Beam Analysis Calculation
Ground Floor Beam, G-F/ 7
Beam Self Weight = Beam Size x Concrete Density
= 0.15m x 0.3m x 24 kN/m​3
=​​
1.08 kN/m​2
Wall Self Weight = Wall Height x Wall Thickness x Brick density
= 3m x 0.15m x 19 kN/m​2
= 8.55 kN/m​2
Dead Load on slab A (Two way slab)
Load is transferred to beam G7-F7 in a UDL form
Dead load from slab A = Dead load on slab x (L​x ​/2) x 2/3
= 3.6 kN/m​2 ​
x (2.66m /2) x 2/3
= 3.192 kN/m​2
Total Dead Load= 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 3.192 kN/m​2
= 12.822 kN/m​2
Live Load on Slab A (Two way slab)
Load is transferred to beam G7-F7 in a UDL form
Live load from slab A = Live load factor x (L​x ​/2) x 2/3
= 1.5 kN/m​2 ​
x (2.66m /2) x 2/3
= 1.33 kN/m​2
Ultimate Load Diagram
Apply factor 1.4 and 1.6 to dead load and live load respectively.
Dead load = 12.82 kN/m​2​
x 1.4 = 17.95 kN/m
Live Load = 1.33 kN/m​2​
x 1.6 = 2.13 kN/m
Ultimate load = 17.95 kN/m​2​
+ 2.13 kN/m​2
= 20.08 kN/m​2
Reaction Force
∑M = 0
= R​F7​ (2.66) – 20.08(2.66)(2.66/2)
= 2.66 R​F7​ – 71.04 kN/m​2
R​F7 = 26.706 kN/m​2
∑Fy = 0
= R​F7​ + R​G7​ – 20.08(2.66)
R​G7 = 26.706 kN/m​2
Shear Force Diagram
Area (+) = 1/2 x 26.706 x (2.66/2)
= 17.759
Area (-) = 1/2 x 26.706 x (2.66/2)
= 17.759
Bending Moment Diagram
Beam Analysis Calculation
Ground Floor Beam, F/ 5-8
Beam Self Weight = Beam Size x Concrete Density
= 0.15m x 0.3m x 24 kN/m​3
=​​
1.08 kN/m​2
Wall Self Weight = Wall Height x Wall Thickness x Brick density
= 3m x 0.15m x 19 kN/m​2
= 8.55 kN/m​2
Dead Load on slab A (Two way slab)
Load is transferred to beam F5-7 in a UDL form
Dead load from slab A = Dead load on slab x (L​x ​/2)
= 3.6 kN/m​2 ​
x (2.66m /2)
= 4.79 kN/m​2
Dead Load on slab B (Two way slab)
Load is transferred to beam F5-8 in a UDL form
Dead load from slab B = Dead load on slab x (L​x ​/2) x 2/3
= 3.6 kN/m​2 ​
x (4.7m /2) x 2/3
= 5.64 kN/m​2
Total Dead Load F5-7 = 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 4.79 kN/m​2​
+ 5.64 kN/m​2
= 20.06 kN/m​2
Total Dead Load F5-8 = 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 5.64 kN/m​2
= 15.27 kN/m​2
Live Load on Slab A (Two way slab)
Load is transferred to beam F5-7 in a UDL form
Live load from slab A = Live load factor x (L​x ​/2)
= 1.5 kN/m​2 ​
x (2.66m /2)
= 2 kN/m​2
Live Load on Slab B (Two way slab)
Load is transferred to beam F5-8 in a UDL form
Live load from slab B = Live load factor x (L​x ​/2) x 2/3
= 1.5 kN/m​2 ​
x (4.7 /2) x 2/3
= 2.35 kN/m​2
Total Live load F5-7 = 2 kN/m​2​
+ 2.35 kN/m​2
= 4.35 kN/m​2
Total Live load F5-8 = 2.35 kN/m​2
Ultimate Load Diagram
Apply factor 1.4 and 1.6 to dead load and live load F5-7 respectively.
Dead load = 20.06 kN/m​2​
x 1.4 = 28.084 kN/m
Live Load = 4.35 kN/m​2​
x 1.6 = 6.96 kN/m
Ultimate load = 28.084 kN/m + 6.96 kN/m = 35.044 kN/m
Apply factor 1.4 and 1.6 to dead load and live load F5-8 respectively.
