SlideShare a Scribd company logo
1 of 21
Download to read offline
  1	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Anaerobic	
  Digestion:	
  An	
  Overview	
  of	
  Current	
  
Practices,	
  Planning	
  Procedure	
  and	
  Policy	
  in	
  the	
  
UK.	
  
	
  
	
  
	
  
	
  
  2	
  
	
  
Overview	
  
	
  
During	
  the	
  course	
  of	
  this	
  paper,	
  I	
  present	
  a	
  case	
  for	
  the	
  adoption	
  and	
  development	
  of	
  Anaerobic	
  
Digestion	
  (AD)	
  as	
  an	
  answer	
  to	
  combating	
  the	
  UK’s	
  ever	
  increasing	
  energy	
  and	
  waste	
  disposal	
  
needs.	
  During	
  the	
  writing	
  of	
  the	
  ‘Anaerobic	
  Digestion	
  Strategy	
  and	
  Action	
  Plan’,	
  a	
  report	
  
published	
  in	
  2011	
  which	
  highlights	
  the	
  need	
  for	
  the	
  development,	
  and	
  expansion	
  of,	
  anaerobic	
  
digestion	
  facilities	
  in	
  the	
  UK	
  to	
  help	
  meet	
  targets	
  in	
  waste	
  management,	
  the	
  coalition	
  
Government	
  pledged	
  to	
  be	
  the	
  ‘Greenest	
  Government	
  ever’.	
  Although	
  this	
  term	
  of	
  government	
  is	
  
now	
  over,	
  the	
  UK	
  is	
  still	
  required	
  to	
  reduce	
  its	
  waste	
  production	
  and	
  energy	
  consumption	
  in	
  line	
  
with	
  targets	
  set	
  out	
  by	
  the	
  Kyoto	
  Protocol.	
  	
  
Although	
  it	
  is	
  currently	
  a	
  priority	
  in	
  the	
  UK	
  to	
  reduce	
  waste	
  rather	
  than	
  focus	
  on	
  its	
  disposal	
  
(especially	
  that	
  of	
  food	
  and	
  drink),	
  one	
  may	
  argue	
  that	
  realist	
  approaches	
  to,	
  and	
  options	
  for	
  
this	
  type	
  of	
  waste	
  must	
  be	
  created	
  in	
  the	
  near	
  future.	
  WRAP,	
  whose	
  mission	
  is	
  to	
  accelerate	
  the	
  
move	
  to	
  a	
  sustainable	
  resource-­‐efficient	
  economy,	
  found	
  that	
  in	
  2007,	
  22%	
  of	
  food	
  and	
  drink	
  
purchases	
  that	
  were	
  brought	
  into	
  the	
  home	
  were	
  being	
  thrown	
  away	
  (a	
  staggering	
  8.3	
  million	
  
tonnes).	
  Not	
  only	
  are	
  the	
  repercussions	
  of	
  this	
  waste	
  large	
  on	
  the	
  environment,	
  but	
  also	
  an	
  
unnecessary	
  financial	
  drain	
  on	
  consumers	
  and	
  local	
  governments	
  who	
  have	
  to	
  pay	
  for	
  waste	
  
collection	
  and	
  treatment.	
  	
  	
  
Since	
  producing	
  these	
  findings	
  and	
  campaigns	
  to	
  reduce	
  food	
  waste,	
  WRAP	
  has	
  calculated	
  a	
  
21%	
  reduction	
  in	
  the	
  amount	
  of	
  food	
  and	
  drink	
  being	
  thrown	
  away	
  from	
  2007-­‐2012.	
  However,	
  
WRAP	
  also	
  reports	
  that	
  4.2	
  million	
  tonnes	
  of	
  avoidable*	
  food	
  and	
  drink	
  is	
  being	
  wasted	
  each	
  
year	
  –	
  worth	
  an	
  eye	
  watering	
  £12.5	
  billion.	
  The	
  savings	
  in	
  greenhouse	
  gas	
  emission	
  associated	
  
with	
  the	
  reductions	
  in	
  avoidable	
  food	
  and	
  drink	
  waste	
  (between	
  the	
  2007-­‐2012	
  time	
  period)	
  
amounted	
  to	
  4.4	
  million	
  tonnes	
  of	
  CO2	
  equivalents;	
  	
  the	
  same	
  as	
  taking	
  1.8	
  million	
  cars	
  off	
  UK	
  
roads.	
  	
  	
  
This	
  data	
  evidences	
  how	
  the	
  need	
  for	
  effective	
  and	
  efficient	
  food	
  and	
  drink	
  waste	
  management	
  
is	
  very	
  much	
  required.	
  The	
  focus	
  of	
  this	
  paper	
  is	
  to	
  outline	
  the	
  current	
  planning	
  policies	
  
concerning	
  anaerobic	
  digestion,	
  complete	
  a	
  broad	
  analysis	
  of	
  where	
  AD	
  is	
  currently	
  being	
  
practiced	
  in	
  the	
  UK,	
  and	
  to	
  evaluate	
  the	
  success	
  of	
  these	
  practices.	
  	
  
	
  
	
  
	
  
	
  
	
  
*Avoidable	
  food	
  waste	
  is	
  defined	
  by	
  WRAP	
  as	
  food	
  and	
  drink	
  that	
  would	
  have	
  been	
  edible	
  at	
  
some	
  point	
  prior	
  to	
  being	
  thrown	
  away,	
  for	
  example	
  slices	
  of	
  bread,	
  apples,	
  yoghurt,	
  etc.	
  
Unavoidable	
  food	
  and	
  drink	
  waste	
  constitutes	
  as	
  items	
  such	
  as	
  tea	
  waste,	
  banana	
  skins,	
  poultry	
  
bones.	
  	
  
  3	
  
	
  
Contents	
  Page:	
  
	
  
Title	
  Page	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  1	
  
Overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  2	
  
Contents	
  Page	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  3	
  
Table	
  of	
  Figures	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  4	
  
Introduction	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  5	
  
Current	
  AD	
  Planning	
  Policies	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  8	
  
Application	
  of	
  AD	
  in	
  the	
  UK	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  11	
  
Financial	
  Aspect	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  13	
  
Evaluation	
  of	
  UK	
  AD	
  Practices	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  15	
  
Conclusion	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  16	
  
Figures	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  17	
  
References	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page	
  21	
  
  4	
  
	
  
Table	
  of	
  Figures:	
  
	
  
Title	
  Page	
  Image	
  –Accessed	
  from:	
  http://www.theguardian.com/environment/2014/jul/27/is-­‐
it-­‐harmful-­‐to-­‐burn-­‐my-­‐rubbish	
  
Figure	
  1	
  –Image	
  of	
  an	
  AD	
  plant.	
  Photo	
  courtesy	
  of	
  Greenfinch	
  Ltd.	
  	
  
Figure	
  2	
  –Diagram	
  of	
  the	
  AD	
  process.	
  Accessed	
  from:	
  
http://www.ionacapital.co.uk/page/95/Anaerobic-­‐Digestion-­‐Adoption.htm	
  
Figure	
  3	
  –	
  Diagram	
  of	
  the	
  AD	
  process.	
  Accessed	
  from:	
  
http://www.sciencedirect.com/science/article/pii/S0961953411000146	
  
Figure4	
  -­‐	
  Table	
  of	
  incentives	
  of	
  the	
  Feed-­‐In-­‐Tariff	
  scheme	
  and	
  Renewables	
  Obligation.	
  –
Accessed	
  from:	
  The	
  Anaerobic	
  Digestion	
  and	
  Bioresources	
  Association.	
  
Figure	
  5	
  –	
  Table	
  showing	
  future	
  changes	
  to	
  biomethane	
  tariffs.	
  –Access	
  from:	
  The	
  Anaerobic	
  
Digestion	
  and	
  Bioresources	
  Association.	
  
Figure	
  6	
  –Table	
  showing	
  the	
  cost	
  and	
  profits	
  of	
  a	
  planned	
  AD	
  plant.	
  Accessed	
  from:	
  
http://www.nuffieldinternational.org/rep_pdf/1226661015Yeatman,_Owen.pdf	
  	
  
Figure	
  7	
  -­‐	
  Map	
  showing	
  AD	
  plant	
  locations	
  in	
  the	
  UK.	
  Accessed	
  from:	
  http://www.biogas-­‐
info.co.uk/resources/biogas-­‐map/	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  5	
  
	
  
Introduction:	
  
During	
  this	
  section,	
  I	
  shall	
  be	
  exploring	
  and	
  outlining	
  the	
  chemical	
  and	
  physical	
  processes	
  
undergone	
  in	
  AD.	
  In	
  particular,	
  I	
  shall	
  be	
  focusing	
  upon	
  the	
  outputs	
  of	
  these	
  processes.	
  Also	
  
included	
  will	
  be	
  a	
  simplified	
  summary	
  of	
  the	
  advantages	
  and	
  disadvantages	
  of	
  AD.	
  
“Anaerobic	
  digestion	
  is	
  a	
  process	
  which	
  breaks	
  down	
  organic	
  matter	
  in	
  simpler	
  chemicals	
  
components	
  without	
  oxygen”	
  Monnet	
  (2:2003).	
  Although	
  this	
  process	
  can	
  be	
  very	
  useful	
  to	
  treat	
  
arising	
  organic	
  waste	
  such	
  as	
  food	
  and	
  drink,	
  before	
  being	
  digested	
  the	
  feedstock	
  has	
  to	
  
undergo	
  pre-­‐treatment.	
  In	
  the	
  case	
  of	
  food	
  and	
  drink,	
  this	
  pre-­‐treatment	
  usually	
  consists	
  of	
  
adding	
  water	
  to	
  remove	
  undesirable	
  materials	
  such	
  as	
  plastics	
  and	
  glass	
  to	
  allow	
  for	
  better	
  
digestate	
  quality	
  and	
  efficiency,	
  however	
  different	
  practices	
  are	
  adopted.	
  	
  
The	
  process	
  itself	
  takes	
  place	
  in	
  a	
  digester,	
  such	
  as	
  the	
  one	
  in	
  figure	
  1;	
  a	
  digester	
  may	
  be	
  
classified	
  in	
  relation	
  to	
  its	
  temperature,	
  the	
  water	
  content	
  of	
  the	
  feedstock	
  (i.e.	
  food	
  and	
  drink),	
  
and	
  the	
  number	
  of	
  stages	
  (single	
  or	
  multi-­‐stage).	
  Mesophilic	
  digesters	
  process	
  feedstock	
  at	
  35	
  
degrees	
  Celsius,	
  while	
  thermophilic	
  digesters	
  run	
  at	
  55	
  degrees	
  or	
  above.	
  Multi-­‐stage	
  digester	
  
processes	
  aim	
  at	
  optimizing	
  digestion	
  and	
  improving	
  the	
  control	
  of	
  the	
  process	
  by	
  separating	
  
states	
  of	
  digestion.	
  However,	
  this	
  type	
  of	
  digester	
  requires	
  more	
  attention	
  and	
  surveillance	
  than	
  
that	
  of	
  a	
  single-­‐stage	
  digester.	
  	
  
The	
  by-­‐products	
  of	
  anaerobic	
  digestion,	
  biogas	
  and	
  digestiate,	
  can	
  be	
  used,	
  not	
  only	
  as	
  energy	
  
and	
  fertiliser,	
  but	
  also	
  in	
  order	
  to	
  create	
  a	
  source	
  of	
  incomes	
  to	
  support	
  the	
  digester.	
  According	
  
to	
  Monnet	
  (2003),	
  Biogas	
  can	
  be	
  upgraded,	
  most	
  of	
  the	
  time,	
  by	
  removing	
  the	
  carbon	
  dioxide	
  
and	
  the	
  water	
  vapour.	
  It	
  can	
  then	
  be	
  used	
  in	
  a	
  CHP*	
  unit	
  to	
  produce	
  electricity	
  and	
  heat.	
  The	
  
digestate	
  can	
  be	
  used	
  as	
  either	
  a	
  fertiliser,	
  or	
  further	
  processed	
  into	
  compost	
  to	
  increase	
  its	
  
quality.	
  See	
  figure	
  2.	
  
Put	
  simply,	
  AD	
  is	
  a	
  naturally	
  occurring	
  process	
  of	
  decomposition	
  and	
  decay,	
  by	
  which	
  organic	
  
matter	
  is	
  broken	
  down	
  to	
  its	
  simpler	
  chemical	
  components	
  under	
  anaerobic	
  conditions.	
  
Anaerobic	
  microorganisms	
  digest	
  the	
  organic	
  materials,	
  in	
  the	
  absence	
  of	
  oxygen,	
  to	
  produce	
  
methane	
  and	
  carbon	
  dioxide	
  as	
  end-­‐products	
  under	
  ideal	
  conditions.	
  The	
  biogas	
  produced	
  in	
  an	
  
AD-­‐plant	
  usually	
  contains	
  small	
  amounts	
  of	
  hydrogen	
  sulphide	
  and	
  ammonia,	
  as	
  well	
  as	
  traces	
  
of	
  various	
  other	
  gases.	
  The	
  science	
  underlying	
  AD	
  can	
  be	
  complex	
  and	
  the	
  process	
  is	
  best	
  
understood	
  is	
  split	
  into	
  three	
  main	
  stages:	
  hydrolysis,	
  acidogenesis	
  and	
  methanogenesis.	
  	
  	
  	
  
During	
  hydrolysis,	
  the	
  fermented	
  bacteria	
  convert	
  the	
  insoluble	
  complex	
  organic	
  matter,	
  such	
  as	
  
cellulose,	
  into	
  soluble	
  molecules	
  such	
  as	
  fatty	
  acids,	
  amino	
  acids	
  and	
  sugars.	
  This	
  process	
  
includes	
  the	
  hydrolysing	
  polymeric	
  matter	
  to	
  monomers	
  (i.e.	
  cellulose	
  to	
  sugars	
  or	
  alcohols),	
  
which	
  is	
  of	
  significant	
  importance	
  in	
  wastes	
  with	
  high	
  organic	
  content,	
  such	
  as	
  food	
  and	
  drink.	
  
In	
  the	
  acidogenesis	
  stage,	
  acetogenic	
  bacteria,	
  also	
  known	
  as	
  acid	
  formers,	
  convert	
  the	
  products	
  
into	
  simple	
  organic	
  acids,	
  carbon	
  dioxide	
  and	
  hydrogen.	
  The	
  principle	
  acids	
  produces	
  are	
  acetic	
  
acid,	
  butyric	
  acid,	
  propionic	
  acid	
  and	
  ethanol.	
  	
  
*A	
  CHP	
  unit	
  is	
  a	
  gas	
  driven	
  combined	
  heat	
  and	
  power	
  unit	
  which	
  generates	
  heat	
  and	
  power	
  
simultaneously.	
  
  6	
  
	
  
Finally,	
  methane	
  is	
  produced	
  during	
  methanogenesis	
  by	
  bacteria	
  known	
  as	
  methane	
  formers.	
  
