
have  estimated  that  the  FT  process  became  a  viable  option  when  the  price  of  crude  oil  per  barrel  
surpassed  $16/barrel.  Today  the  cost  of  crude  oil  is  approximately  $87/barrel.  (11)  
Even  though  this  technology  has  been  around  for  almost  a  century,  it  is  still  being  developed  
and  can  be  improved  in  a  number  of  ways.  One  syngas  generation  method  that  is  currently  being  
9  
  
explored  is  the  combination  of  heat  exchange  reforming  with  auto-­‐thermal  reforming.  By  using  heat  
recovered  from  the  exit  gas  this  eliminates  the  need  for  a  gas  fired  heater  to  supply  energy  to  the  auto-­‐
thermal  reformer.  Potential  benefits  include  a  decrease  in  oxygen  requirements  and  reduced  plant  
footprints.(11)
  Co  and  Fe  catalysts  used  in  Ft  reactors  can  also  be  improved.  It  is  desirable  to  design  a  
catalyst  with  increased  selectivity  to  hydrocarbons  of  shorter  chain  lengths.  This  would  reduce  the  utility  
of  the  hydro-­‐isomerization  unit.  Coated  catalysts  are  currently  being  researched  as  a  method  of  
increasing  the  selectivity  of  a  catalyst.  Recent  research  has  been  done  using  alkanethiol  coated  catalysts.  
The  catalysts  are  prepared  by  saturating  the  catalyst  in  the  liquid  alkanethiol  and  allowing  the  sulfur  
atom  of  the  molecule  to  bind  to  the  catalyst  surface.  These  molecules  form  a  self-­‐assembled  monolayer  
on  the  surface  of  the  catalyst.  The  coating  changes  the  surface  chemistry  of  the  catalyst  through  
electronic  and  steric  effects  which  influences  the  selectivity  of  the  reaction.  It  has  been  shown  that  by  
coating  catalysts  with  alkanethiols  and  then  using  these  catalysts  in  hydrogenation  reactions,  the  
selectivity  to  the  desired  product  increased  substantially.  However,  life  of  these  catalysts  is  short  and  
the  coatings  are  have  been  shown  to  deteriorate  quickly,  reducing  the  heightened  selectivity.(12)
  
Research  is  still  in  its  preliminary  stages,  the  potential  to  design  catalysts  to  be  selective  to  particular  
products  poses  an  interesting  development  for  FT  technology.    
Today  several  large  companies  have  accepted  the  challenge  of  enabling  economic  exploitation  
of  the  coal  and  natural  gas  reserves  around  the  world  via  the  Fischer-­‐Tropsch  Process.  The  largest  
development  of  FT  plants  are  located  in  South  Africa  and  operated  by  Sasol.  These  plants  have  proved  
profitable  are  there  is  little  oil  in  South  Africa,  but  an  abundance  of  coal  reserves.  Sasol  has  been  slowly  
building  a  FT  presence  in  the  United  States  and  are  currently  developing  in  Louisiana.  PetroSA  is  another  
South  A
South  Africa.  Shell  owns  a  massive  FT  complex  in  Bintulu,  Malaysia  and  is  currently  using  natural  gas  
there  to  produce  diesel  fuels  and  low-­‐grade  wax.  (4)(6)(9)  
10  
  
Safety,  Environmental,  &  Health  Concerns  
Employee  Safety  Precautions    
All  employees  on  shift  at  the  plant  must  be  fully  equipped  the  required  personal  safety  equipment.  The  
employer  is  responsible  for  the  adequacy  of  such  equipment.  The  employer  shall  ensure  that  each  
employee  wears  the  equipment  listed  in  Table  (1)  when  working  in  the  concerned  areas  as  defined  by  
OSHA:  
Table  1:  Personal  Equipment  
Personal  Equipment   Area  of  Concern  
Protective  Helmet   Potential  for  head  injury  due  to  falling  objects  
Safety  Glasses  and/or  detachable  side  
protectors  
Potential  for  hazardous  flying  particles  such  as  
molten  metal,  liquid  chemicals,  acids,  caustic  
liquids,  chemical  gases  or  vapors,  and  injurious  
light  radiation  
Protective  footwear   Potential  for  foot  injury  via  falling  or  rolling  
objects,  objects  piercing  the  sole,  or  electrical  
hazards  
Protective  Handwear   Potential  skin  adsorption  of  harmful  substances,  
severe  cuts,  lacerations,  abrasions,  punctures,  
chemical  burns  and  thermal  burns  
Respirator   Potential  of  inhalation  of  harmful  dusts,  fogs,  
fumes,  mists,  gases,  smokes,  sprays,  or  vapors  
Protective  Clothing   Worn  at  all  times.  Must  be  non-­‐flammable,  
protect  against  electric  shock,  and  non-­‐reactive.  
  
Waste  Stream  Considerations  
The  process  encompasses  three  main  waste  streams.  The  flue  gas  from  strippers  1  and  2  and  the  waste  
water  from  stripper  2.  The  compositions  of  each  of  these  streams  are  located  in  Table  (2)  below.  
Table  2:  Composition  of  Waste  Streams  
Component  Mole  Flow  
(lbmol/day)  
Flue  Gas  1   Flue  Gas  2   Waste  H2O  
CO   4.66   0.00280   0  
CO2   11.5   0.0426   0  
H2   5.96   0.000366   0  
Water   30.6   26.6   2.80  
N2   0.549   2.10   0.00104  
CH4   1.48   0.00183   0  
11  
  
Ethane   0.0417   0.000256   0  
Propane   0.0411   0.000644   0  
Butane   0.040   0.000948   0  
Naptha   0.130   0.00000106   0  
Diesel   0.0082   0   0  
C21-­‐C25   0   0   0  
C26-­‐C29   0   0   0  
C30-­‐C35   0   0   0  
C36-­‐C47   0   0   0  
C48+   0   0   0  
Oxygen   0   7.91   0.00447  
Handling  Instructions:    
Flue  Gas  1:  Waste  gas  must  be  collected,  condensed,  and  properly  stored  for  waste  disposal.  CO,  
CO2,  methane,  ethane,  propane,  butane,  naptha,  and  diesel  must  be  removed  before  waste  
water  can  be  safely  disposed  off.  Naptha  and  diesel  can  be  separated  out  using  adsorption  
techniques.  Methane,  ethane,  and  propane  can  be  removed  using  the  difference  in  boiling  
points  from  water.  CO2  and  CO  can  be  removed  using  a  series  of  strippers.    
Flue  Gas  2:  Will  be  treated  the  same  as  Flue  Gas  2  
Waste  H2O:  This  waste  water  stream  contains  only  nitrogen  gas,  which  is  an  inert,  and  can  be  
disposed  of  in  the  sanitary  sewer  system  of  the  plant  
State  &  Federal  Permits  
Permits  that  must  be  obtained  for  operation  of  this  plant  include  the  following  (Note:  Permits  may  vary  
depending  on  the  state  that  the  plant  is  in):  
Building  permits  for  land    
Oil  refinery  permits  
Hazardous  Waste  Permit  for  disposal  in  sanitary  sewer  systems,  air  pollution,  and  incineration  
permits  if  incineration  is  the  preferred  waste  disposal  method.  Depends  on  State.  
Personal  work  permits  will  be  required  for  those  doing  hot  work  (welding,  cutting,  grinding,  and  
spark  producing  work),  those  working  with  line  break  (Liquid  and  gaseous  chemicals,  and  sewer  
12  
  
and  process  water),  those  needing  confined  space  entry,  and  those  performing  heavy  lift  
equipment  operation.  Depends  on  State.  
  
Material  and  Safety  Data  for  all  Process  Components  
Table  3:  Material  and  Safety  Data  for  all  Components  
Component   Physical  
State  
MW  
(g/mol)  
Health   Flammability   Reactivity   Special  
Methane     Gas   16.04   1   4   0   Simple  
Asphyxiant  
Water   Gas   18.02   0   0   0   None    
Oxygen   Gas   32.00   0   0   0   Oxidizer  
Nitrogen   Gas   28.02   0   0   0   Simple  
Asphyxiant  
Carbon  
Dioxide  
Gas   44.01   1   0   0   None    
Carbon  
Monoxide  
Gas   28.01   3   4   0   None  
Hydrogen   Gas   2.02   0   4   0   None    
Ethane   Gas   30.08   1   4   0   None  
Propane   Gas   44.11   1   4   2   None    
Butane   Gas   58.14   1   4   0   None    
Pentane   Liquid     72.15   1   4   0   None    
Hexane   Liquid     86.18   1   3   0   None  
Heptane   Liquid   100.21   1   3   0   None    
Octane   Liquid     114.23   2   3   0   None    
Nonane   Liquid     128.26   2   3   0   None    
Decane   Liquid     142.28   0   2   0   None  
Undecane   Liquid     156.31   0   2   0   None    
Dodecane   Liquid     170.34   1   2   0   None    
Tridecane   Liquid     184.37   1   2   0   None    
Tetradecane   Liquid   198.4   2   1   0   None    
Pentadecane   Liquid     212.42   1   1   0   None  
Hexadecane   Liquid     226.00   0   1   0   None    
Heptadecane   Liquid     240.48   2   1   0   None    
Octadecane   Liquid     254.5   0   1   0   None    
Nonadecane   Liquid     268.52   2   1   0   None  
Eicosane   Liquid     282.56   1   1   0   None    
*Hydrocarbons  of  length  21     60  carbons  can  adhere  to  the  same  safety  data  as  Eicosane  as  the  
information  does  not  vary  significantly.  
  
  
  
13  
  
Safe  plant  operating  procedures  
For  general  safety  of  all  employed  by  the  plant  the  following  protection/accident  prevention  
equipment  must  be  installed,  maintained,  and  supervised  at  all  times:  
Temperature/Pressure  indicator  instruments  
Sound  regulation  system  and  emergency  shut  off  
System  leak  alarm  system  
For  general  safety  of  all  employed  by  the  plant  the  following  must  be  adhered  to  at  all  times:  
Employees  will  possess  appropriate  personal  protection  equipment  
Plant  must  remain  well  lit  to  ensure  proper  visibility  
All  safety  instrumentation  and  alarm  systems  must  be  monitored    
Employees  must  not  work  longer  in  a  high  stress  environment  than  time  defined  by  OSHA  
standards  for  the  nature  of  that  environment  
All  equipment  must  be  regularly  cleaned  and  maintained  
Waste  must  be  disposed  of  properly  adhering  to  OSHA  standards  
  
All  working  personnel  must  be  properly  trained  in  the  following  operating  procedures  and  it  is  the  
responsibility  of  the  employer  to  keep  employees  up  to  date  with  the  following  operating  procedures  
and  changes  in  such:  
1. Normal  Operating  Procedures  
2. Abnormal  Operating  Procedures  
3. Operator  Response  Procedures  
4. Emergency  Operating  Procedures  
14  
  
Project  Premises  
Design  Premises:  
-­‐   
Location:  In  the  vicinity  of  a  large  body  of  water  to  naturally  supply  cooling  water  and  a  
Hydraulic  Fracturing  Rig  
Material  Source:  
o Cooling  Water:  Obtained  from  nearby  reservoir  
o Oxygen:  Air  Separation  Plant  
o Methane:  Nearby  Hydraulic  Fracturing  Rig  
o Carbon  Dioxide:  External  import  
o Electricity:  Xcel;  some  heat  obtained  from  recycling  energy  within  the  process  
Plant  Capacity:  
o Naptha  production:  10  barrels/day  
o Diesel  Production:  35  barrels/day  
o LPG  production:  640  lbs/day  
Recycle  Steams:  
Economic  Premises:  
Cost  of  Raw  materials:  
o Methane:  $2/MSCFD  
o Steam:  $5/klb  
o Carbon  Dioxide:  $0.40/MSCFD  
o Oxygen:  $100/ton  
Sales  price  of  products:  
o Naptha:  $75/barrel  
o Diesel:  $90/barrel  
o LPG:  $0.30/lb  
Project  Life:  15  years  
Depreciation  Method:  Straight  line,  15  yr  
Total  Capital  Investment:  $  91,500,000  
Tax  Rates:  37%  
Targeted  ROI:  20%  
Operation:  330  days/yr  
15  
  
Approach  and  Process  Description  
Syngas  Unit  Design  
The  first  part  of  the  overall  design  of  the  Fischer-­‐Tropsch  Reaction  unit  was  to  design  the  syngas  
unit.  Carbon  dioxide,  methane,  steam,  and  oxygen  are  combusted  in  an  equilibrium  reactor  to  produce  
Syngas.  The  three  primary  reactions  that  occur  simultaneously  in  the  reactor  are  as  follows.  
Steam  reforming:       
Partial  oxidation  of  methane:     
Shift  reaction:     
     Two  process  units  are  involved  in  the  Syngas  unit.  Four  streams  (carbon  dioxide,  oxygen  (99%  
oxygen  and  1%  nitrogen),  methane  and  steam)  are  fed  into  a  mixer  at  100   .  The  methane  is  fed  in  with  
steam  in  order  to  prevent  coking  of  the  process  equipment.  The  material  is  then  fed  directly  into  the  
equilibrium  reactor.  The  only  component  flow-­‐rate  that  was  definitively  defined  was  methane.  The  
component  flow  rates  of  carbon  dioxide  and  air  were  given  arbitrary  values  because  these  flow-­‐rates  
were  optimized  using  the  optimization  package  in  Aspen  to  optimize  the  production  of  hydrogen.    
   There  are  three  constraints  for  the  system.  First,  the  ratio  of  hydrogen  production  to  carbon  
monoxide  production  must  be  2:1.  Second,  the  equilibrium  reactor  is  adiabatic.  Third,  the  molar  ratios  
of  steam  to  methane  flow  rates  is  greater  than  or  equal  to  1:2.  The  parameters  being  varied  using  the  
optimization  package  are  the  temperature  (1600     1950   )  and  pressure  (300     500  psig)  of  the  reactor,  
the  flow  rates  of  air  (10     1,000  MSCFD)  ,  carbon  dioxide  (10  -­‐1,000  MSCFD),  and  steam  (250  -­‐500  
MSCFD).  The  product  of  the  Syngas  unit  was  then  feed  into  a  Fischer  Tropsch  Reactor.  Figure  (1)  is  the  
process  flow  diagram  of  the  Syngas  unit  and  Table  (4)  provides  the  stream  tables  and  mass  balance  of  
the  unit.    
16  
  
MIXER  1
SYNGAS  REACTOR
CO2
AIR
STEAM
C1
FEED SYNGAS
Figure  1:  A  PFD  of  the  Syngas  Unit  
Table  4:  The  stream  tables  and  mass  balance  of  the  Syngas  unit  
     Units   AIR   CO2   FEED   METHANE   STEAM   SYNGAS  
From                  MIXER             SYNUNIT  
To        MIXER   MIXER   SYNUNIT   MIXER   MIXER       
Substream:  MIXED                                     
Phase:        Vapor   Vapor   Mixed   Vapor   Liquid   Vapor  
Component  Mole  
Flow  
                                  
METHA-­‐01   MSCFD   0.00   0.00   500.00   500.00   0.00   4.48  
WATER   MSCFD   0.00   0.00   250.00   0.00   250.00   394.01  
NITRO-­‐01   MSCFD   3.59   0.00   3.59   0.00   0.00   3.59  
OXYGE-­‐01   MSCFD   355.77   0.00   355.77   0.00   0.00   0.00  
CO   MSCFD   0.00   0.00   0.00   0.00   0.00   423.52  
CO2   MSCFD   0.00   34.38   34.38   0.00   0.00   106.38  
HYDRO-­‐01   MSCFD   0.00   0.00   0.00   0.00   0.00   847.04  
Mole  Flow   MSCFD   359.36   34.38   1143.74   500.00   250.00   1779.02  
Mass  Flow   LB/DAY   30264.26   3987.18   67257.43   21137.67   11868.31   67257.43  
Temperature   F   100.00   100.00   96.42   100.00   100.00   1929.46  
Pressure   PSIG   500.00   500.00   500.00   500.00   500.00   300.00  
Total  Inlet  Mass  
(LB/DAY)  
67257.43     
Total  Outlet  Mass  
(LB/DAY)  
67257.43     
  
17  
  
Fischer-­‐Tropsch  Reactor  Design  and  Optimization  
A  Fischer  Tropsch  reaction  unit  (FTR)  was  designed  to  meet  certain  specifications.  During  this  
reaction,  a  feed  stream  of  CO  and  H2  react  to  produce  alkanes  ranging  from  C1  to  C60  and  H2O.  Inert  
side  components  were  evident  in  the  feed  stream  as  well;  N2  and  CO2.  Using  component  outputs  
generated  from  ASPEN  PLUS  simulation  software  in  the  previous  milestone,  a  MATLAB  code  was  created  
to  observe  changes  in  temperature,  pressure,  and  conversion  by  assessing  various  constraints  such  as  
the  number  of  reactor  tubes,  inlet  temperature  and  pressure,  tube  diameter,  and  cooling  water  
temperature.    
Equation  Development  
For  the  FTR  reaction,  where  syngas  is  converted  to  hydrocarbons  and  water,  a  variety  of  
equations  were  used  to  implement  the  parameters  set  forth  by  the  problem.  A  detailed  outline  of  the  
equations  used  and  their  explanations  will  be  presented.  The  reaction  used  to  declare  rate  equations  
(particularly  the  stoichiometry)  for     and     was  by  Equation  (1):  
      (1)  
For   ,  the  following  reaction,  Equation  (2),  was  used  to  declare  the  same:  
      (2)  
Other  components  in  the  system,  such  as  N2  and  CO2,  are  considered  inert  and  therefore  do  not  affect  
the  system.  The  overall  rate  equation  for  the  consumption  of     is  in  Langmuir-­‐Hinshelwood  form  is  
given  by  Equation  (3)  with  the  following  parameters:  
      (3)  
Where  the  variables  involved  are  defined  by  Equations  (4),  (5),  and  (6):  
  
      (4)  
18  
  
        (5)  
      (6)  
  
  and     were  determined  from  the  total  system  pressure  and  the  mole  fractions  of     and     as  
shown  by  Equations  (7)  and  (8):  
      (7)  
      (8)  
The  selectivity  of  the  produced  alkanes  (   for  n  values  of  1  to  60)  are  as  follows,  given  by  
Equation  (9).  For  methane  (n=1):  
      (9)  
Where     is  denoted  by  Equation  (10):  
        (10)  
For  C2  to  C4  alkanes  (n=2,  3,  4)  the  selectivity  is  given  by  Equation  (11):  
      (11)  
Where     is  given  by  Equation  (12):  
      (12)  
To  obtain  flow  rates  for  C1  through  C4  alkanes  in  the  product  stream,  simple  rearrangement  of  the  
selectivity  for  methane  produces   ,  given  by  Equation  (13):  
      (13)  
Thus,  for  alkanes  C2  through  C4,Equations  (14)  through  (16)  give:  
      (14)  
      (15)  
      (16)  
19  
  
  
For  C5+  alkanes  (n=5  to  60),  the  distribution  of  alkane  products  is  defined  by  Mn,  the  relative  mole  
fraction  of  Cn ,  given  by  Equation  (17):  
      (17)  
  given  by  Equation  (18):  
      (18)  
To  obtain  selectivity,  Mn  must  be  divided  by  the  sum  of  all  Mn
in  question.  Then,  the  mole  fraction  must  be  multiplied  by  n  to  obtain  a  per  carbon  basis.  Since  the  
selectivity  is  simply  (1-­‐St),  the  sum  of  the  selectivities  of  the  first  four  alkanes,  the  selectivity  for  C5+  
alkanes  is  defined  by  Equation  (19):  
      (19)  
Where  
      (20)  
  
The  rate  of  production  of  C5+  alkanes  is  then  given  by  Equation  (21):  
      (21)  
  
For  the  pressure  drop  consideration  of  the  FTR,  the  Ergun  equation  was  used  to  obtain  an  expression  for  
the  change  in  pressure  per  catalyst  weight,  given  by  Equation  (22):  
(22)  
Where     is  the  cross-­‐sectional  area  of  the  pipes,     is  the  given  void  fraction,     is  the  density  of  the  
solid  catalyst  particles,     is  the  fraction  of  feed  pressure  over  total  pressure,     is  the  fraction  of  total  
20  
  
temperature  over  initial  temperature,  and     is  the  total  flow  rate  over  the  initial  flow  rate  into  the  
reactor.     is  defined  by  the  following,  given  by  Equation  (23)::  
      (23)  
Where     is  the  inlet  gas  mass  velocity,     is  the  density  of  the  gas,     is  the  gravitational  constant,     is  
the  diameter  of  the  catalyst  particle,  and     is  the  viscosity  of  the  gas,  which  was  assumed  to  be  the  
average  of  the  viscosities  of  each  component  in  the  feed.    
A  similar  expression  was  obtained  from  literature  for  the  change  in  temperature  in  the  FTR  per  catalyst  
weight.  This  expression  is  as  follows,  given  by  Equation  (24):  
        (24)  
Where     is  the  given  heat  of  reaction,     is  the  inside  surface  area  per  volume,     is  the  temperature  
of  the  cooling  water,  and     is  the  bulk  density  of  the  catalyst  ( ).  Equations  for     and     
can  be  seen  below.     refers  to  the  diameter  of  a  single  tube,  given  by  Equation  (25):  
      (25)  
For  methane,  H2,  O2,  H2O,  N2,  and  CO2,  average  heat  capacities  have  been  obtained  from  ASPEN  HYSYS.    
  
