SlideShare a Scribd company logo
1 of 25
Failure Mode and Effect 
Analysis (FMEA) Power Boiler
Agenda 
1 
2 
3 
Introduction to FMEA 
Introduction to Power Boiler 
Causes of failures in boiler system 
Case Study boiler pressure part
Failure Mode and 
Effects Analysis 
(FMEA) 
3
DEFINITION 
• Potential Failure Mode – สภาพหรือรูปแบบความเสียหายของผลิตภัณฑ์ 
กระบวนการผลิต หรือแม้แต่การบริการ ที่ยังไม่เกิดขึน้ แต่คาดว่าจะเกิดขึน้ได้ 
ในอนาคต 
• Potential Cause –สาเหตุที่เป็นไปได้ ที่ก่อให้เกิดสภาพหรือรูปแบบความ 
เสียหายกับอุปกรณ์ 
• Effect – ผลลัพธ์ที่เกิดขึน้เนื่องจากความเสียหาย และส่งผลโดยตรงต่อ 
ผลิตภัณฑ์ กระบวนการผลิต และ การบริการในที่สุด 
• Analysis – การวิเคราะห์อย่างเป็นระบบ ได้แก่ การวิเคราะห์การออกแบบ 
กระบวนการ การทางานของผลิตภัณฑ์ และรวมไปถึงการวิเคราะห์ข้อมูลที่ 
เกี่ยวข้องด้วย 
4
DEFINITION 
• Severity(SEV) – ค่าความรุนแรงของ Effect ในเชิงปริมาณ 
• Current Control – การควบคุมหรือการตรวจจับความเสียหายที่ดาเนินการอยู่ 
ในปัจจุบัน 
• Detection (DET) – ค่าความสามารถในการตรวจจับความเสียหายที่เกิดขึน้ใน 
เชิงปริมาณ 
• Recommended Action - วิธีการสาหรับป้องกันหรือลดความเสี่ยงในการเกิด 
Potential Cause 
5
DEFINITION 
• Risk Priority Number (RPN) – ค่าที่แสดงถึงความเสี่ยงของแต่ละ Potential 
Cause 
RPN = SEV x OCC x DET 
6
FMEA PROCESS 
• ค้นหาอุปกรณ์วิกฤต 
• รวบรวมข้อมูลต่างๆของอุปกรณ์ เช่น หน้าที่การทางาน ประวัติความเสียหาย ประวัติ 
การบารุงรักษา 
• วิเคราะห์หา Failure Mode ที่เป็นไปได้ เช่น Leakage, Crack, Explosion, 
Deformation, Electrical Short เป็นต้น 
• วิเคราะห์หา Effect ของแต่ละ Failure Mode เช่น การบาดเจ็บ, หยุดการเดินเครื่อง, 
ประสิทธิภาพลดลง เป็นต้น 
• กาหนด Severity (SEV) ของ Effect 
• วิเคราะห์หา Potential Cause ของแต่ละ Failure Mode 
7
FMEA PROCESS 
• กาหนด Occurrence (OCC) ของแต่ละ Potential Cause 
• ระบุ Current Control ของแต่ละ Potential Cause 
• กาหนดค่าความสามารถในการ Detection (DET) 
• คานวณหาค่า Risk Priority Number (RPN) ของแต่ละ Failure Mode 
• หาวิธีการสาหรับป้องกันหรือลดความเสี่ยงในการเกิด Failure Mode ที่มีค่า RPN 
มากกว่า Criteria ที่กาหนด 
8
FMEA PROCESS 
Potential 
Severity Cause(s) 
Recommended 
Actions 
Potential 
Failure 
Effects 
Potential 
Failure 
Modes 
Equipment Function 
Predictive Detection RPN 
Methods 
Occurence 
9
FMEA PROCESS 
Componen 
t 
Potentia 
l Failure 
Mode 
Potentia 
l Failure 
Effects 
S 
E 
V 
Potential 
Causes 
O 
C 
C 
Current 
Controls 
D 
E 
T 
R 
P 
N 
Recommende 
d 
Actions 
What is 
the 
Input? 