Either	
  by	
  means	
  of	
  generating	
  carbon	
  dioxide	
  or	
  by	
  the	
  reduction	
  of	
  carbon	
  dioxide	
  with	
  
hydrogen,	
  as	
  shown	
  in	
  Figure	
  3.	
  It	
  is	
  important	
  however	
  to	
  note	
  that	
  some	
  organic	
  materials	
  
remain	
  effectively	
  undigested,	
  such	
  as	
  lignin	
  (a	
  complex	
  organic	
  polymer).	
  
Historically,	
  AD	
  has	
  been	
  used	
  in	
  the	
  UK	
  since	
  the	
  industrial	
  revolution	
  of	
  the	
  nineteenth	
  
century.	
  By	
  1895,	
  biogas	
  was	
  recovered	
  from	
  a	
  sewage	
  treatment	
  facility	
  and	
  used	
  to	
  fuel	
  street	
  
lamps	
  in	
  Exeter.	
  Increasing	
  energy	
  prices	
  and	
  more	
  stringent	
  environmental	
  regulations	
  are	
  
pushing	
  European	
  countries	
  such	
  as	
  the	
  UK	
  to	
  explore	
  the	
  AD	
  market.	
  There	
  are	
  now	
  currently	
  
more	
  than	
  600	
  farm-­‐scale	
  digesters	
  operating	
  in	
  Europe.	
  	
  
Associated	
  with	
  anaerobic	
  digestion	
  are	
  both	
  advantages	
  and	
  disadvantages,	
  an	
  over	
  view	
  of	
  
which	
  is	
  outlined	
  below:-­‐	
  
Advantages	
  of	
  AD:	
  
-­‐ AD	
  contributes	
  to	
  reducing	
  greenhouse	
  gases.	
  A	
  well-­‐managed	
  AD	
  system	
  will	
  aim	
  to	
  
maximise	
  methane	
  production,	
  but	
  not	
  release	
  any	
  gases	
  to	
  the	
  atmosphere,	
  thereby	
  
reducing	
  overall	
  emissions.	
  AD	
  also	
  provides	
  a	
  source	
  of	
  energy	
  with	
  no	
  net	
  increase	
  in	
  
atmospheric	
  carbon	
  which	
  contributes	
  to	
  climate	
  change.	
  
-­‐ The	
  feedstock	
  for	
  AD	
  is	
  a	
  renewable	
  source,	
  and	
  therefore	
  does	
  not	
  deplete	
  finite	
  fossil	
  
fuels.	
  Energy	
  generated	
  through	
  this	
  process	
  can	
  help	
  in	
  reducing	
  the	
  demand	
  for	
  fossil	
  
fuels.	
  The	
  use	
  of	
  the	
  digestate	
  also	
  participates	
  to	
  this	
  reduction	
  by	
  decreasing	
  synthetic	
  
fuels	
  use	
  in	
  fertiliser	
  manufacturing,	
  which	
  is	
  an	
  energy	
  intensive	
  process.	
  
-­‐ AD	
  creates	
  an	
  integrated	
  management	
  system	
  which	
  reduces	
  the	
  likelihood	
  of	
  soil	
  and	
  
water	
  pollution	
  to	
  happen,	
  compared	
  to	
  disposal	
  of	
  untreated	
  animal	
  manure/slurries.	
  
The	
  treatment	
  can	
  also	
  lead	
  to	
  a	
  reduction	
  of	
  up	
  to	
  80%	
  of	
  the	
  odour	
  and	
  it	
  destroys	
  
virtually	
  all	
  weed	
  seeds,	
  thus	
  reducing	
  the	
  need	
  for	
  herbicide	
  and	
  other	
  weed	
  control	
  
measures.	
  	
  
-­‐ Finally,	
  an	
  advantage	
  of	
  using	
  AD	
  is	
  that	
  one	
  can	
  convert	
  residues	
  into	
  potentially	
  
saleable	
  products:	
  biogas,	
  soil	
  condition,	
  and	
  liquid	
  fertilizer.	
  It	
  can	
  also	
  contribute	
  to	
  
the	
  economic	
  viability	
  of	
  farms	
  by	
  keeping	
  costs	
  and	
  benefits	
  within	
  the	
  farm	
  if	
  the	
  
products	
  are	
  used	
  on-­‐site.	
  	
  
Disadvantages	
  of	
  AD:	
  
-­‐ AD	
  projects,	
  as	
  with	
  many	
  developments,	
  will	
  create	
  some	
  risks	
  and	
  have	
  some	
  potential	
  
negative	
  environmental	
  impacts.	
  These	
  need	
  to	
  be	
  removes	
  wherever	
  possible	
  or	
  a	
  least	
  
minimised.	
  
-­‐ AD	
  has	
  significant	
  capital	
  and	
  operational	
  costs.	
  It	
  is	
  unlikely	
  that	
  AD	
  will	
  be	
  viable	
  as	
  an	
  
energy	
  source	
  alone	
  and	
  therefore	
  must	
  be	
  seen	
  as	
  an	
  integrated	
  system.	
  It	
  is	
  likely	
  to	
  be	
  
cost	
  effective	
  for	
  those	
  who	
  can	
  use	
  the	
  other	
  products	
  of	
  AD:	
  better	
  waste	
  management,	
  
fertiliser.	
  	
  
-­‐ All	
  waste	
  management	
  systems	
  create	
  traffic	
  movement.	
  Therefore	
  alternative	
  methods	
  
of	
  transport	
  should	
  be	
  investigated	
  as	
  transport	
  greatly	
  influences	
  costs	
  and	
  emissions.	
  
The	
  location	
  of	
  the	
  plant	
  should	
  be	
  chosen	
  carefully	
  so	
  that	
  distances	
  travelled	
  are	
  
minimised	
  between	
  the	
  production	
  of	
  the	
  feedstock,	
  the	
  storage	
  tanks	
  and	
  the	
  digester.	
  
Nuisance	
  for	
  the	
  local	
  surroundings	
  must	
  also	
  be	
  taken	
  into	
  account.	
  
  7	
  
	
  
-­‐ Health	
  and	
  safety.	
  There	
  may	
  be	
  some	
  risks	
  to	
  human	
  health	
  with	
  the	
  pathogenic	
  
content	
  of	
  the	
  feedstock,	
  but	
  it	
  can	
  be	
  avoided	
  with	
  an	
  appropriate	
  plant	
  design	
  and	
  
feedstock	
  handling	
  procedures.	
  There	
  may	
  also	
  be	
  some	
  risks	
  of	
  fire	
  and	
  explosion,	
  
although	
  no	
  greater	
  than	
  for	
  natural	
  gas	
  installation.	
  
-­‐ There	
  may	
  also	
  be	
  visual	
  impact	
  on	
  the	
  environment,	
  although	
  the	
  digester	
  can	
  be	
  
partially	
  sunk	
  into	
  the	
  ground	
  to	
  reduce	
  visual	
  impact	
  and	
  make	
  it	
  easier	
  to	
  load	
  and	
  
unload	
  material.	
  
The	
  document	
  PAS	
  110:2014,	
  produced	
  by	
  WRAP,	
  specifies	
  whole	
  digestate,	
  separated	
  liquor	
  
and	
  separated	
  fibre	
  derived	
  from	
  the	
  anaerobic	
  digestion	
  of	
  source-­‐segregated	
  biodegradable	
  
materials.	
  I	
  mention	
  this	
  because	
  it	
  outlines	
  the	
  legislation	
  regarding	
  the	
  use	
  of	
  digestate,	
  a	
  by-­‐
product	
  of	
  AD,	
  as	
  a	
  fertiliser.	
  By	
  returning	
  organic	
  matter	
  to	
  soils	
  through	
  digestate,	
  one	
  may	
  
reduce	
  the	
  environmental	
  impact	
  if	
  manures	
  and	
  biowaste	
  streams	
  by	
  lowering	
  methane	
  
emissions	
  and	
  controlling	
  odours.	
  Such	
  applications	
  have	
  the	
  potential	
  to	
  reduce	
  nitrogen	
  losses	
  
to	
  groundwater,	
  surface	
  water	
  and	
  the	
  atmosphere.	
  See	
  this	
  document	
  for	
  further	
  clarification.	
  
Another	
  by-­‐product	
  of	
  AD	
  is	
  heat.	
  When	
  generating	
  electricity	
  through	
  AD,	
  heat	
  is	
  also	
  
produced.	
  This	
  tends	
  to	
  be	
  of	
  a	
  low	
  grade	
  heat,	
  around	
  90	
  degrees	
  Celsius,	
  which	
  is	
  ideal	
  for	
  the	
  
heating	
  of	
  houses	
  and/or	
  other	
  buildings.	
  A	
  well	
  placed	
  AD	
  plant	
  can	
  sell	
  its	
  heat	
  to	
  many	
  
different	
  consumers	
  or	
  indeed	
  an	
  additional	
  enterprise,	
  such	
  as	
  biomass	
  drying	
  or	
  horticulture	
  
could	
  be	
  placed	
  adjacent	
  to	
  a	
  plant.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  8	
  
	
  
Current	
  Planning	
  Policies	
  Concerning	
  Anaerobic	
  Digestion:	
  
The	
  National	
  Planning	
  Policy	
  Framework	
  (NPPF),	
  published	
  March	
  2012,	
  slimmed	
  national	
  
planning	
  guidance	
  into	
  a	
  document	
  of	
  fewer	
  than	
  60	
  pages,	
  with	
  its	
  centrepiece	
  being	
  a	
  
‘presumption	
  in	
  favour	
  of	
  sustainable	
  development’.	
  As	
  a	
  result,	
  the	
  NPPF	
  does	
  not	
  contain	
  a	
  
specific	
  waste	
  policies,	
  since	
  national	
  waste	
  planning	
  policy	
  will	
  be	
  outlined	
  as	
  part	
  of	
  the	
  
National	
  Waste	
  Management	
  Plan	
  for	
  England,	
  expected	
  to	
  be	
  published	
  soon	
  by	
  the	
  
Department	
  for	
  Communities	
  and	
  Local	
  Government	
  (DCLG).	
  
Sustainability	
  is	
  defined	
  by	
  the	
  Anaerobic	
  Digestion	
  and	
  Bioresources	
  Association	
  (ADAB)	
  as	
  
“having	
  an	
  economic,	
  social	
  and	
  environmental	
  dimension”	
  (2015).	
  In	
  practice	
  this	
  means	
  that:-­‐	
  
For	
  plan-­‐making:	
  
-­‐ Local	
  planning	
  authorities	
  should	
  positively	
  seek	
  opportunities	
  to	
  meet	
  the	
  
development	
  needs	
  of	
  their	
  area;	
  
-­‐ Local	
  plans	
  should	
  meet	
  objectively	
  assessed	
  needs,	
  with	
  sufficient	
  flexibility	
  to	
  adapt	
  to	
  
rapid	
  change,	
  unless:	
  any	
  adverse	
  impacts	
  of	
  doing	
  so	
  would	
  significantly	
  and	
  
demonstrably	
  outweigh	
  the	
  benefits,	
  when	
  assessed	
  against	
  the	
  policies	
  in	
  this	
  
Framework	
  taken	
  as	
  a	
  whole;	
  or	
  specific	
  policies	
  in	
  this	
  Framework	
  indicate	
  
development	
  should	
  be	
  restricted.	
  
For	
  decision-­‐taking	
  it	
  means:	
  
-­‐ Approving	
  development	
  proposals	
  that	
  accord	
  with	
  the	
  development	
  plan	
  without	
  
delay;	
  and	
  	
  
-­‐ Where	
  the	
  development	
  plan	
  is	
  absent,	
  silent	
  or	
  relevant	
  policies	
  are	
  out-­‐of-­‐date,	
  
granting	
  permission	
  unless:	
  any	
  adverse	
  impacts	
  of	
  doing	
  so	
  would	
  significantly	
  and	
  
demonstrably	
  outweigh	
  the	
  benefits,	
  when	
  assessed	
  against	
  the	
  policies	
  in	
  this	
  
Framework	
  taken	
  as	
  a	
  whole;	
  or	
  specific	
  policies	
  in	
  this	
  Framework	
  indicate	
  
development	
  should	
  be	
  restricted.	
  
AD	
  projects	
  in	
  general	
  appear	
  to	
  comply	
  perfectly	
  within	
  the	
  definition	
  of	
  ‘sustainable	
  
development’	
  offered	
  in	
  the	
  NPPF.	
  It	
  is	
  however	
  too	
  early	
  to	
  yet	
  analyse	
  if	
  the	
  new	
  regulation	
  is	
  
having	
  this	
  effect,	
  but	
  given	
  the	
  role	
  that	
  AD	
  can	
  play	
  in	
  supporting	
  sustainable	
  agriculture,	
  
transport	
  and	
  economic	
  growth,	
  AD’s	
  role	
  in	
  contributing	
  to	
  sustainable	
  development	
  is	
  clear.	
  
Permitted	
  development	
  rights	
  allow	
  development	
  to	
  take	
  place	
  without	
  the	
  need	
  for	
  planning	
  
permission.	
  The	
  Government	
  introduced	
  two	
  new	
  regulations	
  under	
  the	
  Town	
  and	
  Country	
  
Planning	
  Act	
  in	
  April	
  2012,	
  offering	
  permitted	
  development	
  rights	
  for	
  flues	
  on	
  non-­‐domestic	
  
premises	
  and	
  from	
  structure	
  to	
  house	
  AD	
  systems	
  installed	
  on	
  agricultural	
  and	
  forestry	
  units.	
  
Localism:	
  
-­‐ The	
  Localism	
  Act	
  passed	
  in	
  November	
  2011	
  also	
  ingrained	
  ‘sustainable	
  development’	
  
into	
  the	
  planning	
  system.	
  Localism	
  aims	
  to	
  give	
  local	
  communities	
  greater	
  involvement	
  
in	
  decisions	
  in	
  their	
  area.	
  Assuming	
  AD	
  operators	
  engage	
  with	
  local	
  communities	
  at	
  an	
  
early	
  state	
  and	
  effectively	
  communicate	
  the	
  benefits	
  of	
  their	
  project;	
  this	
  may	
  ease	
  the	
  
passage	
  of	
  projects	
  through	
  the	
  planning	
  process.	
  	
  
  9	
  
	
  
Currently,	
  planning	
  permission	
  is	
  required	
  for	
  all	
  anaerobic	
  digesters.	
  Most	
  planning	
  
applications	
  for	
  anaerobic	
  digesters	
  are	
  processed	
  within	
  the	
  Local	
  Area	
  Offices.	
  Planning	
  
applications	
  for	
  anaerobic	
  digesters	
  should	
  be	
  submitted	
  on	
  a	
  P1	
  form	
  along	
  with	
  the	
  
appropriate	
  maps,	
  drawings	
  and	
  fees.	
  	
  
Specifically,	
  the	
  following	
  information	
  should	
  be	
  submitted:	
  
-­‐ A	
  site	
  plan	
  and	
  elevation	
  drawings	
  to	
  determine	
  visual	
  impact.	
  
-­‐ Photomontages	
  of	
  the	
  digester,	
  plant,	
  building(s)	
  and	
  chimney	
  stack	
  with	
  a	
  clear	
  
indication	
  of	
  building	
  material	
  and	
  finishes.	
  	