  
  
  
  
  
21  
  
  
For  C2  though  C10  alkanes,  heat  capacity  values  were  obtained  from  literature  and  needed  no  equation  
to  compute.  However,  for  C2+  alkanes,  a  general  formula  has  been  obtained  to  calculate  heat  capacities,  
given  by  Equation  (26):  
      (26)  
  
For  economic  considerations,  a  number  of  equations  were  used  to  determine  the  cost  of  the  reactor,   .  
This  is  obtained  by  estimating  the  required  weight  of  stainless  steel  for  the  shell  and  tubes  of  the  
reactor,     as  seen  below,  given  by  Equation  (27):  
    (27)  
Where,  given  by  Equation  (28):                          
      (28)  
Where     is  the  inner  diameter  of  the  FTR,  L  is  the  reactor  length,  and     is  the  given  density  of  
stainless  steel.   ,  shell  thickness,  is  given  by  Equation  (29):  
      (29)  
Where  S  is  the  maximum  allowable  stress,  in  psi,  and  E  is  the  weld  efficiency.   ,  the  design  pressure,  is  
given  by  Equation  (30):  
      (30)  
  
where     is  the  nominal  pressure  in  psig,  assumed  to  be  the  shell  side  pressure.  
FTR  Optimization  
The  optimization  process  for  the  Fischer  Tropsch  Reactor  began  with  a  fractional  factorial  
design.  A  factorial  design  is  a  method  that  aids  in  the  optimization  of  systems  that  involves  multiple  
22  
  
independent  variables.  The  parameters  that  were  optimized  were:  the  cost  of  the  reactor,  the  
conversion,  and  the  average  carbon  chain  length  of  the  products.  It  was  desirable  to  minimize  the  cost,  
maximize  the  conversion,  and  achieve  an  average  chain  length  between  10  and  15  carbons.  Minimizing  
cost  and  maximizing  the  conversion  of  the  reaction  will  maximize  the  profit.  It  is  desirable  to  have  an  
average  carbon  chain  length  between  10  and  15  carbons  because  hydrocarbon  products  of  chain  lengths  
between  5  and  21  require  the  least  amount  of  processing  to  prepare  the  product  for  sale,  and  therefore  
cost  the  least  to  process.  Hydrocarbons  longer  than  21  carbons  are  wax  and  therefore  must  be  
processed  in  the  hydro-­‐isomerization  unit  to  convert  them  to  lighter  products.  It  was  desirable  to  avoid  
hydrocarbons  of  chain  length  1  to  4  as  these  products  are  the  least  profitable.  Hydrocarbons  of  a  chain  
length  5  to  20  maximized  the  potential  profit  while  minimizing  money  and  time  required  to  process  the  
material.    
   The  independent  variables  involved  in  the  optimization  were:  temperature  and  pressure  of  the  
inlet  feed  stream,  the  number  of  reactor  tubes,  the  diameter  of  the  reactor  tubes,  the  weight  of  the  
catalyst  packing  in  each  reactor  tube,  and  the  temperature  of  the  cooling  water  stream.  The  fractional  
factorial  was  set  up  as  follows:  
Design:     =     
Levels:  2  
Number  of  Factors  investigated,  k:  6  
Number  of  Generators,  p:  2  
Runs:  16  
  
The  number  of  generators  indicates  the  number  of  factors  that  will  not  be  considered  
independently.  This  creates  a  factorial  design  that  is  a  fraction  of  the  full  design.  The  final  set  of  solution  
parameters  will  not  be  as  optimal  as  a  full  design  would  result  in,  but  the  fractional  factorial  design  is  
more  efficient  to  analyze  and  will  still  give  a  decent  estimate  of  the  optimal  parameters.  
Minitab  was  used  to  create  the  design  matrix.  This  matrix  was  transferred  to  an  excel  file  and  
then  imported  to  Matlab  and  converted  to  a  matrix  that  corresponds  to  the  16  test  runs.  For  each  
23  
  
independent  variable  initial  high  and  low  values  of  a  testable  range  were  selected.  These  values  were  
based  on  information  given  by  the  plant  design  specifications.  Table  (5)  displays  the  first  set  of  high  and  
low  values  selected  for  optimization.  
  
Table  5:  First  set  of  FTR  Optimization  Parameters  
Parameter   High   Low    
Inlet  Temperature  (F)   450   390  
Catalyst  Weight  (lb)   30   2  
Number  of  Tubes   1000   800  
Diameter  of  tube  (in)   2   1  
Pressure  (psia)   330   270  
Shell  Temperature  (K)   450   373  
  
   The  Matlab  simulation  was  run  using  this  initial  set  of  values  and  the  cost,  conversion,  and  
average  carbon  chain  length  of  products  were  compared.  All  of  the  runs  were  checked  to  ensure  that  
the  reactor  length  did  not  exceed  60  ft  and  the  diameter  did  not  exceed  20ft.  Trends  in  the  data  were  
analyzed  and  the  range  of  the  high  and  low  values  for  each  variable  were  adjusted.  The  first  adjustment  
that  was  made  was  increasing  the  shell  temperature.  It  was  evident  from  the  first  round  of  optimization  
that  higher  shell  temperatures  corresponded  to  a  significantly  higher  conversion.  After  the  second  
round  of  optimization,  it  was  shown  that  the  inlet  pressure  had  little  effect  on  any  of  the  dependent  
parameters  and  therefore  was  not  changed  again.  The  range  for  the  catalyst  weight,  diameter  of  the  
reactor  tube,  and  inlet  temperature  were  narrowed  based  on  trends  seen  in  the  second  round  of  
optimization  runs.  It  was  shown  that  lower  inlet  temperatures  produced  a  higher  average  carbon  chain  
length,  so  the  range  of  high  and  low  values  was  change  to  390   -­‐  400 .  It  was  also  shown  that  higher  
catalyst  weight  packings  contributed  to  a  higher  conversion  and  smaller  reactor  tube  diameters  lowered  
cost.  These  ranges  were  adjusted  to  be  10     15  lbs  of  catalyst  and  1     1.5  in  diameter  reactor  tubes.  
Several  more  rounds  of  optimization  were  completed,  every  time  adjusting  parameters  in  the  same  way.  
Finally,  a  final  set  of  optimal  independent  parameters  was  decided  upon.  At  this  point  the  reactor  length  
was  55.15  ft  long.  The  maximum  length  of  the  reactor  allowed  is  60ft.  The  weight  of  the  catalyst  was  
24  
  
increased  until  the  maximum  length  was  acquired.  It  was  checked  that  this  catalyst  increase  maximized  
the  conversion  with  little  effect  on  the  cost  and  no  negative  effect  on  the  average  carbon  chain  length  of  
the  products.  The  optimal  independent  and  dependent  variables  of  the  FTR  are  located  in  Table  (6).  
Table  6:  Table  of  FTR  Optimized  Parameters  
Variable   Independent/Dependent   Value   Units  
Inlet  Temperature   Independent   400     
Catalyst  Weight   Independent   16.5   lb  
Number  of  Tubes   Independent   1000   n/a  
Diameter  of  tube   Independent   1   In  
Pressure   Independent   330   Psia  
Shell  Temperature   Independent   480   K  
Cost   Dependent   7.4   Million  USD  
Average  Carbon  Chain  
length  of  Products  
Dependent   8.03   Carbons  
Conversion   Dependent   0.94   n/a  
     
   In  order  to  characterize  the  optimization  process  of  the  FTR  a  sensitivity  analysis  was  performed  
exploring  how  sensitive  the  total  cost  of  the  reactor,  the  reaction  conversion,  and  the  average  carbon  
chain  length  of  the  products  are  to  changes  in  the  independent  variables:  temperature  and  pressure  of  
the  inlet  feed  stream,  the  number  of  reactor  tubes,  the  diameter  of  the  reactor  tubes,  the  weight  of  the  
catalyst  packing  in  each  reactor  tube,  and  the  temperature  of  the  cooling  water  stream.  Tornado  plots  
were  constructed  for  each  dependent  variable  to  demonstrate  these  relationships  and  represented  in  
Figure  (2).  
25  
  
  
Figure  2:  Tornado  plot  for  the  sensitivity  analysis  of  overall  reactor  cost  
   From  Figure  (2),  it  can  be  seen  that  the  temperature  of  the  cooling  water  had  the  greatest  effect  
on  the  cost  of  the  reactor.  Pressure  had  no  impact,  and  the  diameter  of  the  reactor  tube,  number  of  
reactor  tubes,  and  catalyst  weight  all  equally  effected  the  overall  cost.  
  
Figure  3:  Tornado  plot  for  the  sensitivity  analysis  of  the  conversion  of  the  reaction  
0.0E+00 5.0E+06 1.0E+07 1.5E+07
Inlet  Temp
Catalyst  Weight
Number  of  tubes
Diameter  of  tubes
Pressure
Shell  Temperature
Cost  (million  USD)
0.00 0.50 1.00 1.50
Inlet  Temp
Catalyst  Weight
Number  of  tubes
Diameter  of  tubes
Pressure
Shell  Temperature
Conversion
26  
  
  
   Figure  (3)  demonstrates  a  similar  relationship  between  the  independent  variables  and  there  
effect  on  the  conversion  of  the  reaction.  Once  again,  pressure  of  the  feed  stream  had  very  little  effect,  
and  the  temperature  of  the  cooling  water  stream  was  the  most  important  factor  is  maximizing  the  
conversion.  
  
Figure  4:  Tornado  plot  for  the  sensitivity  analysis  of  the  average  carbon  chain  length  of  the  products  
  
   Figure  (4)  shows  that  the  independent  variables  that  had  the  greatest  effect  on  the  average  
carbon  chain  length  of  the  products  are  the  shell  temperature,  diameter  of  the  reactor  tubes  and  the  
inlet  temperature  of  the  feed  stream.  
  
The  products  from  the  FTR  unit  require  significant  separation,  a  comprehensive  step  by  step  
walk  through  the  separation  of  these  products  will  be  discussed  in  the  following  section.  Figure  (5)  is  the  
PFD  of  the  FTR  unit  and  Table  (7)  is  the  corresponding  stream  tables  with  the  unit.  
0.0 2.0 4.0 6.0 8.0 10.0
Inlet  Temp
Catalyst  Weight
Number  of  tubes
Diameter  of  tubes
Pressure
Shell  Temperature
Average  Chain  Length  (#  of  carbon  atoms)
27  
  
FTR  PRODUCTSYNGAS
FISCHER  TROPSCH  REACTOR
  
Figure  5:  A  PFD  of  the  FTR  unit  
  
  
Table  7:  Stream  Tables  for  the  FTR  Unit  
     Units   SYNGAS   FEED  
Component  Mole  Flow                 
CO   MSCFD   423.52   42.47  
CO2   MSCFD   106.38   104.74  
H2   MSCFD   847.04   54.26  
WATER   MSCFD   394.01   775.78  
N2   MSCFD   3.59   5.00  
CH4   MSCFD   4.48   13.50  
ETHANE   MSCFD   0.00   0.38  
PROPANE   MSCFD   0.00   0.38  
N-­‐BUT-­‐01   MSCFD   0.00   0.38  
NAPTHA   MSCFD   0.00   7.04  
DIESEL   MSCFD   0.00   6.89  
C21-­‐C25   MSCFD   0.00   2.04  
C26-­‐C29   MSCFD   0.00   1.19  
C30-­‐C35   MSCFD   0.00   1.28  
C36-­‐C47   MSCFD   0.00   1.42  
C48PLU   MSCFD   0.00   0.66  
Mole  Flow   MSCFD   1779.02   1017.42  
Mass  Flow   LB/DAY   67257.43   67314  
Temperature   F   1929.46   382.21  
Pressure   PSIG   300.00   278.30  
Total  Inlet  Mass  (LB/DAY)   67257     
Total  Outlet  Mass  (LB/DAY)   67257     
  
  
28  
  
Separation  Unit  Implementation  
The  products  from  the  Fisher  Tropsch  Reactor  consist  of  hydro  carbons  ranging  from  C1  to  C60  
along  with  some  left  over  CO,  CO2,  H2,  H2O,  and  N2.  These  products  needed  to  be  separated  into  
specific  groups  of  hydrocarbons  in  order  to  be  sold  to  the  customer.  The  different  groups  of  
hydrocarbons  consist  of  Naptha  (C5-­‐C10),  Diesel  (C11-­‐C20),  wax  (C21+),  and  the  individual  components  
of  methane,  ethane,  propane,  and  butane.  The  wax  components  were  then  sent  to  a  hydroisomerization  
unit  in  order  to  break  those  products  down  to  smaller  hydrocarbons  to  be  sold.  The  following  summary  
is  a  comprehensive  step  by  step  walk  through  of  the  separation  train  to  achieve  the  desired  products.  
The  components  in  parentheses  refer  to  specific  streams  in  the  process  and  can  be  seen  in  the  overall  
PFD  of  the  process.  
The  feed  from  the  FTR  was  sent  through  an  initial  flash  drum  (FLASH1)  to  separate  as  much  of  
the  heavier  wax  components  from  the  desired  products.  The  top  stream  from  this  flash  drum  (DIST1A)  
was  then  cooled  by  a  heat  exchanger  (HX1)  and  created  a  new  colder  stream  (DIST1B)  before  being  put  
into  another  flash  drum  (FLASH2).  The  bottom  stream  from  the  first  flash  drum  (BOT1)  was  taken  to  a  
mixer  (MIX1)  to  be  mixed  with  other  bottom  products.  The  second  flash  drum  (FLASH2)  has  three  
products  and  was  used  to  further  separate  the  heavier  hydrocarbons.  The  top  stream  (DIST2A)  was  then  
cooled  by  a  separate  heat  exchanger  (HX2)  to  make  a  colder  stream  (DIST2B)  before  being  sent  to  
another  flash  drum  (FLASH3).  The  non-­‐aqueous  bottom  product  from  FLASH2  (BOT2)  was  then  sent  to  
the  same  mixer  (MIX1)  as  BOT1.  The  aqueous  bottom  stream  (BOT2AQU)  was  sent  to  a  different  mixer  
(MIX3)  to  be  mixed  with  other  aqueous  bottom  products.  DIST2B  was  sent  to  FLASH3  to  further  
separate  the  heavier  components.  FLASH3  products  include  one  vapor  top  stream  (DIST3A),  one  
aqueous  bottom  stream  (BOT3AQU),  and  one  liquid  bottom  stream  (BOT3).  DIST3A  was  cooled  by  a  
separate  heat  exchanger  (HX3)  to  create  another  colder  stream  (DIST3B)  and  sent  to  another  flash  drum  
(FLASH4).  BOT3  was  sent  to  a  separate  flash  drum  (FLASH6)  to  have  its  components  be  separated  
29  
  
further.  BOT3AQU  was  sent  to  the  aqueous  mixer  (MIX3).  DIST3B  was  sent  to  FLASH4  and  produced  
three  products.  The  top  product  (DIST4A)  was  cooled  by  a  heat  exchanger  (HX4)  and  the  cooled  stream  
(DIST4B)  and  sent  to  another  flash  drum  (FLASH5).  The  non-­‐aqueous  bottom  product  (BOT4)  was  sent  
back  to  MIX1  to  be  mixed  with  BOT1  and  BOT2.  These  three  streams  were  mixed  together  to  make  a  
stream  consisting  of  all  of  their  components  (S1).  S1  was  then  sent  through  a  valve  (VALVE1)  to  decrease  
the  pressure  of  the  stream  (S2).  The  aqueous  bottom  product  of  FLASH4  (BOT4AQU)  was  sent  to  MIX3  
with  the  other  previous  aqueous  bottom  products.  DIST4B  entered  FLASH5  and  created  three  more  
streams.  The  top  vapor  stream  (DIST5)  was  sent  to  a  mixer  (MIX5).  The  non-­‐aqueous  bottom  stream  
from  FLASH5  (BOT5A)  was  cooled  by  a  heat  exchanger  (REFRIDGE)  to  create  a  colder  stream  (BOT5B).  
BOT5B  was  then  sent  to  a  decanter  (DECANT)  to  create  two  different  streams  (S11)  and  (S12).  S11  was  
sent  back  to  MIX3  with  the  other  aqueous  streams.  The  aqueous  bottom  product  (BOT5AQU)  was  sent  
to  MIX3  with  the  other  aqueous  bottom  streams  (BOT2AQU,  BOT3AQU,  BOT4AQU,  BOT5AQU,  
BOT8AQU)  and  S11  to  be  mixed.  The  product  of  MIX3  (S16)  was  used  later  in  the  process.    
The  products  of  FLASH6  consisted  of  two  streams.  The  bottom  product  (BOT6)  was  sent  to  a  
mixer  (MIX2)  to  be  mixed  with  other  streams.  The  top  product  (DIST6A)  was  cooled  by  a  heat  exchanger  
(HX5)  to  create  a  cooler  stream  (DIST6B)  for  further  separation.  DIST6B  was  sent  through  a  flash  drum  
(FLASH7).  FLASH  7  created  two  products  to  be  sent  elsewhere  in  the  system.  The  bottom  product  (BOT7)  
was  sent  to  MIX2  to  be  mixed  with  S2  and  BOT6.  The  top  product  from  FLASH7  was  sent  to  a  mixer  
(MIX4)  to  be  mixed  with  certain  products  later  in  the  separation.  The  product  of  MIX2  (S3)  was  cooled  
by  a  heat  exchanger  (HX6)  to  make  a  cooler  stream  (S4).  The  pressure  of  S4  was  decreased  by  a  valve  
(VALVE2)  to  create  the  stream  S5.  
S5  was  sent  to  a  distillation  column  (DIST1)  with  a  total  condenser  and  a  partial  reboiler  to  
separate  the  product  into  2  streams.  The  bottoms  product  is  the  WAX  stream  that  was  sent  to  the  
hydroisomerization  unit.  The  distillate  (S6)  was  sent  through  a  heat  exchanger  (HX7)  to  cool  the  stream  
30  
  
to  create  a  colder  stream  S7.  S7  was  put  into  a  distillation  column  (DIST2)  with  a  total  condenser  and  a  
partial  reboiler  to  create  two  more  product  streams.  The  bottoms  stream  is  the  DIESEL  product  stream.  
The  distillate  (S8)  was  sent  to  a  mega  compressor  (B3)  to  compress  the  stream  (S9).  MIX4  mixed  the  
streams  DIST7  from  FLASH7,  S12  from  the  decanter,  and  S9  from  the  mega  compressor  (B3).  The  
product  from  MIX4  (S13)  was  sent  to  a  heat  exchanger  (HX10)  to  cool  the  stream  and  create  S14.  S14  
was  sent  to  a  flash  drum  (FLASH8)  and  created  three  product  streams.  The  non-­‐aqueous  bottom  stream  
was  the  NAPTHA  desired  product  stream.  The  aqueous  bottom  stream  was  sent  to  MIX3  to  be  mixed  
with  the  other  aqueous  bottom  streams  and  S11.  The  top  product  (DIST8)  was  sent  to  a  compressor  
(COMP2)  to  compress  the  stream  and  create  a  highly  pressurized  stream  (S10).  
S10  was  sent  to  a  mixer  (MIX5)  to  be  mixed  with  the  DIST5  product  from  FLASH5.  The  product  
from  MIX5  (S15)  was  sent  to  a  valve  (VALVE4)  to  decrease  the  pressure  of  the  stream  and  create  (S16).  
S16  was  then  cooled  by  a  heat  exchanger  (HX8)  to  create  the  cooler  product  (S17).  The  product  of  from  
MIX3  (S18)  was  sent  to  a  valve  (VALVE3)  to  decrease  the  pressure  in  the  stream  and  create  S19.  S19  was  
cooled  by  a  heat  exchanger  (HX9)  to  create  the  cool  stream  S20.  S17  and  S20  were  sent  to  a  stripping  
column  (STRIP1)  to  create  2  streams.  The  top  stream  (FLUEGAS1)  is  a  product  stream.  The  bottom  
product  (BOTSTRIP1)  was  sent  to  another  stripping  column  (STRIP2).  Another  air  stream  (AIR)  necessary  
for  the  stripping  column  was  added  and  sent  into  STRIP2.  The  two  products  of  STRIP2  are  FLUEGAS2  and  
WASTEH2O.    
The  product  streams  from  this  separation  process  that  contain  desired  products  are  NAPTHA,  
DIESEL,  and  WAX  streams.  The  NAPTHA  and  DIESEL  streams  are  ready  for  packaging  and  sale.  The  WAX  
stream  requires  further  separation  in  order  to  achieve  the  desired  products.  A  Hydroisomerization  Unit  
was  employed  in  order  to  achieve  the  desired  separation.  This  will  be  discussed  in  detail  in  the  following  
section.  Figure  (6)  is  the  PFD  for  the  separation  unit,  Table  (8)  is  the  stream  tables  of  the  inlet  and  outlet  
31  
  
streams  for  the  separation  unit,  and  Table  (9)  displays  the  mass  balance  values  for  the  Separation  Unit.  
The  full  stream  tables  can  be  seen  in  Appendix  B.  
32  
  