What can go 
wrong with the 
Input? 
What is the 
Effect on 
the 
Outputs? 
How 
bad? 
How 
Often? 
What are the 
Causes? 
How can 
this be 
found? 
How 
Well? 
What can 
be done? 
10
SEVERITY 
Effect Severity of Effect Ranking 
Hazardous – 
W/O Warning 
11 
Very high severity ranking – Affects operator, plant or 
maintenance personnel, safety and or affects non-compliance 
with government regulations, without warning. 
10 
Hazardous – 
With Warning 
High severity ranking – Affects operator, plant or 
maintenance personnel, safety and/or affects non-compliance 
with government regulations with warning. 
9 
Very High Downtime of more than 8 hours or the production of 
defective parts for more than 4 hours. 
8 
High Downtime of between 4 and 8 hours or the production of 
defective parts for between 2 & 4 hours. 
7 
Moderate Downtime of between 1 and 4 hours or the production of 
defective parts for between 1 and 2 hours. 
6
SEVERITY 
Effect Severity of Effect Ranking 
Low Downtime of between 30 minutes and 1 hour or the production 
12 
of defective parts for up to 1 hour. 
5 
Very Low Downtime of between 10 and 30 minutes but no production of 
defective parts. 
4 
Minor Downtime of up to 10 minutes but no production of defective 
parts 
3 
Very Minor Process parameter variability not within specification limits. 
Adjustment or other process controls need to be taken during 
production. No downtime and no production of defective parts. 
2 
None Process parameter variability within specification limits. 
Adjustment or other process controls can be taken or during 
normal maintenance 
1
OCCURENCE 
13 
Probability 
of Failure 
Criteria: No. of 
failures within 
Hrs of operation. 
Criteria: The reliability based on 
the users required time. Ranking 
Failure Occurs 
every Hour 
1 in 1 R(t) <1 %: MTBF is about 10% of the 
User’s required time. 
10 
Failure occurs 
every shift 
1 in 8 R(t) = 5%: MTBF is about 30% of 
User’s required time 
9 
Failure occurs 
every day 
1 in 24 R(t) = 20%: MTBF is about 60% of 
the User’s required time. 
8 
Failure occurs 
every week 
1 in 80 R(t) = 37%: MTBF is equal to the 
User’s required time. 
7 
Failure occurs 
every month 
1 in 350 R(t) = 60%: MTBF is 2 times greater 
than the User’s required time. 
6
OCCURENCE 
14 
Probability 
of Failure 
Criteria: No. of 
failures within 
Hrs of operation. 
Criteria: The reliability based on 
the users required time. Ranking 
Failure occurs 
every 3 months 
1 in 1000 R(t) = 78%: MTBF is 4 times greater 
than the User’s required time. 
5 
Failure occurs 
every 6 months 
1 in 2500 R(t) = 85%: MTBF is 6 times greater 
than the User’s required time 
4 
Failure occurs 
every year 
1 in 5000 R(t) = 90%: MTBF is 10 times greater 
than the User’s required time. 
3 
Failure occurs 
every 2 years 
1 in 10,000 R(t) = 95%: MTBF is 20 times greater 
than the User’s required time. 
2 
Failure occurs 
> 5 years 
1 in 25,000 R(t) = 98%: MTBF is 50 times greater 
than the User’s required time. 
1
DETECTION 
Detection Criteria Ranking 
Very Low Design or Machinery Controls cannot detect a potential cause 
15 
and subsequent failure, or there are no design or machinery 
controls. 
10 
Low Design or Machinery controls do not prevent the failure from 
occurring. Machinery controls will isolate the cause and 
subsequent failure mode after the failure has occurred. 