  
-­‐ Information	
  on	
  grid	
  connection	
  works,	
  including	
  transformer	
  and	
  transmission	
  lines.	
  
-­‐ Details	
  of	
  potential	
  noise	
  or	
  emissions	
  to	
  air	
  and	
  an	
  assessment	
  of	
  their	
  impact.	
  •	
  Details	
  
of	
  vehicular	
  access	
  and	
  vehicular	
  movement.	
  	
  
-­‐ Landscaping	
  provisions.	
  
-­‐ Site	
  management	
  measures	
  during	
  construction	
  phase.	
  	
  
-­‐ Model	
  of	
  emissions	
  dispersion.	
  	
  
-­‐ Community	
  consultation	
  plans.	
  
	
  
From	
  11	
  April	
  2011,	
  the	
  fee	
  for	
  an	
  application	
  for	
  an	
  anaerobic	
  digester	
  in	
  tanks	
  on	
  an	
  open	
  site	
  
is	
  £1,775	
  for	
  each	
  0.5	
  hectare	
  of	
  the	
  site	
  area	
  subject	
  to	
  a	
  maximum	
  of	
  £38,400.	
  The	
  fee	
  for	
  
anaerobic	
  digestion	
  in	
  tanks	
  within	
  a	
  building(s)	
  falls	
  within	
  Category	
  4	
  of	
  the	
  Fee	
  Regulations	
  
which	
  is:	
  	
  
(a)	
  Where	
  no	
  floor	
  space	
  is	
  to	
  be	
  created	
  by	
  the	
  development,	
  £170;	
  	
  
(b)	
  Where	
  the	
  area	
  of	
  gross	
  floor	
  space	
  to	
  be	
  created	
  by	
  the	
  development	
  does	
  not	
  exceed	
  
40sq.m.,	
  £170;	
  
	
  (c)	
  Where	
  the	
  area	
  of	
  the	
  gross	
  floor	
  space	
  to	
  be	
  created	
  by	
  the	
  development	
  exceeds	
  40sq.m.,	
  
but	
  does	
  not	
  exceed	
  75sq.m.,	
  £335;	
  	
  
(d)	
  Where	
  the	
  area	
  of	
  the	
  gross	
  floor	
  space	
  to	
  be	
  created	
  by	
  the	
  development	
  exceeds	
  75sq.m.,	
  
but	
  does	
  not	
  exceed	
  3750sq.m.,	
  £335	
  for	
  each	
  75sq.m.,	
  of	
  that	
  area;	
  
(e)	
  Where	
  the	
  area	
  of	
  gross	
  floor	
  space	
  to	
  be	
  created	
  by	
  the	
  development	
  exceeds	
  3750sq.m.,	
  
£16,750;	
  and	
  an	
  additional	
  £100	
  for	
  each	
  75sq.m.	
  in	
  excess	
  of	
  3750sq.m.,	
  subject	
  to	
  a	
  maximum	
  
in	
  total	
  of	
  £250,000.	
  
In	
  considering	
  an	
  application	
  for	
  an	
  anaerobic	
  digester,	
  the	
  Department	
  is	
  required	
  to	
  have	
  
regard	
  to	
  the	
  development	
  plan,	
  so	
  far	
  as	
  it	
  is	
  material	
  to	
  the	
  application,	
  and	
  to	
  any	
  other	
  
material	
  considerations.	
  Material	
  considerations	
  include	
  any	
  responses	
  from	
  the	
  public	
  and	
  
consultees	
  as	
  well	
  as	
  amongst	
  other	
  things	
  relevant	
  policy.	
  In	
  terms	
  of	
  anaerobic	
  digesters	
  the	
  
relevant	
  policy	
  includes:	
  	
  
-­‐ Planning	
  Policy	
  Statement	
  18	
  –	
  Renewable	
  Energy	
  including	
  the	
  ‘Best	
  Practice	
  Guide	
  to	
  
PPS18’	
  which	
  specifically	
  deals	
  with	
  anaerobic	
  digesters	
  in	
  Section	
  3;	
  	
  
-­‐ Planning	
  Policy	
  Statement	
  11	
  –	
  Planning	
  and	
  Waste	
  Management:	
  WM	
  1	
  and	
  WM	
  2;	
  and	
  	
  
  10	
  
	
  
-­‐ Planning	
  Policy	
  Statement	
  21	
  –	
  Sustainable	
  Development	
  in	
  the	
  Countryside:	
  CTY	
  13	
  and	
  
CTY	
  14.	
  
Each	
  planning	
  application	
  for	
  an	
  anaerobic	
  digester	
  is	
  assessed	
  on	
  its	
  own	
  merits	
  against	
  the	
  
prevailing	
  planning	
  policy	
  and	
  taking	
  into	
  account	
  all	
  material	
  considerations.	
  It	
  is	
  the	
  
responsibility	
  of	
  the	
  applicant/agent	
  to	
  submit	
  the	
  necessary	
  information	
  to	
  demonstrate	
  that	
  
the	
  proposal	
  complies	
  with	
  the	
  prevailing	
  policy	
  and	
  to	
  enable	
  the	
  Department	
  to	
  determine	
  the	
  
application.	
  There	
  may	
  be	
  site	
  specific	
  issues	
  that	
  the	
  applicant/agent	
  may	
  wish	
  to	
  address	
  
when	
  submitting	
  any	
  planning	
  application	
  for	
  an	
  anaerobic	
  digester,	
  such	
  as	
  odour	
  issues	
  if	
  
there	
  are	
  sensitive	
  receptors	
  in	
  the	
  locality.	
  Additional	
  site	
  specific	
  issues	
  may	
  include:	
  	
  
-­‐ Noise	
  	
  
-­‐ Air	
  pollution	
  	
  
-­‐ Visual	
  impact	
  of	
  the	
  anaerobic	
  digester	
  and	
  associated	
  infrastructure	
  	
  
-­‐ Impact	
  of	
  any	
  increase	
  in	
  vehicles	
  to	
  site	
  and	
  along	
  local	
  road	
  network.	
  	
  
Developments	
  that	
  use	
  waste	
  to	
  provide	
  energy	
  may	
  require	
  an	
  Environmental	
  Impact	
  
Assessment.	
  Such	
  projects	
  could	
  fall	
  within	
  projects	
  listed	
  in	
  Schedule	
  2(3)	
  and/or	
  2(11)	
  of	
  
the	
  Planning	
  (Environment	
  Impact	
  Assessment)	
  Regulations	
  (Northern	
  Ireland)	
  2012.	
  
In	
  support	
  of	
  the	
  ongoing	
  development	
  of	
  the	
  renewable	
  energy	
  sector	
  in	
  Northern	
  Ireland	
  
the	
  Minister	
  has	
  proposed	
  a	
  public	
  consultation	
  exercise	
  to	
  consider	
  the	
  introduction	
  of	
  
permitted	
  development	
  rights	
  for	
  renewable	
  energy	
  development	
  including	
  anaerobic	
  
digesters.	
  The	
  public	
  consultation	
  exercise	
  is	
  likely	
  to	
  take	
  place	
  later	
  this	
  year.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  11	
  
	
  
A	
  broad	
  analysis	
  of	
  the	
  application	
  of	
  AD	
  in	
  the	
  UK:	
  
The	
  growth	
  of	
  the	
  AD	
  sector	
  is	
  highlighted	
  by	
  the	
  available	
  Ofgen	
  data,	
  which	
  shows	
  a	
  total	
  of	
  
161	
  AD	
  facilities	
  (excluding	
  the	
  regulated	
  water	
  industry)	
  on	
  the	
  various	
  registers	
  as	
  of	
  
November	
  2014,	
  with	
  an	
  increase	
  in	
  installed	
  MW	
  capacity	
  from	
  106.2	
  MW	
  to	
  142.7	
  MW	
  -­‐	
  an	
  
increase	
  of	
  34	
  per	
  cent	
  from	
  the	
  2013	
  report.	
  As	
  of	
  January	
  2015,	
  an	
  estimated	
  30	
  MWe	
  of	
  
additional	
  capacity	
  has	
  been	
  identifies	
  as	
  under	
  construction.	
  Using	
  previous	
  DECC	
  assumptions	
  
of	
  a	
  median	
  cost	
  of	
  £4.4m	
  per	
  1	
  MW	
  of	
  installed	
  capacity;	
  the	
  increase	
  in	
  operational	
  AD	
  
capacity	
  (and	
  in	
  AD	
  plants	
  in	
  construction)	
  is	
  the	
  equivalent	
  to	
  an	
  investment	
  of	
  circa	
  £160m	
  
since	
  summer	
  2013.	
  	
  
However,	
  the	
  AD	
  sector	
  remains	
  highly	
  fragmented	
  and	
  currently	
  no	
  operator	
  has	
  more	
  than	
  
five	
  operational	
  facilities.	
  There	
  is	
  therefore	
  scope	
  for	
  consolidation	
  in	
  the	
  market.	
  But	
  one	
  of	
  
the	
  challenged	
  the	
  sector	
  faces	
  is	
  that	
  many	
  facilities	
  have	
  been	
  designed	
  to	
  suit	
  project	
  specific	
  
requirements:	
  
-­‐ Feedstock	
  is	
  ideally	
  stored	
  from	
  local	
  markets	
  –	
  and	
  whilst	
  there	
  may	
  be	
  a	
  benefit	
  to	
  
providing	
  a	
  regional	
  or	
  national	
  coverage,	
  this	
  offering	
  is	
  likely	
  to	
  appeal	
  to	
  only	
  a	
  very	
  
small	
  number	
  of	
  potential	
  customers.	
  Most	
  of	
  those	
  of	
  any	
  scale	
  have	
  already	
  put	
  
regional	
  solutions	
  in	
  place.	
  
-­‐ Digestate	
  management	
  requires	
  a	
  local	
  solution	
  due	
  to	
  transport	
  costs.	
  
-­‐ Technology	
  –	
  the	
  wide	
  range	
  of	
  technical	
  solutions	
  is	
  considered	
  to	
  be	
  a	
  particular	
  
barrier.	
  This	
  is	
  where	
  the	
  AD	
  industry	
  differs	
  from	
  other	
  technologies	
  such	
  as	
  landfill	
  
gas	
  where	
  engines	
  can	
  be	
  readily	
  interchanged	
  between	
  sites.	
  	
  
One	
  of	
  the	
  key	
  factors	
  influencing	
  the	
  development	
  of	
  the	
  AD	
  market	
  is	
  the	
  availability	
  of	
  source	
  
segregated	
  food	
  waste.	
  To	
  ensure	
  the	
  sustainable	
  development	
  of	
  AD	
  capacity,	
  there	
  is	
  a	
  need	
  to	
  
balance	
  the	
  rate	
  at	
  which	
  food	
  waste	
  is	
  collected	
  separately	
  from	
  the	
  residential	
  waste	
  stream.	
  
Thereby	
  supporting	
  new	
  plants	
  and	
  the	
  ongoing	
  pressure	
  to	
  reduce	
  food	
  waste	
  arising	
  at	
  
source.	
  
However,	
  competitive	
  pressure	
  means	
  that	
  very	
  little	
  food	
  waste	
  is	
  landfilled.	
  Much	
  of	
  the	
  food	
  
waste	
  arising	
  in	
  the	
  sector	
  is	
  currently	
  spread	
  on	
  land,	
  converted	
  to	
  animal	
  feed,	
  or	
  sent	
  to	
  
sewer.	
  The	
  key	
  to	
  the	
  ongoing	
  success	
  of	
  the	
  AD	
  sector	
  is	
  that	
  it	
  is	
  able	
  to	
  successfully	
  market	
  
the	
  superior	
  environmental	
  performance	
  of	
  AD	
  projects	
  against	
  alternatives	
  to	
  encourage	
  waste	
  
producers	
  to	
  direct	
  their	
  food	
  waste	
  to	
  AD.	
  	
  
Using	
  various	
  sources	
  and	
  focusing	
  only	
  on	
  source	
  segregated	
  food	
  waste	
  AD	
  facilities,	
  as	
  at	
  the	
  
end	
  of	
  2014,	
  the	
  headline	
  capacity	
  of	
  operational	
  source	
  segregated	
  food	
  waste	
  AD	
  facilities	
  in	
  
the	
  UK	
  was	
  estimated	
  to	
  be	
  2.6	
  Mtpa,	
  with	
  an	
  increase	
  in	
  capacity	
  of	
  around	
  1.2	
  Mpta	
  over	
  the	
  
past	
  2	
  years.	
  The	
  figure	
  is	
  an	
  estimate	
  as	
  a	
  number	
  of	
  facilities	
  di	
  not	
  solely	
  process	
  food	
  waste,	
  
and	
  capacities	
  of	
  individual	
  facilities	
  vary	
  with	
  feedstock	
  and	
  residence	
  time.	
  It	
  is	
  also	
  estimated	
  
that	
  there	
  is	
  a	
  further	
  0.5	
  Mtpa	
  of	
  AD	
  capacity	
  currently	
  wither	
  in	
  construction	
  or	
  for	
  which	
  
funding	
  is	
  in	
  understood	
  to	
  be	
  in	
  place.	
  (Information	
  correct	
  of	
  April	
  2015).	
  	
  
	
  
  12	
  
	
  
In	
  October	
  2014,	
  the	
  NNFCC	
  indicated	
  that	
  food	
  waste	
  AD	
  projects	
  ‘under	
  development’	
  had	
  a	
  
total	
  capacity	
  of	
  5.7	
  Mtpa.	
  Taken	
  together	
  with	
  continuing	
  digression	
  in	
  tariffs,	
  the	
  limited	
  
availability	
  of	
  feedstock	
  will	
  affect	
  the	
  commercial	
  feasibility	
  of	
  projects	
  and	
  can	
  be	
  expected	
  to	
  
restrict	
  the	
  number	
  of	
  projects	
  proceeding	
  to	
  construction	
  
From	
  analysis	
  of	
  the	
  data	
  and	
  discussions	
  with	
  industry,	
  GIB	
  has	
  identified	
  the	
  following	
  macro	
  
factors	
  to	
  compete	
  in	
  the	
  market	
  and	
  deliver	
  an	
  upper	
  quartile	
  operational	
  and	
  financial	
  
performance:	
  	
  
-­‐ Operational	
  reliability	
  –	
  the	
  consistent	
  ability	
  to	
  source	
  feedstock	
  competitively,	
  
achieve	
  high	
  plant	
  availability,	
  maintain	
  a	
  culture	
  of	
  continuous	
  maintenance	
  and	
  
improvement,	
  retain	
  adequate	
  storage	
  capacity,	
  and	
  have	
  appropriate	
  contingency	
  
arrangements.	
  	
  
-­‐ Competitive	
  cost	
  base	
  –	
  both	
  in	
  terms	
  of	
  capital	
  cost	
  and	
  operating	
  costs,	
  the	
  key	
  
drivers	
  include	
  plant	
  efficiency,	
  appropriate	
  digestate	
  disposal	
  arrangements,	
  strong	
  
relationships	
  with	
  technology	
  and	
  EPC	
  providers,	
  and	
  competitive	
  energy	
  sales	
  
arrangements.	
  	