Dead load = 15.27 kN/m​2​
x 1.4 = 21.378 kN/m
Live Load = 2.35 kN/m​2​
x 1.6 = 3.76 kN/m
Ultimate load = 21.378 kN/m​2​
+ 3.76 kN/m​2​
= 25.138 kN/m​2
Reaction Force
∑M = 0
= R​F5​ (4.7) – 2.7(140.176) – 0.7(26.706) – 0.35(17.597)
= 4.7 R​F5​ – 403.328 kN/m​2
R​F5 = 85.815 kN/m​2
∑Fy = 0
= R​F5​ + R​F8​ – 140.176 – 26.706 – 17.597
R​F8 = 184.479 kN/m​2 ​
– 85.815 kN/m​2
= 98.664 kN/m​2
Shear Force Diagram
x/54.36 = 4/140.176
x= 1.55
Area (+) = 1/2 x 85.815 x (4 – 1.55)
= 105.123
Area (-) = 1/2 x 54.361 x 1.55 + 1/2 x 0.7 x (81.067 + 98.664 )
= 105.036
Bending Moment Diagram
Beam Analysis Calculation
First Floor Beam, XY
Beam Self Weight = Beam Size x Concrete Density
= 0.15m x 0.3m x 24 kN/m​3
=​​
1.08 kN/m​2
Wall Self Weight = Wall Height x Wall Thickness x Brick density
= 3m x 0.15m x 19 kN/m​2
= 8.55 kN/m​2
Dead Load on slab A (Two way slab)
Load is transferred to beam xy in a UDL form
Dead load from slab A = Dead load on slab x (L​x ​/2)
= 3.6 kN/m​2 ​
x (1.85m /2)
= 3.33 kN/m​2
Dead Load on slab B (Two way slab)
Load is transferred to beam xy in a UDL form
Dead load from slab B = Dead load on slab x (L​x ​/2)
= 3.6 kN/m​2 ​
x (2.05m /2)
= 3.69 kN/m​2
Total Dead Load= 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 3.33 kN/m​2​
+ 3.69 kN/m​2
= 16.65 kN/m​2
Live Load on slab A (Two way slab)
Load is transferred to beam xy in a UDL form
Live load from slab A = Live load factor x (L​x ​/2)
= 1.5 kN/m​2 ​
x (1.85m /2)
= 1.388 kN/m​2
Live Load on slab B (Two way slab)
Load is transferred to beam xy in a UDL form
Live load from slab B = Live load factor x (L​x ​/2)
= 1.5 kN/m​2 ​
x (2.05m /2)
= 1.538 kN/m​2
Total Live Load= 1.388 kN/m​2​
+ 1.538 kN/m​2
= 2.926 kN/m​2
Ultimate Load Diagram
Apply factor 1.4 and 1.6 to dead load and live load respectively.
Dead load = 16.65 kN/m​2​
x 1.4 = 23.31 kN/m
Live Load = 2.926 kN/m​2​
x 1.6 = 4.682 kN/m
Ultimate load = 23.31 kN/m​2​
+ 4.682 kN/m​2
= 27.992 kN/m​2
Reaction Force
∑M = 0
= R​X​ (2.435) – 27.992(2.435)(2.435/2)
= 2.435 R​X​ – 82.985 kN/m​2
R​X = 34.08 kN/m​2
∑Fy = 0
= R​X​ + R​Y​ – 27.992(2.435)
R​Y = 68.16 kN/m​2 ​
– 34.08 kN/m​2
= 34.08 kN/m​2
Shear Force Diagram
Area (+) = 1/2 x 34.08 x (2.435/2)
= 20.746
Area (-) = 1/2 x 34.08 x (2.435/2)
= 20.746
Bending Moment Diagram
Beam Analysis Calculation
First Floor Beam, E-C/ 2
Beam Self Weight = Beam Size x Concrete Density
= 0.15m x 0.3m x 24 kN/m​3
=​​
1.08 kN/m​2
Wall Self Weight = Wall Height x Wall Thickness x Brick density
= 3m x 0.15m x 19 kN/m​2
= 8.55 kN/m​2
Dead Load on slab A (Two way slab)
Load is transferred to beam E2-X in a UDL form
Dead load from slab A = Dead load on slab x (L​x ​/2) x 2/3
= 3.6 kN/m​2 ​
x (1.85m /2) x 2/3
= 2.22 kN/m​2
Dead Load on slab B (Two way slab)
Load is transferred to beam X-C2 in a UDL form
Dead load from slab B = Dead load on slab x (L​x ​/2) x 2/3
= 3.6 kN/m​2 ​
x (2.05m /2) x 2/3
= 2.46 kN/m​2
Total Dead Load E2-X = 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 2.22 kN/m​2
= 11.85 kN/m​2
Total Dead Load X-C2 = 1.08 kN/m​2​
+ 8.55 kN/m​2​
+ 2.46 kN/m​2
= 12.09 kN/m​2
Live Load on slab A (Two way slab)
Load is transferred to beam E2-X in a UDL form
Live load from slab A = Live load factor x (L​x ​/2) x 2/3
= 1.5 kN/m​2 ​
x (1.85m /2) x 2/3
= 0.925 kN/m​2
Live Load on slab B (Two way slab)
Load is transferred to beam X-C2 in a UDL form
Live load from slab B = Live load factor x (L​x ​/2) x 2/3
= 1.5 kN/m​2 ​
x (2.05 /2) x 2/3
= 1.025 kN/m​2
Ultimate Load Diagram
Apply factor 1.4 and 1.6 to dead load and live load E2-X respectively.
