äÉ«°VÉjôdG
äÉÑjQóàdG h ᣰûfC’G ÜÉàc
∫hC’G ≈°SGQódG π°üØdG

iƒfÉãdG ∫hC’G ∞°üdG

OGóYEGh ¿óªdG §«£îJh iQÉÑμdGh ¥ô£dG AɰûfEG É¡æe IOó©àe ä’Éée ≈a á«∏ªY äÉ≤«Ñ£J äÉ«°VÉjô∏d
∫ƒ£dG ø«H Ö°SÉæJ ≥ah É¡d á©WÉ≤dG äɪ«≤à°ùªdG h äɪ«≤à°ùªdG iRGƒJ ≈∏Y óªà©J ≈àdG É¡£FGôN
.º°SôdG ≈a ∫ƒ£dGh ≈≤«≤ëdG
¢ùjƒ°ùdG IÉæb ≈àØ°V ø«H §Hôj iòdG ΩÓ°ùdG iôHƒμd IQƒ°üdGh
‫‪OGóYEG‬‬
‫‪ˆG ÜÉL OGDƒa ôªY /CG‬‬
‫‪™Ñ°†dG ≥«aƒJ π«Ñf /O.CG ídɰU ìƒàØdG ƒHCG ±ÉØY /O.CG‬‬
‫‪Qóæμ°SEG ¢SÉ«dEG º«aGÒ°S /CG‬‬
‫‪π«FÉahQ ≈ذUh ΩɰüY /O.Ω.CG‬‬
‫‪á°ûÑc ¢ùfƒj ∫ɪc /CG‬‬
‫ﺟﻤﻴﻊ ﺍﻟﺤﻘﻮﻕ ﻣﺤﻔﻮﻇﺔ ﻻ ﻳﺠﻮﺯ ﻧﺸﺮ ﺃ￯ ﺟﺰﺀ ﻣﻦ ﻫﺬﺍ ﺍﻟﻜﺘﺎﺏ ﺃﻭ ﺗﺼﻮﻳﺮﻩ ﺃﻭ ﺗﺨﺰﻳﻨﻪ ﺃﻭ ﺗﺴﺠﻴﻠﻪ‬
‫ﺑﺄ￯ ﻭﺳﻴﻠﺔ ﺩﻭﻥ ﻣﻮﺍﻓﻘﺔ ﺧﻄﻴﺔ ﻣﻦ ﺍﻟﻨﺎﺷﺮ.‬

‫ﺷﺮﻛﺔ ﺳﻘﺎرة ﻟﻠﻨﺸﺮ‬
‫‪Ω .Ω .¢T‬‬

‫ﺍﻟﻄﺒﻌــﺔ ﺍﻷﻭﻟﻰ ٣١٠٢/٤١٠٢‬
‫ﺭﻗﻢ ﺍﻹﻳــﺪﺍﻉ ٨٤٩٧ / ٣١٠٢‬
‫ﺍﻟﺮﻗﻢ ﺍﻟﺪﻭﻟﻰ 4 - 000 - 607 - 779 - 879‬
‫ﺑﻴﺎﻧﺎت اﻟﻄﺎﻟﺐ‬
‫ﺍﻻﺳـــﻢ:‬

‫.........................................................................................................................................................................‬

‫ﺍﻟﻤﺪﺭﺳﺔ:‬

‫ﺍﻟﻔﺼﻞ:‬

‫......................................................................................................................................................................‬

‫............................................................................................................................................................................‬
‫ﺍﻟﻤﻘﺪﻣﺔ‬
‫بسم الل ّٰه الرحمن الرحيم‬
‫ﻳﺴﻌﺪﻧﺎ وﻧﺤﻦ ﻧﻘﺪم ﻫﺬا اﻟﻜﺘﺎب أن ﻧﻮﺿﺢ اﻟﻔﻠﺴﻔﺔ اﻟﺘﻰ ﺗﻢ ﻓﻰ ﺿﻮﺋﻬﺎ ﺑﻨﺎء اﻟﻤﺎدة اﻟﺘﻌﻠﻴﻤﻴﺔ وﻧﻮﺟﺰﻫﺎ ﻓﻴﻤﺎﻳﻠﻰ:‬

‫1‬

‫اﻟﺘﺄﻛﻴﺪ ﻋﲆ أن اﻟﻐﺎﻳﺔ اﻷﺳﺎﺳﻴﺔ ﻣﻦ ﻫﺬه اﻟﻜﺘﺐ ﻫﻰ ﻣﺴﺎﻋﺪة املﺘﻌﻠﻢ ﻋﲆ ﺣﻞ املﺸﻜﻼت واﺗﺨﺎذ اﻟﻘﺮارات ﰱ ﺣﻴﺎﺗﻪ‬
‫اﻟﻴﻮﻣﻴﺔ، واﻟﺘﻰ ﺗﺴﺎﻋﺪه ﻋﲆ املﺸﺎرﻛﻪ ﰱ املﺠﺘﻤﻊ.‬

‫2‬

‫اﻟﺘﺄﻛﻴﺪ ﻋﲆ ﻣﺒﺪأ اﺳﺘﻤﺮارﻳﺔ اﻟﺘﻌﻠﻢ ﻣﺪى اﻟﺤﻴﺎة ﻣﻦ ﺧﻼل اﻟﻌﻤﻞ ﻋﲆ إﻛﺴﺎب اﻟﻄﻼب ﻣﻨﻬﺠﻴﺔ اﻟﺘﻔﻜري اﻟﻌﻠﻤﻰ، وأن‬
‫ﻳﻤﺎرﺳﻮا اﻟﺘﻌﻠﻢ املﻤﺘﺰج ﺑﺎملﺘﻌﺔ واﻟﺘﺸﻮﻳﻖ، وذﻟﻚ ﺑﺎﻻﻋﺘﻤﺎد ﻋﲆ ﺗﻨﻤﻴﺔ ﻣﻬﺎرات ﺣﻞ املﺸﻜﻼت وﺗﻨﻤﻴﺔ ﻣﻬﺎرات اﻻﺳﺘﻨﺘﺎج‬
‫واﻟﺘﻌﻠﻴﻞ، واﺳﺘﺨﺪام أﺳﺎﻟﻴﺐ اﻟﺘﻌﻠﻢ اﻟﺬاﺗﻰ واﻟﺘﻌﻠﻢ اﻟﻨﺸﻂ واﻟﺘﻌﻠﻢ اﻟﺘﻌﺎوﻧﻰ ﺑﺮوح اﻟﻔﺮﻳﻖ، واملﻨﺎﻗﺸﺔ واﻟﺤﻮار، وﺗﻘﺒﻞ‬
‫آراء اﻵﺧﺮﻳﻦ، واملﻮﺿﻮﻋﻴﺔ ﰱ إﺻﺪار اﻷﺣﻜﺎم، ﺑﺎﻹﺿﺎﻓﺔ إﱃ اﻟﺘﻌﺮﻳﻒ ﺑﺒﻌﺾ اﻷﻧﺸﻄﺔ واﻹﻧﺠﺎزات اﻟﻮﻃﻨﻴﺔ.‬

‫3‬

‫ﺗﻘﺪﻳﻢ رؤى ﺷﺎﻣﻠﺔ ﻣﺘﻤﺎﺳﻜﺔ ﻟﻠﻌﻼﻗﺔ ﺑني اﻟﻌﻠﻢ واﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ واملﺠﺘﻤﻊ)‪ (STS‬ﺗﻌﻜﺲ دور اﻟﺘﻘﺪﱡم اﻟﻌﻠﻤﻰ ﰱ ﺗﻨﻤﻴﺔ‬
‫املﺠﺘﻤﻊ املﺤﲆ، ﺑﺎﻹﺿﺎﻓﺔ إﱃ اﻟﱰﻛﻴﺰ ﻋﲆ ﻣﻤﺎرﺳﺔ اﻟﻄﻼب اﻟﺘﴫﱡف اﻟﻮاﻋﻰ اﻟﻔﻌّﺎل ﺣِ ﻴﺎل اﺳﺘﺨﺪام اﻷدوات اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺔ.‬

‫4‬
‫5‬
‫6‬

‫ﺗﻨﻤﻴﺔ اﺗﺠﺎﻫﺎت إﻳﺠﺎﺑﻴﺔ ﺗﺠﺎه اﻟﺮﻳﺎﺿﻴﺎت ودراﺳﺘﻬﺎ وﺗﻘﺪﻳﺮ ﻋﻠﻤﺎﺋﻬﺎ.‬
‫ﺗﺰوﻳﺪ اﻟﻄﻼب ﺑﺜﻘﺎﻓﺔ ﺷﺎﻣﻠﺔ ﻟﺤﺴﻦ اﺳﺘﺨﺪام املﻮارد اﻟﺒﻴﺌﻴﺔ املﺘﺎﺣﺔ.‬
‫اﻻﻋﺘﻤﺎد ﻋﲆ أﺳﺎﺳﻴﺎت املﻌﺮﻓﺔ وﺗﻨﻤﻴﺔ ﻃﺮاﺋﻖ اﻟﺘﻔﻜري، وﺗﻨﻤﻴﺔ املﻬﺎرات اﻟﻌﻠﻤﻴﺔ، واﻟﺒﻌﺪ ﻋﻦ اﻟﺘﻔﺎﺻﻴﻞ واﻟﺤﺸﻮ،‬
‫واﻹﺑﺘﻌﺎد ﻋﻦ اﻟﺘﻌﻠﻴﻢ اﻟﺘﻠﻘﻴﻨﻰ؛ ﻟﻬﺬا ﻓﺎﻻﻫﺘﻤﺎم ﻳﻮﺟﻪ إﱃ إﺑﺮاز املﻔﺎﻫﻴﻢ واملﺒﺎدئ اﻟﻌﺎﻣﺔ وأﺳﺎﻟﻴﺐ اﻟﺒﺤﺚ وﺣﻞ املﺸﻜﻼت‬
‫وﻃﺮاﺋﻖ اﻟﺘﻔﻜري اﻷﺳﺎﺳﻴﺔ اﻟﺘﻰ ﺗﻤﻴﺰ ﻣﺎدة اﻟﺮﻳﺎﺿﻴﺎت ﻋﻦ ﻏريﻫﺎ.‬

‫‪:≈∏j Ée ÜÉàμdG Gòg ≈a ≈YhQ ≥ѰS Ée Aƒ°V ≈ah‬‬
‫ﺗﻘﺪﻳﻢ ﺗﻤﺎرﻳﻦ ﺗﺒﺪأ ﻣﻦ اﻟﺴﻬﻞ إﱃ اﻟﺼﻌﺐ، وﺗﺸﻤﻞ ﻣﺴﺘﻮﻳﺎت ﺗﻔﻜري ﻣﺘﻨﻮﻋﺔ.‬
‫ﺗﻨﺘﻬﻰ ﻛﻞ وﺣﺪة ﺑﺘﻤﺎرﻳﻦ ﻋﺎﻣﺔ ﻋﲆ اﻟﻮﺣﺪة واﺧﺘﺒﺎر ﻟﻠﻮﺣﺪة واﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ ﻳﺸﻤﻞ اﻟﻌﺪﻳﺪ ﻣﻦ اﻷﺳﺌﻠﺔ اﻟﺘﻰ ﺗﻨﻮﻋﺖ‬
‫َ‬
‫ﺑني اﻷﺳﺌﻠﺔ املﻮﺿﻮﻋﻴﺔ، واملﻘﺎﻟﻴﺔ وذات اﻹﺟﺎﺑﺎت اﻟﻘﺼرية، وﺗﺘﻨﺎول اﻟﻮﺣﺪات اﻟﺴﺎﺑﻖ دراﺳﺘﻬﺎ وﺷﻤﻞ اﻟﻜﺘﺎب اﺧﺘﺒﺎرات‬
‫ﻧﻬﺎﻳﺔ ﻛﻞ ﻓﺼﻞ دراﳻ.‬
‫ﻛﻤﺎ روﻋﻰ اﺳﺘﺨﺪام ﻟﻐﺔ ﻣﻨﺎﺳﺒﺔ ﰱ ﻛﺘﺎﺑﺔ املﺴﺎﺋﻞ اﻟﺮﻳﺎﺿﻴﺔ واﻟﺤﻴﺎﺗﻴﺔ ﻣﻌﺘﻤﺪًا ﻋﲆ ﻣﺎﺳﺒﻖ دراﺳﺘﻪ ﺑﺎﻟﺴﻨﻮات‬
‫اﻟﺴﺎﺑﻘﺔ، وﰱ ﺿﻮء املﺤﺼﻮل اﻟﻠﻐﻮى ﻟﻄﻼب ﻫﺬا اﻟﺼﻒ.‬
‫وأخير ًا ..نتمنى أن نكون قد وفقنا فى إنجاز هذا العمل لما فيه خير لأولادنا، ولمصرنا العزيزة.‬
‫والل ّٰه من وراء القصد، وهو يهدى إلى سواء السبيل‬
‫‪äÉjƒàëªdG‬‬
‫‪IóMƒdG‬‬
‫‪≈dhC’G‬‬

‫ﺍﻟﺠ‪ ‬ﻭﺍﻟﻌﻼﻗﺎﺕ ﻭﺍﻟﺪﻭﺍﻝ‬

‫1- 1‬

‫ﺣﻞ ﻣﻌﺎدﻻت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ واﺣﺪ.‬

‫1- 2‬

‫ﻣﻘﺪﻣﺔ ﻋﻦ اﻷﻋﺪاد اﻟﻤﺮﻛﺒﺔ.‬

‫1- 3‬

‫ﺗﺤﺪﻳﺪ ﻧﻮع ﺟﺬرى اﻟﻤﻌﺎدﻟﺔ اﻟﺘﺮﺑﻴﻌﻴﺔ.‬

‫1- 4‬

‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬري ﻣﻌﺎدﻟﺔ اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ وﻣﻌﺎﻣﻼت ﺣﺪودﻫﺎ.‬

‫1- 5‬

‫إﺷﺎرة اﻟﺪاﻟﺔ.‬

‫21‬

‫1- 6‬

‫ﻣﺘﺒﺎﻳﻨﺎت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ.‬

‫41‬
‫51‬
‫71‬
‫81‬

‫................................................................................................................................................‬

‫2‬

‫...................................................................................................................................................................................................‬

‫5‬

‫.....................................................................................................................................................................‬

‫7‬

‫............................................................................................‬

‫9‬

‫............................................................................................................................................................................................................................................‬

‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬

‫........................................................................................................................................................................................................‬

‫.........................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬

‫......................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬

‫....................................................................................................................................................................................................................................‬

‫‪IóMƒdG‬‬
‫‪á«fÉãdG‬‬

‫ﺍﻟﺘﺸﺎﺑﻪ‬

‫2-1‬

‫ﺗﺸﺎﺑﻪ اﻟﻤﻀﻠﻌﺎت‬

‫02‬

‫2-2‬

‫ﺗﺸﺎﺑﻪ اﻟﻤﺜﻠﺜﺎت.‬

‫22‬

‫2-3‬

‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ.‬

‫62‬

‫2-4‬

‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﺸﺎﺑﻪ ﻓﻰ اﻟﺪاﺋﺮة‬

‫82‬
‫23‬
‫43‬
‫53‬

‫.....................................................................................................................................................................................................................‬

‫..........................................................................................................................................................................................................................‬

‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬

‫...........................................................................................‬

‫.............................................................................................................................................................................‬

‫.........................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬

‫......................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬

‫....................................................................................................................................................................................................................................‬
‫‪IóMƒdG‬‬
‫‪áãdÉãdG‬‬

‫ﻧﻈﺮﻳﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰ ﺍﻟﻤﺜﻠﺚ‬

‫3-1‬

‫اﻟﻤﺴﺘﻘﻴﻤﺎت اﻟﻤﺘﻮازﻳﺔ واﻷﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬

‫3-2‬

‫ﻣﻨﺼﻔﺎ اﻟﺰاوﻳﺔ ﻓﻰ اﻟﻤﺜﻠﺚ واﻷﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬

‫3-3‬

‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﻨﺎﺳﺐ ﻓﻰ اﻟﺪاﺋﺮة‬
‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬

‫.................................................................................................................................................‬

‫83‬

‫.......................................................................................................................................‬

‫14‬

‫.......................................................................................................................................................................................‬

‫.........................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬

‫......................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬

‫....................................................................................................................................................................................................................................‬

‫‪IóMƒdG‬‬
‫‪á©HGôdG‬‬

‫34‬
‫54‬
‫64‬
‫74‬

‫ﺣﺴﺎﺏ ﺍﻟﻤﺜﻠﺜﺎﺕ‬

‫4-1‬

‫اﻟﺰاوﻳﺔ اﻟﻤﻮﺟﻬﺔ.‬

‫4-2‬

‫ﻃﺮق ﻗﻴﺎس اﻟﺰاوﻳﺔ.‬

‫4-3‬

‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-4‬

‫اﻟﻌﻼﻗﺎت ﺑﻴﻦ اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-5‬

‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻰ ﻟﻠﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-6‬

‫إﻳﺠﺎد ﻗﻴﺎس زاوﻳﺔ ﺑﻤﻌﻠﻮﻣﻴﺔ داﻟﺔ ﻣﺜﻠﺜﻴﺔ‬

‫..............................................................................................................................................................................................................................‬

‫05‬

‫.....................................................................................................................................................................................................................‬

‫25‬

‫.......................................................................................................................................................................................................................................‬

‫55‬

‫.............................................................................................................................................................................................‬

‫75‬

‫.......................................................................................................................................................................................‬

‫06‬

‫........................................................................................................................................................‬

‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬

‫.........................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬

‫......................................................................................................................................................................................................................................‬

‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬
‫اﺧﺘﺒﺎرات ﻋﺎﻣﺔ‬

‫....................................................................................................................................................................................................................................‬

‫.......................................................................................................................................................................................................................................................................‬

‫إﺟﺎﺑﺎت ﺑﻌﺾ اﻟﺘﻤﺎرﻳﻦ‬

‫.................................................................................................................................................................................................................................................‬

‫16‬
‫36‬
‫46‬
‫56‬
‫66‬
‫27‬
‫ﺍﻟﺠﺒﺮ‬

‫‪IóMƒdG‬‬

‫1‬

‫ﺍﻟﺠﺒﺮ ﻭﺍﻟﻌﻼﻗﺎﺕ ﻭﺍﻟﺪﻭﺍﻝ‬
‫‪Algebra, Relations and‬‬
‫‪Functions‬‬

‫دروس اﻟﻮﺣﺪة‬
‫ﺍﻟﺪﺭﺱ )١ - ١(: ﺣﻞ ﻣﻌﺎﺩﻻﺕ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ ﻭﺍﺣﺪ.‬
‫ﺍﻟﺪﺭﺱ )١ - ٢(: ﻣﻘﺪﻣﺔ ﻋﻦ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻤﺮﻛﺒﺔ.‬
‫ﺍﻟﺪﺭﺱ )١ - ٣(: ﺗﺤﺪﻳﺪ ﻧﻮﻉ ﺟﺬﺭ￯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ.‬
‫ﺍﻟﺪﺭﺱ )١ - ٤(: ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬﺭ￯ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻭﻣﻌﺎﻣﻼﺕ ﺣﺪﻭﺩﻫﺎ.‬
‫ﺍﻟﺪﺭﺱ )١ - ٥(: ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ.‬
‫ﺍﻟﺪﺭﺱ )١ - ٦(: ﻣﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ.‬
‫ﺣﻞ ﻣﻌﺎدﻻت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ واﺣﺪ‬

‫1-1‬

‫‪Solving Quadratic Equations in One Variable‬‬

‫‪k‬‬
‫‪Oó©àe øe QÉ«àN’G :’hCG‬‬
‫1 ﺍﻟﻤﻌﺎﺩﻟﺔ: )ﺱ – ١( )ﺱ + ٢( = ٠ ﻣﻦ ﺍﻟﺪﺭﺟﺔ:‬
‫ب ﺍﻟﺜﺎﻧﻴﺔ‬
‫أ ﺍﻷﻭﻟﻰ‬
‫2 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ = ﺱ ﻓﻰ ﺡ ﻫﻰ:‬
‫ب }١{‬
‫أ }٠{‬

‫..................................................................................................................................‬

‫ﺟ ﺍﻟﺜﺎﻟﺜﺔ‬

‫د ﺍﻟﺮﺍﺑﻌﺔ‬

‫.....................................................................................................................................‬

‫ﺟ }- ١، ١{‬

‫3 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ = ٠ ﻓﻰ ﺡ ﻫﻰ:‬
‫ب }- ٣ {‬
‫أ }-٣{‬

‫د }0، ١{‬

‫.................................................................................................................................‬

‫4 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢ﺱ = -١ ﻓﻰ ﺡ ﻫﻰ:‬
‫ب ‪z‬‬
‫أ }-١{‬

‫ﺟ } ٣ {‬

‫د ‪z‬‬

‫........................................................................................................................‬

‫ﺟ }-١، ١{‬

‫د }١{‬

‫5 ﻳﻤﺜﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﺩ.‬
‫ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ)ﺱ( = ٠ ﻓﻰ ﺡ ﻫﻰ: ......................................‬
‫ب }٤{‬
‫أ }-٢{‬
‫د }-٢، ٤{‬
‫ﺟ ‪z‬‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫6 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ:‬
‫ب ﺱ٢ + ٣ﺱ = ٠‬
‫أ ﺱ٢ - ١ = ٠‬

‫ﺟ )ﺱ – ٤(٢ = ٠‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫ﻫ ﺱ٢ + ٩ = ٠‬

‫د ﺱ٢ - ٦ﺱ + ٩ = ٠‬

‫و ﺱ )ﺱ+ ١( )ﺱ - ١( = ٠‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫............................................................‬

‫............................................................‬

‫...........................................................‬

‫¯‬

‫−‬

‫¯‬
‫¯‬

‫7 ﻳﺒﻴﻦ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ.‬
‫ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺩ )ﺱ( = ٠ ﻓﻰ ﻛﻞ ﺷﻜﻞ.‬
‫ب‬
‫أ‬

‫ﺟ‬

‫− −‬

‫− − − − −‬

‫−‬
‫−‬

‫− − −‬

‫−‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫8 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ ﻭﺣﻘﻖ ﺍﻟﻨﺎﺗﺞ ﺑﻴﺎﻧﻴﺎ:‬
‫ًّ‬
‫ب ٢ﺱ٢ = ٣ – ٥ﺱ‬
‫أ ﺱ٢ = ٣ﺱ + ٠٤‬
‫............................................................‬

‫............................................................‬

‫ﺟ ٦ﺱ٢ = ٦ – ٥ﺱ‬

‫د )ﺱ – ٣( = ٥‬
‫٢‬

‫............................................................‬

‫............................................................‬

‫و ١ ﺱ٢ - ٣ ﺱ = ١‬
‫٥‬
‫٢‬

‫ﻫ ﺱ٢ + ٢ﺱ = ٢١‬

‫............................................................‬

‫............................................................‬

‫9 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻟﺮﻗﻢ ﻋﺸﺮﻯ ﻭﺍﺣﺪ.‬
‫ً‬
‫ب ﺱ٢ – ٦ﺱ + ٧ = ٠‬
‫أ ٣ﺱ٢ – ٥٦ = ٠‬
‫............................................................‬

‫............................................................‬

‫ﺟ ﺱ٢ + ٦ﺱ + ٨ = ٠‬

‫د ٢ﺱ٢+٣ﺱ–٤ = ٠‬
‫............................................................‬

‫............................................................‬

‫و ٣ﺱ٢ – ٦ﺱ – ٤ = ٠‬

‫ﻫ ٥ﺱ٢ – ٣ﺱ – ١ = ٠‬

‫............................................................‬

‫............................................................‬

‫01 ﺃﻋﺪﺍﺩ: ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )١ + ٢ + ٣ + ... + ﻥ(ﻳﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺟـ = ﻥ )١ + ﻥ(‬
‫٢‬
‫ﻓﻜﻢ ﻋﺪﺩﺍ ﺻﺤﻴﺤﺎ ﻣﺘﺘﺎﻟﻴﺎ ﺑﺪﺀﺍ ﻣﻦ ﺍﻟﻌﺪﺩ ١ ﻳﻜﻮﻥ ﻣﺠﻤﻮﻋﻬﺎ ﻣﺴﺎﻭ ﻳﺎ:‬
‫ً‬
‫ً‬
‫ً‬
‫ً ً‬
‫ب ١٧١‬
‫أ ٨٧‬
‫..............................................‬

‫...............................................‬

‫ﺟ ٣٥٢‬

‫د ٥٦٤‬
‫...............................................‬

‫...............................................‬

‫‪M‬‬

‫−‬
‫11 ﻳﺒﻴﻦ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ ﻭﺍﺣﺪ. ﺃﻭﺟﺪ ﻗﺎﻋﺪﺓ ﻛﻞ‬
‫ﺩﺍﻟﺔ ﻣﻦ ﻫﺬه ﺍﻟﺪﻭﺍﻝ.‬
‫ب‬

‫أ‬

‫ﺟ‬

‫− − − −‬

‫−‬
‫−‬
‫−‬
‫−‬
‫−‬
‫−‬

‫−‬
‫−‬
‫−‬
‫−‬
‫−‬

‫− − − −‬

‫−‬
‫−‬
‫−‬
‫−‬

‫...............................................................‬

‫...............................................................‬

‫...............................................................‬

‫21 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ )ﺱ – ٣(٢ = )ﺱ – ٣(.‬

‫¯‬
‫‪) a‬ﺱ – ٣(٢ = )ﺱ – ٣(‬
‫–‬
‫‪¯M‬‬
‫ ‬
‫‪F‬‬
‫` ﺱ – ٣ = ١‬
‫` ﺱ = ٤‬
‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ = }٤{‬

‫!‬

‫‪) a‬ﺱ – ٣(٢ = )ﺱ – ٣(‬
‫` )ﺱ – ٣(٢ – )ﺱ – ٣( = ٠‬
‫` )ﺱ – ٣(])ﺱ – ٣( – ١[ = ٠‬
‫‪ :F‬ﺱ – ٣=٠ ﺃﻭ ﺱ – ٤=٠‬
‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ = }٣، ٤{‬

‫ﺃﻱ ﺍﻟﺤﻠﻴﻦ ﺻﺤﻴﺢ? ﻟﻤﺎﺫﺍ?‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫31 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﻗُﺬﻓﺖ ﻛﺮﺓ ﺭﺃﺳﻴﺎ ﺇﻟﻰ ﺃﻋﻠﻰ ﺑﺴﺮﻋﺔ ﻉ ﺗﺴﺎﻭﻯ ٤٫٩٢ ﻣﺘﺮ/ﺙ. ﺍﺣﺴﺐ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻥ ﺑﺎﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ‬
‫ُ‬
‫ًّ‬
‫ﺗﺴﺘﻐﺮﻗﻬﺎ ﺍﻟﻜﺮﺓ ﺣﺘﻰ ﺗﺼﻞ ﺇﻟﻰ ﺍﺭﺗﻔﺎﻉ ﻑ ﻣﺘﺮﺍ، ﺣﻴﺚ ﻑ ﺗﺴﺎﻭﻯ ٢٫٩٣ ﻣﺘﺮﺍ ﻋﻠﻤﺎ ﺑﺄﻥ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻑ، ﻥ ﺗﻌﻄﻰ‬
‫ُْ‬
‫ً ً‬
‫ً‬
‫ﻛﺎﻵﺗﻰ ﻑ = ﻉ ﻥ – ٩٫٤ ﻥ٢.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﻣﻘﺪﻣﺔ ﻋﻦ ا ﻋﺪاد اﻟﻤﺮﻛﺒﺔ‬

‫1-2‬

‫‪Complex Numbers‬‬
‫1 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ:‬
‫ًّ‬
‫ ٥٤‬‫٦٦‬
‫ب ﺕ‬
‫أ ﺕ‬
‫......................................‬

‫ﺟ ﺕ‬

‫......................................‬

‫٤ﻥ + ٢‬

‫......................................‬

‫د ﺕ‬

‫٤ﻥ – ١‬

‫......................................‬

‫2 ﺑﺴﻂ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫ًّ‬
‫أ‬

‫-٨١ * -٢١‬

‫ب ٣ ﺕ )- ٢ﺕ(‬

‫..........................................‬

‫ﺟ )- ٤ ﺕ( )- ٦ ﺕ(‬
‫..........................................‬

‫...........................................‬

‫د )- ٢ ﺕ(٣ )- ٣ ﺕ(‬

‫٢‬

‫.........................................‬

‫3 ﺃﻭﺟﺪ ﻧﺎﺗﺞ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ:‬
‫ٍّ‬
‫أ )٣ + ٢ﺕ( + )٢ – ٥ ﺕ(   ب )٦٢ – ٤ﺕ( – )٩ – ٠٢ ﺕ(   ﺟ )٠٢ + ٥٢ ﺕ( – )٩ – ٠٢ ﺕ(‬
‫.................................................................................       ..................................................................................      ..................................................................................‬

‫4 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻋﻠﻰ ﺻﻮﺭﺓ ‪ + C‬ﺏ ﺕ‬
‫ًّ‬
‫ب )١ + ٢ﺕ٣( )٢ + ٣ ﺕ٥ + ٤ ﺕ٦(‬

‫أ )٢ + ٣ ﺕ( – )١ – ٢ﺕ(‬
‫5 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻋﻠﻰ ﺻﻮﺭﺓ ‪ + C‬ﺏ ﺕ‬
‫ًّ‬
‫٢‬
‫ب ٤+ﺕ‬
‫أ‬
‫ﺕ‬

‫ﺟ‬

‫١+ﺕ‬

‫......................................‬

‫......................................‬

‫......................................‬

‫6 ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫ب ٤ ﺹ٢ + ٠٢ = ٠‬
‫أ ٣ ﺱ٢ + ٢١ = ٠‬
‫......................................‬

‫٢ - ٣ﺕ‬
‫٣+ﺕ‬

‫ﺟ ٤ ﻉ٢ + ٢٧ = ٠‬
‫......................................‬

‫......................................‬

‫د )٣ + ﺕ()٣ - ﺕ(‬
‫٣-٤ﺕ‬
‫......................................‬

‫د ٣ ﺹ٢ + ٥١ = ٠‬
‫٥‬
‫......................................‬

‫7 ﻛﻬﺮﺑﺎﺀ: ﺃﻭﺟﺪ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﻰ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻤﺎﺭ ﻓﻰ ﻣﻘﺎﻭﻣﺘﻴﻦ ﻣﺘﺼﻠﺘﻴﻦ ﻋﻠﻰ ﺍﻟﺘﻮﺍﺯﻯ ﻓﻰ ﺩﺍﺋﺮﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ‬
‫ﻣﻐﻠﻘﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﻓﻰ ﺍﻟﻤﻘﺎﻭﻣﺔ ﺍﻷ ﻟﻰ ٤ – ٢ﺕ ﺃﻣﺒﻴﺮ، ﻭﻓﻰ ﺍﻟﻤﻘﺎﻭﻣﺔ ﺍﻟﺜﺎﻧﻴﺔ ٦ + ٣ﺕ ﺃﻣﺒﻴﺮ .................‬
‫ﻭ‬
‫٢+ﺕ‬

‫8 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺃﻭﺟﺪ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ: )٢ + ٣ﺕ(٢ )٢ – ٣ﺕ(‬
‫¯‬
‫)٢ + ٣ﺕ(٢)٢– ٣ﺕ( = )٤ + ٩ﺕ٢()٢ – ٣ﺕ(‬
‫= )٤ – ٩()٢ – ٣ﺕ( = - ٥ )٢ – ٣ﺕ(‬
‫= - ٠١ + ٥١ ﺕ‬

‫)٢ + ٣ﺕ()٢ + ٣ﺕ()٢ – ٣ﺕ(‬
‫= )٢ + ٣ﺕ( )٤ – ٩ﺕ٢(‬
‫= )٢ + ٣ﺕ( )٤ + ٩( = ٣١)٢ + ٣ﺕ(‬
‫= ٦٢ + ٩٣ ﺕ‬
‫ﺃﻯ ﺍﻟﺤﻠﻴﻦ ﺻﺤﻴﺢ? ﻟﻤﺎﺫﺍ?‬

‫............................................................................................................................................................................‬

‫‪M‬‬

‫−‬
‫ﻧﺸﺎط‬

‫١-‬
‫٢-‬
‫٣-‬
‫٤-‬
‫٥-‬

‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﺣﺪ ﺍﻟﺒﺮﺍﻣﺞ ﺍﻟﺮﺳﻮﻣﻴﺔ ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٣ - ١ .‬
‫ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻳﻤﺜﻞ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ، ﻫﻞ ﻳﻤﻜﻨﻚ ﺇﻳﺠﺎﺩ ﻣﺠﻤﻮﻋﺔ ﺣﻞ‬
‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٣ -١ = ٠ ﻣﻦ ﺍﻟﺮﺳﻢ?‬
‫ﻫﻞ ﺗﺘﻮﻗﻊ ﻭﺟﻮﺩ ﺟﺬﻭﺭ ﺃﺧﺮﻯ ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺘﻰ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ ﻣﻦ‬
‫ﺍﻟﺮﺳﻢ، ﻭﺫﻟﻚ ﻣﻦ ﺧﻼﻝ ﺩﺭﺍﺳﺘﻚ ﻟﻤﺠﻤﻮﻋﺎﺕ ﺍﻷﻋﺪﺍﺩ?‬
‫ﻫﻞ ﻳﻤﻜﻨﻚ ﺣﻞ ﺱ٣ - ١ = ٠ ﺟﺒﺮ ﻳﺎ?‬
‫ًّ‬
‫ﺍﺳﺘﺨﺪﻡ ﻃﺮﻕ ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺘﻰ ﺳﺒﻖ ﻟﻚ ﺩﺭﺍﺳﺘﻬﺎ ﻓﻰ ﺣﻞ ﻫﺬه ﺍﻟﻤﻌﺎﺩﻟﺔ.‬