  
-­‐ Understanding	
  feedstocks	
  –	
  to	
  competitively	
  secure	
  an	
  optimal	
  biology	
  including	
  
biogas	
  yields,	
  retention	
  times,	
  reject	
  rates,	
  sustainability	
  etc.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  13	
  
	
  
Financial	
  Aspect:	
  
There	
  are	
  three	
  main	
  financial	
  aspects	
  associated	
  with	
  the	
  building	
  and	
  running	
  of	
  an	
  AD	
  plant.	
  
These	
  include:	
  -­‐	
  	
  
-­‐ Capital	
  Costs	
  
-­‐ Operating	
  Costs	
  
-­‐ Sources	
  of	
  Income	
  
However,	
  it	
  is	
  difficult	
  to	
  provide	
  accurate	
  or	
  even	
  approximate	
  capital	
  costs	
  without	
  the	
  
specifications	
  of	
  an	
  AD	
  plant	
  due	
  to	
  dependant	
  factors	
  such	
  as	
  plant	
  size,	
  engineering	
  location	
  
and	
  waste	
  composition.	
  
Operating	
  costs	
  will	
  include	
  staffing	
  costs,	
  insurance,	
  transportation	
  of	
  feedstock	
  and	
  materials,	
  
annual	
  licences,	
  pollution	
  abatement	
  and	
  control,	
  and	
  other	
  maintenance.	
  
Sources	
  of	
  income	
  are	
  likely	
  to	
  include	
  revenue	
  from	
  the	
  sale	
  of	
  electricity,	
  heat	
  sale,	
  digestate	
  
(liquor	
  and	
  fibre)	
  and	
  gate	
  fees.	
  Gate	
  fees	
  refer	
  to	
  charges	
  made	
  for	
  processing	
  waste.	
  It	
  is	
  likely	
  
that	
  gate	
  fees	
  would	
  have	
  to	
  be	
  competitive	
  with	
  alternate	
  waste	
  management	
  solutions	
  
available	
  locally	
  to	
  the	
  AD	
  plant.	
  However,	
  it	
  is	
  essential	
  that	
  operators	
  of	
  AD	
  plants	
  ensure	
  that	
  
they	
  have	
  sufficient	
  feedstock	
  material	
  to	
  operate	
  their	
  plant	
  at	
  optimum	
  capacity	
  in	
  order	
  to	
  
maximise	
  the	
  potential	
  sources	
  of	
  revenue.	
  Long-­‐term	
  contacts	
  are	
  common	
  practice	
  as	
  a	
  result.	
  
The	
  Government	
  incentive	
  schemes	
  are	
  designed	
  to	
  support	
  the	
  development	
  of	
  renewable	
  
energy	
  generation	
  in	
  the	
  UK,	
  allowing	
  producers	
  to	
  compete	
  with	
  fossil	
  fuel	
  generated	
  
technologies	
  which	
  may	
  be	
  cheaper	
  in	
  the	
  short	
  term.	
  Renewable	
  energy	
  is	
  essential	
  is	
  Britain	
  is	
  
to	
  meet	
  its	
  binding	
  climate	
  change	
  targets	
  –	
  to	
  deliver	
  15%	
  of	
  all	
  energy	
  from	
  renewable	
  
sources	
  by	
  2020	
  and	
  to	
  reduce	
  greenhouse	
  gas	
  emissions	
  by	
  80%	
  by	
  2050	
  (relative	
  to	
  1990	
  
levels).	
  A	
  report	
  published	
  by	
  Oxford	
  Economics	
  in	
  2011	
  has	
  shown	
  that	
  the	
  negative	
  impact	
  
that	
  spikes	
  in	
  global	
  oil,	
  gas	
  and	
  coal	
  prices	
  have	
  on	
  the	
  UK	
  could	
  be	
  reduced	
  by	
  over	
  50%	
  in	
  
2050	
  by	
  increasing	
  the	
  deployment	
  of	
  renewable	
  energy.	
  
Biogas	
  is	
  innately	
  flexible-­‐	
  it	
  can	
  be	
  used	
  to	
  generate	
  heat	
  or	
  power,	
  or	
  be	
  upgraded	
  to	
  
biomethane	
  where	
  it	
  can	
  be	
  stores	
  in	
  the	
  national	
  grid	
  or	
  used	
  as	
  transport	
  fuel.	
  AD	
  can	
  be	
  
supported	
  by	
  a	
  number	
  of	
  incentive	
  schemes	
  depending	
  on	
  how	
  the	
  biogas	
  is	
  used	
  –	
  the	
  RO*	
  or	
  
FIT	
  for	
  electricity	
  generation,	
  RHI	
  for	
  supplying	
  heat	
  or	
  injecting	
  biomethane	
  to	
  the	
  gas	
  grid,	
  or	
  
the	
  RTFO	
  for	
  transport	
  fuel.	
  See	
  Fig	
  4	
  for	
  table	
  of	
  financial	
  incentives	
  of	
  the	
  RO	
  and	
  FIT..	
  
	
  
	
  
*RO	
  refers	
  to	
  the	
  Renewables	
  Obligation.	
  FITs	
  is	
  the	
  Feed-­‐In	
  Tariff	
  scheme.	
  RHI	
  means	
  
Renewable	
  Heat	
  Incentive,	
  while	
  RTFO	
  refers	
  to	
  	
  the	
  Renewable	
  Transport	
  Fuels	
  Obligation.	
  
	
  
	
  
	
  
  14	
  
	
  
Heat	
  from	
  biogas	
  combustion	
  (RHI):	
  
The	
  Renewable	
  Heat	
  Incentive	
  (RHI)	
  supports	
  heat	
  produced	
  from	
  biogas	
  combustion	
  (up	
  to	
  
200	
  kWth	
  limit)	
  at	
  7.5/kWh	
  for	
  20	
  years.	
  
Biomethane	
  grid	
  injection	
  (RHI):	
  
Injecting	
  biomethane	
  into	
  the	
  grid	
  is	
  also	
  supported	
  for	
  20	
  years,	
  at	
  all	
  levels,	
  under	
  the	
  RHI.	
  
This	
  incentive	
  was	
  introduced	
  in	
  January	
  2012,	
  and	
  supports	
  biomethane	
  injection	
  at	
  7.5p/kWh.	
  	
  
Biomethane	
  as	
  a	
  transport	
  fuel:	
  
The	
  use	
  of	
  biomethane	
  as	
  a	
  transport	
  fuel	
  is	
  supported	
  under	
  the	
  Renewable	
  Transport	
  Fuels	
  
Obligation	
  as	
  the	
  level	
  of	
  two	
  Renewable	
  Transport	
  Fuels	
  Certifications	
  (RTFCs)	
  per	
  kilo	
  of	
  
biomethane	
  if	
  the	
  feedstock	
  is	
  from	
  waste	
  sources	
  and	
  one	
  RTFC	
  otherwise.	
  The	
  price	
  of	
  a	
  RTFC	
  
is	
  approximately	
  20p/kg.	
  The	
  EU	
  is	
  considering	
  increasing	
  the	
  number	
  of	
  RTFCs/kilo	
  of	
  
biomethane	
  to	
  four	
  if	
  the	
  feedstock	
  is	
  from	
  waste	
  sources.	
  See	
  figure	
  5	
  for	
  future	
  changes	
  to	
  
incentives.	
  	
  
Gate	
  fees:	
  
Gate	
  fees	
  can	
  form	
  a	
  large	
  element	
  of	
  an	
  income	
  stream	
  for	
  an	
  AD	
  plant.	
  With	
  the	
  increase	
  in	
  
landfill	
  tax	
  now	
  on	
  an	
  escalator	
  basis,	
  further	
  controls	
  on	
  routes	
  of	
  disposal	
  being	
  closed	
  off	
  for	
  
organic	
  waste	
  streams.	
  The	
  potential	
  to	
  earn	
  gate	
  fees	
  from	
  waste	
  streams	
  is	
  an	
  important	
  
potential	
  area	
  of	
  income	
  to	
  a	
  plant	
  developer.	
  The	
  category	
  of	
  waste	
  the	
  feedstock	
  is	
  categorised	
  
as	
  dictates	
  the	
  likely	
  size	
  of	
  the	
  gate	
  fee	
  and	
  also	
  the	
  regulatory	
  burden	
  that	
  needs	
  to	
  be	
  
complied	
  with,	
  which	
  can	
  also	
  have	
  substantial	
  cost	
  implications.	
  	
  
	
  
As	
  each	
  AD	
  plant	
  is	
  a	
  very	
  specific	
  site,	
  economics	
  is	
  therefore	
  hard	
  to	
  generalise	
  and	
  
approximate.	
  However,	
  Figure	
  6	
  refers	
  to	
  a	
  planned	
  plant	
  in	
  the	
  UK.	
  It	
  is	
  for	
  a	
  340	
  kWh	
  unit	
  with	
  
manure	
  from	
  400	
  dairy	
  cows	
  and	
  97	
  ha	
  of	
  energy	
  crops.	
  The	
  figures	
  are	
  from	
  example	
  purposes	
  
only;	
  however	
  they	
  do	
  give	
  an	
  indication	
  as	
  to	
  the	
  potential	
  returns	
  available	
  from	
  an	
  
investment	
  in	
  an	
  AD	
  plant.	
  See	
  figure	
  7	
  for	
  a	
  map	
  showing	
  AD	
  plant	
  locations	
  in	
  the	
  UK.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  15	
  
	
  
Evaluation	
  regarding	
  the	
  success	
  of	
  AD	
  practices:	
  
Taking	
  into	
  account	
  current	
  and	
  past	
  literature	
  on	
  AD,	
  below	
  in	
  a	
  condensed	
  note	
  on	
  the	
  key	
  
features	
  that	
  have	
  contributed	
  to	
  the	
  success	
  of	
  AD	
  plant	
  implementation:-­‐	
  
-­‐ Minimise	
  rain	
  ingress	
  to	
  the	
  slurry.	
  Heating	
  a	
  substrate	
  which	
  has	
  no	
  biogas	
  potential	
  
is	
  a	
  waste	
  of	
  energy	
  and	
  a	
  waste	
  of	
  digester	
  space	
  and	
  can	
  significantly	
  affect	
  the	
  
economics	
  of	
  digestion	
  in	
  terms	
  of	
  gas	
  output	
  per	
  meter	
  squared	
  of	
  substrate	
  loaded;	
  
-­‐ Maintain	
  the	
  biogas	
  potential	
  of	
  the	
  feedstock.	
  Studies	
  have	
  shown	
  that	
  this	
  potential	
  
can	
  be	
  lost	
  in	
  two	
  ways:	
  by	
  oxidation	
  and	
  by	
  methane	
  emission.	
  Where	
  the	
  surface	
  area	
  
of	
  the	
  tank	
  is	
  large,	
  such	
  as	
  those	
  under	
  slats,	
  there	
  are	
  significant	
  aerobic	
  carbon	
  
dioxide	
  emissions,	
  as	
  well	
  as	
  CH4	
  emissions	
  from	
  lower	
  down	
  the	
  substrate	
  which	
  is	
  
anaerobic,	
  with	
  both	
  processes	
  causing	
  loss	
  of	
  methane	
  potential.	
  	
  
-­‐ Incorporate	
  redundancy.	
  All	
  of	
  the	
  systems	
  which	
  used	
  gas	
  locally	
  in	
  boilers,	
  Rayburns	
  
or	
  Aga	
  also	
  had	
  at	
  least	
  one	
  other	
  form	
  of	
  heating:	
  wood	
  burners	
  with	
  back	
  boilers,	
  
immersion	
  heaters,	
  solar	
  thermal,	
  oil	
  boilers.	
  Maintaining	
  digester	
  temperature	
  is	
  most	
  
crucial	
  to	
  the	
  AD	
  process,	
  therefore	
  a	
  secondary	
  method	
  of	
  heating	
  is	
  essential.	
  	
  
-­‐ Monitoring	
  and	
  keeping	
  appropriate	
  records.	
  Monitoring	
  can	
  aid	
  complexity,	
  cost	
  
and	
  potential	
  for	
  breakdown	
  and	
  should	
  not	
  be	
  done	
  needlessly.	
  There	
  is	
  no	
  ‘one-­‐size-­‐
fits-­‐all’	
  when	
  it	
  comes	
  to	
  record-­‐keeping.	
  	
  
-­‐ Training,	
  Certification	
  and	
  Maintenance.	
  	
  
-­‐ Technology.	
  The	
  number	
  of	
  digester	
  technologies	
  can	
  be	
  bewildering;	
  however	
  it	
  is	
  
essential	
  that	
  engineering	
  technology	
  must	
  be	
  appropriate	
  to	
  the	
  situation.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  16	
  
	
  
Conclusion:	
  
In	
  his	
  foreword	
  to	
  the	
  Renewable	
  Heat	
  Incentive,	
  DECC	
  Minister	
  of	
  State	
  Greg	
  Barker	
  notes	
  that	
  
‘we	
  must	
  take	
  action	
  now	
  to	
  protect	
  our	
  environment’	
  and	
  ‘we	
  have	
  signed	
  up	
  to	
  carbon	
  
reduction	
  targets	
  and	
  have	
  committed	
  to	
  reducing	
  our	
  emissions	
  by	
  at	
  least	
  80	
  per	
  cent	
  by	
  
2050’.	
  Although	
  it	
  is	
  unrealistic	
  to	
  comment	
  that	
  AD	
  could	
  prove	
  to	
  be	
  the	
  solution,	
  it	
  does	
  
provide	
  a	
  feasible	
  option	
  to	
  help	
  meet	
  these	
  targets.	
  	
  
To	
  conclude,	
  AD	
  should	
  be	
  considered	
  by	
  the	
  UK	
  Government	
  and	
  relevant	
  organisations	
  (such	
  
as	
  retailers)	
  wishing	
  to	
  reduce	
  the	
  carbon	
  foot	
  print	
  of	
  their	
  supply	
  chain	
  or	
  as	
  an	
  investment	
  
opportunity.	
  However,	
  this	
  is	
  admittedly	
  highly	
  dependent	
  upon	
  the	
  availability	
  of	
  credit;	
  banks	
  
and	
  institutions	
  would	
  be	
  required	
  to	
  ‘partner’	
  with	
  plant	
  suppliers	
  in	
  order	
  to	
  offer	
  assistance	
  
with	
  funding.	
  This	
  relationship	
  would	
  also	
  be	
  essential	
  to	
  promote	
  greater	
  undertint	
  of	
  the	
  
technology	
  and	
  its	
  potential	
  impact	
  on	
  the	
  economy,	
  such	
  as	
  that	
  experience	
  by	
  food	
  wastage	
  
reported	
  by	
  WRAP.	
  	