7 
Medium Design controls may detect a potential cause and subsequent 
failure mode. Machinery controls will provide an indicator of 
imminent failure. 
5 
High Design controls may detect a potential cause and subsequent 
failure mode. Machinery controls will prevent an imminent 
failure and isolate the cause. 
3 
Very High Design controls almost certainly detect a potential cause and 
subsequent failure mode, machinery controls not required. 
1
RECOMMENDED ACTION 
คือ การกระทา หรือ วิธีการใดๆ ที่ช่วยลดค่า Risk Priority Number ของ Potential 
Cause ซึ่งสามารถทาได้โดยการลด Severity, Occurrence, Detection อย่างใดอย่าง 
หนงึ่ หรือ ทัง้ 3 อย่างพร้อมกัน 
16
Boiler pressure part 
Component Potential Failure Mode 
Potential Effect(s) 
of Failure 
Sev 
Potential Cause(s)/ 
Mechanism(s) of 
Failure 
Occ 
tube 
Preheater Fire side corrosion 
Tube leak,gas side p. 
drop, low eff. 
acid dew point 
ECO. FAC tube leak 5 parameter model 
Evap/Wall FAC tube leak 5 parameter model 
Underdeposit Corrosion tube leak 
high heat flux, low flow, high 
debris water 
Short Term Overheat tube burst low water flow 
SH/RH tube Graphitization Tube burst mis mat'l, high temp. 
High Temp. Corrosion tube burst mat'L, corrosive media.,temp. 
Long Term Overheat tube burst 
low flow, inside oxide thk., 
high heat flux 
Type IV Crack tube burst service condition, weld mat'l 
Dissimilar Weld tube burst shaffer diagram. 
Pipe 
MSP Weld Defect pipe leak poor joint fitup & weld control 
RH Weld Defect, Type IV Crack pipe leak poor joint fitup & weld control 
Bypass Thermal Fatigue pipe leak 
poor design, operation high 
cycle,mat'L suscept 
Hdr 
ECO T Way FAC leak 5 parameter model 
Final SH Crack dissimiilar weld leak
Introduction to Power Boiler & 
Causes of failures in boiler system 
 Combine Cycle Power Plant 
 Thermal Power Plant 
Hoz. flow Ver. flow 
Sub. Cri 
Pressure 
Sup. Cri 
18 Pressure
Causes of failures in boiler 
system 
Corrosion Crack Degradation 
- Water Side - Weld Defect - Graphitization 
FAC Lack of Fusion - Creep 
Under deposit Undercut Weld Creep -> IV Crack 
- Fire Side Base Metal Creep 
High Temp. - Spherodisation 
Low temp. 
Erosion 
SCC 
Reference 
Nalco Guide
Weld Defect
DISCONTINUITY POSSIBLE CAUSES 
Excessive Convexity Slow travel speed that allows weld metal to build up 
Welding currents too low 
Insufficient Throat A combination of Travel speed to fast and current too high 
Improper placement of weld beads when multiple pass welding 
Undercut Amperage too high 
Arc length too long increasing the force of the arc so that it cuts into corners 
Improper weld technique causing the corners to be left unfilled or cut into 
Groove joint not completely filled and overlapped 
Insufficient Leg Size Using the wrong electrode angle causing the weld to be deposited to heavily on one side 
Using the wrong angle on multiple pas welds Causing the welds to overlap incorrectly 
Poor Penetration Amperage too low 
Travel speeds too fast 
Using too large an electrode for the root of the joint 
Improper electrode angle at the root of the joint 
Improper weave technique 
Using the wrong electrode for the desired joint penetration: (using E-6013 instead of E-6010) 
Poor Fusion Amperage too low 
Travel speeds too fast 
Improper electrode angle at the sides of the joint 
Improper weave technique that does not allow enough time at the sides of the joint 
Using the wrong electrode for the application 
Overlap Amperage too low and /or travel speed too slow 