‫: ﺱ٣ - ١ = )ﺱ - ١()ﺱ٢ + ﺱ + ١( =٠‬
‫¯‬
‫¯‬
‫٦- ﺗﻌﻠﻢ ﺃﻧﻪ ﻣﻦ ﺧﻮﺍﺹ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺇﺫﺍ ﻛﺎﻥ ‪ * C‬ﺏ * ﺟـ = ٠ ﻓﺈﻥ ‪ ، ٠ = C‬ﺏ = ٠، ﺟـ = ٠ ﻓﻬﻞ ﻳﻤﻜﻨﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺫﻟﻚ‬
‫ﻓﻰ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ?‬
‫  ﺱ = ١  ﻭﻫﺬﺍ ﻳﻄﺎﺑﻖ ﺍﻟﺤﻞ ﺍﻟﺒﻴﺎﻧﻰ ﺃﻭ:‬
‫ﺱ - ١ = ٠ ‬
‫¯‬
‫ﺱ٢ + ﺱ +١ = ٠ ﻫﻞ ﻳﻤﻜﻨﻚ ﺣﻞ ﻫﺬه ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺎﻟﺘﺤﻠﻴﻞ?‬

‫٧- ﺍﺳﺘﺨﺪﻡ ﻣﻔﻬﻮﻡ ﻣﻤﻴﺰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻟﺘﺤﺪﻳﺪ ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ + ١ = ٠ ﺣﻴﺚ ‪ ، ١ =C‬ﺏ = ١ ، ﺟـ = ١‬
‫  ﺏ٢ - ٤ ‪ C‬ﺟـ > ٠‬
‫ﺍﻟﻤﻤﻴﺰ )ﺏ٢- ٤ ‪C‬ﺟـ( = ١ - ٤ *١ *١ = -٣‬

‫¯‬

‫¯‬

‫,‬

‫٨- ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ + ١ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ .‬
‫ﺍﻟﻤﺮ‬
‫ﺱ = - ﺏ ! ﺏ ٢-٤‪C‬ﺟـ‬
‫٢‪C‬‬

‫ﻓﺘﻜﻮﻥ ﺱ = - ١ !‬

‫٩- ﺍﻛﺘﺐ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٣ - ١ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ.‬
‫ﺍﻟﻤﺮ‬
‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻫﻰ}١، - ١ +‬
‫٢*١‬

‫-٣ ،‬

‫١-‬‫٢*١‬

‫-٣‬

‫٢*١‬

‫-٣ {‬

‫٠١-ﻛﻢ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻛﻢ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﻛﺒﺔ ?‬
‫ﺍﻟﻤﺮ‬
‫ﻭ‬

‫١١- ﺃﻭﺟﺪ ﻣﺠﻤﻮﻉ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺜﻼﺛﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ - ﻣﺎﺫﺍ ﺗﻼﺣﻆ?‬

‫٢١- ﺃﻭﺟﺪ ﺣﺎﺻﻞ ﺿﺮﺏ ﺍﻟﺠﺬﺭﻳﻦ ﺍﻟﺘﺨﻴﻠﻴﻴﻦ - ﻣﺎﺫﺍ ﺗﻼﺣﻆ?‬

‫٣١- ﺃﻭﺟﺪ ﻣﺮﺑﻊ ﺃﺣﺪ ﺍﻟﺠﺬﺭﻳﻦ ﺍﻟﺘﺨﻴﻠﻴﻴﻦ ﻭﻗﺎﺭﻧﻪ ﻣﻊ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ.‬

‫٤١- ﻟﻤﺎﺫﺍ ﺃﻋﻄﻰ ﺍﻟﺤﻞ ﺍﻟﺒﻴﺎﻧﻰ ﺟﺬﺭﺍ ﻭﺍﺣﺪﺍ ﻓﻘﻂ، ﺑﻴﻨﻤﺎ ﺃﻋﻄﻰ ﺍﻟﺤﻞ ﺍﻟﺠﺒﺮﻯ ﺛﻼﺛﺔ ﺟﺬﻭﺭ ? ﻓﺴﺮ ﺫﻟﻚ.‬
‫ً‬
‫ً‬
‫ِّ‬

‫٥١- ﺍﺑﺤﺚ ﻓﻰ ﺍﻟﺸﺒﻜﺔ ﺍﻟﻌﻨﻜﺒﻮﺗﻴﺔ ﻋﻦ ﻛﻴﻔﻴﺔ ﺗﻤﺜﻴﻞ ﺟﺬﻭﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻜﻌﻴﺒﻴﺔ ﺑﻴﺎﻧﻴﺎ ﺑﻤﺎ ﻳﺘﻨﺎﺳﺐ ﻣﻊ ﻣﻌﻠﻮﻣﺎﺗﻚ.‬
‫ًّ‬

‫¯‬

‫−‬

‫¯‬
‫ﺗﺤﺪﻳﺪ ﻧﻮع ﺟﺬرى اﻟﻤﻌﺎدﻟﺔ اﻟﺘﺮﺑﻴﻌﻴﺔ‬

‫1-3‬

‫‪Determining The Type of Roots of a Quadratic Equation‬‬

‫‪k‬‬
‫‪:Oó©àe øe QÉ«àNG :’hCG‬‬
‫1 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ + ﻙ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬
‫ﺟ ﻙ=٨‬
‫ب ﻙ=٤‬
‫أ ﻙ=١‬

‫............................................................................................‬

‫2 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢ﺱ + ﻡ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬
‫ﺟ ﻡ<١‬
‫ب ﻡ>١‬
‫أ ﻡ=١‬

‫د ﻙ = ٦١‬
‫............................................................................‬

‫3 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻝ ﺱ٢ – ٢١ﺱ + ٩ = ٠ ﻛﺒﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬
‫ﻣﺮ‬
‫ﺟ ﻝ=٤‬
‫ب ﻝ>٤‬
‫أ ﻝ<٤‬

‫د ﻡ=٤‬

‫...........................................................................................‬

‫د ﻝ=١‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫4 ﺣﺪﺩ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﻭﺃﻧﻮﺍﻋﻬﺎ ﻟﻜﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻵﺗﻴﺔ:‬
‫ب ٣ﺱ٢ + ٠١ﺱ - ٤ = ٠‬
‫أ ﺱ٢ - ٢ﺱ + ٥ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫ﺟ ﺱ٢ – ٠١ﺱ + ٥٢ = ٠‬

‫د ٦ﺱ٢ – ٩١ﺱ + ٥٣ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫و )ﺱ – ١( )ﺱ – ٧( = ٢ )ﺱ – ٣( )ﺱ – ٤(‬

‫ﻫ )ﺱ – ١١( – ﺱ)ﺱ – ٦( = ٠‬

‫..................................................................................‬

‫..................................................................................‬

‫5 ﺃﻭﺟﺪ ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ.‬
‫ﺍﻟﻤﺮ‬
‫ٍّ‬
‫ب ٢ﺱ٢ + ٦ﺱ + ٥ = ٠‬
‫أ ﺱ٢ - ٤ﺱ + ٥ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫ﺟ ٣ﺱ٢ - ٧ﺱ + ٦ = ٠‬

‫د ٤ﺱ٢ - ﺱ + ١ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫6 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٤ﺱ + ﻙ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ.‬
‫.......................................................................................................................................................................................................................‬

‫‪M‬‬

‫−‬
‫١‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ + ﻙ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬
‫.......................................................................................................................................................................................................................‬

‫ﺟ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻙ ﺱ٢ – ٨ﺱ + ٦١ = ٠ ﻛﺒﻴﻦ.‬
‫ﻣﺮ‬
‫..................................................................................................................................................................................................................................‬

‫7 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﻋﺪﺩﻳﻦ ﻧﺴﺒﻴﻴﻦ، ﻓﺄﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﻝ ﺱ٢ + )ﻝ – ﻡ( ﺱ – ﻡ = ٠ ﻋﺪﺩﺍﻥ ﻧﺴﺒﻴﺎﻥ.‬
‫..................................................................................................................................................................................................................................‬

‫8 ﻳﻘﺪﺭ ﻋﺪﺩ ﺳﻜﺎﻥ ﺟﻤﻬﻮﺭﻳﺔ ﻣﺼﺮ ﺍﻟﻌﺮﺑﻴﺔ ﻋﺎﻡ ٣١٠٢ ﺑﺎﻟﻌﻼﻗﺔ:‬
‫ﻉ = ﻥ٢ + ٢٫١ ﻥ + ١٩ ﺣﻴﺚ )ﻉ( ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﺑﺎﻟﻤﻠﻴﻮﻥ، )ﻥ( ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ‬
‫.................................................................................................................‬
‫أ ﻛﻢ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻋﺎﻡ ٣١٠٢?‬
‫.................................................................................................................‬
‫ب ﻗﺪﺭ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻋﺎﻡ ٣٢٠٢.‬
‫ﺟ‬
‫ﻗﺪﺭ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ ﺍﻟﺘﻰ ﻳﺒﻠﻎ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻴﻬﺎ ٤٣٣ ﻣﻠﻴ ﻧًﺎ. ...........................................................................................‬
‫ﻮ‬
‫ً‬
‫د ﺍﻛﺘﺐ ﻣﻘﺎﻻ ﺗﻮﺿﺢ ﻓﻴﻪ ﺃﺳﺒﺎﺏ ﺍﻟﺰﻳﺎﺩﺓ ﺍﻟﻤﻄﺮﺩﺓ ﻓﻰ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻛﻴﻔﻴﺔ ﻋﻼﺟﻬﺎ.‬
‫ﻭ‬
‫9 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﻣﺎ ﻋﺪﺩ ﺣﻠﻮﻝ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٦ ﺱ = ٥ ﻓﻰ ﺡ‬

‫¯‬
‫ﺏ٢– ٤‪C‬ﺟـ = )- ٦(٢ – ٤ * ٢ * ٥‬
‫     = ٦٣ – ٠٤ = - ٤‬
‫¯,‬

‫ﺏ٢– ٤‪C‬ﺟـ = )- ٦(٢ – ٤ * ٢ )- ٥(‬
‫     = ٦٣ +٠٤ = ٦٧‬
‫¯,‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫01 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٢ )ﻙ - ١( ﺱ + )٢ﻙ + ١( =٠ ﻣﺘﺴﺎﻭﻳﻴﻦ، ﻓﺄﻭﺟﺪ ﻗﻴﻢ ﻙ ﺍﻟﺤﻘﻴﻘﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ‬
‫ﺍﻟﺠﺬﺭﻳﻴﻦ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫11 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ٦٣ ﺱ٢ – ٨٤ ﺱ + ٥٢ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ.‬
‫ﺍﻟﻤﺮ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬرى ﻣﻌﺎدﻟﺔ اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ وﻣﻌﺎﻣﻼت ﺣﺪودﻫﺎ‬
‫‪The relation between two roots of the second degree‬‬
‫‪equation and the coefficients of its terms‬‬

‫1-4‬

‫‪k‬‬
‫‪:≈JCÉjÉe πªcCG :’hCG‬‬
‫1 ﺇﺫﺍ ﻛﺎﻥ ﺱ = ٣ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﻡ ﺱ – ٧٢ = ٠ ﻓﺈﻥ ﻡ = .................................، ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ =‬

‫................................‬

‫2 ﺇﺫﺍ ﻛﺎﻥ ﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ٢ ﺱ٢ + ٧ ﺱ + ٣ ﻙ = ٠ ﻳﺴﺎﻭﻯ ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ:‬
‫٢‬
‫ﺱ – )ﻙ + ٤( ﺱ = ٠ ﻓﺈﻥ ﻙ = ................................‬
‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺰﻳﺪ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ ﺱ + ٢ = ٠ ﻫﻰ‬

‫...............................‬

‫4 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﻨﻘﺺ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٥ ﺱ + ٦ = ٠ ﻫﻰ‬

‫...............................‬

‫‪Oó©àe øe QÉ«àN’G :Ék«fÉK‬‬
‫5 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ - ٣ ﺱ + ﺟـ = ٠ ﺿﻌﻒ ﺍﻵﺧﺮ ﻓﺈﻥ ﺟـ ﺗﺴﺎﻭﻯ‬
‫د ٤‬
‫ﺟ ٢‬
‫ب -٢‬
‫أ -٤‬

‫.......................................................‬

‫6 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ C‬ﺱ٢ – ٣ﺱ+ ٢ =٠ ﻣﻌﻜﻮﺳﺎ ﺿﺮﺑﻴﺎ ﻟﻶﺧﺮ، ﻓﺈﻥ ‪ C‬ﺗﺴﺎﻭﻯ‬
‫ً‬
‫ًّ‬
‫ب ١‬
‫أ ١‬
‫د ٣‬
‫ﺟ ٢‬
‫٢‬
‫٣‬

‫...........................................‬

‫7 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢– )ﺏ – ٣( ﺱ + ٥ = ٠ ﻣﻌﻜﻮﺳﺎ ﺟﻤﻌﻴﺎ ﻟﻶﺧﺮ، ﻓﺈﻥ ﺏ ﺗﺴﺎﻭﻯ‬
‫ً‬
‫ًّ‬
‫د ٥‬
‫ﺟ ٣‬
‫ب -٣‬
‫أ -٥‬

‫........................‬

‫‪k‬‬
‫‪á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬
‫8 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻉ ﻭﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻰ:‬
‫ب ٤ ﺱ٢ + ٤ ﺱ – ٥٣ = ٠‬
‫أ ٣ ﺱ٢ + ٩١ ﺱ – ٤١ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫9 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ﻟﻠﻤﻌﺎﺩﻟﺔ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ  ﺱ٢ – ٢ ﺱ + ‪٠ = C‬‬
‫أ ﺇﺫﺍ ﻛﺎﻥ: ﺱ = - ١‬
‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ  ‪ C‬ﺱ٢ – ٥ ﺱ + ‪٠ = C‬‬
‫ب ﺇﺫﺍ ﻛﺎﻥ: ﺱ = ٢‬

‫........................................................‬
‫........................................................‬

‫01 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ ،C‬ﺏ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﺇﺫﺍ ﻛﺎﻥ:‬
‫......................................................................................................‬
‫أ ٢، ٥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ‪ C‬ﺱ + ﺏ = ٠‬
‫......................................................................................................‬
‫ب -٣، ٧ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪C‬ﺱ٢ – ﺏ ﺱ - ١٢ = ٠‬
‫ﺟ -١، ٣ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ C‬ﺱ٢ – ﺱ + ﺏ = ٠‬
‫......................................................................................................‬
‫٢‬
‫٢‬
‫د‬
‫٣ ﺕ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ + ‪ C‬ﺱ + ﺏ = ٠ ..........................................................................................‬
‫٣ ﺕ،-‬
‫‪M‬‬

‫−‬
‫11 ﺍﺑﺤﺚ ﻧﻮﻉ ﺍﻟﺠﺬﺭﻳﻦ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻨﻬﺎ:‬
‫ب ٢ﺱ٢ + ٣ﺱ + ٧ = ٠‬
‫أ ﺱ٢ + ٢ﺱ – ٥٣ = ٠‬
‫..................................................................................‬

‫ﺟ ﺱ)ﺱ – ٤( + ٥ = ٠‬

‫..................................................................................‬

‫د ٣ﺱ)٣ﺱ – ٨( + ٦١ = ٠‬
‫..................................................................................‬

‫..................................................................................‬

‫21 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺟـ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺟـ ﺱ٢ – ٢١ﺱ + ٩ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬
‫..................................................................................................................................................................................................................................‬

‫31 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ + ١ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬
‫‪C‬‬

‫..................................................................................................................................................................................................................................‬

‫41 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺟـ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٣ ﺱ٢ – ٥ ﺱ + ﺟـ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ، ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺠﺬﺭﻳﻦ.‬
‫..................................................................................................................................................................................................................................‬

‫51 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + )ﻙ - ١( ﺱ – ٣ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﺠﻤﻌﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬
‫..................................................................................................................................................................................................................................‬

‫61 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ٤ ﻙ ﺱ٢ + ٧ ﺱ + ﻙ٢ + ٤ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬
‫..................................................................................................................................................................................................................................‬

‫71 ﻛﻮﻥ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻛﺎﻵﺗﻰ :‬
‫ب - ٥ ﺕ، ٥ ﺕ‬
‫أ – ٢، ٤‬
‫...................................................................................‬

‫د ١ - ٣ﺕ ، ١ + ٣ﺕ‬
‫...................................................................................‬

‫ﺟ ٢،٣‬
‫٣ ٢‬

‫...................................................................................‬

‫................................................................‬

‫ﻫ ٣ - ٢ ٢ ﺕ ، ٣ + ٢ ٢ ﺕ‬
‫...................................................................................‬

‫81 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﺿﻌﻔﺎ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٨ﺱ + ٥ = ٠‬
‫..................................................................................................................................................................................................................................‬

‫91 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﺱ٢ – ٧ﺱ – ٩ = ٠‬
‫..................................................................................................................................................................................................................................‬

‫02 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺴﺎﻭﻯ ﻣﺮﺑﻊ ﻧﻈﻴﺮه ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﺱ٢ + ٣ﺱ – ٥ = ٠‬
‫..................................................................................................................................................................................................................................‬

‫12 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٧ ﺱ + ٣ = ٠ ﻓﺄﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ:‬
‫ﺟ ٢،٢‬
‫د ﻝ + ﻡ، ﻝ ﻡ‬
‫ب ﻝ + ٢، ﻡ + ٢‬
‫أ ٢ ﻝ، ٢ ﻡ‬
‫ﻝ ﻡ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫22 ﻣﺴﺎﺣﺎﺕ: ﻗﻄﻌﺔ ﺃﺭﺽ ﻋﻠﻰ ﺷﻜﻞ ﻣﺴﺘﻄﻴﻞ ﺑﻌﺪﺍه ٦، ٩ ﻣﻦ ﺍﻷﻣﺘﺎﺭ، ﻳﺮﺍﺩ ﻣﻀﺎﻋﻔﺔ ﻣﺴﺎﺣﺔ ﻫﺬه ﺍﻟﻘﻄﻌﺔ ﻭﺫﻟﻚ‬
‫ﺑﺰﻳﺎﺩﺓ ﻃﻮﻝ ﻛﻞ ﺑﻌﺪ ﻣﻦ ﺃﺑﻌﺎﺩﻫﺎ ﺑﻨﻔﺲ ﺍﻟﻤﻘﺪﺍﺭ.ﺃﻭﺟﺪ ﺍﻟﻤﻘﺪﺍﺭ ﺍﻟﻤﻀﺎﻑ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫32 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﻗﻴﻢ ﺟـ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ٧ ﺱ٢ + ٤١ ﺱ + ﺟـ = ٠ ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ:‬
‫أ ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ.‬
‫ب ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ.‬
‫ﺟ ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ.‬
‫ﻣﺮ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫42 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺇﺫﺍ ﻛﺎﻥ ﻝ + ١، ﻡ + ١ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٥ﺱ + ٣ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ‬
‫ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬

‫¯‬
‫‪) a‬ﻝ + ١( + )ﻡ+١( = - ٥‬
‫` ﻝ + ﻡ = - ٧،‬
‫`ﻝ+ﻡ+٢=-٥‬
‫‪) a‬ﻝ + ١()ﻡ + ١( = ٣ ` ﻝ ﻡ + )ﻝ + ﻡ( + ١ = ٣‬
‫`ﻝﻡ=٩‬
‫`ﻝﻡ–٧+١=٣‬
‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻰ: ﺱ٢ + ٧ﺱ + ٩ = ٠‬

‫¯‬
‫‪ a‬ﻝ + ﻡ = - ٥، ﻝ ﻡ = ٣‬
‫` )ﻝ +١ ( + )ﻡ + ١(   = ﻝ+ ﻡ + ٢‬
‫              = - ٥ + ٢ = -٣،‬
‫‪) a‬ﻝ+١()ﻡ + ١( = ﻝ ﻡ + )ﻝ + ﻡ( + ١‬
‫              = ٣ – ٣ + ١ = ١‬
‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻰ: ﺱ٢ + ٣ﺱ + ١ = ٠‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫52 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﻙ ﺱ + ٢ﻙ = ٠ ﻳﺴﺎﻭﻯ ﺿﻌﻒ ﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ‬
‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ ﺱ + ﻙ = ٠ ﻓﺄﻭﺟﺪ ﻙ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪M‬‬

‫−‬
‫إﺷﺎرة اﻟﺪاﻟﺔ‬

‫1-5‬

‫‪Sign of a Function‬‬

‫‪k‬‬
‫‪:≈JCÉj Ée πªcCG :’hCG‬‬
‫1 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = - ٥ ﺇﺷﺎﺭﺍﺗﻬﺎ .................................................... ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬

‫....................................................‬

‫2 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ١ ﺇﺷﺎﺭﺍﺗﻬﺎ .................................................... ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫3 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ – ٦ ﺱ + ٩ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫4 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ – ٢ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫5 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٣ – ﺱ ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬

‫....................................................‬

‫....................................................‬

‫....................................................‬

‫....................................................‬

‫6 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = - )ﺱ – ١( )ﺱ +٢( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫7 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٤ ﺱ – ٥ ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬

‫....................................................‬

‫....................................................‬

‫8 ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺳﻮﻡ ﻳﻤﺜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻷﻭﻟﻰ ﻓﻰ ﺱ:‬
‫أ ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ....................................................‬
‫ب‬
‫ﺩ)ﺱ( ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ....................................................‬

‫−‬

‫−‬

‫−‬

‫−‬
‫−‬
‫−‬

‫9 ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺳﻮﻡ ﻳﻤﺜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﺱ:‬
‫أ ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬
‫ب‬
‫ﺩ)ﺱ( < ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬
‫ﺟ‬
‫ﺩ)ﺱ( > ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬

‫¯‬

‫−‬

‫¯‬

‫− − −‬

‫−‬
‫−‬
‫−‬
‫−‬

‫−‬
‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫01 ﻓﻰ ﺍﻟﺘﻤﺎﺭﻳﻦ ﻣﻦ أ ﺇﻟﻰ ن ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻵﺗﻴﺔ:‬
‫ب ﺩ)ﺱ( = ٢ﺱ‬
‫.......................................‬
‫أ ﺩ)ﺱ( = ٢‬
‫د ﺩ)ﺱ( =٢ﺱ+٤‬
‫.......................................‬
‫ﺟ ﺩ)ﺱ( = - ٣ﺱ‬

‫.......................................‬

‫و ﺩ)ﺱ( = ﺱ‬
‫ح ﺩ)ﺱ( = ﺱ٢ – ٤‬

‫.......................................‬

‫.......................................‬

‫ﻫ ﺩ)ﺱ( =٣ – ٢ﺱ‬
‫٢‬
‫ز ﺩ)ﺱ( = ٢ﺱ‬
‫ط ﺩ)ﺱ( = ١ – ﺱ‬

‫.......................................‬

‫ى ﺩ)ﺱ( = )ﺱ – ٢( )ﺱ + ٣(‬

‫.......................................‬

‫......................................‬

‫ل ﺩ)ﺱ( = ﺱ٢– ﺱ – ٢‬

‫.......................................‬

‫.......................................‬

‫ن ﺩ)ﺱ( = - ٤ ﺱ٢ + ٠١ ﺱ – ٥٢‬

‫.......................................‬

‫٢‬

‫.......................................‬
‫.......................................‬

‫٢‬

‫ك ﺩ)ﺱ( = )٢ ﺱ – ٣(‬
‫م ﺩ)ﺱ( = ﺱ٢– ٨ ﺱ + ٦١‬
‫٢‬

‫.......................................‬

‫11 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ)ﺱ( = ﺱ٢ – ٩ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ] - ٣، ٤ [، ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ)ﺱ(.‬
‫21 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ)ﺱ( = – ﺱ٢ + ٢ ﺱ + ٤ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]- ٣، ٥[، ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ)ﺱ(.‬
‫31 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ)ﺱ( = ﺱ + ١، ﺭ)ﺱ( = ١ – ﺱ٢ ﻓﻌﻴﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺘﻰ ﺗﻜﻮﻥ ﻓﻴﻬﺎ ﺍﻟﺪﺍﻟﺘﺎﻥ‬
‫ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ.‬
‫ً‬

‫¯‬

‫¯‬

‫ﺗﺠﻌﻞ ﺩ)ﺱ( = ٠‬
‫ﺱ=-١‬
‫ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ∞]،‬
‫ﺗﺠﻌﻞ ﺭ)ﺱ( = ٠‬
‫ﺱ=!١‬
‫ﺭ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ١]‬
‫ﻟﺬﻟﻚ ﻓﺈﻥ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺗﻜﻮﻧﺎﻥ ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫ً‬
‫[- ١، ∞] ∪ [- ١، ١] = [- ١، ∞]‬

‫ﺗﺠﻌﻞ ﺩ)ﺱ( = ٠‬
‫ﺱ=-١‬
‫ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ∞]،‬
‫ﺗﺠﻌﻞ ﺭ)ﺱ( = ٠‬
‫ﺱ=!١‬
‫ﺭ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ١]‬
‫ﻟﺬﻟﻚ ﻓﺈﻥ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺗﻜﻮﻧﺎﻥ ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬
‫ً‬
‫[- ١، ∞] ∩ [- ١، ١] = [- ١، ١]‬

‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﻳﻜﻮﻥ ﺻﺤﻴﺤﺎ? ﻣﺜﻞ ﻛﻼ ﻣﻦ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺑﻴﺎﻧﻴﺎ ﻭﺗﺄﻛﺪ ﻣﻦ ﺻﺤﺔ ﺍﻹﺟﺎﺑﺔ.‬
‫ً ِّ ًّ‬
‫ًّ‬
‫..................................................................................................................................................................................................................................‬

‫41 ﻣﻨﺎﺟﻢ ﺍﻟﺬﻫﺐ: ﻓﻰ ﺍﻟﻔﺘﺮﺓ ﻣﻦ ﻋﺎﻡ ٠٩٩١ ﺇﻟﻰ ٠١٠٢ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺃﺣﺪ ﻣﻨﺎﺟﻢ ﺍﻟﺬﻫﺐ ﻣﻘﺪﺭﺍ ﺑﺎﻷﻟﻒ ﺃﻭﻗﻴﺔ‬
‫ً‬
‫ﻳﺘﺤﺪﺩ ﺑﺎﻟﺪﺍﻟﺔ ﺩ : ﺩ)ﻥ( = ٢١ ﻥ٢ - ٦٩ ﻥ + ٠٨٤ ﺣﻴﺚ ﻥ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ، ﺩ)ﻥ( ﺍﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ‬
‫: ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺩﺍﻟﺔ ﺍﻹﻧﺘﺎﺝ ﺩ. ...........................................................................................................................................................‬
‫: ﺧﻼﻝ ﺍﻷﻋﻮﺍﻡ ﻣﻦ ٠٩٩١ﺇﻟﻰ ٠١٠٢ ﻓﻰ ﺃﻯ ﺍﻷﻋﻮﺍﻡ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ ﻳﺘﻨﺎﻗﺺ? .................................................‬
‫: ﺧﻼﻝ ﺍﻷﻋﻮﺍﻡ ﻣﻦ ٠٩٩١ﺇﻟﻰ ٠١٠٢ ﻓﻰ ﺃﻯ ﺍﻷﻋﻮﺍﻡ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ ﻳﺘﺰﺍﻳﺪ? ....................................................‬

‫‪M‬‬

‫−‬
‫ﻣﺘﺒﺎﻳﻨﺎت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ‬

‫1-6‬

‫‪Quadratic Inequalities‬‬
‫¯‬

‫1 ﺱ٢ ‪٩ H‬‬

‫:‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫2 ﺱ٢ - ١ ‪٠ H‬‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫3 ٢ﺱ – ﺱ٢ > ٠‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫4 ﺱ٢ + ٥ ‪١ H‬‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫5 )ﺱ - ٢( )ﺱ - ٥( > ٠‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫6 ﺱ )ﺱ + ٢( - ٣ ‪٠ H‬‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫7 )ﺱ - ٢(٢ ‪٥ - H‬‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫8 ٥ – ٢ﺱ ‪ H‬ﺱ‬

‫٢‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫9 ﺱ٢ ‪ ٦ G‬ﺱ – ٩‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫01 ٣ ﺱ٢ ‪ ١١ H‬ﺱ + ٤‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫11 ﺱ٢ - ٤ ﺱ + ٤ ‪٠ G‬‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫21 ٧ + ﺱ٢ - ٤ ﺱ > ٠‬

‫..........................................................................................................................................................................‬
‫..........................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫‪k‬‬
‫‪:IÉ£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬
‫1 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ ﺱ + ٩ = ٠ ﻓﻰ ﺡ ﻫﻰ :‬
‫ﺟ }-٣، ٣{‬
‫ب }٣{‬
‫أ }-٣{‬

‫..............................................................................................................‬

‫2 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٤ = ٠ ﻫﻰ :‬
‫ب }٢{‬
‫أ }-٢{‬
‫3 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ )١ – ﺕ(٤ ﻫﻮ :‬
‫ب ٤‬
‫أ -٤‬

‫د ‪z‬‬

‫............................................................................................................................................‬

‫ﺟ }-٢، ٢{‬

‫د }-٢ﺕ، ٢ﺕ{‬

‫...................................................................................................................................................‬

‫ﺟ -٤ ﺕ‬

‫4 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ + ﻙ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻭﻣﺨﺘﻠﻔﻴﻦ ﻓﺈﻥ:‬
‫ﺟ ﻙ=٤‬
‫ب ﻙ>٤‬
‫أ ﻙ<٤‬

‫د ٤ﺕ‬
‫..................................................................................‬

‫5 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢١ﺱ + ﻡ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﻓﺈﻥ ﻡ ﺗﺴﺎﻭﻯ:‬
‫ﺟ ٦‬
‫ب -٦‬
‫أ -٦٣‬

‫د ﻙ‪٤G‬‬
‫..............................................................................‬

‫د ٦٣‬

‫6 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ٢ – ٣ﺕ ، ٢ + ٣ﺕ ﻫﻰ :‬
‫أ ﺱ٢ + ٤ﺱ + ٣١ = ٠ ب ﺱ٢ – ٤ﺱ + ٣١ = ٠ ﺟ ﺱ٢ + ٤ﺱ – ٣١ = ٠ د ﺱ٢ – ٤ﺱ – ٣١ = ٠‬

‫...........................................................................................................‬

‫7 ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ : ]- ٢ ، ٤[ # ‪ I‬ﺣﻴﺚ ﺩ)ﺱ( = ٢ – ﺱ ﻓﺈﻥ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺳﺎﻟﺒﺔ ﻓﻰ:‬
‫د [٢ ، ٤[‬
‫ﺟ ]٢ ، ٤[‬
‫ب ]- ٢ ، ٢[‬
‫أ ]-٢ ، ٢]‬
‫8 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ) ﻡ + ٢( ﺱ + ٣ = ٠ ﻣﻌﻜﻮﺳﺎ ﺟﻤﻌﻴﺎ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ﻡ ﺗﺴﺎﻭﻯ:‬
‫ً‬
‫ًّ‬
‫د‬
‫٣‬
‫ﺟ ٢‬
‫ب -٢‬
‫أ -٣‬
‫9 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ ﺱ٢ + ٧ ﺱ + ﻙ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ﻙ ﺗﺴﺎﻭﻯ:‬
‫د ٧‬
‫ﺟ ٢‬
‫ب -٢‬
‫أ -٧‬
‫01 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺱ٢ + ﺱ – ٢ > ٠ ﻫﻰ :‬
‫ب ]- ٢ ، ١[‬
‫أ [- ٢ ، ١]‬

‫ﺟ ﺡ – ]-٢ ، ١[‬

‫د ﺡ – [-٢ ، ١]‬

‫‪O á«©«HôJ ádGód ≈fÉ«ÑdG π«ãªàdG πHÉ≤ªdG πμ°ûdG πãªj :Ék«fÉK‬‬
‫11 ﺃﻛﻤﻞ ﻣﺎﻳﺄﺗﻰ :‬
‫أ ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﻫﻮ .............................................................................................‬
‫ب‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ ﺩ = ............................................................................‬
‫ﺟ‬
‫ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ )ﺱ( = ٠ .............................................................‬
‫د ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ)ﺱ( = ٠ ﻫﻰ ..................................................‬
‫ﻫ ﺩ)ﺱ( < ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ...............................................................................‬
‫و‬
‫ﺩ)ﺱ( > ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ...............................................................................‬
‫ز‬
‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = ..................................................................................‬
‫‪M‬‬

‫−‬

‫−‬
‫−‬
‫−‬
‫−‬
‫−‬

‫−‬

‫−‬

‫− −‬
‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫21 ﺍﻛﺘﺐ ﻗﺎﻋﺪﺓ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﻰ ﺗﻤﺮ ﺑﺎﻟﻨﻘﺎﻁ )- ٣، ٠( ، )٢، ٠( ، )٢، ١(‬
‫..................................................................................................................................................................................................................................‬

‫31 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ :‬

‫أ ﺍﻛﺘﺐ ﻧﻘﺎﻁ ﺗﻘﺎﻃﻊ ﻣﻨﺤﻨﻰ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﻰ ﻗﺎﻋﺪﺗﻬﺎ ﺹ = ﺱ٢ ، ﺹ = ﺱ‬
‫.......................................................................................................................................................................................................................‬

‫ب ﺍﻛﺘﺐ ﻧﻘﺎﻁ ﺗﻘﺎﻃﻊ ﻣﻨﺤﻨﻰ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﻰ ﻗﺎﻋﺪﺗﻬﺎ ﺹ = - ﺱ٢، ﺹ = - ﺱ ﻣﺎﺫﺍ ﺗﻼﺣﻆ ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬
‫.......................................................................................................................................................................................................................‬

‫‪k‬‬
‫‪á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬
‫41 ﺑﻴﻦ ﻧﻮﻉ ﺟﺬﺭﻯ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﺄﺗﻰ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ.‬
‫ب )ﺱ – ١(٢ = ٤‬
‫أ ﺱ٢ – ٢ﺱ = ٠‬
‫........................................................‬

‫د ﺱ٢ + ٣ﺱ – ٨٢ = ٠‬
‫........................................................‬

‫ﺟ ﺱ٢ – ٦ ﺱ+ ٩ = ٠‬
‫........................................................‬

‫........................................................‬

‫ﻫ ٦ﺱ )ﺱ – ١( = ٦ – ﺱ‬
‫........................................................‬