  
My	
  findings	
  have	
  also	
  lead	
  me	
  to	
  the	
  conclusion	
  that	
  it	
  is	
  necessary	
  to	
  inform	
  and	
  educate	
  
farmers,	
  bankers	
  and	
  regulators	
  about	
  the	
  potential	
  for	
  small	
  scale	
  AD	
  plants.	
  This	
  may	
  be	
  
facilitated	
  by	
  working	
  with	
  organisations	
  such	
  as	
  WRAP	
  and	
  NNFCC.	
  Successful	
  competition	
  
enabled	
  by	
  Government	
  grants,	
  and	
  better	
  information	
  availability	
  on	
  the	
  benefits	
  of	
  AD	
  will	
  
surely	
  increase	
  its	
  adoption	
  in	
  the	
  UK.	
  
From	
  a	
  purely	
  planning	
  perspective,	
  the	
  ideal	
  proposed	
  site	
  for	
  an	
  AD	
  plant	
  is	
  that	
  it	
  should	
  be	
  
1km	
  away	
  from	
  any	
  houses,	
  close	
  to	
  a	
  duel	
  carriage	
  way,	
  situated	
  on	
  arable	
  land	
  and	
  screened	
  
by	
  trees.	
  In	
  reality	
  however,	
  land	
  with	
  this	
  criteria	
  is	
  rarely	
  found	
  and	
  the	
  nest	
  strategy	
  is	
  often	
  
to	
  work	
  with	
  what	
  you	
  have	
  and	
  submit	
  a	
  solid	
  planning	
  application	
  following	
  advice.	
  	
  
As	
  the	
  UK	
  population	
  continues	
  to	
  rise,	
  economic	
  growth	
  can	
  only	
  be	
  sustainable	
  if	
  we	
  better	
  
manage	
  our	
  resources,	
  cut	
  carbon	
  emissions	
  and	
  invest	
  in	
  our	
  ageing	
  infrastructure.	
  By	
  offering	
  
closed-­‐loop	
  recycling	
  (AD)	
  for	
  the	
  essential	
  nutrients	
  in	
  our	
  food	
  waste,	
  baseload	
  renewable	
  
energy,	
  and	
  ultra-­‐low	
  carbon	
  transport	
  fuel	
  that	
  dramatically	
  improves	
  air	
  quality	
  –	
  AD	
  can	
  play	
  
a	
  pivotal	
  role	
  in	
  supporting	
  greener,	
  smarter	
  cities.	
  As	
  it	
  evolves,	
  our	
  industry	
  also	
  has	
  the	
  
potential	
  to	
  deliver	
  new	
  high-­‐value	
  products	
  such	
  as	
  biochemicals	
  and	
  bioplastics.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  17	
  
	
  
Figures:	
  
Figure	
  1:	
  	
  
	
  
Figure	
  2:	
  
	
  
	
  
	
  
  18	
  
	
  
Figure	
  3	
  :	
  
	
  
Figure	
  4:	
  	
  
	
  
Incentive	
   	
  	
   	
  	
   FIT	
   	
  	
   	
  	
   	
  	
   RO	
   	
  	
  
Eligibility	
   	
  	
   Electricity	
  generating	
  plants	
  under	
  	
   	
  	
   Electricity	
  generating	
  plants	
  
	
  
	
  	
   5MW	
  (FIT	
  not	
  available	
  if	
  plant	
  has	
   of	
  all	
  sizes.	
  
	
  
	
  
	
  	
   received	
  any	
  other	
  state	
  aid).	
   	
  	
  
	
   	
   	
  
Tariff	
  Rate	
   	
  	
  
≤250kW =
12.46p/kWh 	
  	
   	
  	
   	
  	
  
2	
  ROCs/MWh	
  ≈	
  
9p/kWh	
   	
  	
  
	
  	
   	
  	
  
	
  
>250-­‐500	
  kW	
  =	
  
11.52p/kWh	
   	
  	
   	
  	
  
	
   	
   	
  
	
  	
   	
  	
   	
  	
  
>500-­‐5000	
  kW	
  =	
  
9.949p/kWh	
   	
  	
   	
  	
  
	
   	
   	
  Tariff	
  Length	
   	
  	
   20	
  years	
   	
  	
   	
  	
   	
  	
   20	
  years	
   	
  	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
	
  
  19	
  
	
  
Figure	
  5:	
  
Incentive	
   	
  	
   Change	
  announced/expected	
   	
  	
   	
  	
  
FIT	
   	
  	
  
Review	
  of	
  the	
  scheme	
  in	
  2015,	
  where	
  operation	
  of	
  
the	
  digression	
  mechanism	
  may	
  be	
  considered.	
  
RHI	
   	
  	
   Current	
  200kWh	
  limit	
  for	
  biogas	
  combustion	
  
	
  	
   	
  	
   to	
  be	
  extended,	
  with	
  new	
  support	
  levels	
  in	
  place.	
  
RHI	
   	
  	
   Biomethane	
  injection	
  tariff	
  under	
  review,	
  to	
  tackle	
  
	
  	
   	
  	
   "risk	
  of	
  overcompensation"	
  for	
  larger	
  projects.	
  
RHI	
   	
  	
   For	
  plants	
  above	
  1MW	
  treating	
  non-­‐waste	
  feed-­‐	
  
	
  	
   	
  	
   stocks,	
  GHG	
  emissions	
  sustainability	
  criteria	
  	
  
	
  	
   	
  	
   mandatory	
  for	
  reporting	
  purposes	
  from	
  Autumn	
  	
  
	
  	
   	
  	
   2014.	
  Land	
  use	
  criteria	
  due	
  to	
  be	
  implemented	
  	
  
	
  	
   	
  	
   from	
  April	
  2015.	
   	
  	
   	
  	
   	
  	
  
RHI	
   	
  	
   Tariff	
  guarantee	
  for	
  larger	
  projects	
  (over	
  1MW)	
  	
  
	
  	
   	
  	
   proposed	
  to	
  be	
  introduced	
  from	
  Spring	
  2015.	
  
RO	
   	
  	
   Final	
  strike	
  prices	
  confirmed	
  ahead	
  of	
  RO	
  being	
  	
  
	
  	
   	
  	
   replaced	
  by	
  FIT	
  with	
  Contracts	
  for	
  Difference	
  for	
  
	
  	
   	
  	
   new	
  generation	
  in	
  2017.	
   	
  	
   	
  	
  
	
  
Figure	
  6	
  –	
  
Income	
  2,829,480	
  @	
  9p	
   £254,653	
  
Costs:	
   	
  	
   	
  	
   	
  	
  
Feedstock	
   	
  	
   	
  	
   £38,520	
  
Other	
  -­‐	
  Labour	
  etc.	
  
	
  
£73,140	
  
Total	
  Costs	
  	
   	
  	
   £111,662	
  
Operating	
  Margin	
  
	
  
£142,991	
  
Capital	
  Cost	
   	
  	
   £741,562	
  
Operating	
  Margin	
   	
  	
   £142,990	
  
Finance	
  Costs	
   	
  	
   £75,390	
  
Margin	
   	
  	
   	
  	
   £67,600	
  
Project	
  Return	
   	
  	
   19.28%	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  7:	
  
  20	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  21	
  
	
  
References:	
  
Anaerobic	
  Digestion	
  and	
  Bioresources	
  Association	
  (2015)	
  Planning.	
  	
  Accessed	
  from:	
  	
  
http://adbioresources.org/about-­‐ad/government-­‐policy/planning/	
  
Connor,	
  P	
  (2003)	
  UK	
  renewable	
  energy	
  policy:	
  a	
  review.	
  Accessed	
  from:	
  
http://www.sciencedirect.com/science/article/pii/S1364032102000540	
  
Department	
  for	
  Communities	
  and	
  Local	
  Government	
  (2012)	
  The	
  National	
  Planning	
  Policy	
  
Framework.	
  Accessed	
  from:	
  
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/607
7/2116950.pdf	
  
Department	
  of	
  Energy	
  and	
  Climate	
  Change	
  (2011)	
  Anaerobic	
  Digestion	
  Strategy	
  and	
  Action	
  Plan:	
  
A	
  commitment	
  to	
  increase	
  energy	
  from	
  waste	
  from	
  Anaerobic	
  Digestion.	
  Accessed	
  
from:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file
/69400/anaerobic-­‐digestion-­‐strat-­‐action-­‐plan.pdf	
  
Green	
  Investment	
  Bank	
  (2015)	
  The	
  UK	
  anaerobic	
  digestion	
  market.	
  Accessed	
  from:	
  
http://www.greeninvestmentbank.com/media/44758/gib-­‐anaerobic-­‐digestion-­‐report-­‐
march-­‐2015-­‐final.pdf	
  
Monnet,	
  F	
  (2003)	
  An	
  Introduction	
  to	
  Anaerobic	
  Digestion	
  of	
  Organic	
  Wastes:	
  Final	
  Report.	
  
Accessed	
  from:	
  
http://www.biogasmax.co.uk/media/introanaerobicdigestion__073323000_1011_2404
2007.pdf	
  
Oxford	
  Economics	
  (2011)	
  Fossil	
  fuel	
  price	
  shocks	
  and	
  a	
  low	
  carbon	
  economy.	
  Accessed	
  from:	
  
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/688
31/5276-­‐fossil-­‐fuel-­‐price-­‐shocks-­‐and-­‐a-­‐low-­‐carbon-­‐economy-­‐.pdf	
  
Royal	
  Agricultural	
  Society	
  of	
  England	
  (2011)	
  A	
  Review	
  of	
  Anaerobic	
  Digestion	
  Plants	
  on	
  UK	
  
Farms.	
  Accessed	
  from:	
  http://www.fre-­‐energy.co.uk/pdf/RASE-­‐On-­‐Farm-­‐AD-­‐
Review.pdf	
  
WRAP	
  (2013)	
  Household	
  Food	
  and	
  Drink	
  Waste	
  in	
  the	
  United	
  Kingdom	
  2012.	
  Accessed	
  from:	
  
http://www.wrap.org.uk/sites/files/wrap/hhfdw-­‐2012-­‐main.pdf.pdf	
  
WRAP	
  (2014)	
  Specification	
  for	
  whole	
  digestate,	
  separated	
  liquor	
  and	
  separated	
  fibre	
  derived	
  from	
  
the	
  anaerobic	
  digestion	
  of	
  source-­‐segregated	
  biodegradable	
  materials.	
  Accessed	
  from:	
  
http://www.wrap.org.uk/system/files/private/PAS110_2014_final.pdf	
  
Yeatman,	
  C.	
  (2006)	
  The	
  Profitable	
  use	
  of	
  Anaerobic	
  Digestion	
  (AD)	
  on	
  UK	
  Farms.	
  Accessed	
  from:	
  
http://www.nuffieldinternational.org/rep_pdf/1226661015Yeatman,_Owen.pdf	
  
	
  

More Related Content

Similar to Anaerobic Digestion – Overview of Current Planning Practices and Policy in the UK.

Session 1 - Ken Cleary Green Budgeting in Ireland
Session 1 - Ken Cleary  Green Budgeting in IrelandSession 1 - Ken Cleary  Green Budgeting in Ireland
Session 1 - Ken Cleary Green Budgeting in IrelandOECD Governance
 
NHS_Nottingham_City_Carbon_Management_Plan_261010
NHS_Nottingham_City_Carbon_Management_Plan_261010NHS_Nottingham_City_Carbon_Management_Plan_261010
NHS_Nottingham_City_Carbon_Management_Plan_261010Laura Mayhew-Manchón
 
Ministry of Water and Environment Sector Performance Review Meeting 2019
Ministry of Water and Environment Sector Performance Review Meeting 2019Ministry of Water and Environment Sector Performance Review Meeting 2019
Ministry of Water and Environment Sector Performance Review Meeting 2019ENVIRONMENTALALERTEA1
 
ENR-CSOs annual performance Report, 2018/19.
ENR-CSOs annual performance Report, 2018/19.ENR-CSOs annual performance Report, 2018/19.
ENR-CSOs annual performance Report, 2018/19.Dr. Joshua Zake
 
Business case for carbon roadmap development - RSM GC
Business case for carbon roadmap development - RSM GCBusiness case for carbon roadmap development - RSM GC
Business case for carbon roadmap development - RSM GCPravin Jadhav
 
Unep gess azerbaijan_english_12nov_low_res
Unep gess azerbaijan_english_12nov_low_resUnep gess azerbaijan_english_12nov_low_res
Unep gess azerbaijan_english_12nov_low_resDr Lendy Spires
 
UK policy overview, Building a high value Bioeconomy, Opportunities from waste
UK policy overview, Building a high value Bioeconomy, Opportunities from wasteUK policy overview, Building a high value Bioeconomy, Opportunities from waste
UK policy overview, Building a high value Bioeconomy, Opportunities from wasteNNFCC
 
Linking up to available climate finance: The experience of Zambia
Linking up to available climate finance: The experience of ZambiaLinking up to available climate finance: The experience of Zambia
Linking up to available climate finance: The experience of ZambiaNAP Events
 
Carbon footprint and reduction strategies for global fund grants
Carbon footprint and reduction strategies for global fund grantsCarbon footprint and reduction strategies for global fund grants
Carbon footprint and reduction strategies for global fund grantsUNDP Eurasia
 
Measuring the development of circular economy powerpoint
Measuring the development of circular economy powerpointMeasuring the development of circular economy powerpoint
Measuring the development of circular economy powerpointSitra / Ekologinen kestävyys
 
Corporate climate & environmental disclosure under the EU Non-Financial Repor...
Corporate climate & environmental disclosure under the EU Non-Financial Repor...Corporate climate & environmental disclosure under the EU Non-Financial Repor...
Corporate climate & environmental disclosure under the EU Non-Financial Repor...CDSB
 
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECD
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECDApplying Green Budgeting to Biodiversity - Katia Karousakis, OECD
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECDOECD Governance
 
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdf
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdfEthiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdf
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdfAbraham Lebeza
 
S57146154.pdf
S57146154.pdfS57146154.pdf
S57146154.pdfaijbm
 
Nature after Mineral - Review of Minerals Development Frameworks
Nature after Mineral - Review of Minerals Development FrameworksNature after Mineral - Review of Minerals Development Frameworks
Nature after Mineral - Review of Minerals Development FrameworksCharlie Butt
 

Similar to Anaerobic Digestion – Overview of Current Planning Practices and Policy in the UK. (20)

Session 1 - Ken Cleary Green Budgeting in Ireland
Session 1 - Ken Cleary  Green Budgeting in IrelandSession 1 - Ken Cleary  Green Budgeting in Ireland
Session 1 - Ken Cleary Green Budgeting in Ireland
 
CCAFS Science Meeting Item 01 Campbell and Vermeulen - International negotiat...
CCAFS Science Meeting Item 01 Campbell and Vermeulen - International negotiat...CCAFS Science Meeting Item 01 Campbell and Vermeulen - International negotiat...
CCAFS Science Meeting Item 01 Campbell and Vermeulen - International negotiat...
 