  
Figure  6:  PFD  for  the  Separation  unit  
FLASH1
DIST1A
BOT1
HX1
DIST1B
VALVE1MIX1
FLASH2
DIST2A
BOT2
HX2
DIST2BFLASH3
DIST3A
BOT3
BOT3AQU
S1S2
MIX2
FLASH6
BOT6
DIST6A
HX2
DIST6B
FLASH7
BOT7
DIST7
S3
HX6
S4
VALVE2
DIST1
S6
WAX
HX7
DIST2
S7
DIESEL
S8
B3
S9MIX4
S13
HX10
S14
FLASH8
NAPTHA
DIST8
HX3
DIST3B
FLASH4
BOT4
BOT4AQU
DIST4A
HX4
DIST4B
FLASH5DIST5
BOT5A
BOT5AQU
BOT8AQU
MIX3
REFRIDGE
DECANT
BOT5B
S11
S12
COMP2
MIX5
S10
S18
VALVE3
S15
VALVE4
S16
HX8
HX9
S19
STRIP1
S17
S20
STRIP2
FLUEGAS1
BOTSTRIP1
AIR
FLUEGAS2
WASTEH2O
FTR  Product
33  
  
Table  8:  Inlet  and  Outlet  Stream  Tables  for  the  Separation  Unit  
     Units   FEED   AIR   NAPTHA   DIESEL   WAX   WASTE  
H2O  
FLUE  
GAS1  
FLUE  
GAS2  
From                  FLASH8   DIST2   DIST1   STRIP2   STRIP1   STRIP2  
To        FLASH1   STRIP2                                
Substream:  
MIXED  
                                            
Phase:        Mixed   Vapor   Liquid   Liquid   Liquid   Liquid   Vapor   Vapor  
Component  
Mole  Flow  
                                            
CO   MSCFD   42.47   0.00   0.00   0.00   0.00   0.00   42.44   0.03  
CO2   MSCFD   104.74   0.00   0.03   0.00   0.00   0.00   104.32   0.39  
H2   MSCFD   54.26   0.00   0.00   0.00   0.00   0.00   54.26   0.00  
WATER   MSCFD   775.78   0.00   0.01   0.00   0.00   254.76   278.71   242.31  
N2   MSCFD   5.00   19.13   0.00   0.00   0.00   0.01   5.00   19.12  
CH4   MSCFD   13.50   0.00   0.00   0.00   0.00   0.00   13.48   0.02  
ETHANE   MSCFD   0.38   0.00   0.00   0.00   0.00   0.00   0.38   0.00  
PROPANE   MSCFD   0.38   0.00   0.00   0.00   0.00   0.00   0.37   0.01  
N-­‐BUT-­‐01   MSCFD   0.38   0.00   0.01   0.00   0.00   0.00   0.36   0.01  
NAPTHA   MSCFD   7.04   0.00   5.86   0.00   0.00   0.00   1.18   0.00  
DIESEL   MSCFD   6.89   0.00   0.26   6.39   0.21   0.00   0.02   0.00  
C21-­‐C25   MSCFD   2.04   0.00   0.00   0.00   2.04   0.00   0.00   0.00  
C26-­‐C29   MSCFD   1.19   0.00   0.00   0.00   1.19   0.00   0.00   0.00  
C30-­‐C35   MSCFD   1.28   0.00   0.00   0.00   1.28   0.00   0.00   0.00  
C36-­‐C47   MSCFD   1.42   0.00   0.00   0.22   0.95   0.00   0.26   0.00  
C48PLU   MSCFD   0.66   0.00   0.00   0.00   0.66   0.00   0.00   0.00  
Mole  Flow   MSCFD   1017.42   91.08   6.17   6.61   6.34   254.81   500.79   333.79  
Temperature   F   382.14   100.00   140.00   345.83   460.33   196.55   183.93   196.31  
Pressure   PSIG   278.30   0.00   0.00   -­‐13.54   -­‐13.54   0.00   0.00   0.00  
  
Table  9:  Mass  Balance  for  the  Separation  Unit.  
          FEED   AIR   NAPTH
A  
DIESEL   WAX   WASTE  
H2O  
FLUE  
GAS1  
FLUE  
GAS2  
Mass  
Flow  
LB/DA
Y  
67313.9
5  
7478.8
5  
1748.93   3848.5
8  
7532.5
2  
12098.1
8  
30536.3
7  
19028.1
1  
Total  Inlet  
Mass  
(LB/DAY)  
74793  
Total  
Outlet  
Mass  
(LB/DAY)  
74793  
*  The  blue  boxes  are  inlet  mass  and  green  are  the  outlet  mass  
34  
  
Hydro-­‐isomerization  Unit  
The  hydroisomerization  unit  took  the  wax  produced  from  the  separation  train  and  broke  it  down  
into  smaller  hydrocarbon  chains.  The  amount  of  each  carbon  chain  produced  from  the  
hydroisomerization  unit  were  assumed  by  a  weight  percent  of  the  total  weight  input  into  the  unit.  The  
total  weight  of  the  WAX  stream  was  313.85   .    Table  (10)  demonstrates  the  amount  of  each  
hydrocarbon  leaving  the  hydroisomerization  unit  based  on  the  weight  percent  given  in  the  plant  
specifications.  
Table  10:  Mass  Flow  rates  of  Hydrocarbons  from  the  Hydroisomerization  Unit  
Hydrocarbon     Mass  flow  (lb/hr)   Wt%  from  total  Wax  
C1   3.14   1  
C2   1.57   0.5  
C3   10.98   3.5  
C4   10.98   3.5  
Naptha   78.46   25  
Diesel   208.71   66.5  
  
These  components  are  mixed  and  require  separation  in  order  to  recover  the  naptha  and  diesel  portions  
of  the  stream  (WAX).  The  first  step  is  to  increase  the  pressure  of  the  mixture  from  1.16  psia  to  14.7  psia.  
This  was  completed  by  using  a  compressor.  The  unit  operation  table  of  the  compressor  can  be  seen  in  
the  equipment  specifications  section.  After  the  compressor  the  mixture  was  sent  to  a  distillation  column  
(HIDIST1)  to  separate  the  C1     C4  components  from  the  naptha  and  diesel  components  of  the  stream.  
The  first  distillation  column  was  operated  at  atmospheric  pressure  with  a  partial  condenser  and  a  partial  
reboiler.  The  partial  condenser  was  used  because  the  components  being  produced  in  the  distillate  (C1-­‐
C4)  are  all  vapor  and  do  not  require  any  more  separation.  The  unit  operations  table  for  the  first  
distillation  column  can  be  seen  in  equipment  specifications.  The  summary  of  distillation  column  1  can  be  
seen  in  Table  (11).  
35  
  
Table  11:  A  Summary  of  the  Separation  in  Distillation  Column  1  
     Mole  Fraction  in  
distillate  
Mole  Fraction  in  
bottoms  
Temperature  
(F)  
Pressure  
(psia)  
C1-­‐C4   0.9919   0.0062   31.3   14.7  
Naptha  and  
Diesel  
0.0081   0.9938   247.9   14.7  
  
As  is  demonstrated  in  Table  (11),  a  very  good  separation  is  achieved  from  the  first  distillation  
column  unit.  The  C1-­‐C4  stream  is  a  product  and  no  longer  required  any  more  separation.  The  bottoms  
product  (NAPDIE)  was  sent  to  another  distillation  column  because  the  mixture  needed  further  
separation  to  create  more  product  to  be  sold.  Another  distillation  column  (HIDIST2)  was  used  to  
separate  the  naptha  and  diesel  into  each  pure  component.  A  total  condenser  and  a  partial  reboiler  were  
implemented  for  this  column  because  both  the  distillate  and  the  bottoms  need  to  be  liquid  for  transport  
and  sale.  The  unit  operations  for  the  second  distillation  column  can  be  seen  in  equipment  specifications.  
The  summary  of  distillation  column  2  can  be  seen  in  Table  (12).  
Table  12:  A  Summary  of  the  Separation  in  Distillation  Column  2.  
     Mole  Fraction  
in  distillate  
Mole  Fraction  
in  bottoms  
Temperature  (F)   Pressure  (psia)  
Naptha   0.9856   0.0001   182.6   14.7  
Diesel   0.0001   0.9999   506.1   14.7  
  
Figure  (7)  demonstrates  the  separation  of  the  naptha  and  diesel  components  and  is  the  PFD  of  the  
Hydroisomerization  Unit.  Table  (13)  are  the  stream  tables  for  the  HI  unit.  
  
36  
  
Hydroisomerization  Unit
HI  PROD1
HI  COMPRESSOR
HIDIST1
HIDIST2
HI  PROD2
C1-­‐C4
NAPDIE
NAPTHA2
DIESEL2
WAX
  
Figure  7:  Hydroisomerization  unit  PFD  
Table  13:  Stream  tables  and  Mass  Balance  for  the  Hydroisomerization  Unit  
     Units   HI  PROD  1   HI  PROD  2   C1-­‐C4   NAPDIE   NAPTHA   DIESEL  
From             HI  
CIOMPRESSOR  
HIDIST  1   HIDIST  1   HIDIST  2   HIDIST  2  
To        HI  
CIOMPRESSOR  
HIDIST  1        HIDIST  2            
Substream:  
MIXED  
                                  
Phase:        Vapor   Vapor   Vapor   Liquid   Liquid   Liquid  
Component  
Mole  Flow  
                                  
CH4   MSCFD   1.78   1.78   1.78   0.00   0.00   0.00  
ETHANE   MSCFD   0.48   0.48   0.47   0.00   0.00   0.00  
PROPANE   MSCFD   2.27   2.27   2.24   0.03   0.03   0.00  
N-­‐BUT-­‐01   MSCFD   1.72   1.72   1.66   0.07   0.07   0.00  
NAPTHA   MSCFD   6.90   6.90   0.05   6.85   6.85   0.00  
DIESEL   MSCFD   9.09   9.09   0.00   9.09   0.00   9.09  
Mole  Flow   MSCFD   22.24   22.24   6.20   16.04   6.95   9.09  
Mass  Flow   LB/DAY   7532.50   7532.50   640.26   6892.23   1883.04   5009.19  
Temperature   F   460.33   543.10   31.28   247.89   182.57   506.10  
Pressure   PSIG   -­‐13.54   0.00   0.00   0.00   0.00   0.00  
Total  Inlet  Mass  
(LB/DAY)  
7532.50  
Total  Outlet  
Mass  (LB/DAY)  
7532.50  
  
  
37  
  
Heat  Integration  
In  industrial  processes  there  often  exists  the  opportunity  to  integrate  the  streams  involved  using  
energy  released  from  some  streams  to  heat  other  streams.  This  heat  integration  can  decrease  utility  
costs.  For  this  system  streams  from  the  syngas  unit,  FTR  unit  and  the  separation  unit  were  considered  
for  heat  integration.  A  compilation  of  the  selected  streams  and  the  associated  parameters  are  located  in  
Table  (14).  Each  stream  was  determined  to  be  a  hot  stream,  which  gives  off  heat,  or  a  cold  stream,  
which  requires  heat.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
38  
  
Table  14:  Streams  Considered  for  Heat  Integration  
Stream   Label   Condition   Source  
Temperature  
( )  
Target    
Temperature  ( )  
Cp  (Btu/ )   Duty,  Q  (Btu)  
Heat  
Exchanger  
1  
H1   Hot   409   365   17116.34   -­‐753,119  
Heat  
Exchanger  
2  
H2   Hot   365   365   n/a   -­‐515,546  
Heat  
Exchanger  
9  
H3   Hot   323   90   1706.44   -­‐397,601  
Flash  
Column  2  
H4   Hot   365   365   n/a   -­‐140,997  
Heat  
Exchanger  
4  
H5   Hot   250   95   610.95   -­‐94,697  
HI  Unit  
Distillation  
Column  2  
reboiler    
H6   Hot   543   247   260.79   -­‐77,194  
Heat  
Exchanger  
6  
H7   Hot   390   200   312.14   -­‐59,307  
Syngas  
Heat  
Exchanger  
H8   Hot   1938   400   1790   -­‐2,753,020  
Flash  
Column  1  
C1   Cold   382   409   1736.63   46,889  
HI  Unit  
distillation  
column  2  
reboiler  
C2   Cold   247   506   221.86   57,240  
Distillation  
Column  1  
reboiler  
C3   Cold   199   460   498.07   127,646  
Stripper  2  
(top  stage)  
C4   Cold   150   196   10517.61   483,810  
Stripper  1  
(bottom  
stage)  
C5   cold   90   190   7178.58   717,858  
  
39  
  
In  order  to  determine  which  streams  to  integrate,  the  absolute  value  of  the  energy  duties  for  all  
streams  were  compared.  The  streams  located  in  Table  (14)  were  selected  because  the  associated  heat  
duties  were  significantly  larger  than  the  duties  of  other  streams.    
   The  temperature  interval  method(13)
  was  used  in  the  preliminary  design  of  the  heat  exchanger  
network.  The  minimum  approach  temperature  was  selected  to  be  10 .  Then,  the  temperature  for  the  
hot  streams  were  adjusted  down  10 accordingly.  All  of  the  source  and  target  temperatures  were  
sorted  from  largest  to  smallest  and  Figure  (8)  was  constructed  to  show  the  temperature  intervals  that  
exist  in  the  process.  
  
Figure  8:  Diagram  of  the  Temperature  Interval  Method  
40  
  
Using  the  heat  capacities  of  each  stream,  the  change  in  enthalpy  for  each  interval  was  calculated  
using  the  Equation  (31).  
)  (31)  
Then,  the  residual  enthalpy  of  each  interval  was  calculated  by  adding  to  each  enthalpy  the  value  before  
it.  This  gives  an  indication  of  where  the  pinch  point  in  the  process  exists.  Table  15  lists  the  change  in  
enthalpy  and  residual  enthalpy  for  each  interval.    
Table  15:  Calculated  Enthalpies  for  the  Temperature  Interval  Method  
Interval  
1   1395   2497050   2497050  
2   27   55371   2552421  
3   46   84131   2636552  
4   51   68333   2704885  
5   10   -­‐3968   2700918  
6   9   -­‐3571   2697347  
7   8   119437   2816784  
8   2   33332   2850116  
9   25   1081002   3931118  
10   42   -­‐5796   3925322  
11   65   101949   4027272  
12   8   14322   4041594  
13   3   7204   4048798  
14   38   81338   4130136  
15   3   7889   4138024  
16   6   -­‐47328   4090696  
17   40   -­‐615152   3475544  
18   60   -­‐291671   3183872  
19   5   11587   3195459  
20   5   8532   3203992  
  
In  this  case,  the  pinch  point  exists  before  interval  1,  or  at  1938   .  This  means  that  there  is  no  
hot  utility  for  the  process.  The  cold  utility  for  the  process  is  3,203,992  btu/hr,  the  residual  enthalpy  
41  
  
associated  with  interval  20,  the  last  temperature  interval  being  evaluated.  No  external  heating  sources  
will  be  necessary  for  the  integration  of  these  streams,  because  the  hot  utility  equals  zero.    
The  next  step  was  to  match  streams  based  on  temperatures  of  the  streams  and  energy  duties  available.  
In  order  for  a  hot  stream  to  be  able  to  heat  a  cold  stream,  the  temperatures  of  the  hot  stream  must  be  
greater  than  the  temperatures  of  the  cold  streams.  Only  three  of  the  hot  streams  were  necessary  to  
supply  enough  energy  to  heat  all  of  the  cold  streams  in  question.  Figure  9  shows  the  final  heat  
integration  of  the  process;  all  temperatures  listed  below  are  in  units  of     
  
Figure  9:  Final  Heat  integration  Diagram  
Direction  of  heat  transfer  is  from  the  hot  (red)  streams  to  the  cold  (blue)  streams  and  are  
depicted  by  the  green  circles.  Stream  H8  is  the  feed  to  the  FTR  unit  from  the  Syngas  unit.  The  stream  
exits  the  Syngas  Unit  at  1938   and  needs  to  enter  the  FTR  Unit  at  400   .  The  amount  of  energy  
associated  with  this  stream  is  more  than  sufficient  to  heat  cold  streams  C1,  C2,  and  C3.  The  
temperatures  labeled  above  the  heat  transfer  streams  represent  is  the  end  of  the  temperature  interval  
42  
  
that  that  hot  stream  needs  to  decrease  to  supply  enough  energy  for  that  cold  stream.  For  example,  C3  
requires  127,646  btu/hr  to  continuously  heat  it  from  199   to  460 .  127,646   btu/hr  is  available  from  
stream  H8  by  cooling  it  from  1938   to  1866.69 .  Sample  calculations  are  shown  below.  
  
  (2)  
Energy  required:     
  
  
  
  
  is  the  intermediate  temperature  that  stream  H8  will  decrease  to  after  heating  stream  C3.  This  value  
must  be  great  that  the  target  temperature  for  H8,  which  in  this  case  is  400   H8  has  more  than  enough  
energy  to  heat  C3,  as     (1866.69 )  is  much  greater  than     (400   This  analysis  was  performed  for  
the  other  four  cold  streams  to  produce  the  final  heat  integration  design.  A  PFD  of  the  process  is  shown  
in  Figure  10.  
43  
  
  
Figure  10:  Process  flow  diagram  of  the  integrated  heat  streams  
  
Equipment  Specifications  
  
   This  section  (Tables  (16)-­‐(29))  lists  all  of  the  equipment  specifications  and  operating  conditions  
for  the  equipment  in  the  entire  process.  The  material  used  is  carbon  steel.  Carbon  steel  is  a  cheap  
material  and  although  we  have  some  corrosive  materials  in  the  process,  the  amount  is  negligible  and  
will  not  affect  the  equipment.  
  