‫51 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ.‬
‫ً‬
‫ب ﺱ٢ – ٣)ﺱ -٢( = ٥‬
‫أ ﺱ٢ + ٤ﺱ + ٢ = ٠‬
‫........................................................‬

‫........................................................‬

‫61 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ .‬
‫ﺍﻟﻤﺮ‬
‫ب ﺱ٢ + ٢ﺱ + ٢ = ٠‬
‫أ ﺱ٢ + ٩ = ٠‬
‫........................................................‬

‫ﺟ ﺱ٢ + ٤ﺱ + ٥ = ٠‬

‫........................................................‬

‫71 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ ،C‬ﺏ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬
‫أ )٧ – ٣ﺕ( – )٢ + ﺕ( = ‪ + C‬ﺏ ﺕ‬
‫ﺟ ٢ ٠١ﺕ = ‪ + C‬ﺏ ﺕ‬
‫+‬

‫........................................................‬

‫ب )٢ – ٥ﺕ()٣ + ﺕ( = ‪ + C‬ﺏ ﺕ‬
‫‬‫د ٦١ -٤ﺕ = ‪ + C‬ﺏ ﺕ‬
‫ﺕ‬

‫81 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻡ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬
‫٢‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ + ﻡ ﺱ + ٨١ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ..............................................................................................‬
‫٢‬
‫ب‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ + ٣ ﺱ + ﻙ = ٠ ﺿﻌﻒ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ..............................................................‬
‫91 ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬
‫أ ﺩ)ﺱ( = ﺱ٢ – ٢ ﺱ – ٨‬
‫........................................................‬

‫02 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻵﺗﻴﺔ :‬
‫أ ﺱ٢ – ﺱ – ٢١ < ٠‬
‫........................................................‬

‫¯‬

‫−‬

‫¯‬

‫ب ﺩ)ﺱ( = ٤ – ٣ﺱ – ﺱ‬
‫........................................................‬

‫ب ﺱ٢ – ٧ﺱ + ٠١ ‪٠ H‬‬
‫........................................................‬

‫٢‬
‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬
‫‪k‬‬
‫‪: Oó©àe øe QÉ«àNC’G :’hCG‬‬
‫1 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ = -٤ ﻓﻰ ﺡ ﻫﻰ:‬
‫ب }٢{‬
‫أ }-٢{‬
‫2 ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺱ٢ + ٩ < ٦ﺱ ﻓﻰ ﺡ ﻫﻰ:‬
‫ب ﺡ – }٣{‬
‫أ ﺡ‬

‫.......................................................................................................................‬

‫ﺟ }-٢، ٢{‬

‫د ‪z‬‬

‫............................................................................................................................................‬

‫ﺟ [- ٣، ٣]‬

‫3 ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٥ﺱ + ٣ = ٠‬
‫أ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ ب ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ‬

‫د ﺡ – ]-٣، ٣[‬

‫......................................................................................................................................................‬

‫ﺟ ﻛﺒﺎﻥ‬
‫ﻣﺮ‬

‫4 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ )١ + ﺕ(، )١ – ﺕ( ﻫﻰ :‬
‫أ ﺱ٢ – ٢ﺱ + ٢ = ٠ ب ﺱ٢ + ٢ﺱ – ٢ = ٠ ﺟ ﺱ٢ + ٢ﺱ + ٢ = ٠‬

‫د ﻛﺒﺎﻥ ﻭ ﻣﺘﺮﺍﻓﻘﺎﻥ‬
‫ﻣﺮ‬

‫.........................................................................................................‬

‫د ﺱ٢ – ٢ﺱ – ٢ = ٠‬

‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫5 ﺇﺫﺍ ﻛﺎﻥ )‪(٣ + C‬ﺱ٢ + )٢ – ‪ (C‬ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫أ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻣﻌﻜﻮﺱ ﺟﻤﻌﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬
‫.......................................................................................................................................................................................................................‬

‫ب ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻳﺴﺎﻭﻯ ٦.‬
‫.......................................................................................................................................................................................................................‬

‫6‬

‫٢ ٢‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ﻡ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬
‫.......................................................................................................................................................................................................................‬

‫ب ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٨ – ٢ﺱ – ﺱ‬

‫٢‬

‫.......................................................................................................................................................................................................................‬

‫7‬

‫أ ﺃﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ = ٥ﺱ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻰ ﺡ‬
‫ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻋﺸﺮﻳﺔ.‬
‫ً‬
‫.........................................................................................................................................................................................................................‬

‫ب ﺃﻭﺟﺪ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ : ﺱ٢ – ٥ﺱ – ٤١ ‪٠ H‬‬
‫.......................................................................................................................................................................................................................‬

‫8 ﺗﻄ ﻴﻘﺎﺕ ﻓﻴ ﺎﺋﻴﺔ: ﺃُﻃْﻠﻖ ﺻﺎﺭﻭﺥ ﺭﺃﺳﻴﺎ ﺇﻟﻰ ﺃﻋﻠﻰ ﺑﺴﺮﻋﺔ ٨٩ ﻣﺘﺮﺍ/ﺛﺎﻧﻴﺔ، ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻤﺴﺎﻓﺔ‬
‫ًّ‬
‫ً‬
‫٢‬
‫ﺍﻟﻤﻘﻄﻮﻋﺔ ﻑ ﺑﺎﻟﻤﺘﺮ ﻭﺍﻟﺰﻣﻦ ﻥ ﺑﺎﻟﺜﺎﻧﻴﺔ ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ : ﻑ = ٨٩ ﻥ – ٩٫٤ ﻥ ﻓﺄﻭﺟﺪ :‬
‫أ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻰ ﻳﻘﻄﻌﻬﺎ ﺍﻟﺼﺎﺭﻭﺥ ﻓﻰ ﺛﺎﻧﻴﺘﻴﻦ. ............................................................................................................................‬
‫ب ﺍﻟﺰﻣﻦ ﺍﻟﺬﻯ ﻳﺴﺘﻐﺮﻗﻪ ﺍﻟﺼﺎﺭﻭﺥ ﺣﺘﻰ ﻳﻘﻄﻊ ﻣﺴﺎﻓﺔ ٤٫٠٧٤ ﻣﺘﺮﺍ. ﺑﻤﺎ ﺗﻔﺴﺮ ﻭﺟﻮﺩ ﺇﺟﺎﺑﺘﻴﻦ?‬
‫ً‬
‫‪M‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬
‫1 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ٣ﺱ٢ + ٤ﺱ + ﻙ = ٠ ﺟﺬﺭﻳﻦ :‬
‫أ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺘﺴﺎﻭﻳﻴﻦ ......................................‬
‫ب‬
‫ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ......................................‬
‫ﻛﺒﻴﻦ ......................................‬
‫ﺟ ﻣﺮ‬
‫2 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ:‬
‫٢‬
‫أ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ – ﻙ ﺱ + ﻙ + ٢ = ٠ ﺿﻌﻒ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ. .......................................................................‬
‫٢‬
‫ب‬
‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ – ﻙ ﺱ + ٨ = ٠ ﻳﺰﻳﺪ ﻋﻦ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ﺑﻤﻘﺪﺍﺭ ٢. ......................................................‬
‫ﺟ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ﻙ ﺱ + ٣ = ٠ ﻳﺰﻳﺪ ﻋﻦ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﺑﻤﻘﺪﺍﺭ ١.‬
‫3 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ = ٠ ﻓﺄﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ :‬
‫ﺟ ١ ١‬
‫د ﻝ + ﻡ، ﻝ ﻡ‬
‫ب ﻝ + ١، ﻡ + ١‬
‫أ ٣ ﻝ، ٣ ﻡ‬
‫ﻝ، ﻡ‬
‫..................................................................................................................................................................................................................................‬

‫١ ١‬
‫4 ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ﻡ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٦ﺱ٢ – ٥ ﺱ +١ = ٠ ﻓﻜﻮﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬
‫..................................................................................................................................................................................................................................‬

‫5 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢– ٤ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]- ٣،٣[ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ ﻓﻰ ﻫﺬه ﺍﻟﻔﺘﺮﺓ.‬
‫6 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٦ – ٥ﺱ – ٤ﺱ٢ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]-٣،٢[ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ ﻓﻰ ﻫﺬه ﺍﻟﻔﺘﺮﺓ.‬
‫7 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻠﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻵﺗﻴﺔ:‬
‫ﺟ )ﺱ - ٢(٢ ‪٩ - G‬‬
‫ب ﺱ٢ - ٦ ﺱ < - ٥‬
‫أ ﺱ٢ + ٤ ﺱ + ٤ > ٠‬
‫.................................................................‬

‫د ٣ – ٢ﺱ ‪ G‬ﺱ‬

‫..................................................................‬

‫.................................................................‬

‫و ٢ﺱ٢ - ٧ﺱ ‪١٥ H‬‬

‫ﻫ ﺱ٢ ‪١٠ H‬ﺱ – ٥٢‬

‫٢‬

‫.................................................................‬

‫..................................................................‬

‫.................................................................‬

‫8 ﺃﻋﻤﺎﻝ ﺗﺠﺎ ﺔ: ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﻤﻨﺘﺠﺔ ﻭﺍﻟﻤﺒﺎﻋﺔ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ ﻓﻰ ﺍﻷﺳﺒﻮﻉ ﻫﻰ ﺱ ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ‬
‫ﻛﺎﻥ ﺳﻌﺮ ﺑﻴﻊ ﺍﻟﻮﺣﺪﺓ ﻫﻮ ﻉ ﺣﻴﺚ ﻉ = ٢ – ﺱ، ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺘﻜﺎﻟﻴﻒ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻼﺯﻣﺔ ﻹﻧﺘﺎﺝ ﺱ ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ‬
‫ﻭ‬
‫ﻓﻰ ﺍﻷﺳﺒﻮﻉ ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺕ = )٣٫٠ + ٥٫٠ﺱ( ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ ﻓﺄﻭﺟﺪ :‬
‫أ ﺩﺍﻟﺔ ﺍﻹﻳﺮﺍﺩ ﺍﻟﻜﻠﻰ )ﻯ( ..................................................................‬
‫ب‬
‫ﺩﺍﻟﺔ ﺍﻟﺮﺑﺢ )ﺭ( ..................................................................‬
‫ﺟ‬
‫ﺃﻭﺟﺪ ﺱ ﻋﻨﺪ ﻣﺴﺘﻮﻯ ﺭﺑﺢ ٢٫٠ ﻣﻠﻴﻮﻥ ﺟﻨﻴﻪ. ........................................................................................................................‬
‫9 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ ٣ + ١ = C‬ﺕ  ،  ﺏ = - ١ – ﺕ، ﺟـ = - ٢ - ٣ + ﺕ ﻓﺄﺛﺒﺖ ﺃﻥ: ﺟـ - ﺏ = )‪ – C‬ﺏ(ﺕ‬

‫:‬

‫‪M‬‬
‫ﺭﻗﻢ ﺍﻟﺴﺆﺍﻝ‬

‫١‬
‫ﺃ، ﺏ‬
‫١-٣‬

‫ﺭﻗﻢ ﺍﻟﺪﺭﺱ‬
‫¯‬

‫٢‬
‫ﺟـ‬
‫١- ٢‬

‫−‬

‫¯‬

‫٣‬

‫٤‬

‫٥‬

‫٦‬

‫٧‬

‫٨‬

‫٩‬

‫١- ٤‬

‫١-٤‬

‫١-٤‬

‫١-٥‬

‫١- ٥‬

‫١-٦‬

‫١-١‬

‫١-٢‬
‫-‬

‫‪IóMƒdG‬‬

‫2‬

‫ﺍﻟﺘﺸﺎﺑﻪ‬
‫‪Similarity‬‬

‫دروس اﻟﻮﺣﺪة‬

‫ﺍﻟﺪﺭﺱ )٢ - ١(: ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻌﺎﺕ.‬
‫ﺍﻟﺪﺭﺱ )٢ - ٢(: ﺗﺸﺎﺑﻪ ﺍﻟﻤﺜﻠﺜﺎﺕ.‬
‫ﺍﻟﺪﺭﺱ )٢ - ٣(: ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ.‬
‫ﺍﻟﺪﺭﺱ )٢ - ٤(: ﺗﻄﺒﻴﻘﺎﺕ ﺍﻟﺘﺸﺎﺑﻪ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ.‬

‫‪ïM‬‬

‫−‬
‫ﺗﺸﺎﺑﻪ اﻟﻤﻀﻠﻌﺎت‬

‫2-1‬

‫‪Similarity of Polygons‬‬

‫1 ﺑﻴﻦ ﺃﻳﺎ ﻣﻦ ﺃﺯﻭﺍﺝ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﻣﺘﺸﺎﺑﻬﺔ، ﻭﺍﻛﺘﺐ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﻤﺘﺸﺎﺑﻬﺔ ﺑﺘﺮﺗﻴﺐ‬
‫ًّ‬
‫ﺍﻟﺮﺅﻭﺱ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ، ﻭﺣﺪﺩ ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(.‬
‫‪C‬‬

‫ب‬

‫أ‬
‫‪E‬‬

‫‪C‬‬

‫‪E c‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫...........................................................................................‬

‫...........................................................................................‬

‫...........................................................................................‬

‫.................................................................................‬

‫ﺟ‬

‫د‬

‫‪C‬‬

‫‪E‬‬

‫‪C‬‬
‫‪E‬‬

‫...........................................................................................‬

‫...........................................................................................‬

‫...........................................................................................‬

‫...........................................................................................‬

‫2 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺹ ﻉ ﻝ، ﺃﻛﻤﻞ:‬
‫أ ‪C‬ﺏ‬
‫ﺏ ﺟـ = ﺹ ﻉ‬
‫ﺟ ﺏ ﺟـ + ﺹ ﻉ‬
‫ﺹﻉ =‬
‫................‬

‫ب ‪C‬ﺏ*ﻉﻝ=ﺱﺹ*‬
‫................ + ﻝ ﺱ‬
‫ﻝﺱ‬

‫ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ‬
‫د‬
‫ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ.........................‬

‫.........................‬

‫.........................‬

‫ﺱﺹ‬
‫=‬
‫‪C‬ﺏ‬

‫3 ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺹ ﻉ ﻝ. ﻓﺈﺫﺍ ﻛﺎﻥ: ‪ C‬ﺏ = ٢٣ﺳﻢ، ﺏ ﺟـ = ٠٤ﺳﻢ، ﺱ ﺹ = ٣ﻡ - ١،‬
‫ﺹ ﻉ = ٣ﻡ +١. ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻡ ﺍﻟﻌﺪﺩﻳﺔ. ................................................................................................................................................‬
‫4 ﻣﺴﺘﻄﻴﻞ ﺑﻌﺪﺍه ٠١ﺳﻢ، ٦ﺳﻢ. ﺃﻭﺟﺪ ﻣﺤﻴﻂ ﻭﻣﺴﺎﺣﺔ ﻣﺴﺘﻄﻴﻞ ﺁﺧﺮ ﻣﺸﺎﺑﻪ ﻟﻪ ﺇﺫﺍ ﻛﺎﻥ:‬
‫ب ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ ٤٫٠‬
‫أ ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ ٣‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫‪ï‬‬

‫5 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﻤﻀﻠﻊ ﻡ١ + ﺍﻟﻤﻀﻠﻊ ﻡ٢ + ﺍﻟﻤﻀﻠﻊ ﻡ٣.‬
‫ﺃﻭﺟﺪ ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﻛﻞ ﻣﻦ ﺍﻟﻤﻀﻠﻊ ﻡ١، ﺍﻟﻤﻀﻠﻊ ﻡ٢ ﻟﻠﻤﻀﻠﻊ ﻡ٣.‬
‫ب‬
‫أ‬

‫...........................................................................................‬

‫...........................................................................................‬

‫...........................................................................................‬

‫...........................................................................................‬

‫6 ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺘﺸﺎﺑﻬﺔ. ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻠﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬
‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬
‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫..................................................................................................................................................................................................................................‬

‫7 ﻋﻠﺒﺔ ﻋﻠﻰ ﺷﻜﻞ ﻣﺴﺘﻄﻴﻞ ﺫﻫﺒﻰ ﻃﻮﻟﻪ ٢٫٦١ﺳﻢ. ﺍﺣﺴﺐ ﻋﺮﺽ ﺍﻟﻌﻠﺒﺔ ﻷﻗﺮﺏ ﺳﻨﺘﻴﻤﺘﺮ.‬
‫..................................................................................................................................................................................................................................‬

‫8 ﻣﺴﺘﻄﻴﻼﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ ﺑﻌﺪﺍ ﺍﻷﻭﻝ ٨ﺳﻢ، ٢١ﺳﻢ، ﻭﻣﺤﻴﻂ ﺍﻟﺜﺎﻧﻰ ٠٠٢ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺍﻟﺜﺎﻧﻰ ﻭﻣﺴﺎﺣﺘﻪ.‬
‫ُ‬
‫..................................................................................................................................................................................................................................‬

‫ﻧﺸﺎط‬

‫9 ﻫﻨﺪﺳﺔ ﻣﻌﻤﺎ ﺔ: ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﺨﻄﻄًﺎ‬
‫ﻹﺣﺪﻯ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺴﻜﻨﻴﺔ ﺑﻤﻘﻴﺎﺱ ﺭﺳﻢ ١ : ٠٥١ ﺃﻭﺟﺪ:‬
‫......................................................‬
‫أ ﺃﺑﻌﺎﺩ ﺣﺠﺮﺓ ﺍﻻﺳﺘﻘﺒﺎﻝ.‬
‫.................................................................‬
‫ب ﺃﺑﻌﺎﺩ ﺣﺠﺮﺓ ﺍﻟﻨﻮﻡ.‬
‫......................................................‬
‫ﺟ ﻣﺴﺎﺣﺔ ﺣﺠﺮﺓ ﺍﻟﻤﻌﻴﺸﺔ.‬
‫د ﻣﺴﺎﺣﺔ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺴﻜﻨﻴﺔ. ......................................................‬

‫‪ïM‬‬

‫−‬

‫¯‬

‫¯‬

‫¯‬
‫‪M‬‬
‫ﺗﺸﺎﺑﻪ اﻟﻤﺜﻠﺜﺎت‬

‫2-2‬

‫‪Similarity Of Triangles‬‬

‫1 ﺍﺫﻛﺮ ﺃﻯ ﺍﻟﺤﺎﻻﺕ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﺍﻟﻤﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﻴﻦ، ﻭﻓﻰ ﺣﺎﻟﺔ ﺍﻟﺘﺸﺎﺑﻪ ﺍﺫﻛﺮ ﺳﺒﺐ ﺍﻟﺘﺸﺎﺑﻪ.‬
‫ﺟ‬
‫ب‬
‫‪C‬‬
‫‪C‬‬
‫‪C‬‬
‫أ‬
‫‪c‬‬
‫‪E‬‬

‫‪E‬‬

‫‪E‬‬
‫‪c‬‬

‫................................................................‬

‫د‬

‫................................................................‬

‫................................................................‬

‫‪E‬‬

‫و‬

‫ﻫ‬

‫‪C‬‬

‫................................................................‬

‫................................................................‬

‫2 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ:‬
‫‪C‬‬
‫ب‬
‫أ‬

‫‪C‬‬

‫................................................................‬

‫ﺟ‬

‫‪E‬‬
‫‪C‬‬

‫‪E‬‬

‫‪E‬‬
‫................................................................‬

‫................................................................‬

‫‪C‬‬

‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ‪ = E C‬ﺏ ﺟـ‬

‫3‬

‫: ﺃﻛﻤﻞ: 9‪ C‬ﺏ ﺟـ + 9 ........................... + 9‬

‫...........................‬

‫: ﺇﺫﺍ ﻛﺎﻥ ﺱ ، ﺹ، ﻉ، ﻝ،ﻡ، ﻥ ﻫﻰ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ‬
‫ﻭﺍﻟﻤﻌﻴﻨﺔ ﺑﺎﻟﺸﻜﻞ: ﻓﺄﻛﻤﻞ ﺍﻟﺘﻨﺎﺳﺒﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬
‫ﺱ‬
‫ﺟ ﻡ‬
‫ﻝ‬
‫ب ﺱ‬
‫ﻡ‬
‫ﺱ‬
‫أ‬
‫ﻝ = ...............‬
‫ﻉ = ...............‬
‫ﻉ = ...............‬
‫...............‬

‫ﺱ‬
‫ﻫ ............... =‬
‫ﺱ‬

‫¯‬

‫و‬

‫−‬

‫¯‬

‫...............‬

‫ﺹ =‬

‫ﺹ‬
‫...............‬

‫................................................................‬

‫...............‬

‫ﻝ‬
‫ز ﺱ =‬
‫ﻉ‬

‫‪E‬‬
‫...............‬

‫د ﻝ‬
‫............... = ﻝ‬
‫...............‬
‫ﻝ‬
‫ح ﺱ =‬
‫ﺹ‬
‫‪ï‬‬

‫4 ‪ C‬ﺏ ، ‪ E‬ﺟـ ﻭﺗﺮﺍﻥ ﻓﻰ ﺩﺍﺋﺮﺓ، ‪ C‬ﺏ ∩ ‪ E‬ﺟـ = }ﻫـ{ ﺣﻴﺚ ﻫـ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﺏ = ٤ﺳﻢ، ‪ E‬ﺟـ = ٧ﺳﻢ،‬
‫ﺏ ﻫـ = ٦ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ 9‪ E C‬ﻫـ + 9ﺟـ ﺏ ﻫـ، ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ﻫـ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫5 ‪ C‬ﺏ ﺟـ، ‪ E‬ﻫـ ﻭ ﻣﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ. ﺭﺳﻢ ‪ C‬ﺱ = ﺏ ﺟـ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ﺱ، ﻭﺭﺳﻢ ‪ E‬ﺹ = ﻫـ ﻭ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ﺹ.‬
‫ﺃﺛﺒﺖ ﺃﻥ ﺏ ﺱ * ﺹ ﻭ = ﺟـ ﺱ * ﺹ ﻫـ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫6 ﻓﻰ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ، ‪ C‬ﺟـ < ‪ C‬ﺏ، ﻡ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ Cc)X‬ﺏ ﻡ( = ‪c) X‬ﺟـ( ﺃﺛﺒﺖ ﺃﻥ )‪ C‬ﺏ(٢ = ‪ C‬ﻡ * ‪ C‬ﺟـ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ ،C‬ﺭﺳﻢ‬

‫‪EC‬‬

‫ﺏ‪E‬‬

‫= ﺏ ﺟـ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ‪ .E‬ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﺟـ = ١ ، ‪ ٢ ٦ = E C‬ﺳﻢ‬
‫٢‬

‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺏ ‪ C ، E‬ﺏ ، ‪ C‬ﺟـ .‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫8‬

‫:‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪،C‬‬

‫‪C‬‬

‫‪ = E C‬ﺏ ﺟـ ، ‪ E‬ﻫـ = ‪ C‬ﺏ ، ‪ E‬ﻭ = ‪ C‬ﺟـ‬

‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9‪ E C‬ﻫـ + 9ﺟـ ‪ E‬ﻭ‬
‫ب ﻣﺴﺎﺣﺔ ﺍﻟﻤﺴﺘﻄﻴﻞ ‪ C‬ﻫـ ‪ E‬ﻭ = ‪C‬ﻫـ * ﻫـ ﺏ * ‪ C‬ﻭ * ﻭ ﺟـ‬

‫‪E‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻣﻨﻔﺮﺝ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪،C‬‬

‫9‬

‫‪ C‬ﺏ = ‪ C‬ﺟـ. ﺭﺳﻢ‬

‫‪EC‬‬

‫‪C‬‬

‫= ‪ C‬ﺏ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ‪.E‬‬

‫ﺃﺛﺒﺖ ﺃﻥ: ٢)‪ C‬ﺏ(٢ = ﺏ ‪ * E‬ﺏ ﺟـ‬

‫‪E‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫01 ﺗﻌﺒﺮ ﺍﻟﻤﺠﻤﻮﻋﺘﺎﻥ ‪ ،C‬ﺏ ﻋﻦ ﺃﻃﻮﺍﻝ ﺃﺿﻼﻉ ﻣﺜﻠﺜﺎﺕ ﻣﺨﺘﻠﻔﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬
‫ﺍﻛﺘﺐ ﺃﻣﺎﻡ ﻛﻞ ﻣﺜﻠﺚ ﻣﻦ ﺍﻟﻤﺠﻤﻮﻋﺔ ‪ C‬ﺭﻣﺰ ﺍﻟﻤﺜﻠﺚ ﺍﻟﺬﻯ ﻳﺸﺎﺑﻬﻪ ﻣﻦ ﺍﻟﻤﺠﻤﻮﻋﺔ ﺏ‬
‫ﻣﺠﻤﻮﻋﺔ )ﺏ(‬
‫ﻣﺠﻤﻮﻋﺔ )‪(C‬‬
‫‪٥ ، ٤ ، ٢٫٥ C‬‬
‫١ ٦ ، ٦ ، ٦‬
‫ﺏ ٨ ، ٥٫٣١ ، ٤١‬
‫٢ ٥ ، ٧ ، ١١‬
‫ﺟـ ٥٢ ، ٥٣ ، ٥٥‬
‫٣ ٥ ، ٨ ، ٠١‬
‫‪١١ ، ١١ ، ١١ E‬‬
‫٤ ٧ ، ٨ ، ٢١‬
‫ﻫـ ٥٫٣ ، ٤ ، ٦‬
‫٥ ٦١ ، ٧٢ ، ٨٢‬
‫ﻭ ٨ ، ٦ ، ٠١‬
‫ﺯ ٢٣ ، ٤٥ ، ٢٤‬
‫11‬
‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ ، ﺏ ﺟـ = ٩ﺳﻢ ،‬
‫‪E‬‬
‫‪ C‬ﺟـ = ٥٫٧ﺳﻢ ، ‪ E‬ﻧﻘﻄﺔ ﺧﺎﺭﺟﺔ ﻋﻦ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ‬
‫ﺣﻴﺚ ‪ E‬ﺏ = ٤ﺳﻢ ، ‪٥ = C E‬ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9‪ C‬ﺏ ﺟـ + 9‪ E‬ﺏ ‪C‬‬
‫ب ﺏ ‪ C‬ﻳﻨﺼﻒ ‪ E c‬ﺏ ﺟـ‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫ﺃﻛﻤﻞ:‬
‫9 ‪ C‬ﺏ ﺟـ + 9‬
‫ﻭﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ = .............................‬

‫ﺳﻢ‬

‫21‬

‫‪C‬‬

‫...............................‬

‫ﺳﻢ ‪E‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫‪ï‬‬

‫: ‪ C‬ﺏ ﺟـ + ﺱ ﺹ ﻉ، ﻫـ ﻣﻨﺘﺼﻒ ﺏ ﺟـ ،‬

‫31‬

‫‪C‬‬

‫ﻡ ﻣﻨﺘﺼﻒ ﺹ ﻉ ، ﺟـ ‪ C = E‬ﺏ ، ﻉ ﻝ = ﺱ ﺹ ﺃﺛﺒﺖ ﺃﻥ:‬

‫‪E‬‬

‫أ 9‪ C‬ﻫـ ﺟـ + 9ﺱ ﻡ ﻉ‬
‫ب ﺟـ ‪E‬‬
‫‪ C‬ﻫـ‬
‫ﻉﻝ = ﺱﻡ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫41 ‪ C‬ﺏ ﺟـ، ﺱ ﺹ ﻉ ﻣﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ، ﺣﻴﺚ ‪ C‬ﺏ < ‪ C‬ﺟـ، ﺱ ﺹ < ﺱ ﻉ.‬
‫ﻫـ، ﻝ ﻣﻨﺘﺼﻔﻰ ﺏ ﺟـ ، ﺹ ﻉ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ، ﺭﺳﻢ ‪ C‬ﻭ = ﺏ ﺟـ ، ﺱ ﻡ = ﺹ ﻉ‬
‫ﺃﺛﺒﺖ ﺃﻥ 9 ‪ C‬ﻫـ ﻭ + 9 ﺱ ﻝ ﻡ‬
‫..................................................................................................................................................................................................................................‬

‫51 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ﺣﻴﺚ )‪ = ٢(E C‬ﺏ ‪ E * E‬ﺟـ ، ﺏ ‪ = E C * C‬ﺏ ‪ C * E‬ﺟـ ﺃﺛﺒﺖ ﺃﻥ:‬
‫ﺟ ‪ c) X‬ﺏ ‪ C‬ﺟـ( = ٠٩‪c‬‬
‫أ 9 ‪ C‬ﺏ ‪9 + E‬ﺟـ ‪E C‬‬
‫ب ‪ = E C‬ﺏ ﺟـ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫61 ﻳﺒﻴﻦ ﺍﻟﻤﺨﻄﻂ ﺍﻟﻤﻘﺎﺑﻞ ﻣﻮﻗﻊ ﻣﺤﻄﺔ ﺧﺪﻣﺔ ﻭﺗﻤﻮﻳﻦ ﺳﻴﺎﺭﺍﺕ ﻳﺮﺍﺩ‬
‫ﺇﻗﺎﻣﺘﻬﺎ ﻋﻠﻰ ﺍﻟﻄﺮﻳﻖ ﺍﻟﺴﺮﻳﻊ ﻋﻨﺪ ﺗﻘﺎﻃﻊ ﻃﺮﻳﻖ ﺟﺎﻧﺒﻰ ﻳﺆﺩﻯ ﺇﻟﻰ‬
‫ﺍﻟﻤﺪﻳﻨﺔ ﺟـ ﻭﻋﻤﻮﺩﻳﺎ ﻋﻠﻰ ﺍﻟﻄﺮﻳﻖ ﺍﻟﺴﺮﻳﻊ ﺑﻴﻦ ﺍﻟﻤﺪﻳﻨﺘﻴﻦ ‪ ،C‬ﺏ.‬
‫ًّ‬
‫أ ﻛﻢ ﻳﻨﺒﻐﻰ ﺃﻥ ﺗﺒﻌﺪ ﺍﻟﻤﺤﻄﺔ ﻋﻦ ﺍﻟﻤﺪﻳﻨﺔ ﺟـ?‬
‫ب ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺪﻳﻨﺘﻴﻦ ﺏ، ﺟـ?‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫ﻧﺸﺎط‬

‫ﺍﺳﺘﺨﺪﺍﻡ ﺑﺮﻧﺎﻣﺞ ﺧﺮﺍﺋﻂ)‪ (Google Earth‬ﻟﺤﺴﺎﺏ ﺃﻗﺼﺮ ﺑﻌﺪ ﺑﻴﻦ ﻋﻮﺍﺻﻢ ﻣﺤﺎﻓﻈﺎﺕ ﺟﻤﻬﻮﺭﻳﺔ ﻣﺼﺮ ﺍﻟﻌﺮﺑﻴﺔ‬

‫‪ïM‬‬

‫−‬
‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ‬

‫2-3‬

‫‪The Relation between the Area of two Similar Polygons‬‬

‫1 ﺃﻛﻤﻞ:‬

‫أ ﺇﺫﺍ ﻛﺎﻥ 9‪ C‬ﺏ ﺟـ + 9ﺱ ﺹ ﻉ، ﻛﺎﻥ ‪ C‬ﺏ = ٣ ﺱ ﺹ ﻓﺈﻥ ‪9) W‬ﺱ ﺹ ﻉ( = ...............................‬
‫ﻭ‬
‫‪ C9) W‬ﺏ ﺟـ(‬

‫ب ﺇﺫﺍ ﻛﺎﻥ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ E‬ﻫـ ﻭ، ‪ C 9) W‬ﺏ ﺟـ( = ٩ ‪ E 9)W‬ﻫـ ﻭ( ﻛﺎﻥ ‪ E‬ﻫـ = ٤ﺳﻢ ﻓﺈﻥ:‬
‫ﻭ‬
‫‪ C‬ﺏ = .............................. ﺳﻢ‬
‫2 ﺍﺩﺭﺱ ﻛﻼ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺣﻴﺚ ﻙ ﺛﺎﺑﺖ ﺗﻨﺎﺳﺐ، ﺛﻢ ﺃﻛﻤﻞ:‬
‫ًّ‬
‫ب‬
‫‪C‬‬
‫أ‬

‫‪C‬‬

‫‪E‬‬

‫‪E‬‬

‫‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{‬
‫٢‬
‫‪ C 9)W‬ﺟـ ﻫـ( = ٠٠٩ ﺳﻢ‬
‫٢‬
‫ﻓﺈﻥ: ‪ E 9)W‬ﻫـ ﺏ( = ............................... ﺳﻢ‬

‫‪c)X‬ﺏ ‪ C‬ﺟـ( = ٠٩‪ = E C ،c‬ﺏ ﺟـ‬

‫‪ E C 9)W‬ﺟـ( = ٠٨١ ﺳﻢ٢ ﻓﺈﻥ:‬
‫٢‬
‫‪ C 9)W‬ﺏ ﺟـ( = ............................... ﺳﻢ‬

‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C ∋E‬ﺏ ﺣﻴﺚ ‪ ٢ = E C‬ﺏ ‪ ،E‬ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ E‬ﻫـ // ﺏ ﺟـ‬

‫ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ 9 ‪ E C‬ﻫـ = ٠٦ﺳﻢ٢. ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺷﺒﻪ ﺍﻟﻤﻨﺤﺮﻑ ‪ E‬ﺏ ﺟـ ﻫـ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ، ﺭﺳﻤﺖ ﺍﻟﻤﺜﻠﺜﺎﺙ ﺍﻟﻤﺘﺴﺎﻭﻳﺔ ﺍﻷﺿﻼﻉ ‪ C‬ﺏ ﺱ، ﺏ ﺟـ ﺹ، ‪ C‬ﺟـ ﻉ‬
‫ﺃﺛﺒﺖ ﺃﻥ: ‪ C9) W‬ﺏ ﺱ( + ‪9) W‬ﺏ ﺟـ ﺹ( = ‪ C9) W‬ﺟـ ﻉ(.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪C‬ﺏ‬
‫5 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ﺏ ﺟـ = ٤ ، ﺭﺳﻤﺖ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﻤﺎﺭﺓ ﺑﺮﺅﻭﺳﻪ. ﻣﻦ ﻧﻘﻄﺔ ﺏ ﺭﺳﻢ ﺍﻟﻤﻤﺎﺱ ﻟﻬﺬه ﺍﻟﺪﺋﺮﺓ ﻓﻘﻄﻊ‬
‫٣‬
‫‪ C 9) W‬ﺏ ﺟـ( ٧‬
‫‪ C‬ﺟـ ﻓﻰ ﻫـ. ﺃﺛﺒﺖ ﺃﻥ: ‪ C 9) W‬ﺏ ﻫـ( = ٦١‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫‪M‬‬