NHS_Nottingham_City_Carbon_Management_Plan_261010
NHS_Nottingham_City_Carbon_Management_Plan_261010NHS_Nottingham_City_Carbon_Management_Plan_261010
NHS_Nottingham_City_Carbon_Management_Plan_261010
 
Ministry of Water and Environment Sector Performance Review Meeting 2019
Ministry of Water and Environment Sector Performance Review Meeting 2019Ministry of Water and Environment Sector Performance Review Meeting 2019
Ministry of Water and Environment Sector Performance Review Meeting 2019
 
ENR-CSOs annual performance Report, 2018/19.
ENR-CSOs annual performance Report, 2018/19.ENR-CSOs annual performance Report, 2018/19.
ENR-CSOs annual performance Report, 2018/19.
 
envmntl a/cing
envmntl a/cingenvmntl a/cing
envmntl a/cing
 
Business case for carbon roadmap development - RSM GC
Business case for carbon roadmap development - RSM GCBusiness case for carbon roadmap development - RSM GC
Business case for carbon roadmap development - RSM GC
 
Unep gess azerbaijan_english_12nov_low_res
Unep gess azerbaijan_english_12nov_low_resUnep gess azerbaijan_english_12nov_low_res
Unep gess azerbaijan_english_12nov_low_res
 
UK policy overview, Building a high value Bioeconomy, Opportunities from waste
UK policy overview, Building a high value Bioeconomy, Opportunities from wasteUK policy overview, Building a high value Bioeconomy, Opportunities from waste
UK policy overview, Building a high value Bioeconomy, Opportunities from waste
 
Linking up to available climate finance: The experience of Zambia
Linking up to available climate finance: The experience of ZambiaLinking up to available climate finance: The experience of Zambia
Linking up to available climate finance: The experience of Zambia
 
Carbon footprint and reduction strategies for global fund grants
Carbon footprint and reduction strategies for global fund grantsCarbon footprint and reduction strategies for global fund grants
Carbon footprint and reduction strategies for global fund grants
 
Cdp adaptation-report
Cdp adaptation-reportCdp adaptation-report
Cdp adaptation-report
 
Cdp adaptation-report
Cdp adaptation-reportCdp adaptation-report
Cdp adaptation-report
 
Measuring the development of circular economy powerpoint
Measuring the development of circular economy powerpointMeasuring the development of circular economy powerpoint
Measuring the development of circular economy powerpoint
 
Corporate climate & environmental disclosure under the EU Non-Financial Repor...
Corporate climate & environmental disclosure under the EU Non-Financial Repor...Corporate climate & environmental disclosure under the EU Non-Financial Repor...
Corporate climate & environmental disclosure under the EU Non-Financial Repor...
 
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECD
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECDApplying Green Budgeting to Biodiversity - Katia Karousakis, OECD
Applying Green Budgeting to Biodiversity - Katia Karousakis, OECD
 
CAP Progress Report
CAP Progress ReportCAP Progress Report
CAP Progress Report
 
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdf
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdfEthiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdf
Ethiopia's updated Nationally Determined Contributions JULY 2021 Submission_.pdf
 
S57146154.pdf
S57146154.pdfS57146154.pdf
S57146154.pdf
 
Nature after Mineral - Review of Minerals Development Frameworks
Nature after Mineral - Review of Minerals Development FrameworksNature after Mineral - Review of Minerals Development Frameworks
Nature after Mineral - Review of Minerals Development Frameworks
 

Anaerobic Digestion – Overview of Current Planning Practices and Policy in the UK.