  
  
  
44  
  
Separation  Unit  Sizing  Equipment  
Table  16:  Flash  Column  Equipment  Specifications  
Column  
#  
Outlet  
Temperature  
  
Outlet  
Pressure  
(psia)  
Vapor  
Fraction  
Heat  Duty  
(Btu/hr)  
Vessel  
diameter  
(ft)  
Vessel  tangent  
to  tangent  
height  (ft)  
Liquid  
volume  
(gal)  
1   408.49   293   0.99   468892   3   12   634.561  
2   365   293   0.5   -­‐140997   3   12   634.561  
3   260   293   0.49   -­‐14555.3   3   12   634.561  
4   250   293   0.98   -­‐5464.84   3   12   634.561  
5   95   293   0.86   -­‐107.92   3   12   634.561  
6   310   14.7   0.12   2358.02   3   12   634.561  
7   235   14.7   0.94   -­‐5.22E-­‐13   3   12   634.561  
8   140   14.7   0.19   2.94E-­‐05   3   12   634.561  
Table  17:  Distillation  Column:  Condenser/Top  Stage  Performance  
Column  #   Temperature      Heat  Duty  
(Btu/hr)  
Distillate  Rate  
(lbmol/hr)  
Reflux  Rate  
(lbmol/hr)  
Reflux  Ratio  
DIST-­‐1   339.18   -­‐39195.80   0.86   1.55   1.8  
DIST-­‐2   267.05   -­‐6830.24   0.13   0.20   1.5  
Table  18:  Distillation  Column:  Reboiler/  Bottom  Stage  Performance  
Column  #   Temperature  
  
Heat  Duty  
(Btu/hr)  
Bottoms  Rate  
(lbmol/hr)  
Boilup  Rate  
(lbmol/hr)  
Boilup  Ratio  
DIST-­‐1   460.33   127646.00   0.70   2.19   3.15  
DIST-­‐2   345.83   224144.40   0.73   0.92   1.27  
Table  19:  Distillation  Column  Equipment  Specifications  
  Column  #   Tray  type   Vessel  
diameter  
(ft)  
Vessel  tangent  
to  tangent  
height  (ft)  
Design  gauge  
pressure  
(psig)  
Operating  
temperature  
  
Number  
of  trays  
Tray  
spacing  
(in)  
DIST-­‐1   SIEVE   1.5   52   15   345.83   20   24  
DIST-­‐2   SIEVE   2   78   15   460.33   33   24  
Table  20:  Compressor  Equipment  Specifications  
Operation   Value  
Model   Isentropic  Compressor  
Phase  Calculations   Vapor  Phase  
Inidicated  Horsepower  (hp)   0.35  
Brake  horsepower  (hp)   0.35  
Net  work  required  (hp)   .035  
Power  Loss  (hp)   0  
Efficiency   0.72  
Mechanical  Efficiency   1  
Outlet  Temperature  (    419.01  
Outlet  Pressure  (psia)   265.40  
45  
  
  
Table  21:  Decanter  Equipment  Specifications  
Operation     Value  
Pressure  (psia)   265.4  
Temperature      86  
Outlet  temperature      86  
Outlet  pressure  (psia)   265.4  
Calculated  heat  duty  (Btu/hr)   -­‐90.075  
Net  duty  (Btu/hr)   -­‐90.075  
Vessel  diameter  (ft)   3  
Vessel  tangent  to  tangent  height  (ft)   12  
Liquid  volume  (gal)   634.561  
  
Table  22:  Heat  Exchanger  Equipment  Specifications  
Heat  
Exchanger  #  
Outlet  Temperature  
  
Outlet  Pressure  
(psia)  
Vapor  
Fraction  
Heat  Duty  
(Btu/hr)  
Heat  transfer  area  
  
1   365   265.4   0.58   -­‐753119   19.339  
2   260   265.4   0.5   -­‐515546   17.855  
3   250   265.4   0.99   -­‐6812.07   0.181  
4   95   265.4   0.85   -­‐94697   8.066  
5   235   14.7   0.94   -­‐174.3   0.004  
6   200   14.7   0.01   -­‐59307   2.113  
7   200   1.16   0.07   -­‐33199.7   0.855  
8   90   14.7   1   -­‐1953.02   15.301  
9   90   14.7   0.01   -­‐397601   35.478  
10   140   14.7   0.19   -­‐1536.84   0.137  
  
Table  23:  Valve  Equipment  Specifications  
Valve  #:   1   2   3   4  
Calculation  type   ADIAB-­‐
FLASH  
ADIAB-­‐
FLASH  
ADIAB-­‐
FLASH  
ADIAB-­‐
FLASH  
Calculated  outlet  pressure  (psia)   14.69   1.16   265.4   14.7  
Calculated  pressure  drop  (psi)   278.30   13.53   0   250.7  
  
  
  
  
46  
  
Syngas  Unit  
Table  24:  Syngas  Reactor  Specifications  
Operation   Value  
Liquid  volume  (gal)   35.25  
Vessel  diameter  (ft)   1  
Vessel  tangent  to  tangent  height  (ft)   6  
Design  gauge  pressure  (psig)   550  
Design  temperature      1979.46  
  
HI  Unit  
Table  25:  HI  Distillation  Column:  Condenser/Top  Stage  Performance  
Column  #   Temperature      Heat  Duty  
(Btu/hr)  
Distillate  
Rate  
(lbmol/hr)  
Reflux  Rate  
(lbmol/hr)  
Reflux  
Ratio  
HI  DIST  1   31.27   -­‐27198.90   0.68   1.36   2  
HI  DIST  2   182.59   -­‐21840.30   0.76   0.61   0.8  
  
Table  26:  HI  Distillation  Column:  Reboiler/  Bottom  Stage  Performance  
Column  #   Temperature   (    Heat  Duty  
(Btu/hr)  
Bottoms  Rate  
(lbmol/hr)  
Boilup  Rate  
(lbmol/hr)  
Boilup  
Ratio  
HI  DIST  1   247.88   -­‐64574.00   1.76   2.16   1.22  
HI  DIST  2   506.10   54409.38   1.00   2.60   2.61  
  
Table  27:  HI  Distillation  Column  Specifications  
  Column  #   Tray  type   Vessel  
diameter  
(ft)  
Vessel  
tangent  to  
tangent  
height  (ft)  
Design  gauge  
pressure  (psig)  
Operating  
temperature  
  
Number  
of  trays  
Tray  
spacing  
(in)  
HI  DIST  1   SIEVE   1.5   30   15   247.91   9   24  
HI  DIST  2   SIEVE   1.5   30   15   506.13   9   24  
  
Table  28:  HI  Compressor  Equipment  Specifications  
Operation   Value  
Design  gauge  pressure  Inlet  (psig)   0.30  
Design  temperature  Inlet      460.33  
Design  gauge  pressure  Outlet  (psig)   0.30  
Driver  power  (hp)   6.38  
  
47  
  
FTR  Unit  
Table  29:  FTR  Equipment  Specifications  
Operation   Value  
Inlet  Temperature      400  
Catalyst  Weight  (lb)   16.5  
Number  of  Tubes   1000  
Diameter  of  tube  (in)   1  
Pressure  (psia)   330  
Shell  Temperature  (K)   480  
  
Utility  Summary  
A  summary  of  the  utility  requirements  for  each  unit  will  now  be  presented.  Values  for  the  
consumption  of  each  utility  were  read  from  ASPEN.  The  heat  duties  required  for  the  vertical  pressure  
vessels  were  obtained  by  taking  excess  energy  from  hot  streams  from  various  units  in  the  process.  Table  
(30)  shows  heat  available  and  required  from  the  hot  streams  and  cold  streams,  respectively,  as  well  as  a  
credit  heat  utility  for  left-­‐over  heat.    
Table  30:  Utility  Summary:  Heat  integration  
Hot  Streams  
Heat  Available    
(BTU/hr)   Cold  Streams  
Heat  Required  
(BTU/hr)  
Credit  
(BTU/hr)  
HX1  
                                                                                          
753,119        FLASH1    
                                                                                              
46,889       
HX2  
                                                                                          
515,546     
  
HIdist2(reboil)    
                                                                                              
57,240       
HX9  
                                                                                          
397,601        DIST1(reboil)    
                                                                                        
127,646        
FLASH2  
                                                                                          
140,997     
  
STRIP2(reboil)    
                                                                                        
483,810        
HX4  
                                                                                              
94,697       STRIP1(cond)    
                                                                                        
717,858        
HIdist1(reboil)  
                                                                                              
77,194       
48  
  
HX6  
                                                                                              
59,307       
Syngas  HX  
                                                                                  
2,753,020        
Total  
                                                                                  
4,791,481        Total    
                                                                                  
1,433,443     
                                              
3,358,038     
  
  
  
  Heat  from  heat  integration  was  used  to  calculate  the  flow  rate  of  the  cooling  water  to  steam,  
which  was  used  as  a  credit  and  thus  as  ensuing  profit.  This  conversion  of  heat  power  to  steam  mass  was  
used  by  the  following,  equation:  
      (32)  
Where     is  the  left-­‐over  heat,     is  the  heat  capacity  of  water,   and     are  the  initial  and  final  
temperatures  respectively,  chosen  as  room  temperature  (77  degrees  Fahrenheit)  and  353  degrees  
Fahrenheit  (which  represents  mid-­‐pressure  steam).     represents  the  flow  rate  of  steam,  which  was  
used  to  calculate  both  the  utility  costs  and  credits  for  different  units  of  the  reaction  process.  Table  (31)  
shows  the  utility  summary  for  the  Syngas  Unit.  All  utility  tables  presented  exist  on  a  per-­‐year  basis,  more  
specifically,  for  the  300  days  the  plant  is  operating.  
  
Table  31:  Utility  Summary  for  Syngas  Unit  
  
  
  
  
  
  
Utility   Consumed   Units   Price   Cost  
Total  Cost  per  
Year  
Methane  Feed   150,000   MSCF   $      2.00   $  300,000   $    322,000  
600#  490  F  HP  
Steam   3,560   klb   $      5.00   $  18,000     
Carbon  Dioxide  
500psig  &  100F   10,314   MSCF   $      0.40   $  4,000     
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report
Design Final Report

More Related Content

What's hot

S4 notes new to print 19,04,2018
S4 notes new to print 19,04,2018S4 notes new to print 19,04,2018
S4 notes new to print 19,04,2018
tuyidav
 
Tcxd 300 manual_02.10.10
Tcxd 300 manual_02.10.10Tcxd 300 manual_02.10.10
Tcxd 300 manual_02.10.10jftorresco
 
TEST UPLOAD
TEST UPLOADTEST UPLOAD
TEST UPLOAD
James Meldrum
 
Chapter 2-beginning-spatial-with-sql-server-2008-pt-i
Chapter 2-beginning-spatial-with-sql-server-2008-pt-iChapter 2-beginning-spatial-with-sql-server-2008-pt-i
Chapter 2-beginning-spatial-with-sql-server-2008-pt-i
Juber Palomino Campos
 
iOS App Reverse Engineering
iOS App Reverse EngineeringiOS App Reverse Engineering
iOS App Reverse Engineering
Zishe Sha
 
Ctfile
CtfileCtfile
Ctfile
lifebreath
 
Motorola air defense mobile 6.1 user guide
Motorola air defense mobile 6.1 user guideMotorola air defense mobile 6.1 user guide
Motorola air defense mobile 6.1 user guideAdvantec Distribution
 
8807290 shell-scripting
8807290 shell-scripting8807290 shell-scripting
8807290 shell-scriptingqaleeq
 
Cortana tutorial
Cortana tutorialCortana tutorial
Cortana tutorial
huynhvanphuc
 
Little blue-book-by-ahrefs
Little blue-book-by-ahrefsLittle blue-book-by-ahrefs
ChucK_manual
ChucK_manualChucK_manual
ChucK_manualber-yann
 
Shivprasad Koirala
Shivprasad KoiralaShivprasad Koirala
Shivprasad Koirala
Subhadip Pal
 
Ppdg Robust File Replication
Ppdg Robust File ReplicationPpdg Robust File Replication
Ppdg Robust File Replicationguest0dc8a2
 

What's hot (18)

S4 notes new to print 19,04,2018
S4 notes new to print 19,04,2018S4 notes new to print 19,04,2018
S4 notes new to print 19,04,2018
 
Tcxd 300 manual_02.10.10
Tcxd 300 manual_02.10.10Tcxd 300 manual_02.10.10
Tcxd 300 manual_02.10.10
 
TEST UPLOAD
TEST UPLOADTEST UPLOAD
TEST UPLOAD
 
Chapter 2-beginning-spatial-with-sql-server-2008-pt-i
Chapter 2-beginning-spatial-with-sql-server-2008-pt-iChapter 2-beginning-spatial-with-sql-server-2008-pt-i
Chapter 2-beginning-spatial-with-sql-server-2008-pt-i
 
End note
End noteEnd note
End note
 
iOS App Reverse Engineering
iOS App Reverse EngineeringiOS App Reverse Engineering
iOS App Reverse Engineering
 
Ctfile
CtfileCtfile
Ctfile
 
R admin
R adminR admin
R admin
 
8KL Test
8KL Test8KL Test
8KL Test
 
Motorola air defense mobile 6.1 user guide
Motorola air defense mobile 6.1 user guideMotorola air defense mobile 6.1 user guide
Motorola air defense mobile 6.1 user guide
 
8807290 shell-scripting
8807290 shell-scripting8807290 shell-scripting
8807290 shell-scripting
 
Cortana tutorial
Cortana tutorialCortana tutorial
Cortana tutorial
 
Little blue-book-by-ahrefs
Little blue-book-by-ahrefsLittle blue-book-by-ahrefs
Little blue-book-by-ahrefs
 
ChucK_manual
ChucK_manualChucK_manual
ChucK_manual
 
Shivprasad Koirala
Shivprasad KoiralaShivprasad Koirala
Shivprasad Koirala
 
Ppdg Robust File Replication
Ppdg Robust File ReplicationPpdg Robust File Replication
Ppdg Robust File Replication
 
Dsa
DsaDsa
Dsa
 
Spring webflow-reference
Spring webflow-referenceSpring webflow-reference
Spring webflow-reference
 

Similar to Design Final Report

Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileWayne Smith
 
Final Design Report
Final Design ReportFinal Design Report
Final Design ReportJason Ro
 
Fusegrade_FinalReport
Fusegrade_FinalReportFusegrade_FinalReport
Fusegrade_FinalReportDylan Moore
 
Energy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping MallEnergy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping Mall
AristotelisGiannopoulos
 
Pressure Vessel Selection Sizing and Troubleshooting
Pressure Vessel Selection Sizing and Troubleshooting Pressure Vessel Selection Sizing and Troubleshooting
Pressure Vessel Selection Sizing and Troubleshooting
Karl Kolmetz
 
1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual
JA Larson
 
Data Center Designs White Paper JKCS (1).pdf
Data Center Designs White Paper JKCS (1).pdfData Center Designs White Paper JKCS (1).pdf
Data Center Designs White Paper JKCS (1).pdf
gurkanarifyalcinkaya
 
Actuator Project Report - MASTER
Actuator Project Report - MASTERActuator Project Report - MASTER
Actuator Project Report - MASTERTom Leggett
 
The on-time completion of light rails in the United States: a qualitative com...
The on-time completion of light rails in the United States: a qualitative com...The on-time completion of light rails in the United States: a qualitative com...
The on-time completion of light rails in the United States: a qualitative com...
Sally Indah N
 
0620 w11 qp_31
0620 w11 qp_310620 w11 qp_31
0620 w11 qp_31King Ali
 
0620 s11 qp_31 theory
0620 s11 qp_31  theory0620 s11 qp_31  theory
0620 s11 qp_31 theory
yasminexxy1
 
Gbr Version 060209 Addendum
Gbr Version 060209 AddendumGbr Version 060209 Addendum
Gbr Version 060209 Addendummatthromatka
 
Modeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsModeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsKonstantinos D Pandis
 
Fabrication of mosfets
Fabrication of mosfetsFabrication of mosfets
Fabrication of mosfets
Akshatha suresh
 
Spring Reference
Spring ReferenceSpring Reference
Spring Referenceasas
 
Manual tutorial-spring-java
Manual tutorial-spring-javaManual tutorial-spring-java
Manual tutorial-spring-java
sagicar
 
Final Design Document 1
Final Design Document 1Final Design Document 1
Final Design Document 1
jmo46
 
Internship Report: Interaction of two particles in a pipe flow
Internship Report: Interaction of two particles in a pipe flowInternship Report: Interaction of two particles in a pipe flow
Internship Report: Interaction of two particles in a pipe flow
Pau Molas Roca
 

Similar to Design Final Report (20)

Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating Turnstile
 
Final Design Report
Final Design ReportFinal Design Report
Final Design Report
 
Fusegrade_FinalReport
Fusegrade_FinalReportFusegrade_FinalReport
Fusegrade_FinalReport
 
Energy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping MallEnergy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping Mall
 
Pressure Vessel Selection Sizing and Troubleshooting
Pressure Vessel Selection Sizing and Troubleshooting Pressure Vessel Selection Sizing and Troubleshooting
Pressure Vessel Selection Sizing and Troubleshooting
 
1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual
 
MH - FINAL - CS
MH - FINAL - CSMH - FINAL - CS
MH - FINAL - CS
 
Data Center Designs White Paper JKCS (1).pdf
Data Center Designs White Paper JKCS (1).pdfData Center Designs White Paper JKCS (1).pdf
Data Center Designs White Paper JKCS (1).pdf
 
Actuator Project Report - MASTER
Actuator Project Report - MASTERActuator Project Report - MASTER
Actuator Project Report - MASTER
 
The on-time completion of light rails in the United States: a qualitative com...
The on-time completion of light rails in the United States: a qualitative com...The on-time completion of light rails in the United States: a qualitative com...
The on-time completion of light rails in the United States: a qualitative com...
 
0620 w11 qp_31
0620 w11 qp_310620 w11 qp_31
0620 w11 qp_31
 
0620 s11 qp_31 theory
0620 s11 qp_31  theory0620 s11 qp_31  theory
0620 s11 qp_31 theory
 
Gbr Version 060209 Addendum
Gbr Version 060209 AddendumGbr Version 060209 Addendum
Gbr Version 060209 Addendum
 
Modeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsModeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirs
 
Fabrication of mosfets
Fabrication of mosfetsFabrication of mosfets
Fabrication of mosfets
 
Spring Reference
Spring ReferenceSpring Reference
Spring Reference
 
Manual tutorial-spring-java
Manual tutorial-spring-javaManual tutorial-spring-java
Manual tutorial-spring-java
 
Datasheet
DatasheetDatasheet
Datasheet
 
Final Design Document 1
Final Design Document 1Final Design Document 1
Final Design Document 1
 
Internship Report: Interaction of two particles in a pipe flow
Internship Report: Interaction of two particles in a pipe flowInternship Report: Interaction of two particles in a pipe flow
Internship Report: Interaction of two particles in a pipe flow
 