Electrode too large with low currents 
Porosity Dirty base metal painted or galvanized surfaces 
Arc length too long especially with E-7018 Electrodes 
Moisture in low hydrogen electrodes 
Wind or fans strong enough to break down the shielding gas 
Slag Inclusions Improper manipulation of the electrode especially with E-6013 
Improper cleaning and slag removal between multiple pass welds 
Cracks Using the wrong Electrode for the application 
Using Excessively high amperage on some metals 
Excessive Spatter Amperage too high 
Electrode angle too extreme 
Arc length too long
Boiler tube Failure
Case Study boiler pressure part 
 FAC 
 Thermal Fatigue 
 Erosion 
 Graphitization
Conclusions
Cbm day 7 th presentation

More Related Content

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Cbm day 7 th presentation

  • 1. Failure Mode and Effect Analysis (FMEA) Power Boiler
  • 2. Agenda 1 2 3 Introduction to FMEA Introduction to Power Boiler Causes of failures in boiler system Case Study boiler pressure part
  • 3. Failure Mode and Effects Analysis (FMEA) 3
  • 4. DEFINITION • Potential Failure Mode – สภาพหรือรูปแบบความเสียหายของผลิตภัณฑ์ กระบวนการผลิต หรือแม้แต่การบริการ ที่ยังไม่เกิดขึน้ แต่คาดว่าจะเกิดขึน้ได้ ในอนาคต • Potential Cause –สาเหตุที่เป็นไปได้ ที่ก่อให้เกิดสภาพหรือรูปแบบความ เสียหายกับอุปกรณ์ • Effect – ผลลัพธ์ที่เกิดขึน้เนื่องจากความเสียหาย และส่งผลโดยตรงต่อ ผลิตภัณฑ์ กระบวนการผลิต และ การบริการในที่สุด • Analysis – การวิเคราะห์อย่างเป็นระบบ ได้แก่ การวิเคราะห์การออกแบบ กระบวนการ การทางานของผลิตภัณฑ์ และรวมไปถึงการวิเคราะห์ข้อมูลที่ เกี่ยวข้องด้วย 4
  • 5. DEFINITION • Severity(SEV) – ค่าความรุนแรงของ Effect ในเชิงปริมาณ • Current Control – การควบคุมหรือการตรวจจับความเสียหายที่ดาเนินการอยู่ ในปัจจุบัน • Detection (DET) – ค่าความสามารถในการตรวจจับความเสียหายที่เกิดขึน้ใน เชิงปริมาณ • Recommended Action - วิธีการสาหรับป้องกันหรือลดความเสี่ยงในการเกิด Potential Cause 5
  • 6. DEFINITION • Risk Priority Number (RPN) – ค่าที่แสดงถึงความเสี่ยงของแต่ละ Potential Cause RPN = SEV x OCC x DET 6
  • 7. FMEA PROCESS • ค้นหาอุปกรณ์วิกฤต • รวบรวมข้อมูลต่างๆของอุปกรณ์ เช่น หน้าที่การทางาน ประวัติความเสียหาย ประวัติ การบารุงรักษา • วิเคราะห์หา Failure Mode ที่เป็นไปได้ เช่น Leakage, Crack, Explosion, Deformation, Electrical Short เป็นต้น • วิเคราะห์หา Effect ของแต่ละ Failure Mode เช่น การบาดเจ็บ, หยุดการเดินเครื่อง, ประสิทธิภาพลดลง เป็นต้น • กาหนด Severity (SEV) ของ Effect • วิเคราะห์หา Potential Cause ของแต่ละ Failure Mode 7
  • 8. FMEA PROCESS • กาหนด Occurrence (OCC) ของแต่ละ Potential Cause • ระบุ Current Control ของแต่ละ Potential Cause • กาหนดค่าความสามารถในการ Detection (DET) • คานวณหาค่า Risk Priority Number (RPN) ของแต่ละ Failure Mode • หาวิธีการสาหรับป้องกันหรือลดความเสี่ยงในการเกิด Failure Mode ที่มีค่า RPN มากกว่า Criteria ที่กาหนด 8
  • 9. FMEA PROCESS Potential Severity Cause(s) Recommended Actions Potential Failure Effects Potential Failure Modes Equipment Function Predictive Detection RPN Methods Occurence 9
  • 10. FMEA PROCESS Componen t Potentia l Failure Mode Potentia l Failure Effects S E V Potential Causes O C C Current Controls D E T R P N Recommende d Actions What is the Input? What can go wrong with the Input? What is the Effect on the Outputs? How bad? How Often? What are the Causes? How can this be found? How Well? What can be done? 10