Dead load = 11.85 kN/m​2​
x 1.4 = 16.59 kN/m
Live Load = 0.925 kN/m​2​
x 1.6 = 1.48 kN/m
Ultimate load = 16.59 kN/m + 1.48 kN/m = 18.07 kN/m
Apply factor 1.4 and 1.6 to dead load and live load X-C2 respectively.
Dead load = 12.09 kN/m​2​
x 1.4 = 16.026 kN/m
Live Load = 1.025 kN/m​2​
x 1.6 = 1.64 kN/m
Ultimate load = 16.926 kN/m​2​
+ 1.64 kN/m​2​
= 18.566 kN/m​2
Reaction Force
∑M = 0
= R​E2​ (3.9) – 33.43(2.975) – 34.08(2.05) – 38.06(1.025)
= 3.9 R​E2​ – 208.3298 kN/m​2
R​E2 = 53.418 kN/m​2
∑Fy = 0
= R​E2​ + R​C2​ – 33.43 – 34.08 – 36.06
R​C2 = 105.57 kN/m​2 ​
– 53.418 kN/m​2
= 52.152 kN/m​2
Shear Force Diagram
Area (+) = 1/2 x 1.85(53.418 + 19.988)
= 67.9
Area (-) = 1/2 x 2.05(52.152 + 14.092)
= 67.9
Bending Moment Diagram

Beam Analysis

  • 1.
    Beam Analysis Calculation GroundFloor Beam, G-F/ 7 Beam Self Weight = Beam Size x Concrete Density = 0.15m x 0.3m x 24 kN/m​3 =​​ 1.08 kN/m​2 Wall Self Weight = Wall Height x Wall Thickness x Brick density = 3m x 0.15m x 19 kN/m​2 = 8.55 kN/m​2 Dead Load on slab A (Two way slab) Load is transferred to beam G7-F7 in a UDL form Dead load from slab A = Dead load on slab x (L​x ​/2) x 2/3 = 3.6 kN/m​2 ​ x (2.66m /2) x 2/3 = 3.192 kN/m​2 Total Dead Load= 1.08 kN/m​2​ + 8.55 kN/m​2​ + 3.192 kN/m​2 = 12.822 kN/m​2 Live Load on Slab A (Two way slab) Load is transferred to beam G7-F7 in a UDL form Live load from slab A = Live load factor x (L​x ​/2) x 2/3 = 1.5 kN/m​2 ​ x (2.66m /2) x 2/3 = 1.33 kN/m​2 Ultimate Load Diagram Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load = 12.82 kN/m​2​ x 1.4 = 17.95 kN/m Live Load = 1.33 kN/m​2​ x 1.6 = 2.13 kN/m Ultimate load = 17.95 kN/m​2​ + 2.13 kN/m​2 = 20.08 kN/m​2
  • 2.
    Reaction Force ∑M =0 = R​F7​ (2.66) – 20.08(2.66)(2.66/2) = 2.66 R​F7​ – 71.04 kN/m​2 R​F7 = 26.706 kN/m​2 ∑Fy = 0 = R​F7​ + R​G7​ – 20.08(2.66) R​G7 = 26.706 kN/m​2 Shear Force Diagram Area (+) = 1/2 x 26.706 x (2.66/2) = 17.759 Area (-) = 1/2 x 26.706 x (2.66/2) = 17.759 Bending Moment Diagram
  • 3.