Design Final Report

  • 1.       Design  Final  Report   Senior  Design:  CHEN  4120   10  December  2013   Michael  Oseth,  Jack  Stringer,  &  Sarah  Waldner   UNIVERSITY   OF  COLORADO   AT  BOULDER  
  • 2. 1     Contents   Table  of  Figures  ..................................................................................................................................1   Table  of  Tables  ...................................................................................................................................2   Executive  Summary  ............................................................................................................................4   Introduction  .......................................................................................................................................5   Background  ........................................................................................................................................6   Safety,  Environmental,  &  Health  Concerns  .........................................................................................  10   Project  Premises...............................................................................................................................  14   Approach  and  Process  Description.....................................................................................................  15   Syngas  Unit  Design........................................................................................................................  15   Fischer-­‐Tropsch  Reactor  Design  and  Optimization...........................................................................  17   Separation  Unit  Implementation....................................................................................................  28   Hydro-­‐isomerization  Unit  ..............................................................................................................  34   Heat  Integration  ...........................................................................................................................  37   Equipment  Specifications  ..................................................................................................................  43   Utility  Summary................................................................................................................................  47   Economic  Analysis  ............................................................................................................................  51   Equipment  Cost  ............................................................................................................................  51   Profitability  Analysis  .........................................................................................................................  54   Profitability  ..................................................................................................................................  54   Estimation  of  the  Total  Capital  Investment..................................................................................  54   Estimation  of  Operating  Costs  and  Sales  .....................................................................................  55   Calculation  of  NPV,  ROI,  and  PBP................................................................................................  56   Sensitivity  Analysis  ........................................................................................................................  57   References  .......................................................................................................................................  59   Appendices  ......................................................................................................................................  60   Appendix  A:  Full  Process  Flow  Diagram  ..........................................................................................  60   Appendix  B:  Separation  Unit  Stream  Tables  ....................................................................................  61   Appendix  C:  Economics  Excel  Spreadsheets  ....................................................................................  64     Table  of  Figures   Figure  1:  A  PFD  of  the  Syngas  Unit  .....................................................................................................  16   Figure  2:  Tornado  plot  for  the  sensitivity  analysis  of  overall  reactor  cost..............................................  25  
  • 3. 2     Figure  3:  Tornado  plot  for  the  sensitivity  analysis  of  the  conversion  of  the  reaction  .............................  25   Figure  4:  Tornado  plot  for  the  sensitivity  analysis  of  the  average  carbon  chain  length  of  the  products...  26   Figure  5:  A  PFD  of  the  FTR  unit  ..........................................................................................................  27   Figure  6:  PFD  for  the  Separation  unit  .................................................................................................  32   Figure  7:  Hydroisomerization  unit  PFD  ...............................................................................................  36   Figure  8:  Diagram  of  the  Temperature  Interval  Method  ......................................................................  39   Figure  9:  Final  Heat  integration  Diagram  ............................................................................................  41   Figure  10:  Process  flow  diagram  of  the  integrated  heat  streams..........................................................  43   Figure  11:  Sensitivity  Analysis  on  the  NPV  ..........................................................................................  58   Figure  12:  PFD  of  Entire  Process  ........................................................................................................  60     Table  of  Tables   Table  1:  Personal  Equipment.............................................................................................................  10   Table  2:  Composition  of  Waste  Streams.............................................................................................  10   Table  3:  Material  and  Safety  Data  for  all  Components  ........................................................................  12   Table  4:  The  stream  tables  and  mass  balance  of  the  Syngas  unit  .........................................................  16   Table  5:  First  set  of  FTR  Optimization  Parameters...............................................................................  23   Table  6:  Table  of  FTR  Optimized  Parameters  ......................................................................................  24   Table  7:  Stream  Tables  for  the  FTR  Unit  .............................................................................................  27   Table  8:  Inlet  and  Outlet  Stream  Tables  for  the  Separation  Unit  ..........................................................  33   Table  9:  Mass  Balance  for  the  Separation  Unit.  ..................................................................................  33   Table  10:  Mass  Flow  rates  of  Hydrocarbons  from  the  Hydroisomerization  Unit  ....................................  34   Table  11:  A  Summary  of  the  Separation  in  Distillation  Column  1..........................................................  35   Table  12:  A  Summary  of  the  Separation  in  Distillation  Column  2..........................................................  35   Table  13:  Stream  tables  and  Mass  Balance  for  the  Hydroisomerization  Unit.........................................  36   Table  14:  Streams  Considered  for  Heat  Integration.............................................................................  38   Table  15:  Calculated  Enthalpies  for  the  Temperature  Interval  Method  ................................................  40   Table  16:  Flash  Column  Equipment  Specifications  ..............................................................................  44   Table  17:  Distillation  Column:  Condenser/Top  Stage  Performance  ......................................................  44   Table  18:  Distillation  Column:  Reboiler/  Bottom  Stage  Performance....................................................  44   Table  19:  Distillation  Column  Equipment  Specifications  ......................................................................  44   Table  20:  Compressor  Equipment  Specifications.................................................................................  44   Table  21:  Decanter  Equipment  Specifications  .....................................................................................  45   Table  22:  Heat  Exchanger  Equipment  Specifications  ...........................................................................  45   Table  23:  Valve  Equipment  Specifications  ..........................................................................................  45   Table  24:  Syngas  Reactor  Specifications  .............................................................................................  46   Table  25:  HI  Distillation  Column:  Condenser/Top  Stage  Performance  ..................................................  46   Table  26:  HI  Distillation  Column:  Reboiler/  Bottom  Stage  Performance................................................  46   Table  27:  HI  Distillation  Column  Specifications  ...................................................................................  46   Table  28:  HI  Compressor  Equipment  Specifications  ............................................................................  46   Table  29:  FTR  Equipment  Specifications  .............................................................................................  47   Table  30:  Utility  Summary:  Heat  integration.......................................................................................  47  
  • 4. 3     Table  31:  Utility  Summary  for  Syngas  Unit..........................................................................................  48   Table  32:  Utility  Summary  for  Separation  Unit....................................................................................  49   Table  33:  Utility  Summary  for  Air  Separation  Unit  ..............................................................................  49   Table  34:  Utility  Summary  for  HI  Unit.................................................................................................  50   Table  35:  Utility  Summary  for  the  HI  Unit...........................................................................................  50   Table  36:  Equipment  and  Installation  Costs  for  Flash  Drums  and  Heaters.............................................  51   Table  37:  Equipment  and  Installation  Costs  of  Other  Separation  Equipment  ........................................  52   Table  38:  Bare-­‐Module  Costs  and  Total  Capital  Investment  .................................................................  53   Table  39:  Investment  Summary  .........................................................................................................  54   Table  40:    Associated  Credits  and  Costs  for  Plant  Operation  ................................................................  55   Table  41:  Sales  and  Costs  for  the  First  Three  Years  of  Plant  Operation  .................................................  56   Table  42:  NPV,  ROI,  PBP  Values  .........................................................................................................  56   Table  43:  Separation  Unit  Stream  Table  .............................................................................................  61   Table  44:  Bare  Module  Costs  .............................................................................................................  64   Table  45:  Utilities  .............................................................................................................................  65   Table  46:  Profitability  Analysis...........................................................................................................  65                                  
  • 5. 4     Executive  Summary   The  gas  to  liquids  synthesis  process  described  in  this  report  was  found  to  be  a  profitable   venture.  Syngas,  FTR,  separation,  and  hydrocracking  units  were  used  to  convert  raw  materials,  including   methane,  to  hydrocarbons  as  fuel.  Implementing  a  grass-­‐roots  plant,  with  mixed  indoor  and  outdoor   process  facilities  produced  an  overwhelming  profit  in  the  production  of  liquid  hydrocarbons:  LPG,  diesel,   and  naptha.  Data  indicated  that  the  production  process  was  favorable  for  investors  even  at  high  interest   rates,  with  a  profit  occurring  after  the  first  year  of  plant  operation.    Raw  materials  of  methane,  steam,  oxygen,  and  carbon  dioxide  obtained  from  locations  ideally   located  in  close  proximity  to  the  plant  were  inputted  as  follows.  Methane  feed  was  fed  at  a  rate  of  500   MSCFD,  steam  at  12  klb/day,  carbon  dioxide  at  34  MSCFD,  and  oxygen  at  100  ton/day.  Specifically,  a  15-­‐ year,  300  day  per  year  plant  life  was  interpreted  to  produce  naptha  product  at  a  rate  of  10  barrels/day,   diesel  product  at  a  rate  of  35  barrels/day,  and  LPG  product  at  a  rate  of  640  lb/day.     These  production  rates  equate  to  an  annual  net  earnings  of  $770,000,000   at  full  plant  capacity,   indicating  a  net  present  value  at  the  end  of  the  15  year  period  of  $6  billion  for  an  interest  rate  of  8.5%,   using  straight  line  depreciation.  The  pay-­‐back  period  at  full  plant  capacity  was  found  to  be  23  days  when   total  depreciable  capital  was  $50  million.  Return  on  investment  tremendously  exceeded  the  target  of   20%,  and  at  full  plant  capacity,  equated  to  a  return  of  840%,  given  a  total  capital  investment  of  $92   million.  The  internal  rate  of  return  was  determined  to  be  466%.     Sensitivity  analysis  indicated  that  sales  chiefly  determined  the  net  present  value.  Heat   generated  in  the  syngas  unit  was  integrated  into  the  separation  unit  as  steam,  with  left-­‐over  quantities   generating  a  year  to  year  credit.  Bare-­‐module  costs  for  equipment  used  was  determined  from  ASPEN   PLUS  software.  A  recommendation  for  further  calculations  is  to  maintain  the  accuracy  of  the  cost  of   sales  when  altering  raw  feed  inputs.    
  • 6. 5     Introduction   The  plant  designed  and  evaluated  by  this  report  is  a  gas  to  liquid  fuels  production  facility  that   employs  a  Fischer-­‐Tropsch  Reactor  for  the  conversion  of  synthetic  gas  (syngas)  to  liquid  hydrocarbons.   Syngas  is  produced  via  auto-­‐thermal  reforming  technologies  where  steam  and  methane  gas  are   reformed  to  produce  a  reactant  stream  that  is  mainly  hydrogen  gas  and  carbon  monoxide.  This  works  by   combining  steam  methane  reforming  and  partial  oxidation  technologies.  This  will  be  described  more  in-­‐ depth  in  the  background  section.  The  Syngas  Unit  was  designed  and  tested  using  ASPEN  PLUS  programs.   The  reactant  stream  is  then  sent  to  the  Fischer-­‐Tropsch  Reactor  where  hydrogen  and  carbon  monoxide   are  catalytically  reacted  to  form  fuel.  The  FT  reactor  was  designed  and  optimized  using  MATLAB.  This   optimization  process  is  discussed  in  detail  in  the  Approach  and  Process  Description  section.  The  product   stream  from  the  FT  unit  is  then  sent  to  the  Separation  Unit.  The  product  stream  from  the  FT  unit   contains  hydrocarbons  of  carbon  length  one  to  sixty.  They  can  be  divided  based  on  carbon  chain  into  the   following  categories:  methane,  ethane,  propane,  butane,  naptha,  diesel,  and  carbon  chain  length  21+.   The  stream  is  separated  into  naptha,  diesel,  and  wax.  Wax  is  sent  to  the  Hydroisomerization  Unit  and    to  produce  naptha,  diesel,  and  LPG  gas  (methane    butane)  which  are  sold  as  product.   The  Separation  Unit  was  designed  and  optimized  in  ASPEN  PLUS  by  an  external  group  called  the  NERDs.   The  Hydroisomerization  Unit  was  also  designed  in  ASPEN  PLUS.  Both  of  these  units  are  discussed  in   detail  in  the  Approach  and  Process  Description  section.  Safety,  Environmental,  and  Health  concerns  are   discussed  in  the  Safety,  Environmental,  &  Health  Concerns  section.  All  equipment  involved  in  the   process  was  designed  (sized,  unit  operations,  material  of  construction)  using  ASPEN  PLUS.  These  details   are  discussed  in  the  Equipment  Specifications  section  and  the  cost  of  individual  equipment  components   are  located  in  the  Equipment  Cost  Section.  An  Economic  Analysis  was  performed  and  the  total  capital   investment,  operating  costs,  and  sales  were  estimated  and  the  NPV,  ROI,  and  PBP  values  were   calculated  for  the  life  of  the  plant;  all  values  are  located  in  the  Profitability  Analysis  section.  A  sensitivity  
  • 7. 6     analysis  was  performed  to  explore  how  certain  variables  effect  the  final  NPV  of  the  plant.  This  analysis  is   located  in  the  Sensitivity  Analysis  section.     Background   As  crude  oil  reserves  near  exhaustion  around  the  world,  gas  to  liquid  fuel  production  via   synthetic  gas  has  increased  in  viability.  The  Fischer-­‐Tropsch  process,  which  has  been  around  for  nearly   ninety  years,  provides  a  feasible  option  for  the  production  of  these  fuels.(1)  The  FT  process  involves  the   synthesis  of  synthetic  gas  from  hydrocarbon  feedstock  (natural  gas,  coal,  naptha,  petroleum  coke,  and   biomass)  and  catalytic  conversion  of  this  gas  into  liquid  fuel.  Franz  Fischer  developed  the  process  in   plants  were  built  and  operating  in  Germany,  however,  the  plants  were  closed  shortly  thereafter  as  the   FT  process  was  not  economically  practical  at  the  time.(2)  The  FT  production  of  hydrocarbons  is  only   practical  if  the  price  per  barrel  of  crude  oil  is  low  enough  for  FT  production  of  fuel  to  be  similarly   affordable.  Interest  in  the  FT  process  disappeared  after  World  War  II,  but  resurfaced  during  the  oil  crisis   (2)  A  company  called  Sasol  in  South  Africa  constructed  the  two  largest  FT  complexes  ever   built  and  the  company  flourished   the  next  two  decades  the  price  of  crude  oil  per/barrel  continued  to  fluctuate  and  the  number  of  FT   plants  slowly  increased  across  the  world.(3)    Syngas  is  the  mixture  of  hydrogen  and  carbon  monoxide  gas  and  can  be  generated  by  different   technologies.  Generation  of  syngas  usually  encompasses  60%  -­‐  70%  of  the  total  capital  investment   required  to  implement  a  grass-­‐roots  FT  plant.(4)  It  is  preferable  to  use  methane  gas  when  it  is  available   rather  than  coal  as  it  is  less  expensive,  more  efficient,  and  leaves  a  smaller  carbon  footprint.  The   technologies  for  syngas  generation:  catalytic  steam  methane  reforming  (SMR),  heat  exchange   reforming,  partial  oxidation  (POX)  and  auto-­‐thermal  reforming  (ATR)  will  be  reviewed.  The  most  
  • 8. 7     extensively  used  in  industry  is  steam  methane  reforming  (SMR)  where  steam  and  methane  gas  are   catalytically  converted  to  syngas.  This  process  is  advantageous  as  it  requires  no  oxygen  and  has  the   lowest  process  temperature.  However,  the  H2/CO  ratio  is  usually  higher  than  the  optimal  ratio  for  fuel   production  (  >  4)and  it  produces  high  air  emissions.  Heat  exchange  reforming  uses  heat  recovered  from   the  product  syngas  as  a  portion  of  the  heat  required  for  the  heat  of  reaction.  It  is  more  compact  and   efficient  than  other  technologies,  reduces  the  plant  footprint  and  capital  cost.  One  disadvantage  of  this   technology  is  that  it  is  not  usually  implemented  as  the  sole  syngas  generator  and  must  be  used  in   tandem  with  another  process.  Partial  oxidation  generates  syngas  via  the  highly  exothermic,  non-­‐catalytic   reaction  of  methane  and  steam.  While  this  technology  does  not  require  a  catalyst,  it  does  require  an   oxygen  feed.  This  process  is  generally  not  implemented  alone  as  it  produces  a  low  H2/CO  ratio  (<  2)  and   requires  high  operating  temperatures.  The  auto-­‐thermal  reforming  technology  combines  the  SMR  and   the  POX  process  to  produce  a  syngas  with  a  favorable  H2/CO  ratio.  This  technology  combines  the  partial   oxidation  of  reactants  fueled  by  the  internal  combustion  of  some  of  the  feedstock.  While  this   technology  may  seem  like  the  most  efficient  option,  it  has  experienced  limited  commercial  use.  This   technology  has  been  shown  to  be  the  least  expensive  option  that  fulfills  the  syngas  composition   required  for  FT  processing  and  commercial  use  of  the  reforming  technology  is  increasing.(4)(5)(6)  ATR  is  the   syngas  generation  technology  discussed  in  this  report.     The  FT  reactor  catalytically  converts  the  syngas  into  a  stream  of  hydrocarbons.  This  reaction  is   highly  exothermic  and  requires  cooling  water  to  control  the  temperature  rise.  FT  reactors  can  be  divided   into  two  general  categories:  high  temperature  FT  and  low  temperature  FT.  High  temperature  FT  (HTFT)   reactors  (300    350 )  are  mainly  used  to  produce  olefins  and  gasoline.  Low  temperature  FT  (LTFT)   reactors  (200    240    are  used  for  diesel  and  linear  wax  production.  FT  reactors  may  also  produce  a   small  amount  of  alcohols,  aldehydes,  carboxylic  acids,  and  other  oxygenated  products,  and  in  addition   those  operating  at  high  temperatures  may  produce  minute  amounts  of  ketones  and  aromatic  