‫6 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺘﻮﺍﺯﻯ ﺃﺿﻼﻉ ﺱ ∋ ‪ C‬ﺏ ، ﺱ ∌ ‪ C‬ﺏ ﺣﻴﺚ ﺏ ﺱ = ٢ ‪ C‬ﺏ، ﺹ ∋ ﺟـ ﺏ ، ﺹ ∌ ﺟـ ﺏ‬
‫ﺣﻴﺚ ﺏ ﺹ = ٢ ﺏ ﺟـ ، ﺭﺳﻢ ﻣﺘﻮﺍﺯﻯ ﺍﻷﺿﻼﻉ ﺏ ﺱ ﻉ ﺹ ﺃﺛﺒﺖ ﺃﻥ: ‪ C) W‬ﺏ ﺟـ ‪١ = (E‬‬
‫‪) W‬ﺱ ﺏ ﺹ ﻉ( ٤‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ، ﺏ ‪ C = E‬ﺟـ ﻳﻘﻄﻌﺔ ﻓﻰ ‪ ،E‬ﺭﺳﻢ ﻋﻠﻰ ‪ C‬ﺏ ، ﺏ ﺟـ ﺍﻟﻤﺮﺑﻌﺎﻥ‬
‫ُ‬
‫‪ C‬ﺱ ﺹ ﺏ، ﺏ ﻡ ﻥ ﺟـ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ = ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻡ ﻥ ﺟـ‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﺟـ = ٠١ﺳﻢ. ﺃﻭﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﺍﻟﻤﻀﻠﻌﻴﻦ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫8 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C‬ﺏ ، ﺏ ﺟـ ، ‪ C‬ﺟـ ﺃﺿﻼﻉ ﻣﺘﻨﺎﻇﺮﺓ ﻟﺜﻼﺛﺔ ﻣﻀﻠﻌﺎﺕ ﻣﺘﺸﺎﺑﻬﺔ ﻣﺮﺳﻮﻣﺔ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ، ﻭﻫﻰ‬
‫ﺍﻟﻤﻀﻠﻌﺎﺕ ﺑﻴﻦ ‪ ،N ،M‬ﻉ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬
‫ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ‪٤٠ = M‬ﺳﻢ٢، ﻭﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ‪ ٨٥= N‬ﺳﻢ٢، ﻭﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ﻉ = ٥٢١ﺳﻢ٢.‬
‫ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫9 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺮﺑﻊ ﻗﺴﻤﺖ ‪ C‬ﺏ ، ﺏ ﺟـ ، ﺟـ ‪ C E ، E‬ﺑﺎﻟﻨﻘﺎﻁ ﺱ، ﺹ، ﻉ، ﻝ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﺑﻨﺴﺒﺔ ١ : ٣‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫‪ W‬ﺍﻟﻤﺮﺑﻊ ﺱ ﺹ ﻉ ﻝ‬
‫=٥‬
‫ب‬
‫أ ﺍﻟﺸﻜﻞ ﺱ ﺹ ﻉ ﻝ ﻣﺮﺑﻊ‬
‫٨‬
‫‪ W‬ﺍﻟﻤﺮﺑﻊ ‪ C‬ﺏ ﺟـ ‪E‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫01 ﺻﺎﻟﺔ ﺃﻟﻌﺎﺏ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ ﺃﺑﻌﺎﺩﻫﺎ ٨ ﻣﺘﺮ، ٢١ ﻣﺘﺮ، ﺗﻢ ﺗﻐﻄﻴﺔ ﺃﺭﺿﻴﺘﻬﺎ ﺑﺎﻟﺨﺸﺐ، ﻓﻜﻠﻔﺖ ٠٠٢٣ ﺟﻨﻴﻪ.‬
‫ﺍﺣﺴﺐ )ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺘﺸﺎﺑﻪ( ﺗﻜﺎﻟﻴﻒ ﺗﻐﻄﻴﺔ ﺃﺭﺿﻴﺔ ﺻﺎﻟﺔ ﻣﺴﺘﻄﻴﻠﺔ ﺃﻛﺒﺮ ﺑﻨﻔﺲ ﻧﻮﻉ ﺍﻟﺨﺸﺐ ﻭﺑﻨﻔﺲ‬
‫ﺍﻷﺳﻌﺎﺭ، ﺇﺫﺍ ﻛﺎﻥ ﺃﺑﻌﺎﺩﻫﺎ ٤١، ١٢ ﻣﻦ ﺍﻷﻣﺘﺎﺭ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﺸﺎﺑﻪ ﻓﻰ اﻟﺪاﺋﺮة‬

‫2-4‬

‫‪Applications of similarity in the circle‬‬

‫1 ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭ ﺍﻟﺤﺴﺎﺏ ﺍﻟﻌﻘﻠﻰ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ.‬
‫    )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬
‫ﺟ‬
‫ب‬
‫أ‬
‫‪E‬‬

‫‪C‬‬

‫‪C‬‬
‫‪C‬‬

‫‪E‬‬
‫................................................................................‬

‫د‬

‫‪E‬‬
‫................................................................................‬

‫................................................................................‬

‫و‬

‫ﻫ‬

‫‪C‬‬

‫‪E‬‬
‫‪E‬‬

‫‪C‬‬

‫+‬

‫‪E‬‬

‫‪C‬‬

‫................................................................................‬

‫ز‬

‫................................................................................‬

‫ح‬

‫‪E‬‬

‫‪C‬‬

‫‪C‬‬

‫................................................................................‬

‫ى‬

‫ط‬

‫‪E‬‬

‫‪E‬‬

‫................................................................................‬

‫‪C‬‬

‫................................................................................‬

‫ك‬

‫................................................................................‬

‫ل‬
‫‪E‬‬

‫‪E‬‬
‫‪E‬‬
‫‪C‬‬
‫‪C‬‬
‫‪C‬‬
‫................................................................................‬

‫¯‬

‫−‬

‫¯‬

‫................................................................................‬

‫................................................................................‬
‫‪M‬‬

‫¯‬

‫‪ï‬‬

‫2 ﻓﻰ ﺃﻯ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻘﻊ ﺍﻟﻨﻘﻂ ‪ ،C‬ﺏ، ﺟـ، ‪ E‬ﻋﻠﻰ ﺩﺍﺋﺮﺓ ﻭﺍﺣﺪﺓ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬
‫ِّ‬
‫ٍّ‬
‫)ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬
‫ﺟ‬
‫ب‬
‫‪C‬‬
‫‪C‬‬
‫أ‬

‫‪C‬‬
‫‪E‬‬

‫‪E‬‬

‫‪E‬‬

‫....................................................................................................................................................................................................................................................................................‬

‫3 ﻓﻰ ﺃﻯ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ‪ C‬ﺏ ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﺍﻟﻤﺎﺭﺓ ﺑﺎﻟﻨﻘﻂ ﺏ، ﺟـ، ‪.E‬‬
‫ٍّ‬
‫ﺟ‬
‫‪ C‬ب‬
‫‪C‬‬
‫أ‬
‫‪E‬‬

‫٩٢‬

‫‪C‬‬

‫‪E‬‬

‫‪E‬‬

‫..............................................................................................................................................................................................................................................................................................‬

‫ِ‬
‫4 ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ . ﺟـ ∋ ‪ C‬ﺏ ، ﺟـ ∌ ‪ C‬ﺏ ﺭﺳﻢ ﻣﻦ ﺟـ ﺍﻟﻘﻄﻌﺘﺎﻥ ﺟـ ﺱ ، ﺟـ ﺹ ﻣﻤﺎﺳﺘﺎﻥ‬
‫ُ َ‬
‫ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻋﻨﺪ ﺱ، ﺹ. ﺃﺛﺒﺖ ﺃﻥ ﺟـ ﺱ = ﺟـ ﺹ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫.‬

‫5‬
‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻤﺎﺳﺘﺎﻥ ﻋﻨﺪ ﻫـ‬
‫‪ C‬ﺟـ ﻳﻤﺲ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻋﻨﺪ ﺏ، ﻭﻳﻤﺲ ﺍﻟﺪﺍﺋﺮﺓ ﻥ ﻋﻨﺪ ﺟـ،‬
‫‪ C‬ﻫـ ﻳﻘﻄﻊ ﺍﻟﺪﺍﺋﺮﺗﻴﻦ ﻋﻨﺪ ﻭ، ‪ E‬ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ‬
‫ﺣﻴﺚ ‪ C‬ﻭ = ٤ﺳﻢ، ﻭ ﻫـ = ٥ﺳﻢ، ﻫـ ‪٧ = E‬ﺳﻢ.‬
‫ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻣﻨﺘﺼﻒ ‪ C‬ﺟـ‬

‫‪E‬‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫6‬
‫: ﻝ ∋ ﺱ ﺹ ﺣﻴﺚ ﺱ ﻝ = ٤ﺳﻢ،‬
‫ﺹ ﻝ = ٨ﺳﻢ ، ﻡ ∋ ﺱ ﻉ ﺣﻴﺚ ﺱ ﻡ = ٦ﺳﻢ ، ﻉ ﻡ = ٢ﺳﻢ‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9ﺱ ﻝ ﻡ + 9ﺱ ﻉ ﺹ‬
‫ب ﺍﻟﺸﻜﻞ ﻝ ﺹ ﻉ ﻡ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫٥‬
‫7 ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{، ‪ C‬ﻫـ = ٢١ ﺏ ﻫـ، ‪ E‬ﻫـ = ٣ ﻫـ ﺟـ، ﺇﺫﺍ ﻛﺎﻥ ﺏ ﻫـ = ٦ﺳﻢ، ﺟـ ﻫـ = ٥ﺳﻢ.‬
‫٥‬
‫ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﻂ ‪ ،C‬ﺏ، ﺟـ، ‪ E‬ﺗﻘﻊ ﻋﻠﻰ ﺩﺍﺋﺮﺓ ﻭﺍﺣﺪﺓ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫8 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ﺣﻴﺚ ‪ E‬ﺏ = ٥ﺳﻢ، ‪ E‬ﺟـ = ٤ﺳﻢ. ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺟـ = ٦ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ ‪ C‬ﺟـ ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ ﺍﻟﺘﻰ ﺗﻤﺮ ﺑﺎﻟﻨﻘﻂ ‪ ،C‬ﺏ، ‪.E‬‬
‫ب 9‪ C‬ﺟـ ‪9 + E‬ﺏ ﺟـ ‪C‬‬
‫ﺟ ‪ C9) W‬ﺏ ‪ C9) W : (E‬ﺏ ﺟـ( = ٥ : ٩‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫9 ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﺤﺪﺗﺎ ﻛﺰ ﻡ، ﻃﻮﻻ ﻧﺼﻔﻰ ﻗﻄﺮﻳﻬﻤﺎ ٢١ﺳﻢ، ٧ﺳﻢ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ‪ E C‬ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﻜﺒﺮﻯ ﻟﻴﻘﻄﻊ‬
‫ﺍﻟﻤﺮ‬
‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺼﻐﺮﻯ ﻓﻰ ﺏ ، ﺟـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ. ﺃﺛﺒﺖ ﺃﻥ: ‪ C‬ﺏ * ﺏ ‪٩٥ = E‬‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫01 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ، ﺏ ﺟـ = ٨ﺳﻢ. ﺭﺳﻢ ﺏ ﻫـ = ‪ C‬ﺟـ ﻓﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻫـ، ‪ E C‬ﻓﻰ ﻭ.‬
‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﻭ .‬
‫أ ﺃﺛﺒﺖ ﺃﻥ )‪ C‬ﺏ(٢ = ‪ C‬ﻭ * ‪.E C‬‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫‪M‬‬

‫¯‬

‫‪ï‬‬

‫11 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﺼﻨﺎﻋﺔ: ﻛُﺴﺮ ﺃﺣﺪ ﺗﺮﻭﺱ ﺁﻟﺔ ﻭﻻﺳﺘﺒﺪﺍﻟﻪ ﻣﻄﻠﻮﺏ‬
‫ﻣﻌﺮﻓﺔ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻪ. ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺟﺰﺀﺍ ﻣﻦ‬
‫ً‬
‫ﻫﺬﺍ ﺍﻟﺘﺮﺱ، ﻭﺍﻟﻤﻄﻠﻮﺏ ﺗﻌﻴﻴﻦ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋ ﺗﻪ ................... .‬
‫ﺮ‬
‫‪C‬‬

‫¯‬

‫21 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟ ﻴﺌﺔ: ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﺨﻄﻄًّﺎ ﻟﺤﺪﻳﻘﺔ ﻋﻠﻰ‬
‫ﺷﻜﻞ ﺩﺍﺋﺮﺓ ﺑﻬﺎ ﻃﺮﻳﻘﺎﻥ ﻳﺘﻘﺎﻃﻌﺎﻥ ﻋﻨﺪ ﻧﺎﻓﻮﺭﺓ ﺍﻟﻤﻴﺎه. ﺃﻭﺟﺪ ﺑﻌﺪ‬
‫ُْ‬
‫ﻧﺎﻓﻮﺭﺓ ﺍﻟﻤﻴﺎه ﻋﻨﺪ ﺍﻟﻤﺪﺧﻞ ﺟـ.‬

‫‪E‬‬

‫¯‬
‫¯‬

‫31 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﻤﻨ ﻝ: ﺗﺴﺘﺨﺪﻡ ﻫﺪﻯ ﺷﺒﻜﺔ ﻟﺸﻰ ﺍﻟﻠﺤﻮﻡ ﻋﻠﻰ ﺷﻜﻞ‬
‫ﺩﺍﺋﺮﺓ ﻣﻦ ﺍﻟﺴﻠﻚ، ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٠٥ﺳﻢ، ﻳﺪﻋﻤﻬﺎ ﻣﻦ ﺍﻟﻮﺳﻂ ﺳﻠﻜﺎﻥ‬
‫ﻣﺘﻮﺍﺯﻳﺎﻥ ﻭﻣﺘﺴﺎﻭﻳﺎﻥ ﻓﻰ ﺍﻟﻄﻮﻝ ﻛﻤﺎ ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ، ﻭﺍﻟﺒﻌﺪ‬
‫ﺑﻴﻨﻬﻤﺎ ٠١ﺳﻢ.‬
‫ﺍﺣﺴﺐ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺳﻠﻜﻰ ﺍﻟﺪﻋﺎﻣﺔ. .........................................................‬

‫‪C‬‬

‫41 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻻ ﺼﺎﻝ: ﺗﻨﻘﻞ ﺍﻷﻗﻤﺎﺭ ﺍﻟﺼﻨﺎﻋﻴﺔ ﺍﻟﺒﺮﺍﻣﺞ ﺍﻟﺘﻠﻴﻔﺰﻳﻮﻧﻴﺔ‬
‫ﺇﻟﻰ ﻛﺎﻓﺔ ﻣﻨﺎﻃﻖ ﺍﻷﺭﺽ، ﻭﺗﺴﺘﺨﺪﻡ ﺃﻃﺒﺎﻕ ﺧﺎﺻﺔ ﻻﺳﺘﻘﺒﺎﻝ‬
‫ﺇﺷﺎﺭﺍﺕ ﺍﻟﺒﺚ ﺍﻟﺘﻠﻴﻔﺰﻳﻮﻧﻰ، ﻭﻫﻰ ﺃﻃﺒﺎﻕ ﻣﻘﻌﺮﺓ ﻋﻠﻰ ﺷﻜﻞ ﺟﺰﺀ‬
‫ﻣﻦ ﺳﻄﺢ ﻛﺮﺓ.‬
‫ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﻘﻄﻌﺎ ﻓﻰ ﺃﺣﺪ ﻫﺬه ﺍﻷﻃﺒﺎﻕ، ﻃﻮﻝ ﻗﻄﺮه‬
‫ً‬
‫٠٨١ﺳﻢ، ﻭﺍﻟﻤﻄﻠﻮﺏ ﺣﺴﺎﺏ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﻛﺮﺓ ﺗﻘﻌﺮه ﻡ ‪. C‬‬
‫.......................................................................................................................................‬
‫.......................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫1‬

‫أ‬
‫ب‬
‫ﺟ‬
‫د‬

‫: ﺃﻯ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻏﻴﺮ ﺻﺤﻴﺤﺔ:‬
‫)‪ E = ٢(E C‬ﺏ * ‪ E‬ﺟـ‬
‫)‪ C‬ﺏ(٢ = ﺏ ‪ * E‬ﺏ ﺟـ‬
‫‪ C‬ﺟـ * ﺏ ﺟـ = ‪ C‬ﺏ * ‪E C‬‬
‫‪ C‬ﺏ * ‪ C‬ﺟـ = ‪ * E C‬ﺏ ﺟـ‬

‫‪C‬‬

‫‪E‬‬

‫..................................................................................................................................................................................................................................‬

‫2‬
‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ‪ C ∋ E‬ﺏ ، ﻫـ ∋ ‪ C‬ﺟـ .‬
‫ﺃﺛﺒﺖ ﺃﻥ 9‪ E C‬ﻫـ + 9‪ C‬ﺟـ ﺏ‬
‫ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪E‬‬

‫‪C‬‬

‫‪E‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫: ‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻃﻮﻟﻪ ٢١ﺳﻢ‬

‫3‬

‫‪ C ∋ E‬ﺏ ﺣﻴﺚ ‪١٦ = E C‬ﺳﻢ، ﺟـ ﺗﻘﻊ ﻋﻠﻰ ﺍﻟﺪﺍﺋﺮﺓ‬
‫ﺣﻴﺚ ﺟـ ‪٨ = E‬ﺳﻢ. ﺟـ ﻫـ = ‪ C‬ﺏ . ﺃﺛﺒﺖ ﺃﻥ:‬

‫‪C‬‬

‫‪E‬‬

‫أ ﺟـ ‪ E‬ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ ﻡ.‬
‫ب 9‪ E‬ﺟـ ﺏ + 9‪ C E‬ﺟـ‬
‫ﺟ ﺟـ ﻫـ = ٨٫٤ﺳﻢ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ. ﺏ ‪ C = E‬ﺟـ ، ‪ C‬ﺏ = ٥١ﺳﻢ، ‪٩ = E C‬ﺳﻢ. ﺭﺳﻢ ﻋﻠﻰ ‪ C‬ﺏ ، ﺏ ﺟـ ﻣﻦ‬
‫ﺍﻟﺨﺎﺭﺝ ﺍﻟﻤﺮﺑﻌﺎﻥ ‪ C‬ﺏ ﺹ ﺱ، ﺏ ﺟـ ﻫـ ﻭ.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ + ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻭ ﻫـ ﺟـ.‬
‫ب ﺃﻭﺟﺪ ‪) W‬ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ( : ‪) W‬ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻭ ﻫـ ﺟـ(‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫5‬

‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ‬
‫‪ C‬ﺏ ∩ ﺟـ ‪ ∩ E‬ﻫـ ﻭ = }ﺱ{ ﺣﻴﺚ‬
‫ﺱ ‪ E ٢ = E‬ﺟـ، ﻫـ ﻭ = ٠١ﺳﻢ، ﻭ ﺱ = ٦ ﺳﻢ‬

‫‪E‬‬

‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ﺟـ ‪ E‬ﻭ ﻫـ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬
‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪E‬‬
‫.................................................................................................................................‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫6‬
‫: ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﺤﺪﺗﺎ ﻛﺰ،‬
‫ﺍﻟﻤﺮ‬
‫ﻭﺍﻷﻃﻮﺍﻝ ﺍﻟﻤﺒﻴﻨﺔ ﻟﻠﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬
‫ﺃﻭﺟﺪ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ.‬
‫............................................................................................................................................‬
‫............................................................................................................................................‬

‫¯‬

‫7 ﺣﺪﻳﻘﺔ ﺣﻴﻮﺍﻥ: ﻓﻰ ﺭﺣﻠﺔ ﻣﺪﺭﺳﻴﺔ ﺇﻟﻰ ﺣﺪﻳﻘﺔ ﺍﻟﺤﻴﻮﺍﻥ ﺃﺭﺍﺩ‬
‫ﺣﺴﺎﻡ ﺃﻥ ﻳﻌﺮﻑ ﺍﺭﺗﻔﺎﻉ ﺣﻴﻮﺍﻥ ﺍﻟﺰﺭﺍﻓﺔ. ﻭﺿﻊ ﺣﺴﺎﻡ ﻣﺮﺁﺓ‬
‫ﻣﺴﺘﻮﻳﺔ ﻋﻠﻰ ﺍﻷﺭﺽ ﺗﺒﻌﺪ ﻋﻨﻪ ﻣﺘﺮﺍﻥ ﻭﻋﻦ ﺍﻟﺰﺭﺍﻓﺔ ٦ ﺃﻣﺘﺎﺭ،‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺣﺴﺎﻡ ﻭﺍﻟﻤﺮﺁﺓ ﻭﺍﻟﺰﺭﺍﻓﺔ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ‬
‫ﻭﺍﺭﺗﻔﺎﻉ ﺣﺴﺎﻡ ٥٫١ ﻣﺘﺮﺍ . ﻛﻢ ﻳﺒﻠﻎ ﺍﺭﺗﻔﺎﻉ ﺍﻟﺰﺭﺍﻓﺔ.‬
‫ً‬

‫¯‬

‫¯‬

‫.................................................................................................................................‬
‫.................................................................................................................................‬

‫8 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻔﻴ ﺎﺀ: ﺍﺣﺴﺐ ﻣﻌﺎﻣﻞ ﻣﻐﻴﺮ ﺍﻟﺒﻌﺪ، ﻭﺍﺣﺴﺐ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻤﺎ ﻳﻠﻰ.‬
‫ب‬
‫أ‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬
‫1 ﺃﻛﻤﻞ ﻣﺎ ﻳﺄﺗﻲ:‬
‫أ ﺍﻟﻤﻀﻠﻌﺎﻥ ﺍﻟﻤﺸﺎﺑﻬﺎﻥ ﻟﺜﺎﻟﺚ .............................................................................................................................................................‬
‫ب‬
‫ﺇﺫﺍ ﺗﻨﺎﺳﺒﺖ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻓﻰ ﻣﺜﻠﺜﻴﻦ ﻓﺈﻧﻬﻤﺎ ..................................................................................................‬
‫ﺟ‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺤﻴﻄﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ٣ : ٥ ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻴﻬﻤﺎ ...........................................‬
‫د ﺇﺫﺍ ﺗﻘﺎﻃﻊ ﻭﺗﺮﺍﻥ ‪ C‬ﺏ ، ﺟـ ‪ E‬ﻟﺪﺍﺋﺮﺓ ﻓﻰ ﻧﻘﻄﺔ ﺱ ﻓﺈﻥ:‬
‫................... * ................... = ................... *‬

‫‪E‬‬
‫...................‬

‫ﻫ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻄﻴﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﺴﺘﻄﻴﻞ ﺱ ﺏ ﻉ ﺹ،‬
‫‪١٥ = E C‬ﺳﻢ ، ﺟـ ‪٢٠ = E‬ﺳﻢ، ﺹ ﻉ = ٦١ﺳﻢ‬
‫ﻓﺈﻥ: ﺱ ﻉ = ...........................................................‬

‫‪C‬‬
‫‪C‬‬

‫2‬
‫: ‪ C‬ﻫـ // ‪ E‬ﺟـ ، ‪ C‬ﺟـ = ﻫـ ‪} ∩ E‬ﺏ{،‬
‫‪ C‬ﺏ = ٣ﺳﻢ، ﺏ ﺟـ = ٦ﺳﻢ، ﻫـ ‪١٢ = E‬ﺳﻢ‬
‫ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﻫـ ﺏ‬
‫.......................................................................................................................................‬

‫‪E‬‬

‫.......................................................................................................................................‬

‫‪E‬‬

‫: ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﻫـ ﺟـ ﻭ‬

‫3‬

‫‪C‬‬

‫ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺏ // ﺱ ﻫـ‬
‫١‬
‫ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺱ ﻫـ = ٢ ‪C‬ﺏ، ﺟـ ﻭ = ٩ﺳﻢ ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﻭ ‪E‬‬
‫.......................................................................................................................................‬
‫.......................................................................................................................................‬

‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ﺱ ∋ ‪ C‬ﺏ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺱ = ٨ﺳﻢ، ﺱ ﺏ = ٢١ﺳﻢ‬
‫ﺹ ∋ ‪ C‬ﺟـ ، ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺹ = ٠١ﺳﻢ، ﺹ ﺟـ = ٦ﺳﻢ.‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ C‬ﺹ ﺱ‬
‫ب ﺍﻟﺸﻜﻞ ﺱ ﺏ ﺟـ ﺹ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬

‫‪C‬‬

‫.......................................................................................................................................‬
‫.......................................................................................................................................‬

‫5 ‪ C‬ﺏ ، ﺟـ ‪ E‬ﻭﺗﺮﺍﻥ ﻓﻰ ﺩﺍﺋﺮﺓ ﻣﺘﻘﺎﻃﻌﺎﻥ، ﻓﻰ ﻫـ ﻓﺈﺫﺍ ﻛﺎﻥ ﻫـ ﻣﻨﺘﺼﻒ ‪ C‬ﺏ ، ﺟـ ﻫـ = ٤ﺳﻢ، ﻫـ ‪٩ = E‬ﺳﻢ‬
‫..........................................................................................................................................................................‬
‫ﻓﺄﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﺏ .‬
‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬
‫‪Oó©àe øe QÉ«àN’G á∏İSCG‬‬
‫1 ﺇﺫﺍ ﻛﺎﻥ ٢ﺱ +١١ = ٣ ﻓﺈﻥ ١١ - ﺱ ﺗﺴﺎﻭﻯ:‬
‫٢‬
‫ﺱ+‬
‫ب‬
‫ﺻﻔﺮﺍ‬
‫أ -٠١‬
‫ً‬

‫ﺟ ٥‬

‫2 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬
‫ً‬
‫ب‬
‫٨١‬
‫أ ٢٣‬
‫د ١٥‬
‫ﺟ ٧٢‬

‫د ٠١‬
‫+‬

‫‪c‬‬

‫− ‪c‬‬

‫‪c‬‬

‫−‬

‫3 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬
‫ً‬
‫ب ١١‬
‫أ ٥‬
‫د ٤١‬
‫ﺟ ٢١‬
‫‪E‬‬

‫4‬

‫أ ٥ ﺳﻢ‬
‫ﺟ ٨ ﺳﻢ‬

‫: ‪ C‬ﺏ = ٢١ﺳﻢ، ﺟـ ﻫـ = ٤ ﺳﻢ، ﻓﺈﻥ ﻫـ ‪ E‬ﺗﺴﺎﻭﻯ:‬
‫ب ٦ ﺳﻢ‬
‫د ٩ ﺳﻢ‬

‫‪C‬‬

‫5 ﻣﺴﺘﻄﻴﻼﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ ﺑﻌﺪﺍ ﺍﻷﻭﻝ ٠١ ﺳﻢ، ٨ ﺳﻢ، ﻭﻣﺤﻴﻂ ﺍﻟﺜﺎﻧﻰ ٨٠١ ﺳﻢ ﻓﺈﻥ ﻃﻮﻝ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺍﻟﺜﺎﻧﻰ ﻳﺴﺎﻭﻯ:‬
‫د ٦٣ ﺳﻢ‬
‫ﺟ ٠٣ ﺳﻢ‬
‫ب ٤٢ ﺳﻢ‬
‫أ ٨١ ﺳﻢ‬

‫‪C‬‬

‫‪:Iô«°ü≤dG äÉHÉLE’G äGP á∏İSC’G‬‬
‫6‬
‫: ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ ﺱ، ﺹ‬
‫ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬

‫+‬

‫‪E‬‬

‫−‬

‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ‪ C‬ﺟـ، ‪ ∋ E‬ﺏ ﺟـ . ﺭﺳﻢ ‪ E‬ﻫـ = ‪ C‬ﺏ ، ‪ E‬ﻭ = ‪ C‬ﺟـ .‬
‫ﺏ ﻫـ ‪ E‬ﻫـ‬
‫ﺃﺛﺒﺖ ﺃﻥ: ﺟـ ﻭ =‬
‫‪E‬ﻭ‬

‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬
‫8‬
‫: ‪ C‬ﺏ = ‪ C‬ﺟـ ، ‪ = E C‬ﺏ ﺟـ‬
‫‪ c) X‬ﺏ( = ٠٣‪ C ، c‬ﺟـ = ٦ ﺳﻢ‬

‫‪C‬‬

‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ: ‪ C‬ﺏ ، ﺏ ‪E C ، E‬‬
‫‪c‬‬

‫‪E‬‬

‫‪:á∏jƒ£dG äÉHÉLE’G äGP øjQɪàdG‬‬
‫‪ E‬ﻫـ‬
‫‪ C‬ﻫـ‬
‫9 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﺒﻪ ﻣﻨﺤﺮﻑ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻫـ، ﺇﺫﺍ ﻛﺎﻥ ‪ // E C‬ﺏ ﺟـ ﺃﺛﺒﺖ ﺃﻥ: ﻫـ ﺟـ = ﻫـ ﺏ‬

‫: ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ، ﻡ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ‬

‫01‬

‫‪E‬‬

‫ﻭﺗﻤﺲ ‪ C‬ﺏ ﻋﻨﺪ ﻫـ، ﺟـ ‪ E‬ﻋﻨﺪ ﻭ.‬
‫ﺭﺳﻢ ﻡ ﺹ // ‪ C‬ﺏ ﻭﻳﻘﻄﻊ ﺍﻟﺪﺍﺋﺮﺓ ﻓﻰ ﺱ، ‪ E C‬ﻓﻰ ﺹ.‬
‫ﺇﺫﺍ ﻛﺎﻥ: ﺱ ﺹ = ٢ﺳﻢ، ‪ C 9) W‬ﻫـ ﻡ( = ١‬
‫‪ C 9) W‬ﺏ ﺟـ( ٤‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺏ ﻫـ ، ﺏ ﺟـ‬

‫‪C‬‬

‫‪?á«aɰVCG IóYɰùªd êÉàëJ πg‬‬
‫ﺇﻥ ﻟﻢ ﺗﺴﺘﻄﻊ ﺍﻹﺟﺎﺑﺔ ﻋﻦ ﺃﻯ ﻣﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻓﺎﺭﺟﻊ ﻟﻠﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻰ:‬
‫١‬

‫¯‬

‫٢‬

‫−‬

‫٣‬

‫¯‬

‫٤‬

‫٥‬

‫٦‬

‫٧‬

‫٨‬

‫٩‬

‫٠١‬
‫-‬

‫‪IóMƒdG‬‬

‫3‬

‫ﻧﻈﺮﻳﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰ ﺍﻟﻤﺜﻠﺚ‬

‫‪The Triangle Proportionality Theorems‬‬
‫ﻣﻌﺒﺪ ﺣﺘﺸﺒﺴﻮت )اﻷﻗﺼﺮ(‬

‫دروس اﻟﻮﺣﺪة‬

‫ﺍﻟﺪﺭﺱ )٣ - ١(: ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﺘﻮﺍﺯﻳﺔ ﻭﺍﻷﺟﺰﺍﺀ ﺍﻟﻤﺘﻨﺎﺳﺒﺔ.‬

‫ﺍﻟﺪﺭﺱ )٣ - ٢(: ﻣﻨﺼﻔﺎ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻤﺜﻠﺚ ﻭﺍﻷﺟﺰﺍﺀ ﺍﻟﻤﺘﻨﺎﺳﺒﺔ.‬

‫ﺍﻟﺪﺭﺱ )٣ - ٣(: ﺗﻄﺒﻴﻘﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ.‬

‫‪ïM‬‬

‫−‬
‫اﻟﻤﺴﺘﻘﻴﻤﺎت اﻟﻤﺘﻮازﻳﺔ وا ﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬

‫3-1‬

‫‪Parallel lines and proportional parts‬‬

‫1‬

‫‪C‬‬

‫‪ E‬ﻫـ // ﺏ ﺟـ ﺃﻛﻤﻞ:‬
‫ﺏ‬

‫ﺟـ ﻫـ‬

‫‪C‬‬
‫‪EC‬‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﺏ = ٥ ﻓﺈﻥ : ﺏ ‪ ،  ............. = E‬‬
‫= .............‬
‫٣‬
‫ﻫـ ‪C‬‬
‫.............‬
‫.............‬
‫ﺟـ ﻫـ‬
‫ﺏ‪E‬‬
‫ﻫـ‬
‫= .............  ، ‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ ٤ = C‬ﻓﺈﻥ :‬
‫= .............‬

‫‪ C‬ﺟـ‬

‫2‬

‫.............‬

‫ﻫـ ‪C‬‬

‫٧‬

‫.............‬

‫‪E‬‬

‫‪C‬ﺏ‬

‫‪ E‬ﻫـ // ﺏ ﺟـ . ﺣﺪﺩ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺼﺤﻴﺤﺔ ﻣﻦ ﻣﺎ ﻳﻠﻲ:‬
‫‪C‬ﺏ‬
‫أ ‪E‬ﺏ‬
‫ﺟ ‪C‬ﺏ‬
‫ﺏ‪E‬‬
‫ﻫ ‪ C‬ﺟـ‬
‫‪EC‬‬

‫ﺏ‪E‬‬
‫ب ‪EC‬‬
‫‪ C‬ﻫـ = ﻫـ ﺟـ‬
‫‪C‬ﺏ‬
‫‪ C‬ﺟـ‬
‫د ﺏ‪= E‬‬
‫ﺟـ ﻫـ‬
‫و ﺟـ ﻫـ ‪ C‬ﺟـ‬
‫ﺏ‪C = E‬ﺏ‬