  • 11. SEVERITY Effect Severity of Effect Ranking Hazardous – W/O Warning 11 Very high severity ranking – Affects operator, plant or maintenance personnel, safety and or affects non-compliance with government regulations, without warning. 10 Hazardous – With Warning High severity ranking – Affects operator, plant or maintenance personnel, safety and/or affects non-compliance with government regulations with warning. 9 Very High Downtime of more than 8 hours or the production of defective parts for more than 4 hours. 8 High Downtime of between 4 and 8 hours or the production of defective parts for between 2 & 4 hours. 7 Moderate Downtime of between 1 and 4 hours or the production of defective parts for between 1 and 2 hours. 6
  • 12. SEVERITY Effect Severity of Effect Ranking Low Downtime of between 30 minutes and 1 hour or the production 12 of defective parts for up to 1 hour. 5 Very Low Downtime of between 10 and 30 minutes but no production of defective parts. 4 Minor Downtime of up to 10 minutes but no production of defective parts 3 Very Minor Process parameter variability not within specification limits. Adjustment or other process controls need to be taken during production. No downtime and no production of defective parts. 2 None Process parameter variability within specification limits. Adjustment or other process controls can be taken or during normal maintenance 1
  • 13. OCCURENCE 13 Probability of Failure Criteria: No. of failures within Hrs of operation. Criteria: The reliability based on the users required time. Ranking Failure Occurs every Hour 1 in 1 R(t) <1 %: MTBF is about 10% of the User’s required time. 10 Failure occurs every shift 1 in 8 R(t) = 5%: MTBF is about 30% of User’s required time 9 Failure occurs every day 1 in 24 R(t) = 20%: MTBF is about 60% of the User’s required time. 8 Failure occurs every week 1 in 80 R(t) = 37%: MTBF is equal to the User’s required time. 7 Failure occurs every month 1 in 350 R(t) = 60%: MTBF is 2 times greater than the User’s required time. 6
  • 14. OCCURENCE 14 Probability of Failure Criteria: No. of failures within Hrs of operation. Criteria: The reliability based on the users required time. Ranking Failure occurs every 3 months 1 in 1000 R(t) = 78%: MTBF is 4 times greater than the User’s required time. 5 Failure occurs every 6 months 1 in 2500 R(t) = 85%: MTBF is 6 times greater than the User’s required time 4 Failure occurs every year 1 in 5000 R(t) = 90%: MTBF is 10 times greater than the User’s required time. 3 Failure occurs every 2 years 1 in 10,000 R(t) = 95%: MTBF is 20 times greater than the User’s required time. 2 Failure occurs > 5 years 1 in 25,000 R(t) = 98%: MTBF is 50 times greater than the User’s required time. 1
  • 15. DETECTION Detection Criteria Ranking Very Low Design or Machinery Controls cannot detect a potential cause 15 and subsequent failure, or there are no design or machinery controls. 10 Low Design or Machinery controls do not prevent the failure from occurring. Machinery controls will isolate the cause and subsequent failure mode after the failure has occurred. 7 Medium Design controls may detect a potential cause and subsequent failure mode. Machinery controls will provide an indicator of imminent failure. 5 High Design controls may detect a potential cause and subsequent failure mode. Machinery controls will prevent an imminent failure and isolate the cause. 3 Very High Design controls almost certainly detect a potential cause and subsequent failure mode, machinery controls not required. 1
  • 16. RECOMMENDED ACTION คือ การกระทา หรือ วิธีการใดๆ ที่ช่วยลดค่า Risk Priority Number ของ Potential Cause ซึ่งสามารถทาได้โดยการลด Severity, Occurrence, Detection อย่างใดอย่าง หนงึ่ หรือ ทัง้ 3 อย่างพร้อมกัน 16