    Beam Analysis Calculation GroundFloor Beam, F/ 5-8 Beam Self Weight = Beam Size x Concrete Density = 0.15m x 0.3m x 24 kN/m​3 =​​ 1.08 kN/m​2 Wall Self Weight = Wall Height x Wall Thickness x Brick density = 3m x 0.15m x 19 kN/m​2 = 8.55 kN/m​2 Dead Load on slab A (Two way slab) Load is transferred to beam F5-7 in a UDL form Dead load from slab A = Dead load on slab x (L​x ​/2) = 3.6 kN/m​2 ​ x (2.66m /2) = 4.79 kN/m​2 Dead Load on slab B (Two way slab) Load is transferred to beam F5-8 in a UDL form Dead load from slab B = Dead load on slab x (L​x ​/2) x 2/3 = 3.6 kN/m​2 ​ x (4.7m /2) x 2/3 = 5.64 kN/m​2 Total Dead Load F5-7 = 1.08 kN/m​2​ + 8.55 kN/m​2​ + 4.79 kN/m​2​ + 5.64 kN/m​2 = 20.06 kN/m​2 Total Dead Load F5-8 = 1.08 kN/m​2​ + 8.55 kN/m​2​ + 5.64 kN/m​2 = 15.27 kN/m​2
  • 4.
    Live Load onSlab A (Two way slab) Load is transferred to beam F5-7 in a UDL form Live load from slab A = Live load factor x (L​x ​/2) = 1.5 kN/m​2 ​ x (2.66m /2) = 2 kN/m​2 Live Load on Slab B (Two way slab) Load is transferred to beam F5-8 in a UDL form Live load from slab B = Live load factor x (L​x ​/2) x 2/3 = 1.5 kN/m​2 ​ x (4.7 /2) x 2/3 = 2.35 kN/m​2 Total Live load F5-7 = 2 kN/m​2​ + 2.35 kN/m​2 = 4.35 kN/m​2 Total Live load F5-8 = 2.35 kN/m​2 Ultimate Load Diagram Apply factor 1.4 and 1.6 to dead load and live load F5-7 respectively. Dead load = 20.06 kN/m​2​ x 1.4 = 28.084 kN/m Live Load = 4.35 kN/m​2​ x 1.6 = 6.96 kN/m Ultimate load = 28.084 kN/m + 6.96 kN/m = 35.044 kN/m Apply factor 1.4 and 1.6 to dead load and live load F5-8 respectively. Dead load = 15.27 kN/m​2​ x 1.4 = 21.378 kN/m Live Load = 2.35 kN/m​2​ x 1.6 = 3.76 kN/m Ultimate load = 21.378 kN/m​2​ + 3.76 kN/m​2​ = 25.138 kN/m​2 Reaction Force ∑M = 0 = R​F5​ (4.7) – 2.7(140.176) – 0.7(26.706) – 0.35(17.597) = 4.7 R​F5​ – 403.328 kN/m​2 R​F5 = 85.815 kN/m​2 ∑Fy = 0 = R​F5​ + R​F8​ – 140.176 – 26.706 – 17.597 R​F8 = 184.479 kN/m​2 ​ – 85.815 kN/m​2 = 98.664 kN/m​2
  • 5.
    Shear Force Diagram x/54.36= 4/140.176 x= 1.55 Area (+) = 1/2 x 85.815 x (4 – 1.55) = 105.123 Area (-) = 1/2 x 54.361 x 1.55 + 1/2 x 0.7 x (81.067 + 98.664 ) = 105.036 Bending Moment Diagram
  • 6.
    Beam Analysis Calculation FirstFloor Beam, XY Beam Self Weight = Beam Size x Concrete Density = 0.15m x 0.3m x 24 kN/m​3 =​​ 1.08 kN/m​2 Wall Self Weight = Wall Height x Wall Thickness x Brick density = 3m x 0.15m x 19 kN/m​2 = 8.55 kN/m​2 Dead Load on slab A (Two way slab) Load is transferred to beam xy in a UDL form Dead load from slab A = Dead load on slab x (L​x ​/2) = 3.6 kN/m​2 ​ x (1.85m /2) = 3.33 kN/m​2 Dead Load on slab B (Two way slab) Load is transferred to beam xy in a UDL form Dead load from slab B = Dead load on slab x (L​x ​/2) = 3.6 kN/m​2 ​ x (2.05m /2) = 3.69 kN/m​2 Total Dead Load= 1.08 kN/m​2​ + 8.55 kN/m​2​ + 3.33 kN/m​2​ + 3.69 kN/m​2 = 16.65 kN/m​2
  • 7.