‫‪ C‬ﻫـ‬
‫= ﻫـ ﺟـ‬
‫‪ C‬ﺟـ‬
‫= ‪ C‬ﻫـ‬
‫‪C‬ﺏ‬
‫= ‪ C‬ﻫـ‬

‫3‬

‫‪E‬‬

‫‪ E‬ﻫـ // ﺏ ﺟـ . ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ )ﺍﻷﻃﻮﺍﻝ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(.‬
‫ﺟ‬
‫ب‬

‫‪C‬‬

‫أ‬
‫‪E‬‬

‫‪E‬‬

‫+‬
‫‪E‬‬

‫د‬

‫‪C‬‬

‫‪E‬‬

‫‪C‬‬

‫‪C‬‬
‫‪C‬‬

‫ﻫ‬

‫‪C‬‬

‫و‬

‫+‬
‫+‬

‫‪E‬‬

‫+‬

‫4‬
‫: ‪ C‬ﺏ // ‪ E‬ﻫـ ، ‪ C‬ﻫـ ∩ ﺏ ‪} = E‬ﺟـ{‬
‫‪ C‬ﺟـ = ٦ﺳﻢ، ﺏ ﺟـ = ٤ﺳﻢ، ﺟـ ‪٣ = E‬ﺳﻢ‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ﻫـ‬

‫¯‬

‫−‬

‫¯‬

‫‪C‬‬

‫‪C‬‬

‫‪E‬‬

‫‪E‬‬
‫5 ﺱ ﺹ ∩ ﻉ ﻝ = }ﻡ{، ﺣﻴﺚ ﺱ ﻉ // ﻝ ﺹ ، ﻓﺈﺫﺍ ﻛﺎﻥ ﺱ ﻡ = ٩ﺳﻢ، ﺹ ﻡ = ٥١ﺳﻢ، ﻉ ﻝ = ٦٣ ﺳﻢ.‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻉ ﻡ .‬
‫6 ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ: ﺍﺳﺘﺨﺪﻡ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻭﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ ﻹﻳﺠﺎﺩ ﻗﻴﻤﺔ ﺱ:‬
‫أ ‪ ، ٤ = E C‬ﺏ ‪ ،  ٨ = E‬ﺟـ ﻫـ = ٦ ، ‪ C‬ﻫـ = ﺱ.‬
‫ب ‪ C‬ﻫـ = ﺱ ، ﻫـ ﺟـ = ٥ ، ‪ = E C‬ﺱ - ٢ ، ‪ E‬ﺏ = ٣.‬
‫ﺟ ‪ C‬ﺏ = ١٢ ، ﺏ ﻭ = ٨ ، ﻭ ﺟـ = ٦ ، ‪ = E C‬ﺱ.‬

‫‪C‬‬
‫‪E‬‬

‫د ‪ = E C‬ﺱ  ، ﺏ ﻭ = ﺱ + ٥ ، ٢‪ E‬ﺏ = ٣ﻭ ﺟـ = ٢١.‬
‫7 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ // ﺏ ﺟـ‬

‫ب‬

‫أ‬

‫ﺟ‬
‫‪C‬‬

‫‪C‬‬
‫‪C‬‬

‫8 ﺱ ﺹ ﻉ ﻣﺜﻠﺚ ﻓﻴﻪ ﺱ ﺹ = ٤١ﺳﻢ، ﺱ ﻉ = ١٢ﺳﻢ، ﻝ ∋ ﺱ ﺹ ﺑﺤﻴﺚ ﺱ ﻝ = ٦٫٥ﺳﻢ،‬
‫ﻡ ∋ ﺱ ﻉ ﺣﻴﺚ ﺱ ﻡ = ٤٫٨ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ ﻝ ﻡ // ﺹ ﻉ‬

‫9 ﻓﻰ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ، ‪ C ∋ E‬ﺏ ، ﻫـ ∋ ‪ C‬ﺟـ ، ٥‪ C‬ﻫـ = ٤ ﻫـ ﺟـ.‬
‫ﺇﺫﺍ ﻛﺎﻥ ‪ ١٠ = E C‬ﺳﻢ، ‪ E‬ﺏ = ٨ﺳﻢ. ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﻫـ // ﺏ ﺟـ . ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬
‫01 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﻜﻞ ﺭﺑﺎﻋﻰ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻫـ. ﻓﺈﺫﺍ ﻛﺎﻥ ‪ C‬ﻫـ = ٦ﺳﻢ، ﺏ ﻫـ = ٣١ﺳﻢ، ﻫـ ﻭ = ٠١ﺳﻢ،‬
‫ﻫـ ‪٧٫٨ = E‬ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﺒﻪ ﻣﻨﺤﺮﻑ.‬
‫11 ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺮﺳﻮﻣﺔ ﺑﻴﻦ ﻣﻨﺘﺼﻔﻰ ﺿﻠﻌﻴﻦ ﻓﻰ ﻣﺜﻠﺚ ﻳﻮﺍﺯﻯ ﺿﻠﻌﻪ ﺍﻟﺜﺎﻟﺚ، ﻭﻃﻮﻟﻬﺎ ﻳﺴﺎﻭﻯ‬
‫ﻧﺼﻒ ﻃﻮﻝ ﻫﺬﺍ ﺍﻟﻀﻠﻊ.‬
‫21 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C ∋ E‬ﺏ ﺣﻴﺚ ٣‪ E ٢ = E C‬ﺏ، ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ٥ ﺟـ ﻫـ = ٣ ‪ C‬ﺟـ، ﺭﺳﻢ ‪ C‬ﺱ ﻳﻘﻄﻊ ﺏ ﺟـ‬

‫ﻓﻰ ﺱ. ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﻭ = ٨ﺳﻢ، ‪ C‬ﺱ = ٠٢ﺳﻢ، ﺣﻴﺚ ﻭ ∋ ‪ C‬ﺱ . ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﻂ ‪ ،E‬ﻭ، ﻫـ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ.‬
‫ﻫـ‬
‫‪E‬‬
‫31 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ، ﺑﺤﻴﺚ ﺏﺟـ = ٣ ، ﻫـ ∋ ‪ ، E C‬ﺑﺤﻴﺚ ‪ ، ٣ = E C‬ﺭﺳﻢ ﺟـ ﻫـ ﻓﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ،‬
‫٧‬
‫٤‬
‫‪E‬‬
‫‪C‬‬
‫ﺭﺳﻢ ‪ E‬ﺹ // ﺟـ ﺱ ﻓﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺹ. ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺱ = ﺏ ﺹ.‬

‫41 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻡ. ﻫـ ﻣﻨﺘﺼﻒ ‪ C‬ﻡ ، ﻭ ﻣﻨﺘﺼﻒ ﻡ ﺟـ . ﺭﺳﻢ ‪ E‬ﻫـ ﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ،‬
‫ﻭﺭﺳﻢ ‪ E‬ﻭ ﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﺹ. ﺃﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ‪ C‬ﺟـ .‬

‫‪ïM‬‬

‫−‬
‫51 ﺍﻛﺘﺐ ﻣﺎ ﺗﺴﺎﻭﻳﻪ ﻛﻞ ﻣﻦ ﺍﻟﻨﺴﺐ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺴﺘﺨﺪﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ:‬
‫ً‬
‫أ‬
‫ﺟ‬
‫ﻫ‬
‫ز‬

‫‪ C‬ﺏ = ‪ E‬ﻫـ‬
‫ﺏ ﺟـ‬
‫ﻡ‪E‬‬
‫ﻡ‪C‬‬
‫= ................‬
‫‪C‬ﺏ‬
‫................‬
‫ﻡﺏ‬
‫=‬
‫‪ C‬ﺏ ‪ E‬ﻫـ‬
‫ﺏ ﺟـ ﻫـ ﻭ‬
‫ﻡ ﺏ = ................‬

‫................‬

‫ب ‪ C‬ﺟـ‬
‫ﺏ ﺟـ = ﻫـ ﻭ‬

‫................‬

‫‪C‬‬

‫................‬

‫ﺟـ‬
‫د ‪= C‬‬
‫‪ C‬ﺏ ‪ E‬ﻫـ‬
‫و ﻡ ﺟـ ﻡ ﻭ‬
‫= ................‬

‫‪E‬‬

‫‪ C‬ﺟـ‬
‫ح ‪ E‬ﻭ = ‪ C‬ﺟـ‬
‫................‬
‫ﻡﻭ‬

‫61 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺍﺣﺴﺐ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬
‫ﺟ‬
‫ب‬
‫أ‬
‫+‬
‫+‬

‫−‬

‫−‬

‫+‬

‫+‬

‫:‬

‫71‬

‫‪E‬‬

‫‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻡ{، ﻫـ ∋ ﻡ ﺏ ،‬

‫‪C‬‬

‫ﻭ ∋ ﻡ ‪ C ، E‬ﺟـ // ﻭ ﻫـ // ‪ E‬ﺏ‬

‫ﺃﻭﺟﺪ:‬
‫أ ﻃﻮﻝ ﻡ ﻭ‬
‫ب ﻃﻮﻝ ‪ C‬ﻡ‬
‫ﻭ‬
‫81 ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{ ، ﺱ ∋ ‪ C‬ﺏ ، ﺹ ∋ ﺟـ ‪ ، E‬ﻛﺎﻥ ﺱ ﺹ // ﺏ ‪ C // E‬ﺟـ‬
‫ﺃﺛﺒﺖ ﺃﻥ: ‪ C‬ﺱ * ﻫـ ‪ = E‬ﺟـ ﺹ * ﻫـ ﺏ‬
‫91 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺍﺣﺴﺐ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ:‬
‫ب‬
‫‪C‬‬
‫أ‬
‫−‬

‫‪E‬‬

‫+‬

‫+‬

‫−‬
‫−‬
‫−‬

‫−‬

‫02 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﻜﻞ ﺭﺑﺎﻋﻰ ﻓﻴﻪ ‪ C‬ﺏ // ﺟـ ‪ ، E‬ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻡ، ﻧﺼﻒ ﺏ ﺟـ ﻓﻰ ﻫـ،‬
‫ﻭﺭﺳﻢ ﻫـ ﻭ // ﺏ ‪ ، C‬ﻭﻳﻘﻄﻊ ﺏ ‪ E‬ﻓﻰ ﺱ ، ‪ C‬ﺟـ ﻓﻰ ﺹ ، ‪ E C‬ﻓﻰ ﻭ.‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ ﻫـ ﺹ = ١ ‪ C‬ﺏ.‬
‫٢‬
‫¯‬

‫−‬

‫+‬

‫+‬

‫ﺟ‬

‫+‬

‫ب ‪C‬ﺹ ﺏﺱ‬
‫=‬
‫ﺟـ ﻡ ‪ E‬ﻡ‬
‫−‬

‫¯‬

‫−‬
‫ﻣﻨﺼﻔﺎ اﻟﺰواﻳﺔ ﻓﻰ اﻟﻤﺜﻠﺚ وا ﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬

‫3-2‬

‫‪Angle Bisectors and Proportional Parts‬‬
‫: ‪ E C‬ﻳﻨﺼﻒ ‪ . Cc‬ﺃﻛﻤﻞ:‬

‫1‬
‫‪E‬‬
‫أ ﺏﺟـ =‬
‫‪E‬‬

‫ب ‪ C‬ﺟـ =‬

‫.....................................‬

‫‪C‬ﺏ‬

‫ﺟ ﺏ‪E‬‬
‫= ........................................‬
‫ﺏ‪C‬‬

‫‪C‬‬
‫........................................‬

‫د ‪ C‬ﺏ * ﺟـ ‪= E‬‬

‫‪E‬‬

‫........................‬

‫2 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬
‫ب‬
‫‪C‬‬
‫أ ‪C‬‬
‫+‬
‫−‬

‫‪E‬‬

‫‪E‬‬
‫......................................................................................................‬

‫‪C‬‬

‫ﺟ‬

‫......................................................................................................‬

‫د‬

‫+‬

‫‪C‬‬

‫+‬

‫+‬
‫‪E‬‬

‫‪E‬‬

‫......................................................................................................‬

‫......................................................................................................‬

‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻣﺤﻴﻄﻪ ٧٢ﺳﻢ، ﺭﺳﻢ ﺏ ‪ E‬ﻳﻨﺼﻒ ‪ c‬ﺏ ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ‪.E‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ‪٤ = E C‬ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ، ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ﺏ ﺟـ ، ‪E C‬‬
‫..................................................................................................................................................................................................................................‬

‫4 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺤﻴﻂ 9‪ C‬ﺏ ﺟـ.‬
‫ﺟ‬
‫ب‬
‫‪C‬‬
‫‪C‬‬
‫أ‬

‫+‬

‫‪E‬‬

‫‪E‬‬

‫‪C‬‬
‫‪E‬‬

‫5 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٨ﺳﻢ، ‪ C‬ﺟـ = ٤ﺳﻢ، ﺏ ﺟـ = ٦ﺳﻢ، ﺭﺳﻢ ‪ E C‬ﻳﻨﺼﻒ ‪ C‬ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ‪ ،E‬ﻭﺭﺳﻢ‬
‫‪ C‬ﻫـ ﻳﻨﺼﻒ ‪ Cc‬ﺍﻟﺨﺎﺭﺟﺔ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﻫـ ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ E‬ﻫـ ، ‪ C ، E C‬ﻫـ .‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫6 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ: ﺃﺛﺒﺖ ﺃﻥ ﺱ ﺹ // ﺏ ﺟـ‬
‫‪E‬‬

‫أ‬

‫ب‬
‫‪E‬‬

‫‪C‬‬

‫‪C‬‬
‫......................................................................................................‬

‫......................................................................................................‬

‫......................................................................................................‬

‫......................................................................................................‬

‫7 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻫـ ﻳﻨﺼﻒ ‪ Cc‬ﺏ ﺟـ.‬
‫ب‬
‫‪C‬‬
‫أ‬

‫‪C‬‬

‫‪E‬‬
‫‪E‬‬
‫......................................................................................................‬

‫......................................................................................................‬

‫......................................................................................................‬

‫......................................................................................................‬

‫‪C‬‬

‫8‬
‫: ﻫـ ‪ // E‬ﺱ ﺹ // ﺏ ﺟـ ،‬
‫‪ * E C‬ﺏ ﺱ = ‪ C‬ﺟـ * ﻫـ ﺱ.‬
‫ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺹ ﻳﻨﺼﻒ ‪c‬ﺟـ ‪.E C‬‬

‫‪E‬‬

‫.................................................................................................................................‬
‫.................................................................................................................................‬

‫9 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ‪ ∋ E‬ﺏ ﺟـ ، ‪ ∌ E‬ﺏ ﺟـ ﺣﻴﺚ ﺟـ ‪ C = E‬ﺏ. ﺭﺳﻢ ﺟـ ﻫـ // ‪ C E‬ﻭﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﻫـ، ﻭﺭﺳﻢ‬
‫ﻫـ ﻭ // ﺏ ﺟـ ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻭ ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻭ ﻳﻨﺼﻒ ‪ Cc‬ﺏ ﺟـ‬
‫..................................................................................................................................................................................................................................‬

‫01‬
‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﺟـ = ٩ﺳﻢ،‬
‫ﺏ ﺟـ = ٠١ﺳﻢ. ‪ ∋ E‬ﺏ ﺟـ ﺑﺤﻴﺚ ﺏ ‪٤ = E‬ﺳﻢ .‬
‫ﺭﺳﻢ ﺏ ﻫـ = ‪ E C‬ﻭﻳﻘﻄﻊ ‪ C ، E C‬ﺏ ﻓﻰ ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ ‪ E C‬ﻳﻨﺼﻒ ‪.Cc‬‬
‫ب ﺃﻭﺟﺪ ‪ C9) W‬ﺏ ﻭ( : ‪9) W‬ﺟـ ﺏ ﻭ(‬

‫‪C‬‬

‫‪E‬‬

‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﻨﺎﺳﺐ ﻓﻰ اﻟﺪاﺋﺮة‬

‫3-3‬

‫‪Applications of Proportionality in the Circle‬‬

‫1 ﺣﺪﺩ ﻣﻮﻗﻊ ﻛﻞ ﻣﻦ ﺍﻟﻨﻘﻂ ﺍﻟﺘﺎﻟﻴﺔ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻭﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠١ﺳﻢ، ﺛﻢ ﺍﺣﺴﺐ ﺑﻌﺪ ﻛﻞ‬
‫ُ َ‬
‫ﻧﻘﻄﺔ ﻋﻦ ﻛﺰ ﺍﻟﺪﺍﺋﺮﺓ.‬
‫ﻣﺮ‬
‫ﺟ ‪X‬ﻡ)ﺟـ( = ﺻﻔﺮ‬
‫ب ‪X‬ﻡ)ﺏ( = ٦٩‬
‫أ ‪X‬ﻡ) ‪٣٦ - = ( C‬‬
‫..................................................................................................................................................................................................................................‬

‫2 ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺍﻟﻤﻌﻄﺎﺓ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻭﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪:H‬‬
‫.................................................................................................................‬
‫أ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺣﻴﺚ ‪ C‬ﻡ = ٢١ﺳﻢ ، ‪ ٩ = H‬ﺳﻢ‬
‫.................................................................................................................‬
‫ب ﺍﻟﻨﻘﻄﺔ ﺏ ﺣﻴﺚ ﺏ ﻡ = ٨ ﺳﻢ ، ‪ ١٥ = H‬ﺳﻢ‬
‫.................................................................................................................‬
‫ﺟ ﺍﻟﻨﻘﻄﺔ ﺟـ ﺣﻴﺚ ﺟـ ﻡ = ٧ ﺳﻢ ، ‪ ٧ = H‬ﺳﻢ‬
‫.................................................................................................................‬
‫د ﺍﻟﻨﻘﻄﺔ ‪ E‬ﺣﻴﺚ ‪ E‬ﻡ = ٧١ ﺳﻢ، ‪ ٤ = H‬ﺳﻢ‬
‫3 ﺇﺫﺍﻛﺎﻥ ﺑﻌﺪ ﻧﻘﻄﺔ ﻋﻦ ﻛﺰ ﺩﺍﺋﺮﺓ ﻳﺴﺎﻭﻯ ٥٢ﺳﻢ ﻭﻗﻮﺓ ﻫﺬه ﺍﻟﻨﻘﻄﺔ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻳﺴﺎﻭﻯ ٠٠٤.‬
‫ﻣﺮ‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﻫﺬه ﺍﻟﺪﺍﺋﺮﺓ.  ..............................................................................................................................................‬
‫ﻣﺮ‬
‫4 ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠٢ﺳﻢ. ‪ C‬ﻧﻘﻄﺔ ﺗﺒﻌﺪ ﻋﻦ ﻛﺰ ﺍﻟﺪﺍﺋﺮﺓ ﻣﺴﺎﻓﺔ ٦١ﺳﻢ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ﺏ ﺟـ‬
‫ﺣﻴﺚ ‪ ∋ C‬ﺏ ﺟـ ، ‪ C‬ﺏ = ٢ ‪ C‬ﺟـ. ﺇﺣﺴﺐ ﻃﻮﻝ ﺍﻟﻮﺗﺮ ﺏ ﺟـ .‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫5‬

‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ‬
‫ﺣﻴﺚ ‪ C‬ﺏ ∩ ﺟـ ‪ ∩ E‬ﻫـ ﻭ = }ﺱ{، ﺱ ‪ E ٢ = E‬ﺟـ ، ﻫـ ﻭ = ٠١ﺳﻢ،‬
‫‪X‬ﻥ )ﺱ( = ٤٤١.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺏ ﻣﺤﻮﺭ ﺃﺳﺎﺳﻰ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻡ، ﻥ.‬
‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺱ ﺟـ ، ﺱ ﻭ‬
‫ﺟ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ﺟـ ‪ E‬ﻭ ﻫـ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬

‫‪E‬‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫6 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬
‫ً‬
‫ب‬
‫‪E‬‬
‫‪C‬‬
‫أ‬
‫‪c‬‬
‫‪E‬‬

‫‪E‬‬

‫ﺟ‬

‫‪c‬‬

‫‪C‬‬

‫‪C‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬

‫‪c‬‬
‫................................................................‬

‫د‬

‫................................................................‬

‫‪E‬‬

‫ﻫ‬

‫و‬

‫‪c‬‬

‫‪c‬‬

‫‪C‬‬

‫‪C‬‬

‫‪c‬‬

‫ز‬

‫................................................................‬

‫ح‬
‫‪E‬‬
‫‪c‬‬

‫‪c‬‬

‫‪C‬‬

‫‪C‬‬
‫‪c‬‬

‫‪c‬‬

‫ط‬

‫‪E‬‬

‫− ‪c‬‬

‫‪C‬‬
‫‪c‬‬
‫‪c‬‬

‫‪c‬‬

‫+‬

‫‪C‬‬
‫................................................................‬

‫− ‪c‬‬

‫‪c‬‬

‫................................................................‬

‫+‬

‫‪E‬‬

‫‪c‬‬

‫‪c‬‬

‫‪E c‬‬

‫................................................................‬

‫+‬

‫‪c‬‬

‫................................................................‬

‫‪c‬‬

‫................................................................‬

‫‪c‬‬

‫7‬
‫: ‪c)X‬ﺏ ‪ C‬ﺟـ( = ٣٣‪c)X ،c‬ﺏ ‪ E‬ﺟـ( = ٠٧‪،c‬‬
‫‪ C )X‬ﺏ ( = ٤٩‪ )X ، c‬ﺟـ ﺹ ( = ٠٠١‪ c‬ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﻛﻞ ﻣﻦ:‬
‫أ ﺱﺹ‬
‫ب ‪C‬ﺱ‬
‫ﺟ ‪c‬ﺏ ﻫـ ﺟـ‬

‫‪c‬‬

‫‪E‬‬
‫‪c‬‬

‫‪C‬‬

‫‪c‬‬

‫..................................................................................................................................................................................................................................‬

‫8 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﺼﻨﺎﻋﺔ: ﻣﻨﺸﺎﺭ ﺩﺍﺋﺮﻯ ﻟﻘﻄﻊ ﺍﻟﺨﺸﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ‬
‫ﺩﺍﺋﺮﺗﻪ ٠١ﺳﻢ. ﻳﺪﻭﺭ ﺩﺍﺧﻞ ﺣﺎﻓﻈﺔ ﺣﻤﺎﻳﺔ، ﻓﺈﺫﺍ ﻛﺎﻥ ‪c)X‬ﺏ ‪= (E C‬‬
‫٥٤‪ )X ،c‬ﺏ ‪ c١٥٥ = ( E‬ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻮﺱ ﻗﺮﺹ ﺍﻟﻤﻨﺸﺎﺭ ﺧﺎﺭﺝ ﺣﺎﻓﻈﺔ‬
‫ﺍﻟﺤﻤﺎﻳﺔ.‬

‫‪c‬‬
‫‪c‬‬

‫‪E‬‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬

‫‪C‬‬

‫9 ﺍ ﺼﺎﻻﺕ: ﺗﺘﺒﻊ ﺍﻹﺷﺎﺭﺍﺕ ﺍﻟﺘﻰ ﺗﺼﺪﺭ ﻋﻦ ﺑﺮﺝ ﺍﻻﺗﺼﺎﻻﺕ ﻓﻰ ﻣﺴﺎﺭﻫﺎ‬
‫ﺷﻌﺎﻋﺎ، ﻧﻘﻄﺔ ﺑﺪﺍﻳﺘﻪ ﻋﻠﻰ ﻗﻤﺔ ﺍﻟﺒﺮﺝ، ﻭﻳﻜﻮﻥ ﻣﻤﺎﺳﺎ ﻟﺴﻄﺢ ﺍﻷﺭﺽ،‬
‫ً‬
‫ً‬
‫ﻛﻤﺎ ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ. ﺣﺪﺩ ﻗﻴﺎﺱ ﺍﻟﻘﻮﺱ ﺍﻟﻤﺤﺼﻮﺭ ﺑﺎﻟﻤﻤﺎﺳﻴﻦ‬
‫ﺑﻔﺮﺽ ﺃﻥ ﺍﻟﺒﺮﺝ ﻳﻘﻊ ﻋﻠﻰ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ، ‪c)X‬ﺟـ ‪ C‬ﺏ( = ٠٨‪c‬‬
‫¯‬

‫−‬

‫¯‬
‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫1 ﺃﻛﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬
‫أ‬
‫ب‬
‫ﺟ‬
‫د‬
‫ﻫ‬

‫ﺍﻟﻤﻨﺼﻔﺎﻥ ﺍﻟﺪﺍﺧﻠﻰ ﻭﺍﻟﺨﺎﺭﺟﻰ ﻟﺰﺍﻭﻳﺔ ﻭﺍﺣﺪﺓ‬
‫ﻣﻨﺼﻔﺎﺕ ﺯﻭﺍﻳﺎ ﺍﻟﻤﺜﻠﺚ ﺗﺘﻘﺎﻃﻊ ﻓﻰ ..............................................................................................................................................‬
‫ﺇﺫﺍ ﺭﺳﻢ ﻣﺴﺘﻘﻴﻢ ﻳﻮﺍﺯﻯ ﺃﺣﺪ ﺃﺿﻼﻉ ﻣﺜﻠﺚ، ﻭﻳﻘﻄﻊ ﺍﻟﻀﻠﻌﻴﻦ ﺍﻵﺧﺮﻳﻦ ﻓﺈﻧﻪ .........................................................‬
‫ﺍﻟﻤﻨﺼﻒ ﺍﻟﺨﺎﺭﺟﻰ ﻟﺰﺍﻭﻳﺔ ﺭﺃﺱ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ .................................... ﻗﺎﻋﺪﺓ ﺍﻟﻤﺜﻠﺚ.‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﺋﺮﺓ ﻡ ﻛﻤﻴﺔ ﺳﺎﻟﺒﺔ، ﻓﺈﻥ ﻧﻘﻄﺔ ‪ C‬ﺗﻘﻊ .....................................................................‬
‫......................................................................................................................‬

‫2 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬
‫ً‬
‫ب‬
‫+‬
‫أ‬
‫+‬
‫‪E‬‬

‫‪c‬‬

‫−‬

‫‪c‬‬

‫ﺟ‬

‫‪C‬‬
‫‪E‬‬

‫‪c‬‬

‫‪C‬‬
‫−‬

‫3 ﺩﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ.‬
‫ﻫـ ‪ E‬ﻣﻤﺎﺱ ﻣﺸﺘﺮﻙ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻡ، ﻥ ﻋﻨﺪ ‪ ،E‬ﻫـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ،‬
‫ﺏ ‪ E ∩ C‬ﻫـ = }ﺟـ{‬
‫أ ﺃﺛﺒﺖ ﺃﻥ: ﺏ ﺟـ ﻣﺤﻮﺭ ﺃﺳﺎﺳﻰ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ.‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٩ﺳﻢ، ‪) X‬ﺟـ( = ٦٣، ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪ ، C‬ﺟـ ‪E‬‬

‫‪E‬‬
‫‪C‬‬

‫ﻥ‬

‫4‬
‫ﺃﺣﺪ ﺍﻟﺤﻮﺍﺟﺰ ﺍﻟﻤﺮﻭﺭﻳﺔ ‪ C‬ﺏ ﺟـ ‪ E‬ﻋﻠﻰ ﺷﻜﻞ‬
‫ﻣﺴﺘﻄﻴﻞ ﻭﻣﻜﻮﻥ ﻣﻦ ﻣﺘﻮﺍﺯﻳﺔ ﻭﻣﺘﻄﺎﺑﻘﺔ، ﻭﻋﻠﻰ ﺃﺑﻌﺎﺩ ﻣﺘﺴﺎﻭﻳﺔ،‬
‫ﻭﻣﺜﺒﺖ ﺑﻪ ﺩﻋﺎﻣﺘﺎﻥ ‪ C‬ﺟـ ، ﺏ ‪ ، E‬ﺗﻘﻄﻌﺎﻥ ﺃﺣﺪ ﺍﻟﻘﻀﺒﺎﻥ ﺍﻟﺮﺃﺳﻴﺔ ﻓﻰ‬
‫ﻭ، ﻫـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﻓﺈﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٠٢١ﺳﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ﻭ .‬

‫5 ﻫﻨﺪﺳﺔ ﻣﻌﻤﺎ ﺔ: ﻣﻦ ﻧﻘﻄﺔ ‪ C‬ﻭﺍﻟﺘﻲ ﺗﺒﻌﺪ ٦٫١ ﻣﺘﺮﺍ ﻋﻦ ﻗﺎﻋﺪﺓ ﻗﻨﻄﺮﺓ‬
‫ً‬
‫ﺗﻌﻠﻮ ﺑﺎﺏ ﻣﻨﺰﻝ، ﻭﺟﺪ ﺃﻥ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﺋﺮﺓ ﻗﻮﺱ ﺍﻟﻘﻨﻄﺮﺓ‬
‫ﻳﺴﺎﻭﻯ ٤٫٦ ﻣﺘﺮ ﻣﺮﺑﻊ.‬
‫أ ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﺎﻋﺪﺓ ﺍﻟﻘﻨﻄﺮﺓ )ﺏ ﺟـ(.‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﺍﺭﺗﻔﺎﻉ ﺍﻟﻘﻨﻄﺮﺓ ﻳﺴﺎﻭﻯ ٠٨ﺳﻢ، ﻓﺄﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪E‬‬
‫ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻘﻨﻄﺮﺓ ﻭﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ.‬

‫‪ïM‬‬

‫−‬

‫‪E‬‬

‫‪C‬‬

‫¯‬

‫‪E‬‬

‫‪C‬‬
‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬
‫1 ﻣﺴﺘﺨﺪﻣﺎ ﻣﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬
‫ً‬
‫ب‬
‫‪E‬‬
‫‪C‬‬
‫أ‬
‫‪C‬‬

‫ﺟ‬
‫−‬

‫‪E‬‬

‫‪E‬‬
‫‪c‬‬
‫‪c‬‬

‫‪C‬‬

‫+‬

‫‪c‬‬

‫: ‪ C c‬ﺟـ ﺏ ﻗﺎﺋﻤﺔ، ﺏ ﺟـ // ‪ E‬ﻫـ‬

‫2‬

‫ﺟـ ‪ // E‬ﻫـ ﻭ . ﺃﺛﺒﺖ ﺃﻥ:‬
‫٢‬
‫‪ C‬ﻭ * ‪ C‬ﺏ = )‪ C‬ﻫـ(٢ + )ﻫـ ‪(E‬‬

‫‪E‬‬

‫‪C‬‬

‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ﻥ ﻧﻘﻄﺔ ﺩﺍﺧﻞ ﺍﻟﻤﺜﻠﺚ. ﻧﺼﻔﺖ ﺍﻟﺰﻭﺍﻳﺎ ‪ C‬ﻥ ﺏ، ﺏ ﻥ ﺟـ ، ﺟـ ﻥ ‪C‬‬

‫ﺑﻤﻨﺼﻔﺎﺕ ﻻﻗﺖ ‪ C‬ﺏ ، ﺏ ﺟـ ، ﺟـ ‪ C‬ﻓﻰ ‪ ،E‬ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬
‫‪ E C‬ﺏ ﻫـ ﺟـ ﻭ‬
‫*‬
‫*‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫‪ E‬ﺏ ﻫـ ﺟـ ﻭ ‪C‬‬

‫=١‬

‫4 ‪ C‬ﻧﻘﻄﺔ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ‪ C‬ﺏ ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ﺏ.‬
‫ﺭﺳﻢ ‪ C‬ﺟـ ، ‪ C‬ﻫـ ﻳﻘﻄﻌﺎﻥ ﺍﻟﺪﺍﺋﺮﺓ ﻓﻰ ﺟـ، ‪ ،E‬ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ،‬
‫‪ C‬ﺟـ = ٤ﺳﻢ، ﻫـ ﻭ = ٩ﺳﻢ.‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ‪X‬ﻡ) ‪ ٣٦ = ( C‬ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ‪ C‬ﻫـ ، ﺟـ ‪E‬‬
‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺱ ∋ ﺟـ ‪ E‬ﺣﻴﺚ ﺟـ ﺱ = ٢ﺳﻢ ﺃﻭﺟﺪ ‪X‬ﻡ)ﺱ(، ‪X‬ﻡ )‪.(E‬‬

‫‪E‬‬
‫‪C‬‬

‫5 ‪ E C‬ﻣﺘﻮﺳﻂ ﻓﻰ 9‪ C‬ﺏ ﺟـ، ﺟـ ﺱ ﻳﻨﺼﻒ ‪ E C c‬ﺏ ﻭﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ، ‪ E‬ﺹ ﻳﻨﺼﻒ ‪ E Cc‬ﺟـ ﻭﻳﻘﻄﻊ‬
‫‪ C‬ﺟـ ﻓﻰ ﺹ.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ﺏ ﺟـ‬

‫ب ﺇﺫﺍ ﺭﺳﻢ ‪ E‬ﻉ = ﺱ ﺹ ﻭ ﻳﻘﻄﻌﻪ ﻓﻰ ﻉ، ﻛﺎﻥ ﺱ ﻉ = ٩ﺳﻢ، ﻉ ﺹ = ٦١ﺳﻢ‬
‫ﻭ‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ : ‪ E‬ﺱ ، ‪ E‬ﺹ .‬

‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬
‫‪Oó©àe øe QÉ«àN’G á∏İSCG‬‬
‫ﺱ‬
‫1 ﺇﺫﺍ ﻛﺎﻥ ٦ = ٩ ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬
‫٢‬
‫ب ٦١‬
‫أ ٢١‬

‫ﺟ ٧٢‬

‫2 ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ - ٠٢ = ﺻﻔﺮ ﻫﻤﺎ:‬
‫ب ٤، -٥‬
‫أ ٢، -٠١‬

‫ﺟ ٥، -٤‬

‫د ١٨‬

‫د -٤، ٥‬
‫‪C‬‬

‫3 ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﻫـ // ﺏ ﺟـ ﻓﺈﻥ ‪ C‬ﺟـ ﻳﺴﺎﻭﻯ:‬
‫ب ٤ﺳﻢ‬
‫أ ٣ﺳﻢ‬
‫د ٠١ﺳﻢ‬
‫ﺟ ٦ﺳﻢ‬