  • 9. 8     compounds.  Wax  products  are  sent  to  a  hydro-­‐ they  are  reduced  to  naptha  and  diesel  products.(7)(8)  Catalysts  that  have  been  considered  for  FT  reactors   include:  Ni,  Co,  Fe,  and  Ru.  Ni  easily  hydrogenates  which  produces  high  methane  concentrations  in  the   product  stream.  Use  of  Ni  would  also  require  high  operating  temperatures  to  avoid  the  formation  of   nickel  carbonyls  which  dissipates  the  catalyst  in  the  reactor  during  operation.  For  both  of  these  reasons   Ni  catalysts  are  not  used  commercially.  Ru  catalysts  are  rare  and  extraordinarily  expensive  which  makes   it  a  non-­‐viable  option  for  commercial  facilities.  Co  and  Fe  catalysts  are  both  readily  available.  On   average,  Co  is  about  200  times  the  price  of  Fe,  but  exhibits  an  FT  activity  per  metal  site  3  times  greater   than  Fe.  This  means  that  one  particle  of  Co  can  catalyzes  the  conversion  of  three  times  as  many   methane  molecules  as  Fe  particles.(9)  Despite  the  high  cost,  Co  catalysts  are  still  widely  used.  It  has  been   shown  that  the  partial  pressure  of  the  water  content  of  the  product  stream  from  a  reactor  that  uses  Fe   catalyst  has  a  debilitating  effect  on  the  reaction  kinetics.  Co  catalysts  experience  little  to  no  effect.  FT   reactors  commonly  use  iron  catalysts  and  those  operating  at  low  temperatures  use  iron  or  cobalt   catalysts  if  the  product  stream  has  high  water  content.(10)   ame  a  reality  within  the  last  ten  years  as   companies  are  extracting  oil  at  a  faster  pace  today  than  ever  before.  Other  options  have  had  to  be   considered  so  that  the  transition  from  crude  oil  dependence  to  alternative  forms  of  energy  is  as  smooth   as  possible.  Over  the  last  decade  FT  technology  has  experienced  increased  attention.  The  technology   remains  more  costly  than  processing  and  using  crude  oil.  In  order  for  FT  technology  to  become   competitive  with  to  crude  oil  while  it  is  still  available,  it  needs  to  be  made  more  cost  effective.  Studies   have  estimated  that  the  FT  process  became  a  viable  option  when  the  price  of  crude  oil  per  barrel   surpassed  $16/barrel.  Today  the  cost  of  crude  oil  is  approximately  $87/barrel.  (11)   Even  though  this  technology  has  been  around  for  almost  a  century,  it  is  still  being  developed   and  can  be  improved  in  a  number  of  ways.  One  syngas  generation  method  that  is  currently  being  
  • 10. 9     explored  is  the  combination  of  heat  exchange  reforming  with  auto-­‐thermal  reforming.  By  using  heat   recovered  from  the  exit  gas  this  eliminates  the  need  for  a  gas  fired  heater  to  supply  energy  to  the  auto-­‐ thermal  reformer.  Potential  benefits  include  a  decrease  in  oxygen  requirements  and  reduced  plant   footprints.(11)  Co  and  Fe  catalysts  used  in  Ft  reactors  can  also  be  improved.  It  is  desirable  to  design  a   catalyst  with  increased  selectivity  to  hydrocarbons  of  shorter  chain  lengths.  This  would  reduce  the  utility   of  the  hydro-­‐isomerization  unit.  Coated  catalysts  are  currently  being  researched  as  a  method  of   increasing  the  selectivity  of  a  catalyst.  Recent  research  has  been  done  using  alkanethiol  coated  catalysts.   The  catalysts  are  prepared  by  saturating  the  catalyst  in  the  liquid  alkanethiol  and  allowing  the  sulfur   atom  of  the  molecule  to  bind  to  the  catalyst  surface.  These  molecules  form  a  self-­‐assembled  monolayer   on  the  surface  of  the  catalyst.  The  coating  changes  the  surface  chemistry  of  the  catalyst  through   electronic  and  steric  effects  which  influences  the  selectivity  of  the  reaction.  It  has  been  shown  that  by   coating  catalysts  with  alkanethiols  and  then  using  these  catalysts  in  hydrogenation  reactions,  the   selectivity  to  the  desired  product  increased  substantially.  However,  life  of  these  catalysts  is  short  and   the  coatings  are  have  been  shown  to  deteriorate  quickly,  reducing  the  heightened  selectivity.(12)   Research  is  still  in  its  preliminary  stages,  the  potential  to  design  catalysts  to  be  selective  to  particular   products  poses  an  interesting  development  for  FT  technology.     Today  several  large  companies  have  accepted  the  challenge  of  enabling  economic  exploitation   of  the  coal  and  natural  gas  reserves  around  the  world  via  the  Fischer-­‐Tropsch  Process.  The  largest   development  of  FT  plants  are  located  in  South  Africa  and  operated  by  Sasol.  These  plants  have  proved   profitable  are  there  is  little  oil  in  South  Africa,  but  an  abundance  of  coal  reserves.  Sasol  has  been  slowly   building  a  FT  presence  in  the  United  States  and  are  currently  developing  in  Louisiana.  PetroSA  is  another   South  A South  Africa.  Shell  owns  a  massive  FT  complex  in  Bintulu,  Malaysia  and  is  currently  using  natural  gas   there  to  produce  diesel  fuels  and  low-­‐grade  wax.  (4)(6)(9)  
  • 11. 10     Safety,  Environmental,  &  Health  Concerns   Employee  Safety  Precautions     All  employees  on  shift  at  the  plant  must  be  fully  equipped  the  required  personal  safety  equipment.  The   employer  is  responsible  for  the  adequacy  of  such  equipment.  The  employer  shall  ensure  that  each   employee  wears  the  equipment  listed  in  Table  (1)  when  working  in  the  concerned  areas  as  defined  by   OSHA:   Table  1:  Personal  Equipment   Personal  Equipment   Area  of  Concern   Protective  Helmet   Potential  for  head  injury  due  to  falling  objects   Safety  Glasses  and/or  detachable  side   protectors   Potential  for  hazardous  flying  particles  such  as   molten  metal,  liquid  chemicals,  acids,  caustic   liquids,  chemical  gases  or  vapors,  and  injurious   light  radiation   Protective  footwear   Potential  for  foot  injury  via  falling  or  rolling   objects,  objects  piercing  the  sole,  or  electrical   hazards   Protective  Handwear   Potential  skin  adsorption  of  harmful  substances,   severe  cuts,  lacerations,  abrasions,  punctures,   chemical  burns  and  thermal  burns   Respirator   Potential  of  inhalation  of  harmful  dusts,  fogs,   fumes,  mists,  gases,  smokes,  sprays,  or  vapors   Protective  Clothing   Worn  at  all  times.  Must  be  non-­‐flammable,   protect  against  electric  shock,  and  non-­‐reactive.     Waste  Stream  Considerations   The  process  encompasses  three  main  waste  streams.  The  flue  gas  from  strippers  1  and  2  and  the  waste   water  from  stripper  2.  The  compositions  of  each  of  these  streams  are  located  in  Table  (2)  below.   Table  2:  Composition  of  Waste  Streams   Component  Mole  Flow   (lbmol/day)   Flue  Gas  1   Flue  Gas  2   Waste  H2O   CO   4.66   0.00280   0   CO2   11.5   0.0426   0   H2   5.96   0.000366   0   Water   30.6   26.6   2.80   N2   0.549   2.10   0.00104   CH4   1.48   0.00183   0  
  • 12. 11     Ethane   0.0417   0.000256   0   Propane   0.0411   0.000644   0   Butane   0.040   0.000948   0   Naptha   0.130   0.00000106   0   Diesel   0.0082   0   0   C21-­‐C25   0   0   0   C26-­‐C29   0   0   0   C30-­‐C35   0   0   0   C36-­‐C47   0   0   0   C48+   0   0   0   Oxygen   0   7.91   0.00447   Handling  Instructions:     Flue  Gas  1:  Waste  gas  must  be  collected,  condensed,  and  properly  stored  for  waste  disposal.  CO,   CO2,  methane,  ethane,  propane,  butane,  naptha,  and  diesel  must  be  removed  before  waste   water  can  be  safely  disposed  off.  Naptha  and  diesel  can  be  separated  out  using  adsorption   techniques.  Methane,  ethane,  and  propane  can  be  removed  using  the  difference  in  boiling   points  from  water.  CO2  and  CO  can  be  removed  using  a  series  of  strippers.     Flue  Gas  2:  Will  be  treated  the  same  as  Flue  Gas  2   Waste  H2O:  This  waste  water  stream  contains  only  nitrogen  gas,  which  is  an  inert,  and  can  be   disposed  of  in  the  sanitary  sewer  system  of  the  plant   State  &  Federal  Permits   Permits  that  must  be  obtained  for  operation  of  this  plant  include  the  following  (Note:  Permits  may  vary   depending  on  the  state  that  the  plant  is  in):   Building  permits  for  land     Oil  refinery  permits   Hazardous  Waste  Permit  for  disposal  in  sanitary  sewer  systems,  air  pollution,  and  incineration   permits  if  incineration  is  the  preferred  waste  disposal  method.  Depends  on  State.   Personal  work  permits  will  be  required  for  those  doing  hot  work  (welding,  cutting,  grinding,  and   spark  producing  work),  those  working  with  line  break  (Liquid  and  gaseous  chemicals,  and  sewer  
  • 13. 12     and  process  water),  those  needing  confined  space  entry,  and  those  performing  heavy  lift   equipment  operation.  Depends  on  State.     Material  and  Safety  Data  for  all  Process  Components   Table  3:  Material  and  Safety  Data  for  all  Components   Component   Physical   State   MW   (g/mol)   Health   Flammability   Reactivity   Special   Methane     Gas   16.04   1   4   0   Simple   Asphyxiant   Water   Gas   18.02   0   0   0   None     Oxygen   Gas   32.00   0   0   0   Oxidizer   Nitrogen   Gas   28.02   0   0   0   Simple   Asphyxiant   Carbon   Dioxide   Gas   44.01   1   0   0   None     Carbon   Monoxide   Gas   28.01   3   4   0   None   Hydrogen   Gas   2.02   0   4   0   None     Ethane   Gas   30.08   1   4   0   None   Propane   Gas   44.11   1   4   2   None     Butane   Gas   58.14   1   4   0   None     Pentane   Liquid     72.15   1   4   0   None     Hexane   Liquid     86.18   1   3   0   None   Heptane   Liquid   100.21   1   3   0   None     Octane   Liquid     114.23   2   3   0   None     Nonane   Liquid     128.26   2   3   0   None     Decane   Liquid     142.28   0   2   0   None   Undecane   Liquid     156.31   0   2   0   None     Dodecane   Liquid     170.34   1   2   0   None     Tridecane   Liquid     184.37   1   2   0   None     Tetradecane   Liquid   198.4   2   1   0   None     Pentadecane   Liquid     212.42   1   1   0   None   Hexadecane   Liquid     226.00   0   1   0   None     Heptadecane   Liquid     240.48   2   1   0   None     Octadecane   Liquid     254.5   0   1   0   None     Nonadecane   Liquid     268.52   2   1   0   None   Eicosane   Liquid     282.56   1   1   0   None     *Hydrocarbons  of  length  21    60  carbons  can  adhere  to  the  same  safety  data  as  Eicosane  as  the   information  does  not  vary  significantly.        
  • 14. 13     Safe  plant  operating  procedures   For  general  safety  of  all  employed  by  the  plant  the  following  protection/accident  prevention   equipment  must  be  installed,  maintained,  and  supervised  at  all  times:   Temperature/Pressure  indicator  instruments   Sound  regulation  system  and  emergency  shut  off   System  leak  alarm  system   For  general  safety  of  all  employed  by  the  plant  the  following  must  be  adhered  to  at  all  times:   Employees  will  possess  appropriate  personal  protection  equipment   Plant  must  remain  well  lit  to  ensure  proper  visibility   All  safety  instrumentation  and  alarm  systems  must  be  monitored     Employees  must  not  work  longer  in  a  high  stress  environment  than  time  defined  by  OSHA   standards  for  the  nature  of  that  environment   All  equipment  must  be  regularly  cleaned  and  maintained   Waste  must  be  disposed  of  properly  adhering  to  OSHA  standards     All  working  personnel  must  be  properly  trained  in  the  following  operating  procedures  and  it  is  the   responsibility  of  the  employer  to  keep  employees  up  to  date  with  the  following  operating  procedures   and  changes  in  such:   1. Normal  Operating  Procedures   2. Abnormal  Operating  Procedures   3. Operator  Response  Procedures   4. Emergency  Operating  Procedures  
  • 15. 14     Project  Premises   Design  Premises:   -­‐   Location:  In  the  vicinity  of  a  large  body  of  water  to  naturally  supply  cooling  water  and  a   Hydraulic  Fracturing  Rig   Material  Source:   o Cooling  Water:  Obtained  from  nearby  reservoir   o Oxygen:  Air  Separation  Plant   o Methane:  Nearby  Hydraulic  Fracturing  Rig   o Carbon  Dioxide:  External  import   o Electricity:  Xcel;  some  heat  obtained  from  recycling  energy  within  the  process   Plant  Capacity:   o Naptha  production:  10  barrels/day   o Diesel  Production:  35  barrels/day   o LPG  production:  640  lbs/day   Recycle  Steams:   Economic  Premises:   Cost  of  Raw  materials:   o Methane:  $2/MSCFD   o Steam:  $5/klb   o Carbon  Dioxide:  $0.40/MSCFD   o Oxygen:  $100/ton   Sales  price  of  products:   o Naptha:  $75/barrel   o Diesel:  $90/barrel   o LPG:  $0.30/lb   Project  Life:  15  years   Depreciation  Method:  Straight  line,  15  yr   Total  Capital  Investment:  $  91,500,000   Tax  Rates:  37%   Targeted  ROI:  20%   Operation:  330  days/yr  
  • 16. 15     Approach  and  Process  Description   Syngas  Unit  Design   The  first  part  of  the  overall  design  of  the  Fischer-­‐Tropsch  Reaction  unit  was  to  design  the  syngas   unit.  Carbon  dioxide,  methane,  steam,  and  oxygen  are  combusted  in  an  equilibrium  reactor  to  produce   Syngas.  The  three  primary  reactions  that  occur  simultaneously  in  the  reactor  are  as  follows.   Steam  reforming:       Partial  oxidation  of  methane:     Shift  reaction:        Two  process  units  are  involved  in  the  Syngas  unit.  Four  streams  (carbon  dioxide,  oxygen  (99%   oxygen  and  1%  nitrogen),  methane  and  steam)  are  fed  into  a  mixer  at  100   .  The  methane  is  fed  in  with   steam  in  order  to  prevent  coking  of  the  process  equipment.  The  material  is  then  fed  directly  into  the   equilibrium  reactor.  The  only  component  flow-­‐rate  that  was  definitively  defined  was  methane.  The   component  flow  rates  of  carbon  dioxide  and  air  were  given  arbitrary  values  because  these  flow-­‐rates   were  optimized  using  the  optimization  package  in  Aspen  to  optimize  the  production  of  hydrogen.       There  are  three  constraints  for  the  system.  First,  the  ratio  of  hydrogen  production  to  carbon   monoxide  production  must  be  2:1.  Second,  the  equilibrium  reactor  is  adiabatic.  Third,  the  molar  ratios   of  steam  to  methane  flow  rates  is  greater  than  or  equal  to  1:2.  The  parameters  being  varied  using  the   optimization  package  are  the  temperature  (1600    1950   )  and  pressure  (300    500  psig)  of  the  reactor,   the  flow  rates  of  air  (10    1,000  MSCFD)  ,  carbon  dioxide  (10  -­‐1,000  MSCFD),  and  steam  (250  -­‐500   MSCFD).  The  product  of  the  Syngas  unit  was  then  feed  into  a  Fischer  Tropsch  Reactor.  Figure  (1)  is  the   process  flow  diagram  of  the  Syngas  unit  and  Table  (4)  provides  the  stream  tables  and  mass  balance  of   the  unit.    
  • 17. 16     MIXER  1 SYNGAS  REACTOR CO2 AIR STEAM C1 FEED SYNGAS Figure  1:  A  PFD  of  the  Syngas  Unit   Table  4:  The  stream  tables  and  mass  balance  of  the  Syngas  unit       Units   AIR   CO2   FEED   METHANE   STEAM   SYNGAS   From               MIXER           SYNUNIT   To       MIXER   MIXER   SYNUNIT   MIXER   MIXER       Substream:  MIXED                               Phase:       Vapor   Vapor   Mixed   Vapor   Liquid   Vapor   Component  Mole   Flow                               METHA-­‐01   MSCFD   0.00   0.00   500.00   500.00   0.00   4.48   WATER   MSCFD   0.00   0.00   250.00   0.00   250.00   394.01   NITRO-­‐01   MSCFD   3.59   0.00   3.59   0.00   0.00   3.59   OXYGE-­‐01   MSCFD   355.77   0.00   355.77   0.00   0.00   0.00   CO   MSCFD   0.00   0.00   0.00   0.00   0.00   423.52   CO2   MSCFD   0.00   34.38   34.38   0.00   0.00   106.38   HYDRO-­‐01   MSCFD   0.00   0.00   0.00   0.00   0.00   847.04   Mole  Flow   MSCFD   359.36   34.38   1143.74   500.00   250.00   1779.02   Mass  Flow   LB/DAY   30264.26   3987.18   67257.43   21137.67   11868.31   67257.43   Temperature   F   100.00   100.00   96.42   100.00   100.00   1929.46   Pressure   PSIG   500.00   500.00   500.00   500.00   500.00   300.00   Total  Inlet  Mass   (LB/DAY)   67257.43     Total  Outlet  Mass   (LB/DAY)   67257.43      
  • 18. 17     Fischer-­‐Tropsch  Reactor  Design  and  Optimization   A  Fischer  Tropsch  reaction  unit  (FTR)  was  designed  to  meet  certain  specifications.  During  this   reaction,  a  feed  stream  of  CO  and  H2  react  to  produce  alkanes  ranging  from  C1  to  C60  and  H2O.  Inert   side  components  were  evident  in  the  feed  stream  as  well;  N2  and  CO2.  Using  component  outputs   generated  from  ASPEN  PLUS  simulation  software  in  the  previous  milestone,  a  MATLAB  code  was  created   to  observe  changes  in  temperature,  pressure,  and  conversion  by  assessing  various  constraints  such  as   the  number  of  reactor  tubes,  inlet  temperature  and  pressure,  tube  diameter,  and  cooling  water   temperature.     Equation  Development   For  the  FTR  reaction,  where  syngas  is  converted  to  hydrocarbons  and  water,  a  variety  of   equations  were  used  to  implement  the  parameters  set  forth  by  the  problem.  A  detailed  outline  of  the   equations  used  and  their  explanations  will  be  presented.  The  reaction  used  to  declare  rate  equations   (particularly  the  stoichiometry)  for    and    was  by  Equation  (1):        (1)   For   ,  the  following  reaction,  Equation  (2),  was  used  to  declare  the  same:        (2)   Other  components  in  the  system,  such  as  N2  and  CO2,  are  considered  inert  and  therefore  do  not  affect   the  system.  The  overall  rate  equation  for  the  consumption  of    is  in  Langmuir-­‐Hinshelwood  form  is   given  by  Equation  (3)  with  the  following  parameters:        (3)   Where  the  variables  involved  are  defined  by  Equations  (4),  (5),  and  (6):          (4)  
  • 19. 18            (5)        (6)      and    were  determined  from  the  total  system  pressure  and  the  mole  fractions  of    and    as   shown  by  Equations  (7)  and  (8):        (7)        (8)   The  selectivity  of  the  produced  alkanes  (  for  n  values  of  1  to  60)  are  as  follows,  given  by   Equation  (9).  For  methane  (n=1):        (9)   Where    is  denoted  by  Equation  (10):          (10)   For  C2  to  C4  alkanes  (n=2,  3,  4)  the  selectivity  is  given  by  Equation  (11):        (11)   Where    is  given  by  Equation  (12):        (12)   To  obtain  flow  rates  for  C1  through  C4  alkanes  in  the  product  stream,  simple  rearrangement  of  the   selectivity  for  methane  produces   ,  given  by  Equation  (13):        (13)   Thus,  for  alkanes  C2  through  C4,Equations  (14)  through  (16)  give:        (14)        (15)        (16)  
  • 20. 19       For  C5+  alkanes  (n=5  to  60),  the  distribution  of  alkane  products  is  defined  by  Mn,  the  relative  mole   fraction  of  Cn ,  given  by  Equation  (17):        (17)    given  by  Equation  (18):        (18)   To  obtain  selectivity,  Mn  must  be  divided  by  the  sum  of  all  Mn in  question.  Then,  the  mole  fraction  must  be  multiplied  by  n  to  obtain  a  per  carbon  basis.  Since  the   selectivity  is  simply  (1-­‐St),  the  sum  of  the  selectivities  of  the  first  four  alkanes,  the  selectivity  for  C5+   alkanes  is  defined  by  Equation  (19):        (19)   Where        (20)     The  rate  of  production  of  C5+  alkanes  is  then  given  by  Equation  (21):        (21)     For  the  pressure  drop  consideration  of  the  FTR,  the  Ergun  equation  was  used  to  obtain  an  expression  for   the  change  in  pressure  per  catalyst  weight,  given  by  Equation  (22):   (22)   Where    is  the  cross-­‐sectional  area  of  the  pipes,    is  the  given  void  fraction,    is  the  density  of  the   solid  catalyst  particles,    is  the  fraction  of  feed  pressure  over  total  pressure,    is  the  fraction  of  total  