  • 17. Boiler pressure part Component Potential Failure Mode Potential Effect(s) of Failure Sev Potential Cause(s)/ Mechanism(s) of Failure Occ tube Preheater Fire side corrosion Tube leak,gas side p. drop, low eff. acid dew point ECO. FAC tube leak 5 parameter model Evap/Wall FAC tube leak 5 parameter model Underdeposit Corrosion tube leak high heat flux, low flow, high debris water Short Term Overheat tube burst low water flow SH/RH tube Graphitization Tube burst mis mat'l, high temp. High Temp. Corrosion tube burst mat'L, corrosive media.,temp. Long Term Overheat tube burst low flow, inside oxide thk., high heat flux Type IV Crack tube burst service condition, weld mat'l Dissimilar Weld tube burst shaffer diagram. Pipe MSP Weld Defect pipe leak poor joint fitup & weld control RH Weld Defect, Type IV Crack pipe leak poor joint fitup & weld control Bypass Thermal Fatigue pipe leak poor design, operation high cycle,mat'L suscept Hdr ECO T Way FAC leak 5 parameter model Final SH Crack dissimiilar weld leak
  • 18. Introduction to Power Boiler & Causes of failures in boiler system  Combine Cycle Power Plant  Thermal Power Plant Hoz. flow Ver. flow Sub. Cri Pressure Sup. Cri 18 Pressure
  • 19. Causes of failures in boiler system Corrosion Crack Degradation - Water Side - Weld Defect - Graphitization FAC Lack of Fusion - Creep Under deposit Undercut Weld Creep -> IV Crack - Fire Side Base Metal Creep High Temp. - Spherodisation Low temp. Erosion SCC Reference Nalco Guide
  • 21. DISCONTINUITY POSSIBLE CAUSES Excessive Convexity Slow travel speed that allows weld metal to build up Welding currents too low Insufficient Throat A combination of Travel speed to fast and current too high Improper placement of weld beads when multiple pass welding Undercut Amperage too high Arc length too long increasing the force of the arc so that it cuts into corners Improper weld technique causing the corners to be left unfilled or cut into Groove joint not completely filled and overlapped Insufficient Leg Size Using the wrong electrode angle causing the weld to be deposited to heavily on one side Using the wrong angle on multiple pas welds Causing the welds to overlap incorrectly Poor Penetration Amperage too low Travel speeds too fast Using too large an electrode for the root of the joint Improper electrode angle at the root of the joint Improper weave technique Using the wrong electrode for the desired joint penetration: (using E-6013 instead of E-6010) Poor Fusion Amperage too low Travel speeds too fast Improper electrode angle at the sides of the joint Improper weave technique that does not allow enough time at the sides of the joint Using the wrong electrode for the application Overlap Amperage too low and /or travel speed too slow Electrode too large with low currents Porosity Dirty base metal painted or galvanized surfaces Arc length too long especially with E-7018 Electrodes Moisture in low hydrogen electrodes Wind or fans strong enough to break down the shielding gas Slag Inclusions Improper manipulation of the electrode especially with E-6013 Improper cleaning and slag removal between multiple pass welds Cracks Using the wrong Electrode for the application Using Excessively high amperage on some metals Excessive Spatter Amperage too high Electrode angle too extreme Arc length too long
  • 23. Case Study boiler pressure part  FAC  Thermal Fatigue  Erosion  Graphitization