    Live Load onslab A (Two way slab) Load is transferred to beam xy in a UDL form Live load from slab A = Live load factor x (L​x ​/2) = 1.5 kN/m​2 ​ x (1.85m /2) = 1.388 kN/m​2 Live Load on slab B (Two way slab) Load is transferred to beam xy in a UDL form Live load from slab B = Live load factor x (L​x ​/2) = 1.5 kN/m​2 ​ x (2.05m /2) = 1.538 kN/m​2 Total Live Load= 1.388 kN/m​2​ + 1.538 kN/m​2 = 2.926 kN/m​2 Ultimate Load Diagram Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load = 16.65 kN/m​2​ x 1.4 = 23.31 kN/m Live Load = 2.926 kN/m​2​ x 1.6 = 4.682 kN/m Ultimate load = 23.31 kN/m​2​ + 4.682 kN/m​2 = 27.992 kN/m​2 Reaction Force ∑M = 0 = R​X​ (2.435) – 27.992(2.435)(2.435/2) = 2.435 R​X​ – 82.985 kN/m​2 R​X = 34.08 kN/m​2 ∑Fy = 0 = R​X​ + R​Y​ – 27.992(2.435) R​Y = 68.16 kN/m​2 ​ – 34.08 kN/m​2 = 34.08 kN/m​2
  • 8.
    Shear Force Diagram Area(+) = 1/2 x 34.08 x (2.435/2) = 20.746 Area (-) = 1/2 x 34.08 x (2.435/2) = 20.746 Bending Moment Diagram
  • 9.
    Beam Analysis Calculation FirstFloor Beam, E-C/ 2 Beam Self Weight = Beam Size x Concrete Density = 0.15m x 0.3m x 24 kN/m​3 =​​ 1.08 kN/m​2 Wall Self Weight = Wall Height x Wall Thickness x Brick density = 3m x 0.15m x 19 kN/m​2 = 8.55 kN/m​2 Dead Load on slab A (Two way slab) Load is transferred to beam E2-X in a UDL form Dead load from slab A = Dead load on slab x (L​x ​/2) x 2/3 = 3.6 kN/m​2 ​ x (1.85m /2) x 2/3 = 2.22 kN/m​2 Dead Load on slab B (Two way slab) Load is transferred to beam X-C2 in a UDL form Dead load from slab B = Dead load on slab x (L​x ​/2) x 2/3 = 3.6 kN/m​2 ​ x (2.05m /2) x 2/3 = 2.46 kN/m​2 Total Dead Load E2-X = 1.08 kN/m​2​ + 8.55 kN/m​2​ + 2.22 kN/m​2 = 11.85 kN/m​2 Total Dead Load X-C2 = 1.08 kN/m​2​ + 8.55 kN/m​2​ + 2.46 kN/m​2 = 12.09 kN/m​2
  • 10.
    Live Load onslab A (Two way slab) Load is transferred to beam E2-X in a UDL form Live load from slab A = Live load factor x (L​x ​/2) x 2/3 = 1.5 kN/m​2 ​ x (1.85m /2) x 2/3 = 0.925 kN/m​2 Live Load on slab B (Two way slab) Load is transferred to beam X-C2 in a UDL form Live load from slab B = Live load factor x (L​x ​/2) x 2/3 = 1.5 kN/m​2 ​ x (2.05 /2) x 2/3 = 1.025 kN/m​2 Ultimate Load Diagram Apply factor 1.4 and 1.6 to dead load and live load E2-X respectively. Dead load = 11.85 kN/m​2​ x 1.4 = 16.59 kN/m Live Load = 0.925 kN/m​2​ x 1.6 = 1.48 kN/m Ultimate load = 16.59 kN/m + 1.48 kN/m = 18.07 kN/m Apply factor 1.4 and 1.6 to dead load and live load X-C2 respectively. Dead load = 12.09 kN/m​2​ x 1.4 = 16.026 kN/m Live Load = 1.025 kN/m​2​ x 1.6 = 1.64 kN/m Ultimate load = 16.926 kN/m​2​ + 1.64 kN/m​2​ = 18.566 kN/m​2 Reaction Force ∑M = 0 = R​E2​ (3.9) – 33.43(2.975) – 34.08(2.05) – 38.06(1.025) = 3.9 R​E2​ – 208.3298 kN/m​2 R​E2 = 53.418 kN/m​2 ∑Fy = 0 = R​E2​ + R​C2​ – 33.43 – 34.08 – 36.06 R​C2 = 105.57 kN/m​2 ​ – 53.418 kN/m​2 = 52.152 kN/m​2
  • 11.
    Shear Force Diagram Area(+) = 1/2 x 1.85(53.418 + 19.988) = 67.9 Area (-) = 1/2 x 2.05(52.152 + 14.092) = 67.9 Bending Moment Diagram