  • 21. 20     temperature  over  initial  temperature,  and    is  the  total  flow  rate  over  the  initial  flow  rate  into  the   reactor.    is  defined  by  the  following,  given  by  Equation  (23)::        (23)   Where    is  the  inlet  gas  mass  velocity,    is  the  density  of  the  gas,    is  the  gravitational  constant,    is   the  diameter  of  the  catalyst  particle,  and    is  the  viscosity  of  the  gas,  which  was  assumed  to  be  the   average  of  the  viscosities  of  each  component  in  the  feed.     A  similar  expression  was  obtained  from  literature  for  the  change  in  temperature  in  the  FTR  per  catalyst   weight.  This  expression  is  as  follows,  given  by  Equation  (24):          (24)   Where    is  the  given  heat  of  reaction,    is  the  inside  surface  area  per  volume,    is  the  temperature   of  the  cooling  water,  and    is  the  bulk  density  of  the  catalyst  ( ).  Equations  for    and     can  be  seen  below.    refers  to  the  diameter  of  a  single  tube,  given  by  Equation  (25):        (25)   For  methane,  H2,  O2,  H2O,  N2,  and  CO2,  average  heat  capacities  have  been  obtained  from  ASPEN  HYSYS.                
  • 22. 21       For  C2  though  C10  alkanes,  heat  capacity  values  were  obtained  from  literature  and  needed  no  equation   to  compute.  However,  for  C2+  alkanes,  a  general  formula  has  been  obtained  to  calculate  heat  capacities,   given  by  Equation  (26):        (26)     For  economic  considerations,  a  number  of  equations  were  used  to  determine  the  cost  of  the  reactor,   .   This  is  obtained  by  estimating  the  required  weight  of  stainless  steel  for  the  shell  and  tubes  of  the   reactor,    as  seen  below,  given  by  Equation  (27):      (27)   Where,  given  by  Equation  (28):                                (28)   Where    is  the  inner  diameter  of  the  FTR,  L  is  the  reactor  length,  and    is  the  given  density  of   stainless  steel.   ,  shell  thickness,  is  given  by  Equation  (29):        (29)   Where  S  is  the  maximum  allowable  stress,  in  psi,  and  E  is  the  weld  efficiency.   ,  the  design  pressure,  is   given  by  Equation  (30):        (30)     where    is  the  nominal  pressure  in  psig,  assumed  to  be  the  shell  side  pressure.   FTR  Optimization   The  optimization  process  for  the  Fischer  Tropsch  Reactor  began  with  a  fractional  factorial   design.  A  factorial  design  is  a  method  that  aids  in  the  optimization  of  systems  that  involves  multiple  
  • 23. 22     independent  variables.  The  parameters  that  were  optimized  were:  the  cost  of  the  reactor,  the   conversion,  and  the  average  carbon  chain  length  of  the  products.  It  was  desirable  to  minimize  the  cost,   maximize  the  conversion,  and  achieve  an  average  chain  length  between  10  and  15  carbons.  Minimizing   cost  and  maximizing  the  conversion  of  the  reaction  will  maximize  the  profit.  It  is  desirable  to  have  an   average  carbon  chain  length  between  10  and  15  carbons  because  hydrocarbon  products  of  chain  lengths   between  5  and  21  require  the  least  amount  of  processing  to  prepare  the  product  for  sale,  and  therefore   cost  the  least  to  process.  Hydrocarbons  longer  than  21  carbons  are  wax  and  therefore  must  be   processed  in  the  hydro-­‐isomerization  unit  to  convert  them  to  lighter  products.  It  was  desirable  to  avoid   hydrocarbons  of  chain  length  1  to  4  as  these  products  are  the  least  profitable.  Hydrocarbons  of  a  chain   length  5  to  20  maximized  the  potential  profit  while  minimizing  money  and  time  required  to  process  the   material.       The  independent  variables  involved  in  the  optimization  were:  temperature  and  pressure  of  the   inlet  feed  stream,  the  number  of  reactor  tubes,  the  diameter  of  the  reactor  tubes,  the  weight  of  the   catalyst  packing  in  each  reactor  tube,  and  the  temperature  of  the  cooling  water  stream.  The  fractional   factorial  was  set  up  as  follows:   Design:    =     Levels:  2   Number  of  Factors  investigated,  k:  6   Number  of  Generators,  p:  2   Runs:  16     The  number  of  generators  indicates  the  number  of  factors  that  will  not  be  considered   independently.  This  creates  a  factorial  design  that  is  a  fraction  of  the  full  design.  The  final  set  of  solution   parameters  will  not  be  as  optimal  as  a  full  design  would  result  in,  but  the  fractional  factorial  design  is   more  efficient  to  analyze  and  will  still  give  a  decent  estimate  of  the  optimal  parameters.   Minitab  was  used  to  create  the  design  matrix.  This  matrix  was  transferred  to  an  excel  file  and   then  imported  to  Matlab  and  converted  to  a  matrix  that  corresponds  to  the  16  test  runs.  For  each  
  • 24. 23     independent  variable  initial  high  and  low  values  of  a  testable  range  were  selected.  These  values  were   based  on  information  given  by  the  plant  design  specifications.  Table  (5)  displays  the  first  set  of  high  and   low  values  selected  for  optimization.     Table  5:  First  set  of  FTR  Optimization  Parameters   Parameter   High   Low     Inlet  Temperature  (F)   450   390   Catalyst  Weight  (lb)   30   2   Number  of  Tubes   1000   800   Diameter  of  tube  (in)   2   1   Pressure  (psia)   330   270   Shell  Temperature  (K)   450   373       The  Matlab  simulation  was  run  using  this  initial  set  of  values  and  the  cost,  conversion,  and   average  carbon  chain  length  of  products  were  compared.  All  of  the  runs  were  checked  to  ensure  that   the  reactor  length  did  not  exceed  60  ft  and  the  diameter  did  not  exceed  20ft.  Trends  in  the  data  were   analyzed  and  the  range  of  the  high  and  low  values  for  each  variable  were  adjusted.  The  first  adjustment   that  was  made  was  increasing  the  shell  temperature.  It  was  evident  from  the  first  round  of  optimization   that  higher  shell  temperatures  corresponded  to  a  significantly  higher  conversion.  After  the  second   round  of  optimization,  it  was  shown  that  the  inlet  pressure  had  little  effect  on  any  of  the  dependent   parameters  and  therefore  was  not  changed  again.  The  range  for  the  catalyst  weight,  diameter  of  the   reactor  tube,  and  inlet  temperature  were  narrowed  based  on  trends  seen  in  the  second  round  of   optimization  runs.  It  was  shown  that  lower  inlet  temperatures  produced  a  higher  average  carbon  chain   length,  so  the  range  of  high  and  low  values  was  change  to  390  -­‐  400 .  It  was  also  shown  that  higher   catalyst  weight  packings  contributed  to  a  higher  conversion  and  smaller  reactor  tube  diameters  lowered   cost.  These  ranges  were  adjusted  to  be  10    15  lbs  of  catalyst  and  1    1.5  in  diameter  reactor  tubes.   Several  more  rounds  of  optimization  were  completed,  every  time  adjusting  parameters  in  the  same  way.   Finally,  a  final  set  of  optimal  independent  parameters  was  decided  upon.  At  this  point  the  reactor  length   was  55.15  ft  long.  The  maximum  length  of  the  reactor  allowed  is  60ft.  The  weight  of  the  catalyst  was  
  • 25. 24     increased  until  the  maximum  length  was  acquired.  It  was  checked  that  this  catalyst  increase  maximized   the  conversion  with  little  effect  on  the  cost  and  no  negative  effect  on  the  average  carbon  chain  length  of   the  products.  The  optimal  independent  and  dependent  variables  of  the  FTR  are  located  in  Table  (6).   Table  6:  Table  of  FTR  Optimized  Parameters   Variable   Independent/Dependent   Value   Units   Inlet  Temperature   Independent   400     Catalyst  Weight   Independent   16.5   lb   Number  of  Tubes   Independent   1000   n/a   Diameter  of  tube   Independent   1   In   Pressure   Independent   330   Psia   Shell  Temperature   Independent   480   K   Cost   Dependent   7.4   Million  USD   Average  Carbon  Chain   length  of  Products   Dependent   8.03   Carbons   Conversion   Dependent   0.94   n/a         In  order  to  characterize  the  optimization  process  of  the  FTR  a  sensitivity  analysis  was  performed   exploring  how  sensitive  the  total  cost  of  the  reactor,  the  reaction  conversion,  and  the  average  carbon   chain  length  of  the  products  are  to  changes  in  the  independent  variables:  temperature  and  pressure  of   the  inlet  feed  stream,  the  number  of  reactor  tubes,  the  diameter  of  the  reactor  tubes,  the  weight  of  the   catalyst  packing  in  each  reactor  tube,  and  the  temperature  of  the  cooling  water  stream.  Tornado  plots   were  constructed  for  each  dependent  variable  to  demonstrate  these  relationships  and  represented  in   Figure  (2).  
  • 26. 25       Figure  2:  Tornado  plot  for  the  sensitivity  analysis  of  overall  reactor  cost     From  Figure  (2),  it  can  be  seen  that  the  temperature  of  the  cooling  water  had  the  greatest  effect   on  the  cost  of  the  reactor.  Pressure  had  no  impact,  and  the  diameter  of  the  reactor  tube,  number  of   reactor  tubes,  and  catalyst  weight  all  equally  effected  the  overall  cost.     Figure  3:  Tornado  plot  for  the  sensitivity  analysis  of  the  conversion  of  the  reaction   0.0E+00 5.0E+06 1.0E+07 1.5E+07 Inlet  Temp Catalyst  Weight Number  of  tubes Diameter  of  tubes Pressure Shell  Temperature Cost  (million  USD) 0.00 0.50 1.00 1.50 Inlet  Temp Catalyst  Weight Number  of  tubes Diameter  of  tubes Pressure Shell  Temperature Conversion
  • 27. 26         Figure  (3)  demonstrates  a  similar  relationship  between  the  independent  variables  and  there   effect  on  the  conversion  of  the  reaction.  Once  again,  pressure  of  the  feed  stream  had  very  little  effect,   and  the  temperature  of  the  cooling  water  stream  was  the  most  important  factor  is  maximizing  the   conversion.     Figure  4:  Tornado  plot  for  the  sensitivity  analysis  of  the  average  carbon  chain  length  of  the  products       Figure  (4)  shows  that  the  independent  variables  that  had  the  greatest  effect  on  the  average   carbon  chain  length  of  the  products  are  the  shell  temperature,  diameter  of  the  reactor  tubes  and  the   inlet  temperature  of  the  feed  stream.     The  products  from  the  FTR  unit  require  significant  separation,  a  comprehensive  step  by  step   walk  through  the  separation  of  these  products  will  be  discussed  in  the  following  section.  Figure  (5)  is  the   PFD  of  the  FTR  unit  and  Table  (7)  is  the  corresponding  stream  tables  with  the  unit.   0.0 2.0 4.0 6.0 8.0 10.0 Inlet  Temp Catalyst  Weight Number  of  tubes Diameter  of  tubes Pressure Shell  Temperature Average  Chain  Length  (#  of  carbon  atoms)
  • 28. 27     FTR  PRODUCTSYNGAS FISCHER  TROPSCH  REACTOR   Figure  5:  A  PFD  of  the  FTR  unit       Table  7:  Stream  Tables  for  the  FTR  Unit       Units   SYNGAS   FEED   Component  Mole  Flow               CO   MSCFD   423.52   42.47   CO2   MSCFD   106.38   104.74   H2   MSCFD   847.04   54.26   WATER   MSCFD   394.01   775.78   N2   MSCFD   3.59   5.00   CH4   MSCFD   4.48   13.50   ETHANE   MSCFD   0.00   0.38   PROPANE   MSCFD   0.00   0.38   N-­‐BUT-­‐01   MSCFD   0.00   0.38   NAPTHA   MSCFD   0.00   7.04   DIESEL   MSCFD   0.00   6.89   C21-­‐C25   MSCFD   0.00   2.04   C26-­‐C29   MSCFD   0.00   1.19   C30-­‐C35   MSCFD   0.00   1.28   C36-­‐C47   MSCFD   0.00   1.42   C48PLU   MSCFD   0.00   0.66   Mole  Flow   MSCFD   1779.02   1017.42   Mass  Flow   LB/DAY   67257.43   67314   Temperature   F   1929.46   382.21   Pressure   PSIG   300.00   278.30   Total  Inlet  Mass  (LB/DAY)   67257     Total  Outlet  Mass  (LB/DAY)   67257        
  • 29. 28     Separation  Unit  Implementation   The  products  from  the  Fisher  Tropsch  Reactor  consist  of  hydro  carbons  ranging  from  C1  to  C60   along  with  some  left  over  CO,  CO2,  H2,  H2O,  and  N2.  These  products  needed  to  be  separated  into   specific  groups  of  hydrocarbons  in  order  to  be  sold  to  the  customer.  The  different  groups  of   hydrocarbons  consist  of  Naptha  (C5-­‐C10),  Diesel  (C11-­‐C20),  wax  (C21+),  and  the  individual  components   of  methane,  ethane,  propane,  and  butane.  The  wax  components  were  then  sent  to  a  hydroisomerization   unit  in  order  to  break  those  products  down  to  smaller  hydrocarbons  to  be  sold.  The  following  summary   is  a  comprehensive  step  by  step  walk  through  of  the  separation  train  to  achieve  the  desired  products.   The  components  in  parentheses  refer  to  specific  streams  in  the  process  and  can  be  seen  in  the  overall   PFD  of  the  process.   The  feed  from  the  FTR  was  sent  through  an  initial  flash  drum  (FLASH1)  to  separate  as  much  of   the  heavier  wax  components  from  the  desired  products.  The  top  stream  from  this  flash  drum  (DIST1A)   was  then  cooled  by  a  heat  exchanger  (HX1)  and  created  a  new  colder  stream  (DIST1B)  before  being  put   into  another  flash  drum  (FLASH2).  The  bottom  stream  from  the  first  flash  drum  (BOT1)  was  taken  to  a   mixer  (MIX1)  to  be  mixed  with  other  bottom  products.  The  second  flash  drum  (FLASH2)  has  three   products  and  was  used  to  further  separate  the  heavier  hydrocarbons.  The  top  stream  (DIST2A)  was  then   cooled  by  a  separate  heat  exchanger  (HX2)  to  make  a  colder  stream  (DIST2B)  before  being  sent  to   another  flash  drum  (FLASH3).  The  non-­‐aqueous  bottom  product  from  FLASH2  (BOT2)  was  then  sent  to   the  same  mixer  (MIX1)  as  BOT1.  The  aqueous  bottom  stream  (BOT2AQU)  was  sent  to  a  different  mixer   (MIX3)  to  be  mixed  with  other  aqueous  bottom  products.  DIST2B  was  sent  to  FLASH3  to  further   separate  the  heavier  components.  FLASH3  products  include  one  vapor  top  stream  (DIST3A),  one   aqueous  bottom  stream  (BOT3AQU),  and  one  liquid  bottom  stream  (BOT3).  DIST3A  was  cooled  by  a   separate  heat  exchanger  (HX3)  to  create  another  colder  stream  (DIST3B)  and  sent  to  another  flash  drum   (FLASH4).  BOT3  was  sent  to  a  separate  flash  drum  (FLASH6)  to  have  its  components  be  separated  
  • 30. 29     further.  BOT3AQU  was  sent  to  the  aqueous  mixer  (MIX3).  DIST3B  was  sent  to  FLASH4  and  produced   three  products.  The  top  product  (DIST4A)  was  cooled  by  a  heat  exchanger  (HX4)  and  the  cooled  stream   (DIST4B)  and  sent  to  another  flash  drum  (FLASH5).  The  non-­‐aqueous  bottom  product  (BOT4)  was  sent   back  to  MIX1  to  be  mixed  with  BOT1  and  BOT2.  These  three  streams  were  mixed  together  to  make  a   stream  consisting  of  all  of  their  components  (S1).  S1  was  then  sent  through  a  valve  (VALVE1)  to  decrease   the  pressure  of  the  stream  (S2).  The  aqueous  bottom  product  of  FLASH4  (BOT4AQU)  was  sent  to  MIX3   with  the  other  previous  aqueous  bottom  products.  DIST4B  entered  FLASH5  and  created  three  more   streams.  The  top  vapor  stream  (DIST5)  was  sent  to  a  mixer  (MIX5).  The  non-­‐aqueous  bottom  stream   from  FLASH5  (BOT5A)  was  cooled  by  a  heat  exchanger  (REFRIDGE)  to  create  a  colder  stream  (BOT5B).   BOT5B  was  then  sent  to  a  decanter  (DECANT)  to  create  two  different  streams  (S11)  and  (S12).  S11  was   sent  back  to  MIX3  with  the  other  aqueous  streams.  The  aqueous  bottom  product  (BOT5AQU)  was  sent   to  MIX3  with  the  other  aqueous  bottom  streams  (BOT2AQU,  BOT3AQU,  BOT4AQU,  BOT5AQU,   BOT8AQU)  and  S11  to  be  mixed.  The  product  of  MIX3  (S16)  was  used  later  in  the  process.     The  products  of  FLASH6  consisted  of  two  streams.  The  bottom  product  (BOT6)  was  sent  to  a   mixer  (MIX2)  to  be  mixed  with  other  streams.  The  top  product  (DIST6A)  was  cooled  by  a  heat  exchanger   (HX5)  to  create  a  cooler  stream  (DIST6B)  for  further  separation.  DIST6B  was  sent  through  a  flash  drum   (FLASH7).  FLASH  7  created  two  products  to  be  sent  elsewhere  in  the  system.  The  bottom  product  (BOT7)   was  sent  to  MIX2  to  be  mixed  with  S2  and  BOT6.  The  top  product  from  FLASH7  was  sent  to  a  mixer   (MIX4)  to  be  mixed  with  certain  products  later  in  the  separation.  The  product  of  MIX2  (S3)  was  cooled   by  a  heat  exchanger  (HX6)  to  make  a  cooler  stream  (S4).  The  pressure  of  S4  was  decreased  by  a  valve   (VALVE2)  to  create  the  stream  S5.   S5  was  sent  to  a  distillation  column  (DIST1)  with  a  total  condenser  and  a  partial  reboiler  to   separate  the  product  into  2  streams.  The  bottoms  product  is  the  WAX  stream  that  was  sent  to  the   hydroisomerization  unit.  The  distillate  (S6)  was  sent  through  a  heat  exchanger  (HX7)  to  cool  the  stream  
  • 31. 30     to  create  a  colder  stream  S7.  S7  was  put  into  a  distillation  column  (DIST2)  with  a  total  condenser  and  a   partial  reboiler  to  create  two  more  product  streams.  The  bottoms  stream  is  the  DIESEL  product  stream.   The  distillate  (S8)  was  sent  to  a  mega  compressor  (B3)  to  compress  the  stream  (S9).  MIX4  mixed  the   streams  DIST7  from  FLASH7,  S12  from  the  decanter,  and  S9  from  the  mega  compressor  (B3).  The   product  from  MIX4  (S13)  was  sent  to  a  heat  exchanger  (HX10)  to  cool  the  stream  and  create  S14.  S14   was  sent  to  a  flash  drum  (FLASH8)  and  created  three  product  streams.  The  non-­‐aqueous  bottom  stream   was  the  NAPTHA  desired  product  stream.  The  aqueous  bottom  stream  was  sent  to  MIX3  to  be  mixed   with  the  other  aqueous  bottom  streams  and  S11.  The  top  product  (DIST8)  was  sent  to  a  compressor   (COMP2)  to  compress  the  stream  and  create  a  highly  pressurized  stream  (S10).   S10  was  sent  to  a  mixer  (MIX5)  to  be  mixed  with  the  DIST5  product  from  FLASH5.  The  product   from  MIX5  (S15)  was  sent  to  a  valve  (VALVE4)  to  decrease  the  pressure  of  the  stream  and  create  (S16).   S16  was  then  cooled  by  a  heat  exchanger  (HX8)  to  create  the  cooler  product  (S17).  The  product  of  from   MIX3  (S18)  was  sent  to  a  valve  (VALVE3)  to  decrease  the  pressure  in  the  stream  and  create  S19.  S19  was   cooled  by  a  heat  exchanger  (HX9)  to  create  the  cool  stream  S20.  S17  and  S20  were  sent  to  a  stripping   column  (STRIP1)  to  create  2  streams.  The  top  stream  (FLUEGAS1)  is  a  product  stream.  The  bottom   product  (BOTSTRIP1)  was  sent  to  another  stripping  column  (STRIP2).  Another  air  stream  (AIR)  necessary   for  the  stripping  column  was  added  and  sent  into  STRIP2.  The  two  products  of  STRIP2  are  FLUEGAS2  and   WASTEH2O.     The  product  streams  from  this  separation  process  that  contain  desired  products  are  NAPTHA,   DIESEL,  and  WAX  streams.  The  NAPTHA  and  DIESEL  streams  are  ready  for  packaging  and  sale.  The  WAX   stream  requires  further  separation  in  order  to  achieve  the  desired  products.  A  Hydroisomerization  Unit   was  employed  in  order  to  achieve  the  desired  separation.  This  will  be  discussed  in  detail  in  the  following   section.  Figure  (6)  is  the  PFD  for  the  separation  unit,  Table  (8)  is  the  stream  tables  of  the  inlet  and  outlet  
  • 32. 31     streams  for  the  separation  unit,  and  Table  (9)  displays  the  mass  balance  values  for  the  Separation  Unit.   The  full  stream  tables  can  be  seen  in  Appendix  B.  
  • 33. 32       Figure  6:  PFD  for  the  Separation  unit   FLASH1 DIST1A BOT1 HX1 DIST1B VALVE1MIX1 FLASH2 DIST2A BOT2 HX2 DIST2BFLASH3 DIST3A BOT3 BOT3AQU S1S2 MIX2 FLASH6 BOT6 DIST6A HX2 DIST6B FLASH7 BOT7 DIST7 S3 HX6 S4 VALVE2 DIST1 S6 WAX HX7 DIST2 S7 DIESEL S8 B3 S9MIX4 S13 HX10 S14 FLASH8 NAPTHA DIST8 HX3 DIST3B FLASH4 BOT4 BOT4AQU DIST4A HX4 DIST4B FLASH5DIST5 BOT5A BOT5AQU BOT8AQU MIX3 REFRIDGE DECANT BOT5B S11 S12 COMP2 MIX5 S10 S18 VALVE3 S15 VALVE4 S16 HX8 HX9 S19 STRIP1 S17 S20 STRIP2 FLUEGAS1 BOTSTRIP1 AIR FLUEGAS2 WASTEH2O FTR  Product
  • 34. 33     Table  8:  Inlet  and  Outlet  Stream  Tables  for  the  Separation  Unit       Units   FEED   AIR   NAPTHA   DIESEL   WAX   WASTE   H2O   FLUE   GAS1   FLUE   GAS2   From               FLASH8   DIST2   DIST1   STRIP2   STRIP1   STRIP2   To       FLASH1   STRIP2                           Substream:   MIXED                                       Phase:       Mixed   Vapor   Liquid   Liquid   Liquid   Liquid   Vapor   Vapor   Component   Mole  Flow                                       CO   MSCFD   42.47   0.00   0.00   0.00   0.00   0.00   42.44   0.03   CO2   MSCFD   104.74   0.00   0.03   0.00   0.00   0.00   104.32   0.39   H2   MSCFD   54.26   0.00   0.00   0.00   0.00   0.00   54.26   0.00   WATER   MSCFD   775.78   0.00   0.01   0.00   0.00   254.76   278.71   242.31   N2   MSCFD   5.00   19.13   0.00   0.00   0.00   0.01   5.00   19.12   CH4   MSCFD   13.50   0.00   0.00   0.00   0.00   0.00   13.48   0.02   ETHANE   MSCFD   0.38   0.00   0.00   0.00   0.00   0.00   0.38   0.00   PROPANE   MSCFD   0.38   0.00   0.00   0.00   0.00   0.00   0.37   0.01   N-­‐BUT-­‐01   MSCFD   0.38   0.00   0.01   0.00   0.00   0.00   0.36   0.01   NAPTHA   MSCFD   7.04   0.00   5.86   0.00   0.00   0.00   1.18   0.00   DIESEL   MSCFD   6.89   0.00   0.26   6.39   0.21   0.00   0.02   0.00   C21-­‐C25   MSCFD   2.04   0.00   0.00   0.00   2.04   0.00   0.00   0.00   C26-­‐C29   MSCFD   1.19   0.00   0.00   0.00   1.19   0.00   0.00   0.00   C30-­‐C35   MSCFD   1.28   0.00   0.00   0.00   1.28   0.00   0.00   0.00   C36-­‐C47   MSCFD   1.42   0.00   0.00   0.22   0.95   0.00   0.26   0.00   C48PLU   MSCFD   0.66   0.00   0.00   0.00   0.66   0.00   0.00   0.00   Mole  Flow   MSCFD   1017.42   91.08   6.17   6.61   6.34   254.81   500.79   333.79   Temperature   F   382.14   100.00   140.00   345.83   460.33   196.55   183.93   196.31   Pressure   PSIG   278.30   0.00   0.00   -­‐13.54   -­‐13.54   0.00   0.00   0.00     Table  9:  Mass  Balance  for  the  Separation  Unit.           FEED   AIR   NAPTH A   DIESEL   WAX   WASTE   H2O   FLUE   GAS1   FLUE   GAS2   Mass   Flow   LB/DA Y   67313.9 5   7478.8 5   1748.93   3848.5 8   7532.5 2   12098.1 8   30536.3 7   19028.1 1   Total  Inlet   Mass   (LB/DAY)   74793   Total   Outlet   Mass   (LB/DAY)   74793   *  The  blue  boxes  are  inlet  mass  and  green  are  the  outlet  mass  