‫‪E‬‬

‫4 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﻝ١، ﻝ٢، ﻝ٣ ﻣﺘﻮﺍﺯﻳﺔ، ﻳﻘﻄﻌﻬﺎ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ‬
‫ﻡ، ﻡ/ ﻭﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬
‫ب ٣‬
‫أ ٥‬
‫د ٢‬
‫ﺟ ٧‬

‫−‬

‫+‬

‫5‬
‫‪ E C‬ﻳﻨﺼﻒ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺨﺎﺭﺟﺔ‬
‫ﻋﻨﺪ ‪ C‬ﻓﺈﻥ ﻃﻮﻝ ﺟـ ‪ E‬ﻳﺴﺎﻭﻯ:‬
‫ب ٠١ﺳﻢ‬
‫أ ٥ﺳﻢ‬
‫د ٨١ﺳﻢ‬
‫ﺟ ٢١ﺳﻢ‬

‫‪C‬‬

‫‪E‬‬

‫6 ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥ﺳﻢ، ‪ E C‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ‪،E‬‬
‫‪١٢ = E C‬ﺳﻢ ﻓﺈﻥ ﻃﻮﻝ ‪ C‬ﺟـ ﻳﺴﺎﻭﻯ:‬
‫ب ٢١ﺳﻢ‬
‫أ ٧ﺳﻢ‬
‫د ٨١ﺳﻢ‬
‫ﺟ ٥١ﺳﻢ‬
‫7 ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺳﻄﺢ 9‪ E C‬ﻫـ = ٦١ﺳﻢ‬
‫ﻓﺈﻥ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ = .......................... ﺳﻢ٢.‬
‫أ ٦١‬
‫ب ٢٣‬
‫ﺟ ٤٦‬
‫د ٨٢١‬

‫‪E‬‬
‫‪C‬‬

‫٢‬

‫‪ïM‬‬

‫−‬

‫‪C‬‬
‫‪E‬‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬
‫‪:Iô«°ü≤dG äÉHÉLE’G äGP á∏İSC’G‬‬
‫8‬
‫:‬
‫‪ C‬ﺏ // ﺟـ ‪ ، E‬ﺏ ﻫـ = ٢ﺳﻢ، ﺟـ ﻫـ = ٣ﺳﻢ،‬
‫‪١٠ = E C‬ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪E‬‬

‫‪C‬‬

‫‪E‬‬

‫: ﺏ ﻫـ ﻳﻨﺼﻒ ‪c‬ﺏ،‬

‫9‬

‫ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻫـ. ‪ C‬ﺏ = ٦ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ، ‪٧٫٥ = C E‬ﺳﻢ‬
‫ﺏ ﺟـ = ٤ﺳﻢ . ﺃﺛﺒﺖ ﺃﻥ ‪ E‬ﻫـ ﻳﻨﺼﻒ ‪ E C c‬ﺟـ.‬

‫‪E‬‬

‫‪C‬‬

‫:‬

‫01‬

‫‪E‬‬
‫‪C‬‬

‫‪ C‬ﺏ ، ﺟـ ‪ E‬ﻭﺗﺮﺍﻥ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{‬
‫ﺃﺛﺒﺖ ﺃﻥ 9‪ C‬ﻫـ ﺟـ + 9‪ E‬ﻫـ ﺏ‬

‫‪á∏jƒ£dG äÉHÉLE’G äGP øjQɪàdG‬‬
‫11‬
‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٢ ﺏ ﺟـ = ٢١ﺳﻢ،‬
‫‪ C‬ﺟـ = ٩ﺳﻢ، ‪ C ∋ E‬ﺏ ﺣﻴﺚ ‪٣ = E C‬ﺳﻢ،‬
‫ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ C‬ﻫـ = ٤ﺳﻢ.‬
‫ﺃﺛﺒﺖ ﺃﻥ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ C‬ﻫـ ‪E‬‬
‫ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪. E‬‬

‫‪C‬‬

‫‪E‬‬

‫21 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ، ‪ ∌ E‬ﺏ ﺟـ ، ﺭﺳﻢ ‪ E‬ﻭ ﻓﻘﻄﻊ ‪ C‬ﺟـ ، ‪ C‬ﺏ ﻓﻰ ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ‬
‫ﻭﺏ‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﺸﻜﻞ ﺏ ﺟـ ﻫـ ﻭ ﺭﺑﺎﻋﻴﺎ ﺩﺍﺋﺮ ﻳﺎ ﺃﺛﺒﺖ ﺃﻥ ﺏ ‪ = E‬ﺟـ ﻫـ .‬
‫ًّ‬
‫ًّ‬
‫‪ E‬ﻫـ‬

‫‪?á«aɰVEG IóYɰùªd êÉàëJ πg‬‬
‫ﺃﻥ ﻟﻢ ﺗﺴﺘﻄﻊ ﺇﺟﺎﺑﺔ ﺃﻯ ﻣﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻓﺎﺭﺟﻊ ﻟﻠﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ:‬
‫١‬

‫−‬

‫¯‬

‫٢‬

‫٣‬

‫٤‬

‫٥‬

‫٦‬

‫٧‬

‫٨‬

‫٩‬

‫٠١‬

‫١١‬

‫٢١‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫−‬

‫¯‬
‫‪IóMƒdG‬‬

‫4‬

‫ﺣﺴﺎﺏ ﺍﻟﻤﺜﻠﺜﺎﺕ‬
‫‪Trigonometry‬‬

‫دروس اﻟﻮﺣﺪة‬
‫ﺍﻟﺪﺭﺱ )٤ - ١(: ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ.‬
‫ﺍﻟﺪﺭﺱ )٤ - ٢(: ﻃﺮﻕ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ.‬
‫ﺍﻟﺪﺭﺱ )٤ - ٣(: ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬
‫ﺍﻟﺪﺭﺱ )٤ - ٤(: ﺍﻟﻌﻼﻗﺎﺕ ﺑﻴﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬
‫ﺍﻟﺪﺭﺱ )٤ - ٥(: ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻰ ﻟﻠﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬
‫ﺍﻟﺪﺭﺱ )٤ - ٦(: ﺇﻳﺠﺎﺩ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺑﻤﻌﻠﻮﻣﻴﺔ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ.‬
‫اﻟﺰاوﻳﺔ اﻟﻤﻮﺟﻬﺔ‬

‫4-1‬

‫‪Directed Angle‬‬

‫:‬

‫1‬

‫أ ﺗﻜﻮﻥ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﻭﺿﻊ ﻗﻴﺎﺳﻰ ﺇﺫﺍ ﻛﺎﻥ‬
‫ب‬
‫ﻳﻘﺎﻝ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺃﻧﻬﺎ ﻣﺘﻜﺎﻓﺌﺔ ﺇﺫﺍ ﻛﺎﻥ .............................................................................‬
‫.................................................................................................‬

‫ﺟ ﺗﻜﻮﻥ ﺍﻟﺰﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﻛﺎﻥ ﺩﻭﺭﺍﻥ ﺍﻟﺰﺍﻭﻳﺔ.................................. ﻭﺗﻜﻮﻥ ﺳﺎﻟﺒﺔ ﺇﺫﺍ ﻛﺎﻥ ﺩﻭﺭﺍﻥ ﺍﻟﺰﺍﻭﻳﺔ‬
‫د ﺇﺫﺍ ﻭﻗﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻋﻠﻰ ﺃﺣﺪ ﻣﺤﺎﻭﺭ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﺗﺴﻤﻰ ..................................‬
‫ﻫ ﺇﺫﺍ ﻛﺎﻥ )‪ (i‬ﺯﺍﻭﻳﺔ ﻣﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻥ∋ ‪ N‬ﻓﺈﻥ )‪ + i‬ﻥ * ٠٦٣‪ (c‬ﺗﺴﻤﻰ ﺑﺎﻟﺰﻭﺍﻳﺎ‬
‫و‬
‫ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣٥‪ c‬ﻫﻮ ..................................‬
‫ز ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣٩‪ c‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ‬

‫2 ﺃﻱ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻮﺟﻬﺔ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ‬

‫..................................‬

‫......................................................................................................................‬

‫ب‬

‫ﺟ‬

‫د‬

‫3 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ‪ i‬ﺍﻟﻤﺸﺎﺭ ﺇﻟﻴﻬﺎ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ:‬
‫ﺟ‬
‫ب‬
‫د‬
‫أ‬
‫‪i‬‬
‫‪i‬‬
‫‪c‬‬
‫‪c‬‬

‫..................................‬

‫..................................‬

‫ح ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ –٠٩٦‪ c‬ﻫﻮ‬

‫أ‬

‫...............................‬

‫‪c‬‬

‫‪i‬‬

‫..............................................................‬

‫..............................................................‬

‫..............................................................‬

‫.............................................................‬

‫4 ﻋﻴﻦ ﺍﻟﺮﺑﻊ ﺍﻟﺬﻯ ﺗﻘﻊ ﻓﻴﻪ ﻛﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ:‬
‫أ ٤٢‪       c‬ب ٥١٢‪       c‬ﺟ - ٠٤‪       c‬د -٠٢٢‪       c‬ﻫ ٠٤٦‪c‬‬
‫........................................  ........................................    ........................................    ........................................     ........................................‬

‫¯‬

‫‪i‬‬

‫−‬

‫¯‬
‫5 ﺿﻊ ﻛﻼ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻣﻮﺿﺤﺎ ﺫﻟﻚ ﺑﺎﻟﺮﺳﻢ:‬
‫ًّ‬
‫ً‬
‫أ ٢٣‪       c‬ب ٠٤١‪       c‬ﺟ - ٠٨‪       c‬د -٠١١‪       c‬ﻫ -٥١٣‪c‬‬
‫6 ﻋﻴﻦ ﺃﺣﺪ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﺴﺎﻟﺒﺔ ﻟﻜﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ:‬
‫ﺟ ٠٩‪c‬‬
‫ب ٦٣١‪c‬‬
‫أ ٣٨‪c‬‬
‫........................................‬

‫د ٤٦٢‪c‬‬

‫........................................‬

‫........................................‬

‫و ٠٧٠١‪c‬‬

‫ﻫ ٤٦٩‪c‬‬

‫........................................‬

‫........................................‬

‫........................................‬

‫7 ﻋﻴﻦ ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻜﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺍﻟﺰﺍﻭﻳﺎ ﺍﻵﺗﻴﺔ:‬
‫ﺟ -٥١٣‪c‬‬
‫ب -٧١٢‪c‬‬
‫أ -٣٨١‪c‬‬
‫8 ﺃﻯ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﺍﻷﺯﻭﺍﺝ ﺍﻟﻤﺮﺗﺒﺔ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﺸﻜﻞ‬
‫ﺍﻟﻤﻘﺎﺑﻞ ﻓﻰ ﻭﺿﻊ ﻗﻴﺎﺳﻰ? ﻟﻤﺎﺫﺍ?‬
‫أ ) ﻭ‪ ، C‬ﻭ ‪( E‬‬

‫ب ) ﻭ ﺯ ، ﻭ ﺟـ (‬

‫ﺟ ) ‪C‬ﺏ ، ‪ C‬ﺟـ (‬

‫‪E‬‬

‫د ) ﻭ ﻫـ ، ﻭ ‪( E‬‬

‫ﻫ ) ﻭ‪ ، E‬ﻭ ﺯ (‬

‫د -٠٧٥‪c‬‬

‫و ) ﻭﺏ ، ﻭﺯ (‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫9 ﻳﺪﻭﺭ ﺃﺣﺪ ﻻﻋﺒﻰ ﺍﻟﺠﻤﺒﺎﺯ ﻋﻠﻰ ﺟﻬﺎﺯ ﺍﻷﻟﻌﺎﺏ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٠٢‪ c‬ﺍﺭﺳﻢ ﻫﺬه ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ‬
‫ﻛﺎﻥ ﻣﻊ‬
‫01 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺍﻛﺘﺐ ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ ﻭﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ ﺗﺸﺘﺮ‬
‫ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ )-٥٣١‪(c‬‬

‫¯‬
‫ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ = -٥٣١‪ c٤٥ = c١٨٠+ c‬ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ = -٥٣١‪c٢٢٥ = c٣٦٠+ c‬‬
‫ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ = -٥٣١‪ c٣١٥- = c١٨٠ - c‬ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ = -٥٣١‪c٤٩٥- = c٣٦٠ - c‬‬
‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﺻﺤﻴﺢ ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫ﻃﺮق ﻗﻴﺎس اﻟﺰاوﻳﺔ‬

‫4-2‬

‫‪Methods of measuring the angle‬‬

‫‪k‬‬
‫‪:Oó©àe øe QÉ«àNG :’hCG‬‬
‫1 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٦‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺗﻜﺎﻓﺊ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ:‬
‫ب ٠٤٢‪c‬‬

‫أ ٠٢١‪c‬‬

‫ﺟ ٠٠٣‪c‬‬

‫١٣‬
‫2 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٦‪ r‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬

‫٩‬‫3 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٤‪ r‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬

‫ﺟ ﺍﻟﺜﺎﻟﺚ‬

‫د ﺍﻟﺮﺍﺑﻊ‬

‫.............................................................................................................................................‬

‫ب ﺍﻟﺜﺎﻧﻰ‬

‫أ ﺍﻷﻭﻝ‬

‫د ٠٢٤‪c‬‬

‫....................................................................................................................................‬

‫ب ﺍﻟﺜﺎﻧﻰ‬

‫أ ﺍﻷﻭﻝ‬

‫........................................................................‬

‫ﺟ ﺍﻟﺜﺎﻟﺚ‬

‫د ﺍﻟﺮﺍﺑﻊ‬

‫4 ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺯﻭﺍﻳﺎ ﺃﻯ ﻣﻀﻠﻊ ﻣﻨﺘﻈﻢ ﺗﺴﺎﻭﻯ ٠٨١ ْ)ﻥ – ٢( ﺣﻴﺚ ﻥ ﻋﺪﺩ ﺍﻷﺿﻼﻉ، ﻓﺈﻥ ﻗﻴﺎﺱ‬
‫ﺯﺍﻭﻳﺔ ﺍﻟﻤﺨﻤﺲ ﺍﻟﻤﻨﺘﻈﻢ ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﺗﺴﺎﻭﻯ: .....................................................................................................................‬
‫أ‬

‫ب ٧‪r‬‬
‫٢‬

‫‪r‬‬
‫٣‬

‫ﺟ‬

‫5 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٧‪ r‬ﻗﻴﺎﺳﻬﺎ ﺍﻟﺴﺘﻴﻨﻰ ﻳﺴﺎﻭﻯ:‬
‫٣‬
‫ب ٠١٢‪c‬‬

‫أ ٥٠١‪c‬‬

‫٣‪r‬‬
‫٥‬

‫........................................................................................................................‬

‫ﺟ ٠٢٤‪c‬‬

‫6 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﺰﺍﻭﻳﺔ ﻫﻮ ٨٤ َ ٤٦ ْ ﻓﺈﻥ ﻗﻴﺎﺳﻬﺎ ﺍﻟﺪﺍﺋﺮﻯ ﻳﺴﺎﻭﻯ:‬
‫أ ٨١٫٠‬

‫ب ٦٣٫٠‬

‫‪E‬‬

‫‪E‬‬

‫د‬

‫٢‪r‬‬
‫٣‬

‫ﺟ ٨١٫٠ ‪r‬‬

‫د ٠٤٨‪c‬‬
‫.......................................................................‬

‫د ٦٣٫٠ ‪r‬‬

‫7 ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٤٢ ﺳﻢ ﻭﻳﻘﺎﺑﻞ ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﻳﺴﺎﻭﻯ:‬
‫ﻣﺮ‬
‫د ٥‪ r‬ﺳﻢ‬
‫ﺟ ٤‪ r‬ﺳﻢ‬
‫ب ٣‪ r‬ﺳﻢ‬
‫أ ٢‪ r‬ﺳﻢ‬

‫............................................‬

‫8 ﺍﻟﻘﻮﺱ ﺍﻟﺬﻯ ﻃﻮﻟﻪ ٥‪r‬ﺳﻢ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥١ﺳﻢ ﻳﻘﺎﺑﻞ ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ﻳﺴﺎﻭﻯ:‬
‫ﻣﺮ‬
‫ب ٠٦‪c‬‬

‫أ ٠٣‪c‬‬

‫ﺟ ٠٩‪c‬‬

‫.................‬

‫د ٠٨١‪c‬‬

‫9 ﺇﺫﺍ ﻛﺎﻥ ﻗﻴﺎﺱ ﺇﺣﺪﻯ ﺯﺍﻭﻳﺎ ﻣﺜﻠﺚ ٥٧‪ c‬ﻭﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﻓﻴﻪ ‪ r‬ﻓﺈﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺜﺎﻟﺜﺔ‬
‫٤‬
‫ﻳﺴﺎﻭﻯ: .................................................................................................................................................................................................................‬
‫د ٥‪r‬‬
‫ﺟ ‪r‬‬
‫ب ‪r‬‬
‫أ ‪r‬‬
‫٣‬
‫٤‬
‫٦‬
‫٢١‬
‫¯‬

‫−‬

‫¯‬
‫‪¯I‬‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫01 ﺃﻭﺟﺪ ﺑﺪﻻﻟﺔ ‪ r‬ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ:‬
‫.........................................‬
‫ب  ٠٤٢‪c‬‬
‫.........................................‬
‫أ ٥٢٢‪c‬‬
‫ﺟ‬
‫.........................................‬
‫د  ٠٠٣‪c‬‬
‫٥٣١‪......................................... c‬‬‫.........................................‬
‫و  ٠٨٧‪c‬‬
‫.........................................‬
‫ﻫ ٠٩٣‪c‬‬
‫11 ﺃﻭﺟﺪ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ، ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻟﺜﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻋﺸﺮﻳﺔ:‬
‫ً‬
‫ﺟ‬
‫٨٤ ً ٠٥ َ ٠٦١‪c‬‬
‫ب ٨١ َ ٥٢‪c‬‬
‫أ ٦٫٦٥‪c‬‬
‫.................................................‬

‫.................................................‬

‫21 ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ، ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺛﺎﻧﻴﺔ:‬
‫ً‬
‫‪E‬‬
‫‪E‬‬
‫ب ٧٢٫٢‬
‫أ ٩٤٫٠‬
‫.................................................‬

‫.................................................‬

‫.................................................‬

‫١ ‪E‬‬
‫ﺟ -٢٣‬

‫.................................................‬

‫31 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪ H‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ﻝ :‬
‫ﻣﺮ‬
‫ً‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ ٢٠ = H‬ﺳﻢ، ‪ c٧٨ َ ١٥ ً ٢٠ = i‬ﺃﻭﺟﺪ ﻝ. .......................................................... )ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ = ٣٫٧٢ ﺳﻢ، ‪ c٧٨ َ ٠ ً ٢٤ = i‬ﺃﻭﺟﺪ ‪) ......................................................... .H‬ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬
‫41 ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٥١‪ c‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ١١ ﺳﻢ، ﺍﺣﺴﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻬﺎ )ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬
‫ﻣﺮ‬
‫ً‬
‫..................................................................................................................................................................................................................................‬

‫51 ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﻠﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٧٫٨ ﺳﻢ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ‬
‫ﺍﻟﻤﺮ‬
‫ً‬
‫ﻗﻄﺮﻫﺎ ٤ ﺳﻢ. ................................................................................................................................................................................................................‬
‫61 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﻣﺜﻠﺚ ﻗﻴﺎﺱ ﺇﺣﺪﻯ ﺯﻭﺍﻳﺎه ٠٦‪ c‬ﻭﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﻣﻨﻪ ﻳﺴﺎﻭﻯ ‪ r‬ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ‬
‫٤‬
‫ﺍﻟﺪﺍﺋﺮﻯ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﺰﺍﻭﻳﺘﻪ ﺍﻟﺜﺎﻟﺜﺔ. .........................................................................................................................................‬
‫71 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٤ ﺳﻢ، ﺭﺳﻤﺖ ‪ Cc‬ﺏ ﺟـ ﺍﻟﻤﺤﻴﻄﻴﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﺃﻭﺟﺪ‬
‫ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﺻﻐﺮ ‪ C‬ﺟـ .......................................................................................................................................................................‬
‫81 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﻴﺔ: ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺇﺫﺍ ﻛﺎﻥ ﻣﺴﺎﺣﺔ ﺍﻟﻤﺜﻠﺚ ﻡ ‪ C‬ﺏ‬
‫ﺍﻟﻘﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﻡ = ٢٣ ﺳﻢ٢ ﻓﺄﻭﺟﺪ ﻣﺤﻴﻂ ﺍﻟﺸﻜﻞ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ‬
‫ً‬
‫ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ ............................................................................................................................‬
‫‪C‬‬

‫‪ïM‬‬

‫−‬
‫91 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻟﻪ ٤٢ ﺳﻢ ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ‪ C‬ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ﻕ)‪c‬ﺏ ‪C‬ﺟـ( = ٠٥‪c‬‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﺻﻐﺮ ‪ C‬ﺟـ ﻣﻘﺮ ﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻴﻦ ﻋﺸﺮﻳﻴﻦ. ..........................................................................‬
‫ً‬
‫02 ﻣﺴﺎﻓﺎﺕ: ﻛﻢ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻰ ﺗﻘﻄﻌﻬﺎ ﻧﻘﻄﺔ ﻋﻠﻰ ﻃﺮﻑ ﻋﻘﺮﺏ ﺍﻟﺪﻗﺎﺋﻖ ﺧﻼﻝ ٠١ ﺩﻗﺎﺋﻖ ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﻫﺬﺍ‬
‫ﺍﻟﻌﻘﺮﺏ ٦ ﺳﻢ?‬
‫..................................................................................................................................................................................................................................‬

‫12 ﻓﻠﻚ: ﻗﻤﺮ ﺻﻨﺎﻋﻰ ﻳﺪﻭﺭ ﺣﻮﻝ ﺍﻷﺭﺽ ﻓﻰ ﻣﺴﺎﺭ ﺩﺍﺋﺮﻯ ﺩﻭﺭﺓ ﻛﺎﻣﻠﺔ ﻛﻞ ٦ ﺳﺎﻋﺎﺕ، ﻓﺈﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﻧﺼﻒ‬
‫ﻗﻄﺮ ﻣﺴﺎﺭه ﻋﻦ ﻛﺰ ﺍﻷﺭﺽ ٠٠٠٩ ﻛﻢ، ﻓﺄﻭﺟﺪ ﺳﺮﻋﺘﻪ ﺑﺎﻟﻜﻴﻠﻮﻣﺘﺮ ﻓﻰ ﺍﻟﺴﺎﻋﺔ.‬
‫ﻣﺮ‬
‫..................................................................................................................................................................................................................................‬

‫22 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ:‬
‫‪ C‬ﺏ ، ‪ C‬ﺟـ ﻣﻤﺎﺳﺎﻥ ﻟﻠﺪﺍﺋﺮﺓ ﻡ، ‪ c) X‬ﺟـ‪ C‬ﺏ ( = ٠٦‪ C ،c‬ﺏ = ٢١ ﺳﻢ.‬
‫ﺃﻭﺟﺪ ﻷﻗﺮﺏ ﻋﺪﺩ ﺻﺤﻴﺢ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﻛﺒﺮ ﺏ ﺟـ .‬

‫‪C‬‬

‫‪c‬‬

‫.....................................................................................................................................................‬

‫32 ﺍﻟﺮﺑﻂ ﺑﺎﻟﺰﻣﻦ: ﺗﺴﺘﺨﺪﻡ ﺍﻟﻤﺰﻭﻟﺔ ﺍﻟﺸﻤﺴﻴﺔ ﻟﺘﺤﺪﻳﺪ ﺍﻟﻮﻗﺖ ﺃﺛﻨﺎﺀ ﺍﻟﻨﻬﺎﺭ ﻣﻦ‬
‫ﺧﻼﻝ ﻃﻮﻝ ﺍﻟﻈﻞ ﺍﻟﺬﻯ ﻳﺴﻘﻂ ﻋﻠﻰ ﺳﻄﺢ ﻣﺪﺭﺝ ﻹﻇﻬﺎﺭ ﺍﻟﺴﺎﻋﺔ ﻭﺃﺟﺰﺍﺋﻬﺎ،‬
‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﻈﻞ ﻳﺪﻭﺭ ﻋﻠﻰ ﺍﻟﻘﺮﺹ ﺑﻤﻌﺪﻝ ٥١‪ c‬ﻟﻜﻞ ﺳﺎﻋﺔ.‬
‫أ ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺍﻟﺘﻰ ﻳﺪﻭﺭ ﺍﻟﻈﻞ ﻋﻨﻬﺎ ﺑﻌﺪ ﻣﺮﻭﺭ ٤ ﺳﺎﻋﺎﺕ.‬
‫......................................................................................................................................................................‬

‫ب ﺑﻌﺪ ﻛﻢ ﺳﺎﻋﺔ ﻳﺪﻭﺭ ﺍﻟﻈﻞ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٢‪ r‬ﺭﺍﺩﻳﺎﻥ?‬
‫٣‬

‫....................................‬

‫ﺟ ﻣﺰﻭﻟﺔ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٤٢ ﺳﻢ، ﺃﻭﺟﺪ ﺑﺪﻻﻟﺔ ‪ r‬ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻟﺬﻯ ﻳﺼﻨﻌﻪ ﺩﻭﺭﺍﻥ ﺍﻟﻈﻞ ﻋﻠﻰ ﺣﺎﻓﺔ‬
‫ﺍﻟﻘﺮﺹ ﺑﻌﺪ ﻣﺮﻭﺭ ٠١ ﺳﺎﻋﺎﺕ. ......................................................................................................................................................‬
‫42 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﻣﺴﺘﻘﻴﻢ ﻳﺼﻨﻊ ﺯﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ‪ r‬ﺭﺍﺩﻳﺎﻥ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻣﻊ ﺍﻻﺗﺠﺎه ﺍﻟﻤﻮﺟﺐ‬
‫٣‬
‫ﻟﻤﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ. ﺃﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﻫﺬﺍ ﺍﻟﻤﺴﺘﻘﻴﻢ. .................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-3‬

‫‪Trigonometric Functions‬‬
‫‪k‬‬
‫‪:Oó©àe øe QÉ«àN’G :’hCG‬‬

‫٣‬
‫1 ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﻄﺔ ) ١ ، ٢ (‬
‫٢‬
‫ﻓﺈﻥ ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ: ...........................................................................................................................................................................................‬
‫ﺟ ٣‬
‫أ ١‬
‫د ٢‬
‫ب ١‬
‫٢‬

‫٢‬

‫٣‬

‫٣‬

‫2 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺎ ‪ ١ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔﺣﺎﺩﺓ ﻓﺈﻥ ‪ (ic)X‬ﺗﺴﺎﻭﻯ‬
‫٢‬
‫ﺟ ٠٦‪c‬‬
‫ب ٥٤‪c‬‬
‫أ ٠٣‪c‬‬
‫3 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺎ ‪ ،١ - = i‬ﺟﺘﺎ ‪ ٠ = i‬ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫ﺟ ٣‪r‬‬
‫أ ‪r‬‬
‫ب ‪r‬‬

‫...........................................................................................‬

‫د ٠٩‪c‬‬

‫..............................................................................................‬

‫د ٢‪r‬‬

‫٢‬

‫٢‬

‫4 ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﺘﺎ ‪ ٢ = i‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫ﺟ ٥٤‪c‬‬
‫ب ٠٣‪c‬‬
‫أ ٥١‪c‬‬
‫٣‬

‫5 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ، ١ = i‬ﺟﺎ ‪ ٢ - = i‬ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫٢‬
‫ﺟ ٥‪r‬‬
‫ب ٥‪r‬‬
‫٢‪r‬‬
‫أ‬
‫٦‬

‫٣‬

‫....................................................................‬

‫.........................................................................................‬

‫٣‬

‫6 ﺇﺫﺍ ﻛﺎﻧﺖ ﻇﺎ ‪ ١ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫ﺟ ٥٤‪c‬‬
‫ب ٠٣‪c‬‬
‫أ ٠١‪c‬‬
‫7 ﻇﺎ ٥٤‪ + c‬ﻇﺘﺎ ٥٤‪ - c‬ﻗﺎ ٠٦‪ c‬ﺗﺴﺎﻭﻯ‬
‫ب ١‬
‫أ ﺻﻔﺮﺍ‬
‫ً‬
‫٢‬

‫د‬

‫١١‪r‬‬

‫٦‬

‫..................................................................‬

‫د ٠٦‪c‬‬

‫........................................................................................................................................................‬

‫ﺟ‬

‫٣‬

‫د ١‬

‫٢‬

‫٣‬

‫8 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ٢ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻓﺈﻥ ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫أ ١‬
‫ﺟ ٢‬
‫ب ١‬
‫٢‬

‫د ٠٦‪c‬‬

‫٣‬

‫.............................................................................................‬

‫٣‬

‫د‬

‫٣‬
‫٢‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫9 ﺃﻭﺟﺪ ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺍﻟﻤﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻭﺍﻟﺘﻰ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﺎﻁ ﺍﻵﺗﻴﺔ.‬
‫٥‬
‫أ )٢، ٣ (‬
‫٣‬

‫٣‬
‫ﺟ )- ٢ ، ١ (‬
‫٢‬

‫٢‬
‫٢‬
‫ب ) ٢ ،- ٢ (‬

‫د )- ٣ ، - ٤ (‬
‫٥ ٥‬

‫..................................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫01 ﺇﺫﺍ ﻛﺎﻥ ‪ i‬ﻫﻮ ﻗﻴﺎﺱ ﺯﺍﻭﻳﻪ ﻣﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻭﺍﻟﺘﻰ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﺄﻭﺟﺪ‬
‫ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫ﺣﻴﺚ ‪٠ < C‬‬

‫أ )٣ ‪(C٤ - ،C‬‬
‫ب ) ٣ ‪(C٢- ،C‬‬

‫٣‪r‬‬
‫ﺣﻴﺚ ٢ > ‪r٢ > i‬‬

‫٢‬

‫.................................................................................................................‬
‫.................................................................................................................‬

‫11 ﺍﻛﺘﺐ ﺇﺷﺎﺭﺍﺕ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻵﺗﻴﺔ:‬
‫ب ﻇﺎ ٥٦٣‪c‬‬

‫أ ﺟﺎ ٠٤٢‪c‬‬
‫....................................‬

‫ﺟ ﻗﺘﺎ ٠١٤‪c‬‬

‫....................................‬

‫٩‪r‬‬

‫....................................‬

‫ﻫ ﻗﺎ - ٩‪r‬‬
‫٤‬

‫د‬
‫ﻇﺘﺎ ٤‬

‫....................................‬

‫و ﻇﺎ‬

‫....................................‬

‫-٠٢‪r‬‬

‫٩‬

‫...................................‬

‫:‬

‫21‬

‫‪r‬‬

‫٣‪r‬‬
‫‪r‬‬
‫أ ﺟﺘﺎ ٢ * ﺟﺘﺎ ٠ + ﺟﺎ ٢ * ﺟﺎ ٢‬

‫ب ﻇﺎ٢ ٠٣‪ ٢ + c‬ﺟﺎ٢ ٥٤‪ + c‬ﺟﺘﺎ٢ ٠٩‪c‬‬

‫......................................................................................................‬
‫......................................................................................................‬

‫31 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻔﻴ ﺎﺀ: ﻋﻨﺪ ﺳﻘﻮﻁ ﺃﺷﻌﺔ ﺍﻟﻀﻮﺀ ﻋﻠﻰ ﺳﻄﺢ‬
‫ﺷﺒﻪ ﺷﻔﺎﻑ، ﻓﺈﻧﻬﺎ ﺗﻨﻌﻜﺲ ﺑﻨﻔﺲ ﺯﺍﻭﻳﺔ ﺍﻟﺴﻘﻮﻁ ﻭﻟﻜﻦ‬
‫ﺍﻟﺒﻌﺾ ﻣﻨﻬﺎ ﻳﻨﻜﺴﺮ ﻋﻨﺪ ﻣﺮﻭﺭه ﺧﻼﻝ ﻫﺬﺍ ﺍﻟﺴﻄﺢ. ﻛﻤﺎ‬
‫ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ:‬
‫ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ = ١i‬ﻙ ﺟﺎ‪،٢i‬ﻛﺎﻧﺖ ﻙ = ٣ ، ‪c٦٠ = ١i‬‬
‫ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪................................................................................ . i‬‬
‫٢‬

‫‪U‬‬

‫‪i‬‬

‫‪F‬‬

‫‪i‬‬

‫‪i‬‬

‫41 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﻃﻠﺐ ﺍﻟﻤﻌﻠﻢ ﻣﻦ ﻃﻼﺏ ﺍﻟﻔﺼﻞ ﺇﻳﺠﺎﺩ ﻧﺎﺗﺞ ٢ ﺟﺎ ٥٤‪.c‬‬
‫¯‬
‫٢ ﺟﺎ ٥٤‪ = c‬ﺟﺎ ٢ * ٥٤‪c‬‬
‫  = ﺟﺎ ٠٩‪١ = c‬‬
‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﺻﺤﻴﺢ?ﻭﻟﻤﺎﺫﺍ?‬

‫٢ ﺟﺎ ٥٤ = ٢ * ١ = ٢ *‬
‫٢‬
‫٢‬
‫٢‬

‫٢‬

‫٢‬

‫٢‬
‫٢‬

‫         = ٢‬

‫......................................................................................................................................................................‬

‫51 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻇﺘﺎ ‪ ،١ - = i‬ﻗﺘﺎ ‪ . ٢ = i‬ﻫﻞ ﻣﻦ‬
‫٣‪r‬‬
‫? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ. .......................................................................................................................‬
‫ﺍﻟﻤﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻕ)‪٤ = (ic‬‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫اﻟﻌﻼﻗﺎت ﺑﻴﻦ اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-4‬

‫‪Relations between trigonometric functions‬‬
‫‪k‬‬
‫‪:≈JCÉjÉe πªcCG :’hCG‬‬
‫2 ﻇﺎ ) ٠٨١‪= (i - c‬‬