  • 1.   1                   Anaerobic  Digestion:  An  Overview  of  Current   Practices,  Planning  Procedure  and  Policy  in  the   UK.          
  • 2.   2     Overview     During  the  course  of  this  paper,  I  present  a  case  for  the  adoption  and  development  of  Anaerobic   Digestion  (AD)  as  an  answer  to  combating  the  UK’s  ever  increasing  energy  and  waste  disposal   needs.  During  the  writing  of  the  ‘Anaerobic  Digestion  Strategy  and  Action  Plan’,  a  report   published  in  2011  which  highlights  the  need  for  the  development,  and  expansion  of,  anaerobic   digestion  facilities  in  the  UK  to  help  meet  targets  in  waste  management,  the  coalition   Government  pledged  to  be  the  ‘Greenest  Government  ever’.  Although  this  term  of  government  is   now  over,  the  UK  is  still  required  to  reduce  its  waste  production  and  energy  consumption  in  line   with  targets  set  out  by  the  Kyoto  Protocol.     Although  it  is  currently  a  priority  in  the  UK  to  reduce  waste  rather  than  focus  on  its  disposal   (especially  that  of  food  and  drink),  one  may  argue  that  realist  approaches  to,  and  options  for   this  type  of  waste  must  be  created  in  the  near  future.  WRAP,  whose  mission  is  to  accelerate  the   move  to  a  sustainable  resource-­‐efficient  economy,  found  that  in  2007,  22%  of  food  and  drink   purchases  that  were  brought  into  the  home  were  being  thrown  away  (a  staggering  8.3  million   tonnes).  Not  only  are  the  repercussions  of  this  waste  large  on  the  environment,  but  also  an   unnecessary  financial  drain  on  consumers  and  local  governments  who  have  to  pay  for  waste   collection  and  treatment.       Since  producing  these  findings  and  campaigns  to  reduce  food  waste,  WRAP  has  calculated  a   21%  reduction  in  the  amount  of  food  and  drink  being  thrown  away  from  2007-­‐2012.  However,   WRAP  also  reports  that  4.2  million  tonnes  of  avoidable*  food  and  drink  is  being  wasted  each   year  –  worth  an  eye  watering  £12.5  billion.  The  savings  in  greenhouse  gas  emission  associated   with  the  reductions  in  avoidable  food  and  drink  waste  (between  the  2007-­‐2012  time  period)   amounted  to  4.4  million  tonnes  of  CO2  equivalents;    the  same  as  taking  1.8  million  cars  off  UK   roads.       This  data  evidences  how  the  need  for  effective  and  efficient  food  and  drink  waste  management   is  very  much  required.  The  focus  of  this  paper  is  to  outline  the  current  planning  policies   concerning  anaerobic  digestion,  complete  a  broad  analysis  of  where  AD  is  currently  being   practiced  in  the  UK,  and  to  evaluate  the  success  of  these  practices.               *Avoidable  food  waste  is  defined  by  WRAP  as  food  and  drink  that  would  have  been  edible  at   some  point  prior  to  being  thrown  away,  for  example  slices  of  bread,  apples,  yoghurt,  etc.   Unavoidable  food  and  drink  waste  constitutes  as  items  such  as  tea  waste,  banana  skins,  poultry   bones.    
  • 3.   3     Contents  Page:     Title  Page                                                                                                                          -­‐                                                                        Page  1   Overview                                                                                                                          -­‐                                                                          Page  2   Contents  Page                                                                                                        -­‐                                                                          Page  3   Table  of  Figures                                                                                                  -­‐                                                                          Page  4   Introduction                                                                                                              -­‐                                                                          Page  5   Current  AD  Planning  Policies                                                -­‐                                                                          Page  8   Application  of  AD  in  the  UK                                                      -­‐                                                                          Page  11   Financial  Aspect                                                                                                -­‐                                                                          Page  13   Evaluation  of  UK  AD  Practices                                              -­‐                                                                        Page  15   Conclusion                                                                                                                      -­‐                                                                          Page  16   Figures                                                                                                                                    -­‐                                                                          Page  17   References                                                                                                                      -­‐                                                                            Page  21  
  • 4.   4     Table  of  Figures:     Title  Page  Image  –Accessed  from:  http://www.theguardian.com/environment/2014/jul/27/is-­‐ it-­‐harmful-­‐to-­‐burn-­‐my-­‐rubbish   Figure  1  –Image  of  an  AD  plant.  Photo  courtesy  of  Greenfinch  Ltd.     Figure  2  –Diagram  of  the  AD  process.  Accessed  from:   http://www.ionacapital.co.uk/page/95/Anaerobic-­‐Digestion-­‐Adoption.htm   Figure  3  –  Diagram  of  the  AD  process.  Accessed  from:   http://www.sciencedirect.com/science/article/pii/S0961953411000146   Figure4  -­‐  Table  of  incentives  of  the  Feed-­‐In-­‐Tariff  scheme  and  Renewables  Obligation.  – Accessed  from:  The  Anaerobic  Digestion  and  Bioresources  Association.   Figure  5  –  Table  showing  future  changes  to  biomethane  tariffs.  –Access  from:  The  Anaerobic   Digestion  and  Bioresources  Association.   Figure  6  –Table  showing  the  cost  and  profits  of  a  planned  AD  plant.  Accessed  from:   http://www.nuffieldinternational.org/rep_pdf/1226661015Yeatman,_Owen.pdf     Figure  7  -­‐  Map  showing  AD  plant  locations  in  the  UK.  Accessed  from:  http://www.biogas-­‐ info.co.uk/resources/biogas-­‐map/                            
  • 5.   5     Introduction:   During  this  section,  I  shall  be  exploring  and  outlining  the  chemical  and  physical  processes   undergone  in  AD.  In  particular,  I  shall  be  focusing  upon  the  outputs  of  these  processes.  Also   included  will  be  a  simplified  summary  of  the  advantages  and  disadvantages  of  AD.   “Anaerobic  digestion  is  a  process  which  breaks  down  organic  matter  in  simpler  chemicals   components  without  oxygen”  Monnet  (2:2003).  Although  this  process  can  be  very  useful  to  treat   arising  organic  waste  such  as  food  and  drink,  before  being  digested  the  feedstock  has  to   undergo  pre-­‐treatment.  In  the  case  of  food  and  drink,  this  pre-­‐treatment  usually  consists  of   adding  water  to  remove  undesirable  materials  such  as  plastics  and  glass  to  allow  for  better   digestate  quality  and  efficiency,  however  different  practices  are  adopted.     The  process  itself  takes  place  in  a  digester,  such  as  the  one  in  figure  1;  a  digester  may  be   classified  in  relation  to  its  temperature,  the  water  content  of  the  feedstock  (i.e.  food  and  drink),   and  the  number  of  stages  (single  or  multi-­‐stage).  Mesophilic  digesters  process  feedstock  at  35   degrees  Celsius,  while  thermophilic  digesters  run  at  55  degrees  or  above.  Multi-­‐stage  digester   processes  aim  at  optimizing  digestion  and  improving  the  control  of  the  process  by  separating   states  of  digestion.  However,  this  type  of  digester  requires  more  attention  and  surveillance  than   that  of  a  single-­‐stage  digester.     The  by-­‐products  of  anaerobic  digestion,  biogas  and  digestiate,  can  be  used,  not  only  as  energy   and  fertiliser,  but  also  in  order  to  create  a  source  of  incomes  to  support  the  digester.  According   to  Monnet  (2003),  Biogas  can  be  upgraded,  most  of  the  time,  by  removing  the  carbon  dioxide   and  the  water  vapour.  It  can  then  be  used  in  a  CHP*  unit  to  produce  electricity  and  heat.  The   digestate  can  be  used  as  either  a  fertiliser,  or  further  processed  into  compost  to  increase  its   quality.  See  figure  2.   Put  simply,  AD  is  a  naturally  occurring  process  of  decomposition  and  decay,  by  which  organic   matter  is  broken  down  to  its  simpler  chemical  components  under  anaerobic  conditions.   Anaerobic  microorganisms  digest  the  organic  materials,  in  the  absence  of  oxygen,  to  produce   methane  and  carbon  dioxide  as  end-­‐products  under  ideal  conditions.  The  biogas  produced  in  an   AD-­‐plant  usually  contains  small  amounts  of  hydrogen  sulphide  and  ammonia,  as  well  as  traces   of  various  other  gases.  The  science  underlying  AD  can  be  complex  and  the  process  is  best   understood  is  split  into  three  main  stages:  hydrolysis,  acidogenesis  and  methanogenesis.         During  hydrolysis,  the  fermented  bacteria  convert  the  insoluble  complex  organic  matter,  such  as   cellulose,  into  soluble  molecules  such  as  fatty  acids,  amino  acids  and  sugars.  This  process   includes  the  hydrolysing  polymeric  matter  to  monomers  (i.e.  cellulose  to  sugars  or  alcohols),   which  is  of  significant  importance  in  wastes  with  high  organic  content,  such  as  food  and  drink.   In  the  acidogenesis  stage,  acetogenic  bacteria,  also  known  as  acid  formers,  convert  the  products   into  simple  organic  acids,  carbon  dioxide  and  hydrogen.  The  principle  acids  produces  are  acetic   acid,  butyric  acid,  propionic  acid  and  ethanol.     *A  CHP  unit  is  a  gas  driven  combined  heat  and  power  unit  which  generates  heat  and  power   simultaneously.  
  • 6.   6     Finally,  methane  is  produced  during  methanogenesis  by  bacteria  known  as  methane  formers.   Either  by  means  of  generating  carbon  dioxide  or  by  the  reduction  of  carbon  dioxide  with   hydrogen,  as  shown  in  Figure  3.  It  is  important  however  to  note  that  some  organic  materials   remain  effectively  undigested,  such  as  lignin  (a  complex  organic  polymer).   Historically,  AD  has  been  used  in  the  UK  since  the  industrial  revolution  of  the  nineteenth   century.  By  1895,  biogas  was  recovered  from  a  sewage  treatment  facility  and  used  to  fuel  street   lamps  in  Exeter.  Increasing  energy  prices  and  more  stringent  environmental  regulations  are   pushing  European  countries  such  as  the  UK  to  explore  the  AD  market.  There  are  now  currently   more  than  600  farm-­‐scale  digesters  operating  in  Europe.     Associated  with  anaerobic  digestion  are  both  advantages  and  disadvantages,  an  over  view  of   which  is  outlined  below:-­‐   Advantages  of  AD:   -­‐ AD  contributes  to  reducing  greenhouse  gases.  A  well-­‐managed  AD  system  will  aim  to   maximise  methane  production,  but  not  release  any  gases  to  the  atmosphere,  thereby   reducing  overall  emissions.  AD  also  provides  a  source  of  energy  with  no  net  increase  in   atmospheric  carbon  which  contributes  to  climate  change.   -­‐ The  feedstock  for  AD  is  a  renewable  source,  and  therefore  does  not  deplete  finite  fossil   fuels.  Energy  generated  through  this  process  can  help  in  reducing  the  demand  for  fossil   fuels.  The  use  of  the  digestate  also  participates  to  this  reduction  by  decreasing  synthetic   fuels  use  in  fertiliser  manufacturing,  which  is  an  energy  intensive  process.   -­‐ AD  creates  an  integrated  management  system  which  reduces  the  likelihood  of  soil  and   water  pollution  to  happen,  compared  to  disposal  of  untreated  animal  manure/slurries.   The  treatment  can  also  lead  to  a  reduction  of  up  to  80%  of  the  odour  and  it  destroys   virtually  all  weed  seeds,  thus  reducing  the  need  for  herbicide  and  other  weed  control   measures.     -­‐ Finally,  an  advantage  of  using  AD  is  that  one  can  convert  residues  into  potentially   saleable  products:  biogas,  soil  condition,  and  liquid  fertilizer.  It  can  also  contribute  to   the  economic  viability  of  farms  by  keeping  costs  and  benefits  within  the  farm  if  the   products  are  used  on-­‐site.     Disadvantages  of  AD:   -­‐ AD  projects,  as  with  many  developments,  will  create  some  risks  and  have  some  potential   negative  environmental  impacts.  These  need  to  be  removes  wherever  possible  or  a  least   minimised.   -­‐ AD  has  significant  capital  and  operational  costs.  It  is  unlikely  that  AD  will  be  viable  as  an   energy  source  alone  and  therefore  must  be  seen  as  an  integrated  system.  It  is  likely  to  be   cost  effective  for  those  who  can  use  the  other  products  of  AD:  better  waste  management,   fertiliser.     -­‐ All  waste  management  systems  create  traffic  movement.  Therefore  alternative  methods   of  transport  should  be  investigated  as  transport  greatly  influences  costs  and  emissions.   The  location  of  the  plant  should  be  chosen  carefully  so  that  distances  travelled  are   minimised  between  the  production  of  the  feedstock,  the  storage  tanks  and  the  digester.   Nuisance  for  the  local  surroundings  must  also  be  taken  into  account.  
  • 7.   7     -­‐ Health  and  safety.  There  may  be  some  risks  to  human  health  with  the  pathogenic   content  of  the  feedstock,  but  it  can  be  avoided  with  an  appropriate  plant  design  and   feedstock  handling  procedures.  There  may  also  be  some  risks  of  fire  and  explosion,   although  no  greater  than  for  natural  gas  installation.   -­‐ There  may  also  be  visual  impact  on  the  environment,  although  the  digester  can  be   partially  sunk  into  the  ground  to  reduce  visual  impact  and  make  it  easier  to  load  and   unload  material.   The  document  PAS  110:2014,  produced  by  WRAP,  specifies  whole  digestate,  separated  liquor   and  separated  fibre  derived  from  the  anaerobic  digestion  of  source-­‐segregated  biodegradable   materials.  I  mention  this  because  it  outlines  the  legislation  regarding  the  use  of  digestate,  a  by-­‐ product  of  AD,  as  a  fertiliser.  By  returning  organic  matter  to  soils  through  digestate,  one  may   reduce  the  environmental  impact  if  manures  and  biowaste  streams  by  lowering  methane   emissions  and  controlling  odours.  Such  applications  have  the  potential  to  reduce  nitrogen  losses   to  groundwater,  surface  water  and  the  atmosphere.  See  this  document  for  further  clarification.   Another  by-­‐product  of  AD  is  heat.  When  generating  electricity  through  AD,  heat  is  also   produced.  This  tends  to  be  of  a  low  grade  heat,  around  90  degrees  Celsius,  which  is  ideal  for  the   heating  of  houses  and/or  other  buildings.  A  well  placed  AD  plant  can  sell  its  heat  to  many   different  consumers  or  indeed  an  additional  enterprise,  such  as  biomass  drying  or  horticulture   could  be  placed  adjacent  to  a  plant.                                
  • 8.   8     Current  Planning  Policies  Concerning  Anaerobic  Digestion:   The  National  Planning  Policy  Framework  (NPPF),  published  March  2012,  slimmed  national   planning  guidance  into  a  document  of  fewer  than  60  pages,  with  its  centrepiece  being  a   ‘presumption  in  favour  of  sustainable  development’.  As  a  result,  the  NPPF  does  not  contain  a   specific  waste  policies,  since  national  waste  planning  policy  will  be  outlined  as  part  of  the   National  Waste  Management  Plan  for  England,  expected  to  be  published  soon  by  the   Department  for  Communities  and  Local  Government  (DCLG).   Sustainability  is  defined  by  the  Anaerobic  Digestion  and  Bioresources  Association  (ADAB)  as   “having  an  economic,  social  and  environmental  dimension”  (2015).  In  practice  this  means  that:-­‐   For  plan-­‐making:   -­‐ Local  planning  authorities  should  positively  seek  opportunities  to  meet  the   development  needs  of  their  area;   -­‐ Local  plans  should  meet  objectively  assessed  needs,  with  sufficient  flexibility  to  adapt  to   rapid  change,  unless:  any  adverse  impacts  of  doing  so  would  significantly  and   demonstrably  outweigh  the  benefits,  when  assessed  against  the  policies  in  this   Framework  taken  as  a  whole;  or  specific  policies  in  this  Framework  indicate   development  should  be  restricted.   For  decision-­‐taking  it  means:   -­‐ Approving  development  proposals  that  accord  with  the  development  plan  without   delay;  and     -­‐ Where  the  development  plan  is  absent,  silent  or  relevant  policies  are  out-­‐of-­‐date,   granting  permission  unless:  any  adverse  impacts  of  doing  so  would  significantly  and   demonstrably  outweigh  the  benefits,  when  assessed  against  the  policies  in  this   Framework  taken  as  a  whole;  or  specific  policies  in  this  Framework  indicate   development  should  be  restricted.   AD  projects  in  general  appear  to  comply  perfectly  within  the  definition  of  ‘sustainable   development’  offered  in  the  NPPF.  It  is  however  too  early  to  yet  analyse  if  the  new  regulation  is   having  this  effect,  but  given  the  role  that  AD  can  play  in  supporting  sustainable  agriculture,   transport  and  economic  growth,  AD’s  role  in  contributing  to  sustainable  development  is  clear.   Permitted  development  rights  allow  development  to  take  place  without  the  need  for  planning   permission.  The  Government  introduced  two  new  regulations  under  the  Town  and  Country   Planning  Act  in  April  2012,  offering  permitted  development  rights  for  flues  on  non-­‐domestic   premises  and  from  structure  to  house  AD  systems  installed  on  agricultural  and  forestry  units.   Localism:   -­‐ The  Localism  Act  passed  in  November  2011  also  ingrained  ‘sustainable  development’   into  the  planning  system.  Localism  aims  to  give  local  communities  greater  involvement   in  decisions  in  their  area.  Assuming  AD  operators  engage  with  local  communities  at  an   early  state  and  effectively  communicate  the  benefits  of  their  project;  this  may  ease  the   passage  of  projects  through  the  planning  process.    
  • 9.   9     Currently,  planning  permission  is  required  for  all  anaerobic  digesters.  Most  planning   applications  for  anaerobic  digesters  are  processed  within  the  Local  Area  Offices.  Planning   applications  for  anaerobic  digesters  should  be  submitted  on  a  P1  form  along  with  the   appropriate  maps,  drawings  and  fees.     Specifically,  the  following  information  should  be  submitted:   -­‐ A  site  plan  and  elevation  drawings  to  determine  visual  impact.   -­‐ Photomontages  of  the  digester,  plant,  building(s)  and  chimney  stack  with  a  clear   indication  of  building  material  and  finishes.     -­‐ Information  on  grid  connection  works,  including  transformer  and  transmission  lines.   -­‐ Details  of  potential  noise  or  emissions  to  air  and  an  assessment  of  their  impact.  •  Details   of  vehicular  access  and  vehicular  movement.     -­‐ Landscaping  provisions.   -­‐ Site  management  measures  during  construction  phase.     -­‐ Model  of  emissions  dispersion.     -­‐ Community  consultation  plans.     From  11  April  2011,  the  fee  for  an  application  for  an  anaerobic  digester  in  tanks  on  an  open  site   is  £1,775  for  each  0.5  hectare  of  the  site  area  subject  to  a  maximum  of  £38,400.  The  fee  for   anaerobic  digestion  in  tanks  within  a  building(s)  falls  within  Category  4  of  the  Fee  Regulations   which  is:     (a)  Where  no  floor  space  is  to  be  created  by  the  development,  £170;     (b)  Where  the  area  of  gross  floor  space  to  be  created  by  the  development  does  not  exceed   40sq.m.,  £170;    (c)  Where  the  area  of  the  gross  floor  space  to  be  created  by  the  development  exceeds  40sq.m.,   but  does  not  exceed  75sq.m.,  £335;     (d)  Where  the  area  of  the  gross  floor  space  to  be  created  by  the  development  exceeds  75sq.m.,   but  does  not  exceed  3750sq.m.,  £335  for  each  75sq.m.,  of  that  area;   (e)  Where  the  area  of  gross  floor  space  to  be  created  by  the  development  exceeds  3750sq.m.,   £16,750;  and  an  additional  £100  for  each  75sq.m.  in  excess  of  3750sq.m.,  subject  to  a  maximum   in  total  of  £250,000.   In  considering  an  application  for  an  anaerobic  digester,  the  Department  is  required  to  have   regard  to  the  development  plan,  so  far  as  it  is  material  to  the  application,  and  to  any  other   material  considerations.  Material  considerations  include  any  responses  from  the  public  and   consultees  as  well  as  amongst  other  things  relevant  policy.  In  terms  of  anaerobic  digesters  the   relevant  policy  includes:     -­‐ Planning  Policy  Statement  18  –  Renewable  Energy  including  the  ‘Best  Practice  Guide  to   PPS18’  which  specifically  deals  with  anaerobic  digesters  in  Section  3;     -­‐ Planning  Policy  Statement  11  –  Planning  and  Waste  Management:  WM  1  and  WM  2;  and    