  • 35. 34     Hydro-­‐isomerization  Unit   The  hydroisomerization  unit  took  the  wax  produced  from  the  separation  train  and  broke  it  down   into  smaller  hydrocarbon  chains.  The  amount  of  each  carbon  chain  produced  from  the   hydroisomerization  unit  were  assumed  by  a  weight  percent  of  the  total  weight  input  into  the  unit.  The   total  weight  of  the  WAX  stream  was  313.85   .    Table  (10)  demonstrates  the  amount  of  each   hydrocarbon  leaving  the  hydroisomerization  unit  based  on  the  weight  percent  given  in  the  plant   specifications.   Table  10:  Mass  Flow  rates  of  Hydrocarbons  from  the  Hydroisomerization  Unit   Hydrocarbon     Mass  flow  (lb/hr)   Wt%  from  total  Wax   C1   3.14   1   C2   1.57   0.5   C3   10.98   3.5   C4   10.98   3.5   Naptha   78.46   25   Diesel   208.71   66.5     These  components  are  mixed  and  require  separation  in  order  to  recover  the  naptha  and  diesel  portions   of  the  stream  (WAX).  The  first  step  is  to  increase  the  pressure  of  the  mixture  from  1.16  psia  to  14.7  psia.   This  was  completed  by  using  a  compressor.  The  unit  operation  table  of  the  compressor  can  be  seen  in   the  equipment  specifications  section.  After  the  compressor  the  mixture  was  sent  to  a  distillation  column   (HIDIST1)  to  separate  the  C1    C4  components  from  the  naptha  and  diesel  components  of  the  stream.   The  first  distillation  column  was  operated  at  atmospheric  pressure  with  a  partial  condenser  and  a  partial   reboiler.  The  partial  condenser  was  used  because  the  components  being  produced  in  the  distillate  (C1-­‐ C4)  are  all  vapor  and  do  not  require  any  more  separation.  The  unit  operations  table  for  the  first   distillation  column  can  be  seen  in  equipment  specifications.  The  summary  of  distillation  column  1  can  be   seen  in  Table  (11).  
  • 36. 35     Table  11:  A  Summary  of  the  Separation  in  Distillation  Column  1       Mole  Fraction  in   distillate   Mole  Fraction  in   bottoms   Temperature   (F)   Pressure   (psia)   C1-­‐C4   0.9919   0.0062   31.3   14.7   Naptha  and   Diesel   0.0081   0.9938   247.9   14.7     As  is  demonstrated  in  Table  (11),  a  very  good  separation  is  achieved  from  the  first  distillation   column  unit.  The  C1-­‐C4  stream  is  a  product  and  no  longer  required  any  more  separation.  The  bottoms   product  (NAPDIE)  was  sent  to  another  distillation  column  because  the  mixture  needed  further   separation  to  create  more  product  to  be  sold.  Another  distillation  column  (HIDIST2)  was  used  to   separate  the  naptha  and  diesel  into  each  pure  component.  A  total  condenser  and  a  partial  reboiler  were   implemented  for  this  column  because  both  the  distillate  and  the  bottoms  need  to  be  liquid  for  transport   and  sale.  The  unit  operations  for  the  second  distillation  column  can  be  seen  in  equipment  specifications.   The  summary  of  distillation  column  2  can  be  seen  in  Table  (12).   Table  12:  A  Summary  of  the  Separation  in  Distillation  Column  2.       Mole  Fraction   in  distillate   Mole  Fraction   in  bottoms   Temperature  (F)   Pressure  (psia)   Naptha   0.9856   0.0001   182.6   14.7   Diesel   0.0001   0.9999   506.1   14.7     Figure  (7)  demonstrates  the  separation  of  the  naptha  and  diesel  components  and  is  the  PFD  of  the   Hydroisomerization  Unit.  Table  (13)  are  the  stream  tables  for  the  HI  unit.    
  • 37. 36     Hydroisomerization  Unit HI  PROD1 HI  COMPRESSOR HIDIST1 HIDIST2 HI  PROD2 C1-­‐C4 NAPDIE NAPTHA2 DIESEL2 WAX   Figure  7:  Hydroisomerization  unit  PFD   Table  13:  Stream  tables  and  Mass  Balance  for  the  Hydroisomerization  Unit       Units   HI  PROD  1   HI  PROD  2   C1-­‐C4   NAPDIE   NAPTHA   DIESEL   From           HI   CIOMPRESSOR   HIDIST  1   HIDIST  1   HIDIST  2   HIDIST  2   To       HI   CIOMPRESSOR   HIDIST  1       HIDIST  2           Substream:   MIXED                               Phase:       Vapor   Vapor   Vapor   Liquid   Liquid   Liquid   Component   Mole  Flow                               CH4   MSCFD   1.78   1.78   1.78   0.00   0.00   0.00   ETHANE   MSCFD   0.48   0.48   0.47   0.00   0.00   0.00   PROPANE   MSCFD   2.27   2.27   2.24   0.03   0.03   0.00   N-­‐BUT-­‐01   MSCFD   1.72   1.72   1.66   0.07   0.07   0.00   NAPTHA   MSCFD   6.90   6.90   0.05   6.85   6.85   0.00   DIESEL   MSCFD   9.09   9.09   0.00   9.09   0.00   9.09   Mole  Flow   MSCFD   22.24   22.24   6.20   16.04   6.95   9.09   Mass  Flow   LB/DAY   7532.50   7532.50   640.26   6892.23   1883.04   5009.19   Temperature   F   460.33   543.10   31.28   247.89   182.57   506.10   Pressure   PSIG   -­‐13.54   0.00   0.00   0.00   0.00   0.00   Total  Inlet  Mass   (LB/DAY)   7532.50   Total  Outlet   Mass  (LB/DAY)   7532.50      
  • 38. 37     Heat  Integration   In  industrial  processes  there  often  exists  the  opportunity  to  integrate  the  streams  involved  using   energy  released  from  some  streams  to  heat  other  streams.  This  heat  integration  can  decrease  utility   costs.  For  this  system  streams  from  the  syngas  unit,  FTR  unit  and  the  separation  unit  were  considered   for  heat  integration.  A  compilation  of  the  selected  streams  and  the  associated  parameters  are  located  in   Table  (14).  Each  stream  was  determined  to  be  a  hot  stream,  which  gives  off  heat,  or  a  cold  stream,   which  requires  heat.                                          
  • 39. 38     Table  14:  Streams  Considered  for  Heat  Integration   Stream   Label   Condition   Source   Temperature   ( )   Target     Temperature  ( )   Cp  (Btu/ )   Duty,  Q  (Btu)   Heat   Exchanger   1   H1   Hot   409   365   17116.34   -­‐753,119   Heat   Exchanger   2   H2   Hot   365   365   n/a   -­‐515,546   Heat   Exchanger   9   H3   Hot   323   90   1706.44   -­‐397,601   Flash   Column  2   H4   Hot   365   365   n/a   -­‐140,997   Heat   Exchanger   4   H5   Hot   250   95   610.95   -­‐94,697   HI  Unit   Distillation   Column  2   reboiler     H6   Hot   543   247   260.79   -­‐77,194   Heat   Exchanger   6   H7   Hot   390   200   312.14   -­‐59,307   Syngas   Heat   Exchanger   H8   Hot   1938   400   1790   -­‐2,753,020   Flash   Column  1   C1   Cold   382   409   1736.63   46,889   HI  Unit   distillation   column  2   reboiler   C2   Cold   247   506   221.86   57,240   Distillation   Column  1   reboiler   C3   Cold   199   460   498.07   127,646   Stripper  2   (top  stage)   C4   Cold   150   196   10517.61   483,810   Stripper  1   (bottom   stage)   C5   cold   90   190   7178.58   717,858    
  • 40. 39     In  order  to  determine  which  streams  to  integrate,  the  absolute  value  of  the  energy  duties  for  all   streams  were  compared.  The  streams  located  in  Table  (14)  were  selected  because  the  associated  heat   duties  were  significantly  larger  than  the  duties  of  other  streams.       The  temperature  interval  method(13)  was  used  in  the  preliminary  design  of  the  heat  exchanger   network.  The  minimum  approach  temperature  was  selected  to  be  10 .  Then,  the  temperature  for  the   hot  streams  were  adjusted  down  10 accordingly.  All  of  the  source  and  target  temperatures  were   sorted  from  largest  to  smallest  and  Figure  (8)  was  constructed  to  show  the  temperature  intervals  that   exist  in  the  process.     Figure  8:  Diagram  of  the  Temperature  Interval  Method  
  • 41. 40     Using  the  heat  capacities  of  each  stream,  the  change  in  enthalpy  for  each  interval  was  calculated   using  the  Equation  (31).   )  (31)   Then,  the  residual  enthalpy  of  each  interval  was  calculated  by  adding  to  each  enthalpy  the  value  before   it.  This  gives  an  indication  of  where  the  pinch  point  in  the  process  exists.  Table  15  lists  the  change  in   enthalpy  and  residual  enthalpy  for  each  interval.     Table  15:  Calculated  Enthalpies  for  the  Temperature  Interval  Method   Interval   1   1395   2497050   2497050   2   27   55371   2552421   3   46   84131   2636552   4   51   68333   2704885   5   10   -­‐3968   2700918   6   9   -­‐3571   2697347   7   8   119437   2816784   8   2   33332   2850116   9   25   1081002   3931118   10   42   -­‐5796   3925322   11   65   101949   4027272   12   8   14322   4041594   13   3   7204   4048798   14   38   81338   4130136   15   3   7889   4138024   16   6   -­‐47328   4090696   17   40   -­‐615152   3475544   18   60   -­‐291671   3183872   19   5   11587   3195459   20   5   8532   3203992     In  this  case,  the  pinch  point  exists  before  interval  1,  or  at  1938   .  This  means  that  there  is  no   hot  utility  for  the  process.  The  cold  utility  for  the  process  is  3,203,992  btu/hr,  the  residual  enthalpy  
  • 42. 41     associated  with  interval  20,  the  last  temperature  interval  being  evaluated.  No  external  heating  sources   will  be  necessary  for  the  integration  of  these  streams,  because  the  hot  utility  equals  zero.     The  next  step  was  to  match  streams  based  on  temperatures  of  the  streams  and  energy  duties  available.   In  order  for  a  hot  stream  to  be  able  to  heat  a  cold  stream,  the  temperatures  of  the  hot  stream  must  be   greater  than  the  temperatures  of  the  cold  streams.  Only  three  of  the  hot  streams  were  necessary  to   supply  enough  energy  to  heat  all  of  the  cold  streams  in  question.  Figure  9  shows  the  final  heat   integration  of  the  process;  all  temperatures  listed  below  are  in  units  of       Figure  9:  Final  Heat  integration  Diagram   Direction  of  heat  transfer  is  from  the  hot  (red)  streams  to  the  cold  (blue)  streams  and  are   depicted  by  the  green  circles.  Stream  H8  is  the  feed  to  the  FTR  unit  from  the  Syngas  unit.  The  stream   exits  the  Syngas  Unit  at  1938  and  needs  to  enter  the  FTR  Unit  at  400   .  The  amount  of  energy   associated  with  this  stream  is  more  than  sufficient  to  heat  cold  streams  C1,  C2,  and  C3.  The   temperatures  labeled  above  the  heat  transfer  streams  represent  is  the  end  of  the  temperature  interval  
  • 43. 42     that  that  hot  stream  needs  to  decrease  to  supply  enough  energy  for  that  cold  stream.  For  example,  C3   requires  127,646  btu/hr  to  continuously  heat  it  from  199  to  460 .  127,646   btu/hr  is  available  from   stream  H8  by  cooling  it  from  1938  to  1866.69 .  Sample  calculations  are  shown  below.      (2)   Energy  required:              is  the  intermediate  temperature  that  stream  H8  will  decrease  to  after  heating  stream  C3.  This  value   must  be  great  that  the  target  temperature  for  H8,  which  in  this  case  is  400  H8  has  more  than  enough   energy  to  heat  C3,  as    (1866.69 )  is  much  greater  than    (400  This  analysis  was  performed  for   the  other  four  cold  streams  to  produce  the  final  heat  integration  design.  A  PFD  of  the  process  is  shown   in  Figure  10.  
  • 44. 43       Figure  10:  Process  flow  diagram  of  the  integrated  heat  streams     Equipment  Specifications       This  section  (Tables  (16)-­‐(29))  lists  all  of  the  equipment  specifications  and  operating  conditions   for  the  equipment  in  the  entire  process.  The  material  used  is  carbon  steel.  Carbon  steel  is  a  cheap   material  and  although  we  have  some  corrosive  materials  in  the  process,  the  amount  is  negligible  and   will  not  affect  the  equipment.          
  • 45. 44     Separation  Unit  Sizing  Equipment   Table  16:  Flash  Column  Equipment  Specifications   Column   #   Outlet   Temperature     Outlet   Pressure   (psia)   Vapor   Fraction   Heat  Duty   (Btu/hr)   Vessel   diameter   (ft)   Vessel  tangent   to  tangent   height  (ft)   Liquid   volume   (gal)   1   408.49   293   0.99   468892   3   12   634.561   2   365   293   0.5   -­‐140997   3   12   634.561   3   260   293   0.49   -­‐14555.3   3   12   634.561   4   250   293   0.98   -­‐5464.84   3   12   634.561   5   95   293   0.86   -­‐107.92   3   12   634.561   6   310   14.7   0.12   2358.02   3   12   634.561   7   235   14.7   0.94   -­‐5.22E-­‐13   3   12   634.561   8   140   14.7   0.19   2.94E-­‐05   3   12   634.561   Table  17:  Distillation  Column:  Condenser/Top  Stage  Performance   Column  #   Temperature     Heat  Duty   (Btu/hr)   Distillate  Rate   (lbmol/hr)   Reflux  Rate   (lbmol/hr)   Reflux  Ratio   DIST-­‐1   339.18   -­‐39195.80   0.86   1.55   1.8   DIST-­‐2   267.05   -­‐6830.24   0.13   0.20   1.5   Table  18:  Distillation  Column:  Reboiler/  Bottom  Stage  Performance   Column  #   Temperature     Heat  Duty   (Btu/hr)   Bottoms  Rate   (lbmol/hr)   Boilup  Rate   (lbmol/hr)   Boilup  Ratio   DIST-­‐1   460.33   127646.00   0.70   2.19   3.15   DIST-­‐2   345.83   224144.40   0.73   0.92   1.27   Table  19:  Distillation  Column  Equipment  Specifications    Column  #   Tray  type   Vessel   diameter   (ft)   Vessel  tangent   to  tangent   height  (ft)   Design  gauge   pressure   (psig)   Operating   temperature     Number   of  trays   Tray   spacing   (in)   DIST-­‐1   SIEVE   1.5   52   15   345.83   20   24   DIST-­‐2   SIEVE   2   78   15   460.33   33   24   Table  20:  Compressor  Equipment  Specifications   Operation   Value   Model   Isentropic  Compressor   Phase  Calculations   Vapor  Phase   Inidicated  Horsepower  (hp)   0.35   Brake  horsepower  (hp)   0.35   Net  work  required  (hp)   .035   Power  Loss  (hp)   0   Efficiency   0.72   Mechanical  Efficiency   1   Outlet  Temperature  (   419.01   Outlet  Pressure  (psia)   265.40  
  • 46. 45       Table  21:  Decanter  Equipment  Specifications   Operation    Value   Pressure  (psia)   265.4   Temperature     86   Outlet  temperature     86   Outlet  pressure  (psia)   265.4   Calculated  heat  duty  (Btu/hr)   -­‐90.075   Net  duty  (Btu/hr)   -­‐90.075   Vessel  diameter  (ft)   3   Vessel  tangent  to  tangent  height  (ft)   12   Liquid  volume  (gal)   634.561     Table  22:  Heat  Exchanger  Equipment  Specifications   Heat   Exchanger  #   Outlet  Temperature     Outlet  Pressure   (psia)   Vapor   Fraction   Heat  Duty   (Btu/hr)   Heat  transfer  area     1   365   265.4   0.58   -­‐753119   19.339   2   260   265.4   0.5   -­‐515546   17.855   3   250   265.4   0.99   -­‐6812.07   0.181   4   95   265.4   0.85   -­‐94697   8.066   5   235   14.7   0.94   -­‐174.3   0.004   6   200   14.7   0.01   -­‐59307   2.113   7   200   1.16   0.07   -­‐33199.7   0.855   8   90   14.7   1   -­‐1953.02   15.301   9   90   14.7   0.01   -­‐397601   35.478   10   140   14.7   0.19   -­‐1536.84   0.137     Table  23:  Valve  Equipment  Specifications   Valve  #:   1   2   3   4   Calculation  type   ADIAB-­‐ FLASH   ADIAB-­‐ FLASH   ADIAB-­‐ FLASH   ADIAB-­‐ FLASH   Calculated  outlet  pressure  (psia)   14.69   1.16   265.4   14.7   Calculated  pressure  drop  (psi)   278.30   13.53   0   250.7          
  • 47. 46     Syngas  Unit   Table  24:  Syngas  Reactor  Specifications   Operation   Value   Liquid  volume  (gal)   35.25   Vessel  diameter  (ft)   1   Vessel  tangent  to  tangent  height  (ft)   6   Design  gauge  pressure  (psig)   550   Design  temperature     1979.46     HI  Unit   Table  25:  HI  Distillation  Column:  Condenser/Top  Stage  Performance   Column  #   Temperature     Heat  Duty   (Btu/hr)   Distillate   Rate   (lbmol/hr)   Reflux  Rate   (lbmol/hr)   Reflux   Ratio   HI  DIST  1   31.27   -­‐27198.90   0.68   1.36   2   HI  DIST  2   182.59   -­‐21840.30   0.76   0.61   0.8     Table  26:  HI  Distillation  Column:  Reboiler/  Bottom  Stage  Performance   Column  #   Temperature   (   Heat  Duty   (Btu/hr)   Bottoms  Rate   (lbmol/hr)   Boilup  Rate   (lbmol/hr)   Boilup   Ratio   HI  DIST  1   247.88   -­‐64574.00   1.76   2.16   1.22   HI  DIST  2   506.10   54409.38   1.00   2.60   2.61     Table  27:  HI  Distillation  Column  Specifications    Column  #   Tray  type   Vessel   diameter   (ft)   Vessel   tangent  to   tangent   height  (ft)   Design  gauge   pressure  (psig)   Operating   temperature     Number   of  trays   Tray   spacing   (in)   HI  DIST  1   SIEVE   1.5   30   15   247.91   9   24   HI  DIST  2   SIEVE   1.5   30   15   506.13   9   24     Table  28:  HI  Compressor  Equipment  Specifications   Operation   Value   Design  gauge  pressure  Inlet  (psig)   0.30   Design  temperature  Inlet     460.33   Design  gauge  pressure  Outlet  (psig)   0.30   Driver  power  (hp)   6.38    
  • 48. 47     FTR  Unit   Table  29:  FTR  Equipment  Specifications   Operation   Value   Inlet  Temperature     400   Catalyst  Weight  (lb)   16.5   Number  of  Tubes   1000   Diameter  of  tube  (in)   1   Pressure  (psia)   330   Shell  Temperature  (K)   480     Utility  Summary   A  summary  of  the  utility  requirements  for  each  unit  will  now  be  presented.  Values  for  the   consumption  of  each  utility  were  read  from  ASPEN.  The  heat  duties  required  for  the  vertical  pressure   vessels  were  obtained  by  taking  excess  energy  from  hot  streams  from  various  units  in  the  process.  Table   (30)  shows  heat  available  and  required  from  the  hot  streams  and  cold  streams,  respectively,  as  well  as  a   credit  heat  utility  for  left-­‐over  heat.     Table  30:  Utility  Summary:  Heat  integration   Hot  Streams   Heat  Available     (BTU/hr)   Cold  Streams   Heat  Required   (BTU/hr)   Credit   (BTU/hr)   HX1                                                                                             753,119      FLASH1                                                                                                   46,889       HX2                                                                                             515,546       HIdist2(reboil)                                                                                                   57,240       HX9                                                                                             397,601      DIST1(reboil)                                                                                             127,646       FLASH2                                                                                             140,997       STRIP2(reboil)                                                                                             483,810       HX4                                                                                                 94,697      STRIP1(cond)                                                                                             717,858       HIdist1(reboil)                                                                                                 77,194      
  • 49. 48     HX6                                                                                                 59,307       Syngas  HX                                                                                     2,753,020       Total                                                                                     4,791,481      Total                                                                                       1,433,443                                                   3,358,038            Heat  from  heat  integration  was  used  to  calculate  the  flow  rate  of  the  cooling  water  to  steam,   which  was  used  as  a  credit  and  thus  as  ensuing  profit.  This  conversion  of  heat  power  to  steam  mass  was   used  by  the  following,  equation:        (32)   Where    is  the  left-­‐over  heat,    is  the  heat  capacity  of  water,   and    are  the  initial  and  final   temperatures  respectively,  chosen  as  room  temperature  (77  degrees  Fahrenheit)  and  353  degrees   Fahrenheit  (which  represents  mid-­‐pressure  steam).    represents  the  flow  rate  of  steam,  which  was   used  to  calculate  both  the  utility  costs  and  credits  for  different  units  of  the  reaction  process.  Table  (31)   shows  the  utility  summary  for  the  Syngas  Unit.  All  utility  tables  presented  exist  on  a  per-­‐year  basis,  more   specifically,  for  the  300  days  the  plant  is  operating.     Table  31:  Utility  Summary  for  Syngas  Unit               Utility   Consumed   Units   Price   Cost   Total  Cost  per   Year   Methane  Feed   150,000   MSCF   $      2.00   $  300,000   $    322,000   600#  490  F  HP   Steam   3,560   klb   $      5.00   $  18,000     Carbon  Dioxide   500psig  &  100F   10,314   MSCF   $      0.40   $  4,000