‫...............................‬

‫1 ﺟﺘﺎ )٠٨١ ‪= (i +c‬‬

‫4 ﺟﺎ )٠٦٣‪= ( i + c‬‬

‫...............................‬

‫5 ﺟﺎ )٠٩ ‪= (i +c‬‬

‫...............................‬

‫6 ﻇﺘﺎ ) ٠٩‪= (i - c‬‬

‫...............................‬

‫7 ﻗﺎ ) ٠٧٢‪= (i+ c‬‬

‫...............................‬

‫8 ﺟﺘﺎ )٠٧٢‪= (i - c‬‬

‫3 ﻗﺘﺎ )٠٦٣‪= (i - c‬‬

‫...............................‬

‫...............................‬

‫...............................‬

‫‪v‬‬
‫‪IOÉM ájhGR ¢SÉ«≤H ≈JCÉj ɪe Óc πªcCG :Ék«fÉK‬‬
‫9 ﺟﺎ ٥٢‪ = c‬ﺟﺘﺎ ...............................‪c‬‬

‫01 ﺟﺘﺎ ٧٦‪ = c‬ﺟﺎ ...............................‪c‬‬

‫11 ﻇﺎ ٢٤‪ = c‬ﻇﺘﺎ ...............................‪c‬‬

‫21 ﻗﺘﺎ ٣١‪ = c‬ﻗﺎ ...............................‪c‬‬

‫31 ﺇﺫﺍ ﻛﺎﻥ ﻇﺘﺎ٢‪ = i‬ﻃﺎ‪ i‬ﺣﻴﺚ ٠‪ c٩٠ >i>c‬ﻓﺈﻥ ‪=(i c) X‬‬

‫...............................‬

‫41 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ٥‪ = i‬ﺟﺘﺎ٤‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ‪c............................... = i‬‬
‫51 ﺇﺫﺍ ﻛﺎﻥ ﻗﺎ ‪ = i‬ﻗﺎ)٠٩‪ (i - c‬ﻓﺈﻥ ﻇﺘﺎ ‪= i‬‬

‫...............................‬

‫61 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ٢‪ = i‬ﻇﺘﺎ٣‪ i‬ﺣﻴﺚ ‪ ] r ، ٠[∋ i‬ﻓﺈﻥ ‪= =(i c) X‬‬
‫٢‬
‫71 ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ‪ = i‬ﺟﺎ٢‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﺟﺎ٣‪= i‬‬

‫...............................‬

‫‪E‬‬

‫...............................‬

‫‪k‬‬
‫‪:Oó©àe øe QÉ«àN’G :ÉãdÉK‬‬
‫81 ﺇﺫﺍ ﻛﺎﻧﺖ ﻇﺎ )٠٨١‪ ١ = (i + c‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ‪ i‬ﻳﺴﺎﻭﻯ‬
‫د ٥٣١‪c‬‬
‫ﺟ ٠٦‪c‬‬
‫ب ٠٣‪c‬‬
‫أ ٥٤‪c‬‬
‫91 ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ٢‪ = i‬ﺟﺎ‪ i‬ﺣﻴﺚ ‪ ] r ،٠[∋ i‬ﻓﺈﻥ ﺟﺘﺎ ٢‪ i‬ﺗﺴﺎﻭﻯ‬
‫٢‬
‫ﺟ ٣‬
‫ب ١‬
‫أ ١‬
‫٢‬

‫٢‬

‫............................................................................................‬

‫٢‬

‫02 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ = a‬ﺟﺘﺎ ‪ ،b‬ﺣﻴﺚ ‪ b ،a‬ﺯﺍﻭﻳﺘﺎﻥ ﺣﺎﺩﺗﺎﻥ ﻓﺈﻥ ﻇﺎ)‪ (b + a‬ﺗﺴﺎﻭﻯ‬
‫أ ١‬
‫ب ١‬
‫ﺟ ٣‬
‫٣‬

‫د ١‬
‫.............................................................‬

‫د ﻏﻴﺮ ﻣﻌﺮﻭﻑ‬

‫12 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ٢‪ = i‬ﺟﺘﺎ ٤‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻇﺎ)٠٩‪ (i٣ - c‬ﺗﺴﺎﻭﻯ‬
‫ب ١‬
‫د‬
‫ﺟ ١‬
‫أ -١‬

‫......................................................‬

‫٣‬

‫‪ïM‬‬

‫−‬

‫٣‬
‫22 ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ)٠٩‪ ١ = (i + c‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ‪ i‬ﻳﺴﺎﻭﻯ‬
‫٢‬
‫ﺟ‬
‫ب‬
‫د‬
‫٠٣٣‪c‬‬
‫٠٤٢‪c‬‬
‫٠١٢‪c‬‬
‫أ ٠٥١‪c‬‬

‫..................................................‬

‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék©HGQ‬‬
‫32 ﺃﻭﺟﺪ ﺇﺣﺪﻯ ﻗﻴﻢ ‪ i‬ﺣﻴﺚ٠‪c٩٠ > i H‬ﺍﻟﺘﻰ ﺗﺤﻘﻖ ﻛﻼ ﻣﻦ ﺍﻵﺗﻰ:‬
‫ًّ‬
‫.................................................................................................................‬
‫أ ﺟﺎ)٣‪ = (c١٥ + i‬ﺟﺘﺎ)٢‪(c٥ - i‬‬
‫ب ﻗﺎ)‪ =       (c٢٥ + i‬ﻗﺘﺎ)‪(c١٥ + i‬‬

‫.................................................................................................................‬

‫ﺟ ﻇﺎ)‪ =     (c٢٠ + i‬ﻇﺘﺎ )٣‪(c٣٠ + i‬‬

‫.................................................................................................................‬

‫د ﺟﺘﺎ ‪ =       c٢٠ + i‬ﺟﺎ ‪c٤٠ + i‬‬

‫.................................................................................................................‬

‫٢‬

‫٢‬

‫42 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫ب ﻗﺘﺎ ٥٢٢‬
‫أ ﺟﺎ ٠٥١‪c‬‬
‫.....................................‬

‫ﻫ ﻗﺘﺎ‬

‫.....................................‬

‫١١‪r‬‬

‫و ﺟﺎ‬

‫٦‬

‫.....................................‬

‫٧‪r‬‬

‫٤‬

‫.....................................‬

‫ﺟ ﻗﺎ٠٠٣‪c‬‬
‫.....................................‬

‫ز ﻇﺘﺎ‬

‫-٢‪r‬‬

‫٣‬

‫.....................................‬

‫د ﻇﺎ ٠٨٧‪c‬‬
‫.....................................‬

‫ح ﺟﺘﺎ‬

‫-٧‪r‬‬

‫٤‬

‫.....................................‬

‫52 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺍﻟﻤﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ )- ٣ ، ٤ (‬
‫٥ ٥‬
‫ﻓﺄﻭﺟﺪ:‬
‫ب ﺟﺘﺎ ) ‪(i - r‬‬
‫أ ﺟﺎ)٠٨١‪(i + c‬‬
‫٢‬
‫.................................................‬

‫.................................................‬

‫د ﻗﺘﺎ ) ٣‪(i - r‬‬
‫٢‬

‫ﺟ ﻇﺎ )٠٦٣‪(i -c‬‬

‫.................................................‬

‫.................................................‬

‫62 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺟﻤﻴﻊ ﺍﻹﺟﺎﺑﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺻﺤﻴﺤﺔ ﻣﺎﻋﺪﺍ ﺇﺟﺎﺑﺔ ﻭﺍﺣﺪﺓ ﻓﻘﻂ ﺧﻄﺄ، ﻓﻤﺎ ﻫﻰ:‬
‫١- ﺟﺘﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬

‫.................................................................................................................................................................................................‬

‫ب ﺟﺎ ) ٠٧٢‪(i - c‬‬

‫أ ﺟﺎ )‪(c٢٧٠ - i‬‬
‫٢- ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬
‫أ ﺟﺘﺎ ) ‪( i - r‬‬
‫٢‬

‫ﺟ ﺟﺘﺎ )٠٦٣‪(i - c‬‬

‫د ﺟﺘﺎ ) ٠٦٣ ‪(i +c‬‬

‫...................................................................................................................................................................................................‬

‫٣- ﻇﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬

‫ب ﺟﺎ ) ‪(i - r‬‬

‫٣‪r‬‬

‫ﺟ ﺟﺘﺎ ) ٢ + ‪(i‬‬

‫‪r‬‬

‫د ﺟﺎ ) ٢ + ‪(i‬‬

‫.....................................................................................................................................................................................................‬

‫ب ﻇﺘﺎ ) ٠٧٢‪(i - c‬‬

‫أ ﻇﺘﺎ ) ٠٩‪(i-c‬‬
‫¯‬

‫−‬

‫¯‬

‫ﺟ ﻇﺎ )٠٧٢‪(i - c‬‬

‫د ﻇﺎ ) ٠٨١ ‪(i +c‬‬
‫72 ﺍﻟﺮﺑﻂ ﺑﺎﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ: ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﻛﺮﻳﻢ ﺣﺎﺳﻮﺑﻪ ﺍﻟﻤﺤﻤﻮﻝ‬
‫ﻛﺎﻧﺖ ﺯﺍﻭﻳﺔ ﻣﻴﻠﻪ ﻣﻊ ﺍﻷﻓﻘﻰ ٢٣١‪ c‬ﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ.‬
‫أ ﺍﺭﺳﻢ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻓﻰ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻰ، ﺑﺤﻴﺚ ﺗﻜﻮﻥ‬
‫ﺍﻟﺰﺍﻭﻳﺔ ٢٣١‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺛﻢ ﺃﻭﺟﺪ ﺯﺍﻭﻳﺘﻬﺎ ﺍﻟﻤﻨﺘﺴﺒﺔ.‬
‫............................................................................................................................................‬

‫‪c‬‬

‫ب ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻓﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻢ ‪ ،C‬ﺛﻢ ﺃﻭﺟﺪ‬
‫ﻗﻴﻤﺔ ‪ C‬ﻷﻗﺮﺏ ﺳﻨﺘﻴﻤﺘﺮ.‬

‫‪C‬‬

‫..................................................................................................................................................................................................................................‬

‫ﺃﻟﻌﺎﺏ: ﺗﻨﺘﺸﺮ ﻟﻌﺒﺔ ﺍﻟﻌﺠﻠﺔ ﺍﻟﺪﻭﺍﺭﺓ ﻓﻰ ﻣﺪﻳﻨﺔ ﺍﻟﻤﻼﻫﻰ، ﻭﻫﻰ‬
‫ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﺪﺩ ﻣﻦ ﺍﻟﺼﻨﺎﺩﻳﻖ ﺗﺪﻭﺭ ﻓﻰ ﻗﻮﺱ ﺩﺍﺋﺮﻯ ﻳﺒﻠﻎ‬
‫ﻛﺔ‬
‫ﻧﺼﻒ ﻗﻄﺮه ٢١ ﻣﺘﺮﺍ، ﻓﺈﺫﺍ ﻛﺎﻥ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺸﺘﺮ‬
‫ً‬
‫ﻣﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ٥‪r‬‬
‫٤ .‬
‫أ ﺍﺭﺳﻢ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٥‪ r‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ.‬
‫٤‬

‫‪C‬‬

‫...........................................................................................................‬

‫ب ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻓﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻤﺔ‬
‫‪ C‬ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺑﺎﻟﻤﺘﺮ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ.‬
‫...........................................................................................................‬

‫82 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ:‬

‫أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻇﺘﺎ ‪ ، ١- = i‬ﻗﺘﺎ ‪ . ٢ = i‬ﻓﻬﻞ ﻳﻤﻜﻦ ﺃﻥ‬
‫٣‪r‬‬
‫ﻳﻜﻮﻥ ‪ ? ٤ = (ic) X‬ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ?‬
‫.......................................................................................................................................................................................................................‬

‫٣‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ) ٣‪ ، ٢ = (i - r‬ﺟﺎ ) ‪ ١ = (i + r‬ﻓﺄﻭﺟﺪ ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ‪.i‬‬
‫٢‬
‫٢‬
‫٢‬
‫.......................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻰ ﻟﻠﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬

‫4-5‬

‫‪Graphing trigonometric functions‬‬

‫‪k‬‬
‫‪:≈JCÉjÉe πªcCG :’hCG‬‬
‫1 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬

‫................................‬

‫2 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ ٢ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬

‫................................‬

‫3 ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ ﻉ ﺣﻴﺚ ﻉ)‪٤ = (i‬ﺟﺎ‪ i‬ﻫﻰ‬

‫................................‬

‫4 ﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ ﻫـ ﺣﻴﺚ ﻫـ)‪٣ = (i‬ﺟﺘﺎ‪ i‬ﻫﻰ‬

‫................................‬

‫‪.É¡d ôXÉæªdG πμ°ûdG QGƒéH á«ã∏ãe ádGO πc IóYÉb ÖàcG :Ék«fÉK‬‬
‫‪r‬‬

‫‪r‬‬

‫‪r‬‬

‫‪r‬‬

‫−‬

‫−‪r− r‬‬

‫− ‪r −r‬‬

‫ﺷﻜﻞ )١( ﺍﻟﻘﺎﻋﺪﺓ ﻫﻰ:‬

‫‪r‬‬

‫‪r‬‬

‫‪r‬‬

‫‪r‬‬

‫−‬

‫−‪r− r‬‬

‫− ‪r − r‬‬

‫ﺷﻜﻞ )٢( ﺍﻟﻘﺎﻋﺪﺓ ﻫﻲ:‬

‫........................................................................................................‬

‫........................................................................................................‬

‫‪k‬‬
‫‪:á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬
‫5 ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ، ﺛﻢ ﺍﺣﺴﺐ ﺍﻟﻤﺪﻯ ﻟﻜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻵﺗﻴﺔ :‬
‫أ ﺹ = ﺟﺎ‪i‬‬
‫.......................................................................................................................................................................................................................‬

‫ب ﺹ = ٣ ﺟﺘﺎ‪i‬‬
‫.......................................................................................................................................................................................................................‬

‫ﺟ ﺹ = ٣ ﺟﺎ‪i‬‬
‫٢‬
‫.......................................................................................................................................................................................................................‬

‫6 ﻣﺜﻞ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺹ = ٤ ﺟﺘﺎ‪ ، i‬ﺹ = ٣ ﺟﺎ‪ i‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺍﻟﺮﺳﻮﻣﻴﺔ ﺃﻭ ﺑﺄﺣﺪ ﺑﺮﺍﻣﺞ ﺍﻟﺤﺎﺳﻮﺏ‬
‫ﺍﻟﺮﺳﻮﻣﻴﺔ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﺃﻭﺟﺪ :‬
‫ب ﺍﻟﻘﻴﻢ ﺍﻟﻌﻈﻤﻰ ﻭﺍﻟﻘﻴﻢ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ.‬
‫أ ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ.‬
‫.‬

‫.................................................................................................‬

‫¯‬

‫−‬

‫¯‬

‫.................................................................................................‬
‫إﻳﺠﺎد ﻗﻴﺎس زاوﻳﺔ ﺑﻤﻌﻠﻮﻣﻴﺔ داﻟﺔ ﻣﺜﻠﺜﻴﺔ‬
‫‪Finding the measure of an angle given the‬‬

‫4-6‬

‫‪value of one of its functions‬‬
‫‪k‬‬
‫‪:Oó©àe øe QÉ«àN’G :’hCG‬‬
‫1 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ٠٫٤٣٢٥ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ‪ (i) c X‬ﺗﺴﺎﻭﻯ‬
‫ﺟ ٨٨٣٫٢٣‪c‬‬
‫ب ٧٤٣٫٤٦‪c‬‬
‫أ ٦٢٦٫٥٢‪c‬‬
‫2 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ‪ ١٫٨ = i‬ﻛﺎﻧﺖ ٠٩‪ c٣٦٠ H iHc‬ﻓﺈﻥ ‪ (i) c X‬ﺗﺴﺎﻭﻯ‬
‫ﻭ‬
‫ﺟ ٥٤٩٫٠٤٢‪c‬‬
‫ب ٥٥٠٫٩١١‪c‬‬
‫أ ٥٤٩٫٠٦‪c‬‬

‫.............................................................‬

‫د ٦١٣٫٦٤‪c‬‬

‫............................................................................‬

‫د ٥٥٠٫٩٩٢‪c‬‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬
‫ًّ‬
‫ﺟﺘﺎ ‪ ،i‬ﺟﺎ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫٣‬
‫أ ﺏ )١، ٢ (‬
‫٢‬

‫ب ﺏ) ١ ، - ١ (‬
‫٢‬

‫٢‬

‫٦ ٨‬
‫ﺟ ﺏ )- ٠١ ، ٠١ (‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫................................................................‬

‫2 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬
‫ًّ‬
‫ﻗﺎ‪ ،i‬ﻗﺘﺎ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫٢‬
‫٢‬
‫ﺟ ﺏ )- ٥ ، - ٢١‬
‫ب ﺏ)- ١ ، - ٢‬
‫٣١ ٣١ (‬
‫(‬
‫أ ﺏ) ٢ ،- ٢ (‬
‫٥‬

‫٥‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫................................................................‬

‫3 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬
‫ًّ‬
‫ﻇﺎ ‪ ،i‬ﻇﺘﺎ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫ﺟ ﺏ )- ٤ ، - ٣ (‬
‫ب ﺏ) ٣ ،- ٥ (‬
‫أ ﺏ) ١ ،- ٣ (‬
‫٥‬
‫٥‬
‫٠١‬

‫٠١‬

‫٤٣‬

‫٤٣‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫..................................................................‬

‫................................................................‬

‫4 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ‬
‫ﻓﺄﻭﺟﺪ: ‪ (ic)X‬ﺣﻴﺚ ٠ ْ > ‪ ْ ٣٦٠ > i‬ﻋﻨﺪﻣﺎ:‬
‫٣‬
‫أ ﺏ ) ٢ ، ١(‬
‫٢‬

‫ب ﺏ)- ١ ، ١ (‬
‫٢‬

‫..................................................................‬

‫٢‬

‫..................................................................‬

‫‪ïM‬‬

‫−‬

‫٦‬
‫ﺟ ﺏ ) ٠١ ، -٨ (‬
‫٠١‬
‫..................................................................‬
‫5 ﺃﻭﺟﺪ ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺗﺤﻘﻖ ﻛﻼ ﻣﻦ:‬
‫ًّ‬
‫ب ﺟﺘﺎ-١ ٦٣٤٫٠‬
‫أ ﺟﺎ-١ ٦٫٠‬
‫..................................................................‬

‫د ﻗﺎ-١ )- ٤٦٣٢٫٢(‬

‫ﺟ ﻇﺎ-١ ٢٥٥٤٫١‬

‫..................................................................‬

‫ﻫ ﻇﺘﺎ-١ ٨١٢٦٫٣‬

‫..................................................................‬

‫..................................................................‬

‫و ﻗﺘﺎ-١ )-٤٠٠٦٫١(‬

‫..................................................................‬

‫6 ﺇﺫﺍ ﻛﺎﻧﺖ ٠‪ c٣٦٠ H iHc‬ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫ب ﺟﺘﺎ-١ )- ٢٤٦٫٠(‬
‫أ ﺟﺎ-١ )٦٥٣٢٫٠(‬
‫..................................................................‬

‫..................................................................‬

‫ﺟ ﻇﺎ-١ )- ٦٥٤١٫٢(‬
‫..................................................................‬

‫..................................................................‬

‫7 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ١ = i‬ﻛﺎﻧﺖ ٠٩‪c١٨٠ H iHc‬‬
‫٣ﻭ‬
‫أ ﺍﺣﺴﺐ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﻷﻗﺮﺏ ﺛﺎﻧﻴﺔ‬
‫.......................................................................................................................................................................................................................‬

‫ب ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ: ﺟﺘﺎ‪ ، i‬ﻇﺎ‪ ، i‬ﻗﺎ‪. i‬‬
‫ٍّ‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫8 ﺳﻼﻟﻢ: ﺳﻠﻢ ﻃﻮﻟﻪ ٥ ﺃﻣﺘﺎﺭ ﻳﺴﺘﻨﺪ ﻋﻠﻰ ﺟﺪﺍﺭ ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﺭﺗﻔﺎﻉ ﺍﻟﺴﻠﻢ ﻋﻦ‬
‫ﺳﻄﺢ ﺍﻷﺭﺽ ﻳﺴﺎﻭﻯ ٣ ﺃﻣﺘﺎﺭ ﻓﺄﻭﺟﺪ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺯﺍﻭﻳﺔ ﻣﻴﻞ ﺍﻟﺴﻠﻢ ﻋﻠﻰ ﺍﻷﻓﻘﻰ.‬
‫‪ci‬‬

‫.‬

‫..................................................................................................................................................................................................................................‬
‫..................................................................................................................................................................................................................................‬

‫9 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ:‬
‫ب‬

‫أ‬

‫ﺟ‬
‫‪i‬‬

‫‪i‬‬

‫............................................................‬

‫¯‬

‫−‬

‫............................................................‬

‫¯‬

‫‪i‬‬

‫............................................................‬
‫ﲤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬
‫‪:ø«jô°ûY ø«ªbQ ÜôbC’ èJÉædG ÉkHô≤e á«JB’G á∏İSC’G øY ÖLCG‬‬
‫1 ﺣﻮﻝ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻣﻦ ﺩﺭﺟﺎﺕ ﺇﻟﻰ ﺭﺍﺩﻳﺎﻥ:‬
‫ِّ‬
‫أ ٠٢١‪c‬‬

‫ب ٨٫٤٦‪c‬‬

‫   ...............................‬

‫               ...............................‬

‫ﺟ ٦٣ َ ٠٢٢‪c‬‬

‫................................‬

‫2 ﺣﻮﻝ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻣﻦ ﺭﺍﺩﻳﺎﻥ ﺇﻟﻰ ﺩﺭﺟﺎﺕ:‬
‫أ ٥‪r‬‬
‫٣‬

‫ب - ٣‪r‬‬
‫٢‬

‫       ...............................‬

‫      ...............................‬

‫ﺟ ٢١٫١‬

‫‪E‬‬
‫      ...............................‬

‫3 ‪ i‬ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪ H‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ﻝ:‬
‫ﻣﺮ‬
‫ً‬
‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ ٨ = H‬ﺳﻢ،  ‪ E١٫٢ = i‬ﺃﻭﺟﺪ ﻝ.‬

‫    ‬

‫................................................................................................‬

‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ = ٦٢ ﺳﻢ، ‪ ١٨ = H‬ﺳﻢ ﺃﻭﺟﺪ ‪ i‬ﺑﺎﻟﺪﺭﺟﺎﺕ.‬

‫...............................................................................................‬

‫4 ﺑﺪﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫٣١‬
‫أ ﻇﺎ ٠٢١‪    c‬ب ﺟﺎ ) ٦‪    ( r‬ﺟ ﺟﺘﺎ ٠٣٣‪    c‬د ﻇﺘﺎ )- ٠٠٣‪    (c‬ﻫ ﻗﺘﺎ )- ‪( r‬‬
‫٣‬
‫..............................        ..............................            ..............................            ..............................               ..............................‬

‫5 ﺃﻭﺟﺪ ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻣﺮﺳﻮﻣﺎ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻭﻳﻤﺮ ﺑﻜﻞ ﻧﻘﻄﺔ‬
‫ً‬
‫ﻣﻦ ﺍﻟﻨﻘﺎﻁ ﺍﻵﺗﻴﺔ:‬
‫ﺟ )- ٣‬
‫د )- ٥ ، ٢(‬
‫٢ ، - ٢(‬
‫ب - )٥، - ٢١(‬
‫أ )٤، ٣(‬
‫.............................................‬

‫6‬

‫.............................................‬

‫أ ﺃﺛﺒﺖ ﺃﻥ:‬
‫: ﺟﺎ ٠٦ = ٢ ﺟﺎ ٠٣‪ c‬ﺟﺘﺎ ٠٣‪c‬‬

‫.............................................‬

‫.............................................‬

‫: ﺟﺘﺎ ٠٠٣‪ ٢ = c‬ﺟﺎ٢ ٠٦‪١- c‬‬

‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ٤ - = i‬ﺣﻴﺚ ٠٩‪ c١٨٠ > i > c‬ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ:‬
‫٥‬
‫ً‬
‫: ﻇﺎ )‪(c١٨٠- i‬‬
‫ﺃﻭﻻ: ﺟﺎ )٠٨١‪( i -c‬‬
‫............................................................‬

‫............................................................‬

‫7 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﻭﺍﻳﺎ ﺑﺎﻟﺪﺭﺟﺎﺕ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ٠‪ c٣٦٠ H iHc‬ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬
‫٣‬
‫ﺟ ﺟﺘﺎ-١ )  ٢ (‬
‫ب ﺟﺎ-١ )- ١ (‬
‫أ ﻇﺎ-١ ١‬
‫٢‬
‫.............................................‬

‫.............................................‬

‫.............................................‬

‫د ﻇﺎ-١)- ٣ (‬
‫.............................................‬

‫8 ﻣﻨﺤﺪﺭﺍ ﻃﻮﻟﻪ ٤٢ ﻣﺘﺮﺍ، ﻭﺍﺭﺗﻔﺎﻋﻪ ﻋﻦ ﺳﻄﺢ ﺍﻷﺭﺽ ٩ ﺃﻣﺘﺎﺭ، ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻹﻳﺠﺎﺩ ﻗﻴﺎﺱ‬
‫ً‬
‫ً‬
‫ﺯﺍﻭﻳﺔ ﻣﻴﻞ ﺍﻟﻤﻨﺤﺪﺭ ﻣﻊ ﺍﻷﺭﺽ ﺍﻷﻓﻘﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﺎﺳﻬﺎ. ..........................................................................................................‬
‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬
‫‪.√É£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉL’G ôàNG‬‬
‫1 ﺍﻟﺰﺍﻭﻳﺔ ٥٨٥‪ c‬ﺗﻜﺎﻓﻲﺀ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ:‬
‫ﺟ ٥٢٢‪c‬‬
‫ب ٥٣١‪c‬‬
‫أ ٥٤‪c‬‬

‫د ٥١٣‪c‬‬

‫2 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ‪ ،٠ > i‬ﻇﺎ ‪ ٠ < i‬ﻓﺈﻥ ﺯﺍﻭﻳﺔ ﺗﻘﻊ ‪ i‬ﻓﻰ ﺍﻟﺮﺑﻊ:‬
‫ﺟ ﺍﻟﺜﺎﻟﺚ‬
‫ب ﺍﻟﺜﺎﻧﻰ‬
‫أ ﺍﻷﻭﻝ‬

‫د ﺍﻟﺮﺍﺑﻊ‬

‫3 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻛﺎﻥ ﺟﺎ )‪ = (c٢٠ + i‬ﺟﺘﺎ ٠٣‪ c‬ﻓﺈﻥ ﻕ )‪ (i c‬ﺗﺴﺎﻭﻯ:‬
‫ﻭ‬
‫د ٠٥‪c‬‬
‫ﺟ ٠٤‪c‬‬
‫ب ٠٣‪c‬‬
‫أ ٠٢‪c‬‬
‫4 ﺍﻟﺰﺍﻭﻳﺔ )-٠٥٨‪ (c‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬
‫ب ﺍﻟﺜﺎﻧﻰ‬
‫أ ﺍﻷﻭﻝ‬

‫ﺟ ﺍﻟﺜﺎﻟﺚ‬

‫د ﺍﻟﺮﺍﺑﻊ‬

‫5 ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺑﺎﻟﺪﺭﺟﺎﺕ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٦‪ r‬ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٩ﺳﻢ ﺗﺴﺎﻭﻯ:‬
‫ً‬
‫د ٠٥١‪c‬‬
‫ﺟ ٠٢١‪c‬‬
‫ب ٠٦‪c‬‬
‫أ ٠٣‪c‬‬
‫6 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ: ﺟﺘﺎ )٠٨١‪ + (i + c‬ﺟﺎ )٠٩‪ (i + c‬ﻳﺴﺎﻭﻯ:‬
‫ﺟ ٢ ﺟﺘﺎ ‪i‬‬
‫ب ٢‬
‫أ ٠‬
‫7 ﻇﺎ )-٠٣‪ (c‬ﺗﺴﺎﻭﻯ:‬
‫أ - ٣‬

‫ب - ١‬
‫٣‬

‫ﺟ‬

‫د ٢ ﺟﺎ ‪i‬‬

‫١‬
‫٣‬

‫د‬

‫٣‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG‬‬
‫8 ‪ C‬ﺏ ﻗﻮﺱ ﻓﻰ ﺩﺍﺋﺮﺓ ﻛﺰﻫﺎ ﻭ ﻭﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠١ ﺳﻢ ، ‪ C‬ﺏ = ٦١ ﺳﻢ.‬
‫ﻣﺮ‬
‫ﺃﻭﺟﺪ ‪ i‬ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ‪ C‬ﺏ :‬

‫‪C‬‬

‫‪i‬‬

‫9 ﺇﺫﺍ ﻛﺎﻥ ٥ ﺟﺎ ‪ ٤ = C‬ﺣﻴﺚ ٠٩‪c١٨٠ > C > c‬‬
‫ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ ﺟﺎ )٠٨١‪+ (C - c‬ﻇﺎ )٠٦٣‪٢+ (C - c‬ﺟﺎ )٠٧٢‪(C - c‬‬
‫01 ﺃﻭﺟﺪ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ: ﺟﺎ ٠٢١‪ c‬ﺟﺘﺎ٠٣٣‪ - c‬ﺟﺘﺎ ٠٢٤‪ c‬ﺟﺎ )-٠٣‪.(c‬‬
‫11 ﺍﻭﺟﺪ ﺑﺎﻟﺮﺩﻳﺎﻥ ‪ (C c) X‬ﺇﺫﺍ ﻛﺎﻥ ٢ ﺟﺘﺎ ‪ ٠ = ٢ + C‬ﺣﻴﺚ ‪ C‬ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ.‬
‫٣‬

‫21 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻲ ﻟﻠﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ )- ٢ ، ١ ( ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ‬
‫٢‬
‫ﻛﻞ ﻣﻦ: ﻃﺎ‪ ، i‬ﻗﺎ‪i‬‬
‫31 ﺃﻭﺟﺪ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻲ ﻣﺮﺳﻮﻣﺎ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ‬
‫ً‬
‫)٦، -٨(‬

‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬
‫‪k‬‬
‫‪Oó©àe øe QÉ«àN’G á∏İSCG :’hCG‬‬
‫1 ﺃﻯ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻳﻜﻮﻥ ﺍﻟﺠﻴﺐ ﻭﺟﻴﺐ ﺍﻟﺘﻤﺎﻡ ﻟﻬﺎ ﺳﺎﻟﺒﻴﻦ :‬
‫ﺟ ٠٢٢‪c‬‬
‫ب ٠٤١‪c‬‬
‫أ ٠٤‪c‬‬
‫.............................................‬

‫.............................................‬

‫د ٠٢٣‪c‬‬
‫.............................................‬

‫.............................................‬

‫2 ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٢‪ r‬ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ ﻳﺴﺎﻭﻯ :‬
‫ﺍﻟﻤﺮ‬
‫ً‬
‫د ‪r‬‬
‫ﺟ ‪r‬‬
‫ب ‪r‬‬
‫‪r‬‬
‫أ‬
‫٤‬

‫٦‬

‫.............................................‬

‫٣‬

‫.............................................‬

‫٢‬

‫.............................................‬

‫.............................................‬

‫3 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ٤‪ = i‬ﻇﺘﺎ٢‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﺟﺎ)٠٩ ْ - ‪ (i‬ﺗﺴﺎﻭﻯ :‬
‫ﺟ ٣‬
‫أ ١‬
‫ب ١‬
‫د ١‬
‫٢‬
‫٢‬
‫٢‬

‫.............................................‬

‫.............................................‬

‫.............................................‬

‫.............................................‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫٣‬

‫4 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ ) ١ ، ٢ ( ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ‬
‫٢‬
‫ﻛﻞ ﻣﻦ ﻇﺘﺎ ‪ ،i‬ﻗﺘﺎ‪...................................................................................................................................................................................... .i‬‬
‫5 ﺑﺪﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭﺟﺪ )ﺇﻥ ﺃﻣﻜﻦ ﺫﻟﻚ( ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ :‬
‫ﺟ ﻗﺎ ٣‪r‬‬
‫ب ﺟﺎ )- ٥٣١‪(c‬‬
‫أ ﺟﺘﺎ ٠١٢‪c‬‬

‫د ﻇﺘﺎ )- ٢‪( r‬‬
‫٣‬

‫٢‬

‫.............................................‬

‫.............................................‬

‫.............................................‬

‫.............................................‬

‫6 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ )٠٩‪ (i - c‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ، ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥‬
‫ﻭﺣﺪﺍﺕ ﻃﻮﻝ ﻓﻰ ﺍﻟﻨﻘﻄﺔ )٤ ، ﻙ( ﻓﺄﻭﺟﺪ :‬
‫د ﻕ)‪(i c‬‬
‫ﺟ ﺟﺘﺎ )٠٩‪(i - c‬‬
‫ب ﺟﺎ )٠٩‪(i - c‬‬
‫أ ﻗﻴﻤﺔ ﻙ‬
‫.............................................‬

‫.............................................‬

‫.............................................‬

‫.............................................‬

‫7 ﺩ ﺍﺟﺎﺕ: ﻳﺼﻌﺪ ﻛﺮﻳﻢ ﺑﺪﺭﺍﺟﺘﻪ ﻣﻨﺤﺪﺭﺍ ﻳﻤﻴﻞ ﻋﻠﻰ ﺍﻷﻓﻘﻰ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٥٥١‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ‬
‫ً‬
‫أ ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﺗﺒﻴﻦ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ‪ C‬ﻭﻃﻮﻝ ﺍﻟﻤﻨﺤﺪﺭ.‬
‫ب ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻷﻗﺮﺏ ﻋﺪﺩﻳﻦ ﻋﺸﺮﻳﻴﻦ.‬

‫¯‬

‫‪ï‬‬

‫¯‬

‫١‬

‫٢‬

‫٣‬

‫٤‬

‫٥‬

‫٦‬

‫٧‬

‫٤- ٣‬

‫٤-٢‬

‫٤-٤‬

‫٤-٣‬

‫٤- ٤‬

‫٤-٤‬

‫٤-٤‬

‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﺠﺒﺮ وﺣﺴﺎب اﻟﻤﺜﻠﺜﺎت(‬

‫اﻻﺧﺘﺒﺎر ا ول‬
‫‪k‬‬
‫‪≈`JCÉjÉe πªcCG :’hCG‬‬
‫1 ﺇﺫﺍ ﻛﺎﻥ ﺱ = -١ ﻫﻰ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ‪ C‬ﺱ – ٢ = ٠ ﻓﺈﻥ ‪= C‬‬
‫2 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٣ ﺗﻜﻮﻥ‬