  • 10.   10     -­‐ Planning  Policy  Statement  21  –  Sustainable  Development  in  the  Countryside:  CTY  13  and   CTY  14.   Each  planning  application  for  an  anaerobic  digester  is  assessed  on  its  own  merits  against  the   prevailing  planning  policy  and  taking  into  account  all  material  considerations.  It  is  the   responsibility  of  the  applicant/agent  to  submit  the  necessary  information  to  demonstrate  that   the  proposal  complies  with  the  prevailing  policy  and  to  enable  the  Department  to  determine  the   application.  There  may  be  site  specific  issues  that  the  applicant/agent  may  wish  to  address   when  submitting  any  planning  application  for  an  anaerobic  digester,  such  as  odour  issues  if   there  are  sensitive  receptors  in  the  locality.  Additional  site  specific  issues  may  include:     -­‐ Noise     -­‐ Air  pollution     -­‐ Visual  impact  of  the  anaerobic  digester  and  associated  infrastructure     -­‐ Impact  of  any  increase  in  vehicles  to  site  and  along  local  road  network.     Developments  that  use  waste  to  provide  energy  may  require  an  Environmental  Impact   Assessment.  Such  projects  could  fall  within  projects  listed  in  Schedule  2(3)  and/or  2(11)  of   the  Planning  (Environment  Impact  Assessment)  Regulations  (Northern  Ireland)  2012.   In  support  of  the  ongoing  development  of  the  renewable  energy  sector  in  Northern  Ireland   the  Minister  has  proposed  a  public  consultation  exercise  to  consider  the  introduction  of   permitted  development  rights  for  renewable  energy  development  including  anaerobic   digesters.  The  public  consultation  exercise  is  likely  to  take  place  later  this  year.                          
  • 11.   11     A  broad  analysis  of  the  application  of  AD  in  the  UK:   The  growth  of  the  AD  sector  is  highlighted  by  the  available  Ofgen  data,  which  shows  a  total  of   161  AD  facilities  (excluding  the  regulated  water  industry)  on  the  various  registers  as  of   November  2014,  with  an  increase  in  installed  MW  capacity  from  106.2  MW  to  142.7  MW  -­‐  an   increase  of  34  per  cent  from  the  2013  report.  As  of  January  2015,  an  estimated  30  MWe  of   additional  capacity  has  been  identifies  as  under  construction.  Using  previous  DECC  assumptions   of  a  median  cost  of  £4.4m  per  1  MW  of  installed  capacity;  the  increase  in  operational  AD   capacity  (and  in  AD  plants  in  construction)  is  the  equivalent  to  an  investment  of  circa  £160m   since  summer  2013.     However,  the  AD  sector  remains  highly  fragmented  and  currently  no  operator  has  more  than   five  operational  facilities.  There  is  therefore  scope  for  consolidation  in  the  market.  But  one  of   the  challenged  the  sector  faces  is  that  many  facilities  have  been  designed  to  suit  project  specific   requirements:   -­‐ Feedstock  is  ideally  stored  from  local  markets  –  and  whilst  there  may  be  a  benefit  to   providing  a  regional  or  national  coverage,  this  offering  is  likely  to  appeal  to  only  a  very   small  number  of  potential  customers.  Most  of  those  of  any  scale  have  already  put   regional  solutions  in  place.   -­‐ Digestate  management  requires  a  local  solution  due  to  transport  costs.   -­‐ Technology  –  the  wide  range  of  technical  solutions  is  considered  to  be  a  particular   barrier.  This  is  where  the  AD  industry  differs  from  other  technologies  such  as  landfill   gas  where  engines  can  be  readily  interchanged  between  sites.     One  of  the  key  factors  influencing  the  development  of  the  AD  market  is  the  availability  of  source   segregated  food  waste.  To  ensure  the  sustainable  development  of  AD  capacity,  there  is  a  need  to   balance  the  rate  at  which  food  waste  is  collected  separately  from  the  residential  waste  stream.   Thereby  supporting  new  plants  and  the  ongoing  pressure  to  reduce  food  waste  arising  at   source.   However,  competitive  pressure  means  that  very  little  food  waste  is  landfilled.  Much  of  the  food   waste  arising  in  the  sector  is  currently  spread  on  land,  converted  to  animal  feed,  or  sent  to   sewer.  The  key  to  the  ongoing  success  of  the  AD  sector  is  that  it  is  able  to  successfully  market   the  superior  environmental  performance  of  AD  projects  against  alternatives  to  encourage  waste   producers  to  direct  their  food  waste  to  AD.     Using  various  sources  and  focusing  only  on  source  segregated  food  waste  AD  facilities,  as  at  the   end  of  2014,  the  headline  capacity  of  operational  source  segregated  food  waste  AD  facilities  in   the  UK  was  estimated  to  be  2.6  Mtpa,  with  an  increase  in  capacity  of  around  1.2  Mpta  over  the   past  2  years.  The  figure  is  an  estimate  as  a  number  of  facilities  di  not  solely  process  food  waste,   and  capacities  of  individual  facilities  vary  with  feedstock  and  residence  time.  It  is  also  estimated   that  there  is  a  further  0.5  Mtpa  of  AD  capacity  currently  wither  in  construction  or  for  which   funding  is  in  understood  to  be  in  place.  (Information  correct  of  April  2015).      
  • 12.   12     In  October  2014,  the  NNFCC  indicated  that  food  waste  AD  projects  ‘under  development’  had  a   total  capacity  of  5.7  Mtpa.  Taken  together  with  continuing  digression  in  tariffs,  the  limited   availability  of  feedstock  will  affect  the  commercial  feasibility  of  projects  and  can  be  expected  to   restrict  the  number  of  projects  proceeding  to  construction   From  analysis  of  the  data  and  discussions  with  industry,  GIB  has  identified  the  following  macro   factors  to  compete  in  the  market  and  deliver  an  upper  quartile  operational  and  financial   performance:     -­‐ Operational  reliability  –  the  consistent  ability  to  source  feedstock  competitively,   achieve  high  plant  availability,  maintain  a  culture  of  continuous  maintenance  and   improvement,  retain  adequate  storage  capacity,  and  have  appropriate  contingency   arrangements.     -­‐ Competitive  cost  base  –  both  in  terms  of  capital  cost  and  operating  costs,  the  key   drivers  include  plant  efficiency,  appropriate  digestate  disposal  arrangements,  strong   relationships  with  technology  and  EPC  providers,  and  competitive  energy  sales   arrangements.     -­‐ Understanding  feedstocks  –  to  competitively  secure  an  optimal  biology  including   biogas  yields,  retention  times,  reject  rates,  sustainability  etc.                                  
  • 13.   13     Financial  Aspect:   There  are  three  main  financial  aspects  associated  with  the  building  and  running  of  an  AD  plant.   These  include:  -­‐     -­‐ Capital  Costs   -­‐ Operating  Costs   -­‐ Sources  of  Income   However,  it  is  difficult  to  provide  accurate  or  even  approximate  capital  costs  without  the   specifications  of  an  AD  plant  due  to  dependant  factors  such  as  plant  size,  engineering  location   and  waste  composition.   Operating  costs  will  include  staffing  costs,  insurance,  transportation  of  feedstock  and  materials,   annual  licences,  pollution  abatement  and  control,  and  other  maintenance.   Sources  of  income  are  likely  to  include  revenue  from  the  sale  of  electricity,  heat  sale,  digestate   (liquor  and  fibre)  and  gate  fees.  Gate  fees  refer  to  charges  made  for  processing  waste.  It  is  likely   that  gate  fees  would  have  to  be  competitive  with  alternate  waste  management  solutions   available  locally  to  the  AD  plant.  However,  it  is  essential  that  operators  of  AD  plants  ensure  that   they  have  sufficient  feedstock  material  to  operate  their  plant  at  optimum  capacity  in  order  to   maximise  the  potential  sources  of  revenue.  Long-­‐term  contacts  are  common  practice  as  a  result.   The  Government  incentive  schemes  are  designed  to  support  the  development  of  renewable   energy  generation  in  the  UK,  allowing  producers  to  compete  with  fossil  fuel  generated   technologies  which  may  be  cheaper  in  the  short  term.  Renewable  energy  is  essential  is  Britain  is   to  meet  its  binding  climate  change  targets  –  to  deliver  15%  of  all  energy  from  renewable   sources  by  2020  and  to  reduce  greenhouse  gas  emissions  by  80%  by  2050  (relative  to  1990   levels).  A  report  published  by  Oxford  Economics  in  2011  has  shown  that  the  negative  impact   that  spikes  in  global  oil,  gas  and  coal  prices  have  on  the  UK  could  be  reduced  by  over  50%  in   2050  by  increasing  the  deployment  of  renewable  energy.   Biogas  is  innately  flexible-­‐  it  can  be  used  to  generate  heat  or  power,  or  be  upgraded  to   biomethane  where  it  can  be  stores  in  the  national  grid  or  used  as  transport  fuel.  AD  can  be   supported  by  a  number  of  incentive  schemes  depending  on  how  the  biogas  is  used  –  the  RO*  or   FIT  for  electricity  generation,  RHI  for  supplying  heat  or  injecting  biomethane  to  the  gas  grid,  or   the  RTFO  for  transport  fuel.  See  Fig  4  for  table  of  financial  incentives  of  the  RO  and  FIT..       *RO  refers  to  the  Renewables  Obligation.  FITs  is  the  Feed-­‐In  Tariff  scheme.  RHI  means   Renewable  Heat  Incentive,  while  RTFO  refers  to    the  Renewable  Transport  Fuels  Obligation.        
  • 14.   14     Heat  from  biogas  combustion  (RHI):   The  Renewable  Heat  Incentive  (RHI)  supports  heat  produced  from  biogas  combustion  (up  to   200  kWth  limit)  at  7.5/kWh  for  20  years.   Biomethane  grid  injection  (RHI):   Injecting  biomethane  into  the  grid  is  also  supported  for  20  years,  at  all  levels,  under  the  RHI.   This  incentive  was  introduced  in  January  2012,  and  supports  biomethane  injection  at  7.5p/kWh.     Biomethane  as  a  transport  fuel:   The  use  of  biomethane  as  a  transport  fuel  is  supported  under  the  Renewable  Transport  Fuels   Obligation  as  the  level  of  two  Renewable  Transport  Fuels  Certifications  (RTFCs)  per  kilo  of   biomethane  if  the  feedstock  is  from  waste  sources  and  one  RTFC  otherwise.  The  price  of  a  RTFC   is  approximately  20p/kg.  The  EU  is  considering  increasing  the  number  of  RTFCs/kilo  of   biomethane  to  four  if  the  feedstock  is  from  waste  sources.  See  figure  5  for  future  changes  to   incentives.     Gate  fees:   Gate  fees  can  form  a  large  element  of  an  income  stream  for  an  AD  plant.  With  the  increase  in   landfill  tax  now  on  an  escalator  basis,  further  controls  on  routes  of  disposal  being  closed  off  for   organic  waste  streams.  The  potential  to  earn  gate  fees  from  waste  streams  is  an  important   potential  area  of  income  to  a  plant  developer.  The  category  of  waste  the  feedstock  is  categorised   as  dictates  the  likely  size  of  the  gate  fee  and  also  the  regulatory  burden  that  needs  to  be   complied  with,  which  can  also  have  substantial  cost  implications.       As  each  AD  plant  is  a  very  specific  site,  economics  is  therefore  hard  to  generalise  and   approximate.  However,  Figure  6  refers  to  a  planned  plant  in  the  UK.  It  is  for  a  340  kWh  unit  with   manure  from  400  dairy  cows  and  97  ha  of  energy  crops.  The  figures  are  from  example  purposes   only;  however  they  do  give  an  indication  as  to  the  potential  returns  available  from  an   investment  in  an  AD  plant.  See  figure  7  for  a  map  showing  AD  plant  locations  in  the  UK.                
  • 15.   15     Evaluation  regarding  the  success  of  AD  practices:   Taking  into  account  current  and  past  literature  on  AD,  below  in  a  condensed  note  on  the  key   features  that  have  contributed  to  the  success  of  AD  plant  implementation:-­‐   -­‐ Minimise  rain  ingress  to  the  slurry.  Heating  a  substrate  which  has  no  biogas  potential   is  a  waste  of  energy  and  a  waste  of  digester  space  and  can  significantly  affect  the   economics  of  digestion  in  terms  of  gas  output  per  meter  squared  of  substrate  loaded;   -­‐ Maintain  the  biogas  potential  of  the  feedstock.  Studies  have  shown  that  this  potential   can  be  lost  in  two  ways:  by  oxidation  and  by  methane  emission.  Where  the  surface  area   of  the  tank  is  large,  such  as  those  under  slats,  there  are  significant  aerobic  carbon   dioxide  emissions,  as  well  as  CH4  emissions  from  lower  down  the  substrate  which  is   anaerobic,  with  both  processes  causing  loss  of  methane  potential.     -­‐ Incorporate  redundancy.  All  of  the  systems  which  used  gas  locally  in  boilers,  Rayburns   or  Aga  also  had  at  least  one  other  form  of  heating:  wood  burners  with  back  boilers,   immersion  heaters,  solar  thermal,  oil  boilers.  Maintaining  digester  temperature  is  most   crucial  to  the  AD  process,  therefore  a  secondary  method  of  heating  is  essential.     -­‐ Monitoring  and  keeping  appropriate  records.  Monitoring  can  aid  complexity,  cost   and  potential  for  breakdown  and  should  not  be  done  needlessly.  There  is  no  ‘one-­‐size-­‐ fits-­‐all’  when  it  comes  to  record-­‐keeping.     -­‐ Training,  Certification  and  Maintenance.     -­‐ Technology.  The  number  of  digester  technologies  can  be  bewildering;  however  it  is   essential  that  engineering  technology  must  be  appropriate  to  the  situation.                                
  • 16.   16     Conclusion:   In  his  foreword  to  the  Renewable  Heat  Incentive,  DECC  Minister  of  State  Greg  Barker  notes  that   ‘we  must  take  action  now  to  protect  our  environment’  and  ‘we  have  signed  up  to  carbon   reduction  targets  and  have  committed  to  reducing  our  emissions  by  at  least  80  per  cent  by   2050’.  Although  it  is  unrealistic  to  comment  that  AD  could  prove  to  be  the  solution,  it  does   provide  a  feasible  option  to  help  meet  these  targets.     To  conclude,  AD  should  be  considered  by  the  UK  Government  and  relevant  organisations  (such   as  retailers)  wishing  to  reduce  the  carbon  foot  print  of  their  supply  chain  or  as  an  investment   opportunity.  However,  this  is  admittedly  highly  dependent  upon  the  availability  of  credit;  banks   and  institutions  would  be  required  to  ‘partner’  with  plant  suppliers  in  order  to  offer  assistance   with  funding.  This  relationship  would  also  be  essential  to  promote  greater  undertint  of  the   technology  and  its  potential  impact  on  the  economy,  such  as  that  experience  by  food  wastage   reported  by  WRAP.     My  findings  have  also  lead  me  to  the  conclusion  that  it  is  necessary  to  inform  and  educate   farmers,  bankers  and  regulators  about  the  potential  for  small  scale  AD  plants.  This  may  be   facilitated  by  working  with  organisations  such  as  WRAP  and  NNFCC.  Successful  competition   enabled  by  Government  grants,  and  better  information  availability  on  the  benefits  of  AD  will   surely  increase  its  adoption  in  the  UK.   From  a  purely  planning  perspective,  the  ideal  proposed  site  for  an  AD  plant  is  that  it  should  be   1km  away  from  any  houses,  close  to  a  duel  carriage  way,  situated  on  arable  land  and  screened   by  trees.  In  reality  however,  land  with  this  criteria  is  rarely  found  and  the  nest  strategy  is  often   to  work  with  what  you  have  and  submit  a  solid  planning  application  following  advice.     As  the  UK  population  continues  to  rise,  economic  growth  can  only  be  sustainable  if  we  better   manage  our  resources,  cut  carbon  emissions  and  invest  in  our  ageing  infrastructure.  By  offering   closed-­‐loop  recycling  (AD)  for  the  essential  nutrients  in  our  food  waste,  baseload  renewable   energy,  and  ultra-­‐low  carbon  transport  fuel  that  dramatically  improves  air  quality  –  AD  can  play   a  pivotal  role  in  supporting  greener,  smarter  cities.  As  it  evolves,  our  industry  also  has  the   potential  to  deliver  new  high-­‐value  products  such  as  biochemicals  and  bioplastics.                    
  • 17.   17     Figures:   Figure  1:       Figure  2:        
  • 18.   18     Figure  3  :     Figure  4:       Incentive           FIT               RO       Eligibility       Electricity  generating  plants  under         Electricity  generating  plants         5MW  (FIT  not  available  if  plant  has   of  all  sizes.           received  any  other  state  aid).             Tariff  Rate       ≤250kW = 12.46p/kWh             2  ROCs/MWh  ≈   9p/kWh                 >250-­‐500  kW  =   11.52p/kWh                             >500-­‐5000  kW  =   9.949p/kWh                Tariff  Length       20  years               20  years                              
  • 19.   19     Figure  5:   Incentive       Change  announced/expected           FIT       Review  of  the  scheme  in  2015,  where  operation  of   the  digression  mechanism  may  be  considered.   RHI       Current  200kWh  limit  for  biogas  combustion           to  be  extended,  with  new  support  levels  in  place.   RHI       Biomethane  injection  tariff  under  review,  to  tackle           "risk  of  overcompensation"  for  larger  projects.   RHI       For  plants  above  1MW  treating  non-­‐waste  feed-­‐           stocks,  GHG  emissions  sustainability  criteria             mandatory  for  reporting  purposes  from  Autumn             2014.  Land  use  criteria  due  to  be  implemented             from  April  2015.               RHI       Tariff  guarantee  for  larger  projects  (over  1MW)             proposed  to  be  introduced  from  Spring  2015.   RO       Final  strike  prices  confirmed  ahead  of  RO  being             replaced  by  FIT  with  Contracts  for  Difference  for           new  generation  in  2017.             Figure  6  –   Income  2,829,480  @  9p   £254,653   Costs:               Feedstock           £38,520   Other  -­‐  Labour  etc.     £73,140   Total  Costs         £111,662   Operating  Margin     £142,991   Capital  Cost       £741,562   Operating  Margin       £142,990   Finance  Costs       £75,390   Margin           £67,600   Project  Return       19.28%             Figure  7:  
  • 20.   20                                  
  • 21.   21     References:   Anaerobic  Digestion  and  Bioresources  Association  (2015)  Planning.    Accessed  from:     http://adbioresources.org/about-­‐ad/government-­‐policy/planning/   Connor,  P  (2003)  UK  renewable  energy  policy:  a  review.  Accessed  from:   http://www.sciencedirect.com/science/article/pii/S1364032102000540   Department  for  Communities  and  Local  Government  (2012)  The  National  Planning  Policy   Framework.  Accessed  from:   https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/607 7/2116950.pdf   Department  of  Energy  and  Climate  Change  (2011)  Anaerobic  Digestion  Strategy  and  Action  Plan:   A  commitment  to  increase  energy  from  waste  from  Anaerobic  Digestion.  Accessed   from:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file /69400/anaerobic-­‐digestion-­‐strat-­‐action-­‐plan.pdf   Green  Investment  Bank  (2015)  The  UK  anaerobic  digestion  market.  Accessed  from:   http://www.greeninvestmentbank.com/media/44758/gib-­‐anaerobic-­‐digestion-­‐report-­‐ march-­‐2015-­‐final.pdf   Monnet,  F  (2003)  An  Introduction  to  Anaerobic  Digestion  of  Organic  Wastes:  Final  Report.   Accessed  from:   http://www.biogasmax.co.uk/media/introanaerobicdigestion__073323000_1011_2404 2007.pdf   Oxford  Economics  (2011)  Fossil  fuel  price  shocks  and  a  low  carbon  economy.  Accessed  from:   https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/688 31/5276-­‐fossil-­‐fuel-­‐price-­‐shocks-­‐and-­‐a-­‐low-­‐carbon-­‐economy-­‐.pdf   Royal  Agricultural  Society  of  England  (2011)  A  Review  of  Anaerobic  Digestion  Plants  on  UK   Farms.  Accessed  from:  http://www.fre-­‐energy.co.uk/pdf/RASE-­‐On-­‐Farm-­‐AD-­‐ Review.pdf   WRAP  (2013)  Household  Food  and  Drink  Waste  in  the  United  Kingdom  2012.  Accessed  from:   http://www.wrap.org.uk/sites/files/wrap/hhfdw-­‐2012-­‐main.pdf.pdf   WRAP  (2014)  Specification  for  whole  digestate,  separated  liquor  and  separated  fibre  derived  from   the  anaerobic  digestion  of  source-­‐segregated  biodegradable  materials.  Accessed  from:   http://www.wrap.org.uk/system/files/private/PAS110_2014_final.pdf   Yeatman,  C.  (2006)  The  Profitable  use  of  Anaerobic  Digestion  (AD)  on  UK  Farms.  Accessed  from:   http://www.nuffieldinternational.org/rep_pdf/1226661015Yeatman,_Owen.pdf