‫...............................................................................‬

‫..................................................................................................................................‬

‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ – ﺕ، ﺕ ﻫﻰ‬
‫ﺍﻟﻤﺮ‬
‫4 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ ٣ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬

‫...................................................................‬

‫................................................................................................................................................‬

‫5 ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻣﻜﺎﻓﺌﺔ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ )-٠٤٨‪ (c‬ﻗﻴﺎﺳﻬﺎ ............................ ﻭﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ‬

‫................................‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 أ ﺃﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ - ٥ﺱ + ٣ = ٠ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻓﻰ ﺡ ﻣﻘﺮﺑﺎ‬
‫ً‬
‫ﺍﻟﻨﺎﺗﺞ ﻟﺮﻗﻢ ﻋﺸﺮﻯ ﻭﺍﺣﺪ. ................................................................................................................................................................‬
‫ب ﺃﻭﺟﺪ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ:ﺟﺎ )- ٠٣˚( ﺟﺘﺎ ٠٢٤˚ + ﻇﺎ٥٢‪c‬‬
‫....................................................................‬
‫ﻇﺘﺎ٥٦‪c‬‬
‫2 أ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (٥ – C‬ﺱ٢ + )‪ (١٠ – C‬ﺱ – ٥ = ٠ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ = ٤ ...........................................................................................................................‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ. ...........................................................‬
‫ب ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٢ ﺱ – ٥١ ﻣﻊ ﺗﻮﺿﻴﺢ ﺫﻟﻚ ﻋﻠﻰ ﺧﻂ ﺍﻷﻋﺪﺍﺩ.‬
‫.......................................................................................................................................................................................................................‬

‫3‬

‫أ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ: ٥ﺱ٢ + ٢١ﺱ ‪٤٤ G‬‬

‫............................................................................................................‬

‫.......................................................................................................................................................................................................................‬

‫ب ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ٣ = i‬ﺣﻴﺚ ٠٩‪ ،c١٨٠ > i > c‬ﺃﻭﺟﺪ ﻗﻴﻤﺔ: ﺟﺘﺎ )٠٧٢‪،(i – c‬ﻇﺎ )٠٨١‪(i + c‬‬
‫٥‬

‫.........................‬

‫.......................................................................................................................................................................................................................‬

‫4 أ ﺿﻊ ﺍﻟﻌﺪﺩ ﻛﺐ ﺍﻵﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ )٦٢ – ٤ﺕ( – )٩ – ٠٢ ﺕ( ﺣﻴﺚ ﺕ٢ = -١‬
‫ﺍﻟﻤﺮ‬
‫ب ﺍﻟﺮﺑﻂ ﺑﺎﻟ ﺎﺿﺔ: ﻛﻞ ﻻﻋﺐ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ﺍﻟﻜﺮﺓ ﻧﺤﻮ ﺍﻟﻬﺪﻑ ﻣﻦ ﻣﺴﺎﻓﺔ ﺱ ﻣﺘﺮﺍ ﻋﻦ ﺣﺎﺭﺱ ﺍﻟﻤﺮﻣﻰ،‬
‫ﻳﺮ‬
‫ﻓﻴﻘﻔﺰ ﺍﻟﺤﺎﺭﺱ ﻭﻳﻤﺴﻚ ﺍﻟﻜﺮﺓ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ١٫٢ ﻣﺘﺮﺍ ﻋﻦ ﺳﻄﺢ ﺍﻷﺭﺽ ﻓﺈﺫﺍ ﻛﺎﻥ‬
‫ً‬
‫ﻣﺴﺎﺭ ﺍﻟﻜﺮﺓ ﻳﻤﻴﻞ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﻣﻊ ﺍﻷﻓﻘﻰ. ﻓﺄﻭﺟﺪ ﻷﻗﺮﺏ ﺭﻗﻢ ﻋﺸﺮﻯ‬
‫‪c‬‬
‫ﻭﺍﺣﺪ ﺍﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﺍﻟﻼﻋﺐ ﻭﺣﺎﺭﺱ ﺍﻟﻤﺮﻣﻰ ﻋﻨﺪﻣﺎ ﺭﻛﻞ ﺍﻟﻼﻋﺐ ﺍﻟﻜﺮﺓ.‬

‫.................................‬

‫.............................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﺠﺒﺮ وﺣﺴﺎب اﻟﻤﺜﻠﺜﺎت(‬

‫اﻻﺧﺘﺒﺎر اﻟﺜﺎﻧﻰ‬
‫‪k‬‬
‫‪:IÉ£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬
‫1 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻌﺪﺩ ﺍﻟﺘﺨﻴﻠﻰ ﺕ٣٧ ﻫﻮ:‬
‫ب ١‬
‫أ -١‬

‫...................................................................................................................................................‬

‫ﺟ -ﺕ‬

‫د ﺕ‬

‫2 ﺍﻟﺪﺍﻟﺔ ﺩ: ]- ٤، ٧[ # ﺡ ﺣﻴﺚ ﺩ)ﺱ( = ٦ - ٢ﺱ ﺗﻜﻮﻥ ﺇﺷﺎﺭﺗﻬﺎ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ:‬
‫د [ ٣، ٧ ]‬
‫ﺟ ]- ٤، ٧[‬
‫ب [ ٣، ٧ ]‬
‫أ ]- ٤، ٣ ]‬

‫.............................................‬

‫3 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٤ ﺱ٢ – ٢١ ﺱ + ﺟـ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﻓﺈﻥ ﺟـ ﺗﺴﺎﻭﻯ:‬
‫ﺟ ٩‬
‫ب ٤‬
‫أ ٣‬
‫4 ﻇﺎ ‪ ` r -j‬ﺗﺴﺎﻭﻯ:‬
‫٦‬
‫أ - ٣‬

‫...................................................................‬

‫د ٦١‬

‫.........................................................................................................................................................................................‬

‫ب - ١‬
‫٣‬

‫ﺟ‬

‫١‬
‫٣‬

‫د‬

‫٣‬

‫5 ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٣ﺳﻢ ﻣﻦ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٤ﺳﻢ ﻫﻮ:‬
‫ﻣﺮ‬
‫ً‬
‫‪E‬‬
‫‪E‬‬
‫٣ ‪E‬‬
‫٢ ‪E‬‬
‫د ٦‬
‫ﺟ ٥‬
‫ب )٢(‬
‫أ )٣(‬

‫....................................‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 أ ﺑﻴﻦ ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٩ = ٦ ﺱ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ.‬
‫ب ﺇﺫﺍ ﻛﺎﻥ: ٧ ﻗﺘﺎ ‪ ٢٥ = C‬ﺣﻴﺚ ‪ .r > C > r‬ﻓﺄﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻠﻤﻘﺪﺍﺭ: ﻇﺎ ) ‪ - ( C + r‬ﻇﺘﺎ )‪( r - C‬‬
‫٢‬
‫٢‬

‫.........................................................................‬

‫.......................................................................................................................................................................................................................‬

‫2‬

‫أ ﺃﻭﺟﺪ ﻗﻴﻤﺘﻰ ‪ ،C‬ﺏ ﺍﻟﺤﻘﻴﻘﻴﺘﻴﻦ ﺍﻟﻠﺘﻴﻦ ﺗﺤﻘﻘﺎﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ: )‪) – (٣ + C‬ﺏ – ١( ﺕ = ٧ – ٩ ﺕ ﺣﻴﺚ ﺕ٢ = -١‬
‫.......................................................................................................................................................................................................................‬

‫ب ﺣﻮﻝ ﻗﻴﺎﺱ ﻛﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻜﺘﻮﺑﺔ ﺑﺎﻟﺪﺭﺟﺎﺕ ﺇﻟﻰ ﺭﺍﺩﻳﺎﻥ ﻭﺍﻟﻤﻜﺘﻮﺑﺔ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺇﻟﻰ ﺩﺭﺟﺎﺕ‬
‫: ٨‪r‬‬
‫  ..........................................................................‬
‫: ٥١٢‪................................................................. c‬‬
‫٦‬
‫3 أ ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ٢ﺱ٢ – ٣ ﺱ + ٤ ﻣﻊ ﺗﻮﺿﻴﺢ ﺫﻟﻚ ﻋﻠﻰ ﺧﻂ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ‬
‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﻄﺔ )٤، - ٣(‬
‫ﻓﺄﻭﺟﺪ ﺟﺎ‪ ،i‬ﻇﺘﺎ‪.......................................................................................................................................................................... .i‬‬
‫4‬

‫أ ﺇﺫﺍ ﻛﺎﻥ )ﺱ + ٢(٢ + )ﺱ + ١( )ﺱ – ٤( > ٠‬
‫: ﺍﻛﺘﺐ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ.‬

‫: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ.‬

‫.......................................................................................................................................................................................................................‬

‫٢‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ٢ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ )ﻝ + ﻡ(، ﻝ ﻡ.‬
‫ﻡ‬
‫.......................................................................................................................................................................................................................‬

‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﺠﺒﺮ وﺣﺴﺎب اﻟﻤﺜﻠﺜﺎت(‬

‫اﻻﺧﺘﺒﺎر اﻟﺜﺎﻟﺚ‬
‫‪k‬‬
‫‪IÉ£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬

‫1 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪C‬ﺱ٢ + ٢ ﺱ + ٥ = ٠ ﻣﻌﻜﻮﺳﺎ ﺿﺮﺑﻴﺎ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ‪ C‬ﺗﺴﺎﻭﻯ:‬
‫ً‬
‫ًّ‬
‫د ٥‬
‫ﺟ ٢‬
‫ب -٢‬
‫أ -٥‬
‫2 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ٦ – ٢ ﺱ ﺗﻜﻮﻥ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﻛﺎﻧﺖ:‬
‫ﺟ ﺱ>٣‬
‫ب ﺱ‪٣G‬‬
‫أ ﺱ<٣‬

‫..........................‬

‫..........................................................................................‬

‫د ﺱ‪٣H‬‬

‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ١ + ﺕ ، ١ – ﺕ ﺣﻴﺚ ﺕ٢ = -١ ﻫﻰ:‬
‫أ ﺱ٢ + ٢ﺱ + ٢ = ٠ ب ﺱ٢ – ٢ﺱ + ٢ = ٠ ﺟ ﺱ٢ + ٢ﺱ – ٢ = ٠‬

‫...............................................................................‬

‫د ﺱ٢ – ٢ﺱ – ٢ = ٠‬

‫4 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺑﺤﻴﺚ ﺟﺘﺎ ‪ ،٠ < i‬ﻓﻰ ﺃﻯ ﺭﺑﻊ ﻳﻘﻊ ﺿﻠﻊ ﺍﻟﻨﻬﺎﻳﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪:i‬‬
‫د ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺮﺍﺑﻊ‬
‫ﺟ ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﻟﺚ‬
‫ب ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﻧﻰ‬
‫أ ﺍﻷﻭﻝ‬
‫5 ﺇﺫﺍ ﻛﺎﻧﺖ ٢ ﺟﺘﺎ ‪ ٢ - = C‬ﻓﺈﻥ ﺃﻗﻞ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺗﺤﻘﻖ ﻫﺬه ﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻫﻰ:‬
‫د ٥١٣‪c‬‬
‫ﺟ ٥٢٢‪c‬‬
‫ب ٥٣١‪c‬‬
‫أ ٥٤‪c‬‬

‫.........................................................‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1‬

‫أ ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ )٢ ﺱ + ٣( = ٥ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ + ١ ، ﻡ + ١.‬

‫.................‬

‫.......................................................................................................................................................................................................................‬

‫ب ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٦‪ c‬ﻭﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٧‪ r‬ﺳﻢ، ﺍﺣﺴﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻬﺎ.‬
‫ﻣﺮ‬
‫ً‬
‫٣‬

‫...........................‬

‫.......................................................................................................................................................................................................................‬

‫2 أ ﺿﻊ ﺍﻟﻌﺪﺩ ٢ - ٣ﺕ ﻓﻰ ﺻﻮﺭﺓ ﻋﺪﺩ ﻛﺐ. ﺣﻴﺚ ﺕ٢ = -١.‬
‫ﻣﺮ‬
‫٣ + ٢ﺕ‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ٤ ﺟﺎ ‪ ٠ = ٣ - C‬ﺃﻭﺟﺪ ‪ ( Cc) X‬ﺣﻴﺚ ‪ ،٠ [ ∋ C‬ﻁ‬
‫] ........................................................................................‬
‫٢‬
‫.........................................................................................‬

‫3‬

‫أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ : ﺡ # ﺡ ﺣﻴﺚ ﺩ)ﺱ( = - ﺱ٢ + ٨ ﺱ – ٥١‬
‫: ﻋﻴﻦ ﻣﻦ ﺍﻟﺮﺳﻢ ﺇﺷﺎﺭﺓ ﻫﺬه ﺍﻟﺪﺍﻟﺔ.‬
‫: ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ] ١، ٧ [‬
‫.......................................................................................................................................................................................................................‬

‫‬‫ب ﺇﺫﺍ ﻛﺎﻥ ﺱ = ٣ + ٢ﺕ، ﺹ = ٤١ -٢ﺕ ﻓﺄﻭﺟﺪ ﺱ + ﺹ ﻓﻰ ﺻﻮﺭﺓ ﻋﺪﺩ ﻛﺐ.‬
‫ﻣﺮ‬
‫ﺕ‬

‫..................................................‬

‫4 أ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﻴﺎﻳﻨﺔ ﺱ٢ + ٣ﺱ – ٤ ‪٠ H‬‬
‫ب ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ﺏ = ٣ ﺣﻴﺚ ٠٨١‪ > c‬ﺏ > ٠٧٢‪ c‬ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ: ﺟﺘﺎ )٠٦٣‪ – c‬ﺏ( - ﺟﺘﺎ )٠٩‪ – c‬ﺏ(‬
‫٤‬

‫..............................................................................................................‬

‫.......................................................................................................................................................................................................................‬

‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﻬﻨﺪﺳﺔ(‬

‫اﻻﺧﺘﺒﺎر اﻟﺮاﺑﻊ‬
‫‪k‬‬
‫‪πªcCG :’hCG‬‬

‫1 ﺇﺫﺍ ﻗﻄﻊ ﻣﺴﺘﻘﻴﻤﺎﻥ ﻋﺪﺓ ﻣﺴﺘﻘﻴﻤﺎﺕ ﻣﺘﻮﺍﺯﻳﺔ، ﻓﺈﻥ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻠﻰ ﺃﺣﺪ ﺍﻟﻘﺎﻃﻌﻴﻦ ﺗﻜﻮﻥ‬

‫....................‬

‫2 ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﺜﻠﺜﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﻫﻲ ٣ : ٥، ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ﺍﻷﻭﻝ ٦٣ ﺳﻢ٢ ﻓﺈﻥ‬
‫ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ﺍﻟﺜﺎﻧﻰ ﺗﺴﺎﻭﻯ .....................................................................................................................................................‬
‫‪C‬‬

‫3‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ // ﺏ ﺟـ ، ﺱ ﺹ : ﺏ ﺟـ = ٣ : ٨ ﻓﺈﻥ:‬
‫أ ‪C‬ﺱ : ﺱ ﺏ = ........................... : ...........................‬
‫ب‬
‫ﻣﺤﻴﻂ 9‪C‬ﺱ ﺹ : ﻣﺤﻴﻂ 9‪C‬ﺏ ﺟـ = ......................... : ..........................‬
‫4‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﺟـ ‪ E‬ﻳﻨﺼﻒ )‪c‬ﺟـ(،‬
‫‪ C‬ﺟـ = ٣ ﺳﻢ، ﺏ ﺟـ = ٥٫٧ ﺳﻢ، ﻓﺈﻥ ‪ : E C‬ﺏ ‪..................................................... = E‬‬

‫‪C‬‬
‫‪E‬‬

‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٣ ﺳﻢ ، ‪C‬ﻡ = ٤ ﺳﻢ.‬
‫ب ﺭﺳﻢ ﻣﻬﻨﺪﺱ ﻣﻌﻤﺎﺭﻯ ﻣﺨﻄﻄًﺎ ﻟﻘﻄﻌﺔ ﺃﺭﺽ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ، ﻃﻮﻟﻬﺎ ﺿﻌﻒ ﻋﺮﺿﻬﺎ، ﻭﻣﺴﺎﺣﺘﻬﺎ ٠٠٢‬
‫ﻣﺘﺮ٢ ﺑﻤﻘﻴﺎﺱ ﺭﺳﻢ ١ : ٠٠٢، ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻄﻌﺔ ﺍﻷﺭﺽ ﻓﻰ ﺍﻟﻤﺨﻄﻂ.‬
‫: ﺱ ﺹ // ‪ E‬ﻫـ // ﻝ ﻉ ﺃﻭﺟﺪ:‬

‫2‬
‫: ﻃﻮﻝ ﻫـ ﻡ‬

‫‪E‬‬

‫: ﻃﻮﻝ ﻡ ﻉ‬

‫?‬

‫?‬

‫3‬
‫: ‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ،‬
‫ﺟـ ‪ E‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ﺟـ ، ‪C‬ﺟـ = ٢١ ﺳﻢ، ﺍﺏ = ٣١ ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9 ‪ E‬ﺟـ ﺏ + 9 ‪ C E‬ﺟـ‬
‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪ E‬ﻷﻗﺮﺏ ﺳﻢ‬
‫ﺟ ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ 9 ‪C‬ﺏ ﺟـ‬

‫‪C‬‬

‫‪E‬‬

‫4 ‪C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ ،C‬ﻓﻴﻪ ‪ C‬ﺏ = ٠٢ ﺳﻢ، ‪C‬ﺟـ = ٥١ ﺳﻢ، ‪ ∋ E‬ﺏ ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ﺏ ‪ ١٠ = E‬ﺳﻢ،‬
‫ﺭﺳﻢ ‪ C‬ﻫـ = ﺏ ﺟـ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﻫـ ، ﻭﻣﻦ ‪ E‬ﺭﺳﻢ ‪ E‬ﻭ // ﺏ ‪ C‬ﻭﻳﻘﻄﻊ ‪ C‬ﻫـ ﻓﻰ ﻭ.‬
‫ﺃﺛﺒﺖ ﺃﻥ ﺟـ ﻭ ﻳﻨﺼﻒ ‪c‬ﺟـ.‬

‫‪ïM‬‬

‫−‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﻬﻨﺪﺳﺔ(‬

‫اﻻﺧﺘﺒﺎر اﻟﺨﺎﻣﺲ‬
‫‪k‬‬
‫‪:πªcCG :’hCG‬‬
‫1 ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﺜﻠﺜﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﻛﺎﻟﻨﺴﺒﺔ ﺑﻴﻦ‬

‫.....................................................................................................‬

‫2 ﻳﺘﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻌﺎﻥ ﺇﺫﺍ ﻛﺎﻥ‬

‫................................................................... ...................................................................‬

‫3‬

‫:‬

‫،‬

‫‪E‬‬

‫أ )‪= ٢(E C‬‬
‫ب‬
‫‪ E‬ﻥ * ﻥ ﻫـ = ....................................................‬
‫ﺟ‬
‫9 ‪ E C‬ﺟـ + 9 ..............................................‬
‫....................................................................‬

‫‪C‬‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺏ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٨ ﺳﻢ، ﺏ ﻡ = ٥ ﺳﻢ‬
‫ب‬
‫:‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﻉ ﺹ‬
‫‪C‬‬
‫   ﻓﺎﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ‪. E C‬‬
‫: ﺇﺫﺍ ﻛﺎﻥ ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ ١٤ = E‬ﺳﻢ،‬
‫   ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﻉ ﺹ = ٠١ ﺳﻢ،‬
‫   ﻃﻮﻝ ﺱ ﺏ = ٢ ﺳﻢ، ﻓﺄﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﺏ‬
‫2‬
‫: ‪ C‬ﺏ = ٦ ﺳﻢ، ﺏ ﺟـ = ٢١ ﺳﻢ،‬
‫ﺟـ ‪ ٨ = C‬ﺳﻢ، ﻭﺟـ = ٣ ﺳﻢ ، ‪ E‬ﺏ = ٥٫٤ ﺳﻢ ، ‪ E‬ﻭ = ٦ ﺳﻢ.‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ E‬ﺏ ﻭ‬
‫ب 9 ﻫـ ﻭ ﺟـ ﻣﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ.‬

‫‪E‬‬

‫‪C‬‬

‫‪E‬‬

‫3 ﺱ ﺹ ﻉ ﻣﺜﻠﺚ، ﻧﺼﻔﺖ ﺯﺍﻭﻳﺔ ﺹ ﺑﻤﻨﺼﻒ ﻗﻄﻊ ﺱ ﻉ ﻓﻰ ﻡ، ﺛﻢ ﺭﺳﻢ ﻥ ﻡ // ﺹ ﻉ ﻓﻘﻄﻊ ﺱ ﺹ ﻓﻰ ﻥ.‬
‫ﺱﻥ‬

‫ﺱﺹ‬

‫ﺃﺛﺒﺖ ﺃﻥ: ﺹ ﻉ = ﺹ ﻥ ، ﻭﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ = ٦ ﺳﻢ ، ﺹ ﻉ = ٤ ﺳﻢ، ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﺱ ﻥ .‬
‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ .C‬ﺭﺳﻢ ‪ = E C‬ﺏ ﺟـ ﻓﻘﻄﻌﻬﺎ ﻓﻰ ‪.E‬‬
‫ﺭﺳﻢ ﺍﻟﻤﺜﻠﺜﺎﻥ ﺍﻟﻤﺘﺴﺎﻭﻳﺎ ﺍﻷﺿﻼﻉ ‪ C‬ﺏ ﻫـ ، ﺟـ ‪ C‬ﻭ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ‬
‫ﺃﺛﺒﺖ ﺃﻥ:‬
‫أ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻰ ‪ E C‬ﺏ ﻫـ + ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻰ ﺟـ ‪ C E‬ﻭ.‬
‫ب ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﺸﻜﻞ ‪ E C‬ﺏ ﻫـ ﺏ ‪E‬‬
‫=‬
‫ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﺸﻜﻞ ﺟـ ‪ C E‬ﻭ ﺟـ ‪E‬‬
‫¯‬

‫−‬

‫¯‬
‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬
‫)اﻟﻬﻨﺪﺳﺔ(‬

‫اﻻﺧﺘﺒﺎر اﻟﺴﺎدس‬
‫‪k‬‬
‫‪:πªcCG :’hCG‬‬
‫1 أ ﺇﺫﺍ ﺭﺳﻢ ﻣﺴﺘﻘﻴﻢ ﻳﻮﺍﺯﻯ ﺃﺣﺪ ﺃﺿﻼﻉ ﻣﺜﻠﺚ، ﻭ ﻳﻘﻄﻊ ﺍﻟﻀﻠﻌﻴﻦ ﺍﻵﺧﺮﻳﻦ ﻓﺈﻧﻪ‬
‫ُ‬
‫ب‬
‫‪ E C‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ‪ ،E‬ﻓﺈﻥ:‬
‫:‬
‫: ‪ C‬ﺟـ * ‪ C‬ﺏ = .........................................‬
‫: ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺟـ = ٨ ﺳﻢ، ‪ C‬ﺏ = ٢ﺳﻢ، ﻓﺈﻥ ‪.................................................... = E C‬‬
‫٢ ﺳﻢ ﻓﺈﻥ، ‪ C‬ﺟـ = .................................‬
‫: ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ﺏ ﺟـ ، ‪٣ = E C‬‬

‫........................................................‬

‫‪C‬‬

‫‪E‬‬

‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬
‫1 أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﺗﺴﺎﻭﻯ ٦١ : ٩٤، ﻓﻤﺎ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻃﻮﻟﻰ ﺿﻠﻌﻴﻦ‬
‫ﻣﺘﻨﺎﻇﺮﻳﻦ ﻓﻴﻬﻤﺎ? ﻭﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺤﻴﻄﻴﻬﻤﺎ?‬
‫ب ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ ﺭﺳﻢ ﻣﻤﺎﺱ ﻣﺸﺘﺮﻙ ﻳﻤﺴﺎﻧﻬﻤﺎ ﻓﻰ ﺱ، ﺹ.‬
‫ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ ∩ ﺱ ﺹ = }ﺟـ{ ﺍﺛﺒﺖ ﺃﻥ ﺟـ ﻣﻨﺘﺼﻒ ﺱ ﺹ .‬
‫2‬

‫أ‬
‫: ‪ C‬ﺱ // ﺏ ﺹ // ﺟـ ﻉ ،‬
‫ﻭ ‪ ٦ = C‬ﺳﻢ ، ﻭ ﺱ = ٤ ﺳﻢ ، ﺱ ﺹ = ٣ ﺳﻢ،‬
‫ﺏ ﺟـ = ٥٫٧ ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ﻉ ﺹ‬
‫‪C‬‬

‫ب‬
‫:‬
‫9 ﺟـ ‪ E‬ﻫـ + 9 ﺟـ ﺏ ‪C‬‬
‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻷﻃﻮﺍﻝ ﺍﻟﻤﻮﺿﺤﺔ ﻋﻠﻰ ﺍﻟﺮﺳﻢ‬
‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺏ ﻫـ ، ‪ E‬ﻫـ .‬
‫3‬

‫‪E‬‬

‫‪C‬‬

‫?‬

‫أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺟـ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ، ﺟـ ﻡ = ٦ ﺳﻢ‬
‫ب‬
‫: ‪ C‬ﺏ ∩ ‪ E‬ﻫـ = }ﺟـ{،‬
‫ﺟـ ‪ = C‬ﺟـ ﺏ ، ﺟـ ‪٢ = E‬ﺳﻢ ، ﺟـ ﻫـ = ٨ ﺳﻢ،‬
‫ﻡ ‪ E‬ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ. ﻡ ﺏ = ١ ‪ C‬ﺏ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻡ ‪. E‬‬
‫٢‬

‫‪E‬‬
‫‪C‬‬

‫4‬
‫: ‪C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ﻓﻴﻪ ﺱ ∋ ‪ C‬ﺏ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺱ = ٤ ﺳﻢ،‬
‫ﺱ ﺏ = ٦ ﺳﻢ، ﺹ ∋ ‪ C‬ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺹ = ٥ ﺳﻢ، ﺹ ﺟـ = ٣ ﺳﻢ.‬
‫أ ﺃﺛﺒﺖ ﺃﻥ: 9 ‪ C‬ﺱ ﺹ + 9 ‪ C‬ﺟـ ﺏ‬
‫ب ﺍﻟﺸﻜﻞ ﺱ ﺏ ﺟـ ﺹ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬
‫ﺟ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣـ)9 ‪ C‬ﺱ ﺹ( = ٨ ﺳﻢ٢. ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﺟـ ﺹ.‬
‫‪ïM‬‬

‫−‬

‫‪C‬‬
‫‪z‬‬

‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬
‫−‬

‫:‬

‫¯‬

‫1 ﺏ    2 ﺩ‬
‫7 أ }-٢{‬

‫د ﺱ٢ + ٠١ ﺱ - ١٢ = ٠‬
‫ﺟ ٣ﺱ٢ + ٤١ﺱ + ٤ = ٠‬
‫22 ٤٥ * ٢ = )ﺱ + ٦()ﺱ + ٩( ﻭﻣﻨﻬﺎ ﺱ٢ +٥١ﺱ -٤٥ = ٠ ﻭﻣﻨﻬﺎ ﺱ = ٣‬
‫   3 ﺩ‬

‫ب‬

‫   4 ﺩ‬

‫42 ﺣﻞ ﻳﻮﺳﻒ ﺻﺤﻴﺢ‬

‫‪z‬‬

‫ﺟ }-٣، ١{‬
‫8 أ } -٥، ٨{‬
‫د }٤٧٫٦، -٤٧٫٠{‬
‫9‬

‫5 ﺃ‬

‫−‬
‫ﺟ }- ٣ ، ٢ {‬
‫٢ ٣‬

‫1 ﺳﺎﻟﺒﺔ ، ﺡ‬
‫5 [٣، ∞]‬

‫ﻫ }١٦٫٢ ، -١٦٫٤{‬

‫و }٤١٫٢، -٤٩٫٠{‬

‫8 [٢، ∞]، [- ∞، ٢]‬

‫9 }-١، ٣{، ﺡ -]-١، ٣[، [-١، ٣]‬

‫ب }٤٫٤، ٦٫١‬

‫ﺟ }-٤، -٢{‬

‫ﺟ ﻥ = ٢٢‬
‫ب ﻥ = ٨١‬
‫01 أ ﻥ = ٢١‬
‫٢‬
‫٢‬
‫11 أ ﺩ)ﺱ( = ﺱ٢ + ﺱ - ٦ ب ﺩ)ﺱ( = -ﺱ - ٣ﺱ ﺟ ﺩ)ﺱ( = ﺱ - ٧ﺱ‬

‫01 أ ﻣﻮﺟﺒﺔ ﻓﻰ ﺡ‬
‫ب ﻣﻮﺟﺒﺔ ﻓﻰ [ ٠، ∞ ] ﺳﺎﻟﺒﺔ ﻓﻰ [- ∞،٠ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ =٠‬
‫ﺟ ﻣﻮﺟﺒﺔ ﻓﻰ[- ∞، ٠ ] ﺳﺎﻟﺒﺔ ﻓﻰ [ ٠،∞ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ =٠‬
‫د ﻣﻮﺟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ < -٢ ، ﺳﺎﻟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ > -٢، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ = -٢‬

‫21 ﺇﺟﺎﺑﺔ ﺯﻳﺎﺩ ﺧﻄﺄ؛ ﻷﻧﻪ ﻗﺴﻢ ﺍﻟﻄﺮﻓﻴﻦ ﻋﻠﻰ ﻣﺘﻐﻴﺮ ﻭﻫﻮ )ﺱ - ٣(‬
‫31 ﻥ = ٢ ﺃﻭ ﻥ = ٤‬

‫ﻫ ﻣﻮﺟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ > ٣ ، ﺳﺎﻟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ < ٣ ، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ = ٣‬
‫٢‬
‫٢‬
‫٢‬
‫ح ﻣﻮﺟﺒﺔ ﻓﻰ ﺡ - ]-٢ ،٢[] ﺳﺎﻟﺒﺔ ﻓﻰ [ - ٢، ٢ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ∋ } -٢، ٢{‬

‫−‬
‫1‬
‫3‬
‫4‬

‫أ ١ + ٥ﺕ‬

‫5‬

‫أ ١-ﺕ‬
‫ﺟ !٣ ٢ ﺕ‬

‫6‬
‫7 ٧ - ٢ﺕ‬

‫ﺟ‬
‫ب -ﺕ‬
‫ب ٧١ + ٦١ ﺕ ﺟ‬
‫ب‬
‫ﺟ‬
‫ب ١ - ٤ﺕ‬
‫د‬

‫د -ﺕ‬

‫١‬‫١١ + ٥٤ ﺕ‬
‫٤ + ٧ﺕ‬

‫٣‬
‫٠١ - ١١ ﺕ د ٦ + ٨ ﺕ‬
‫٥ ٥‬
‫٠١‬
‫!٥ﺕ‬

‫8 ﺣﻞ ﺃﺣﻤﺪ ﺻﺤﻴﺢ.‬
‫2 ﺏ‬

‫3 ﺃ‬

‫أ ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ.‬
‫ﻣﺮ‬

‫ب ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻏﻴﺮ ﻧﺴﺒﻴﻴﻦ‬
‫د ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ‬
‫ﻣﺮ‬
‫ب - ٣ + ١ ﺕ،- ٣ - ١‬
‫ﺕ‬

‫5‬

‫أ ٢ + ﺕ، ٢ - ﺕ‬

‫6‬

‫أ ٦١ - ٤ ﻙ < ٠ ﺃﻯ ﻙ > ٤‬

‫٢‬

‫٢‬

‫ب ٩ - ٤ * )٢ +‬

‫ﺟ ٤٦ - ٤ * ٦١ ﻙ > ٠ ﺃﻯ ﺃﻥ: ﻙ < ١‬

‫٢‬

‫٢‬

‫١‬
‫ﻙ ( = ٠ ﺃﻯ ﺃﻥ ﻙ = ٤‬

‫7 ﺍﻟﻤﻤﻴﺰ = ) ﻝ - ﻡ(٢ + ٤ ﻝ ﻡ = ) ﻝ - ﻡ (٢ ﺃﻱ ﻣﺮﺑﻊ ﻛﺎﻣﻞ، ﻟﺬﻟﻚ ﻓﺈﻥ ﺟﺬﺭﻯ‬
‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻋﺪﺩﺍﻥ ﻧﺴﺒﻴﺎﻥ.‬
‫9 ﺇﺟﺎﺑﺔ ﺃﺣﻤﺪ ﺧﻄﺄ؛ ﻷﻥ ﺍﻟﺤﺪ ﺍﻟﻤﻄﻠﻖ = -٥ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ.‬
‫11 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻮ }٣ ﺕ ، - ٢ﺕ{‬

‫−‬
‫٦، -٩‬

‫1‬
‫5 ﺟـ‬

‫3 ﺱ٢ - ٥ﺱ + ٦ =٠‬
‫7 ﺟـ‬

‫2 ٨‬
‫6 ﺟـ‬

‫8‬

‫أ -٩١ ، -٤١‬
‫٣‬
‫٣‬

‫9‬

‫أ -٣، ٣‬

‫01‬

‫أ ﺗﻜﻮﻥ ‪ ، ٧- = C‬ﺏ = ٠١‬

‫11‬

‫ب -١، -٥٣‬
‫٤‬
‫ب ٢، ١‬
‫٢‬

‫أ ﺣﻘﻴﻘﻴﺎﻥ ﻧﺴﺒﻴﺎﻥ ، }-٧، ٥{‬

‫ب ‪ ،١ = C‬ﺏ = ٤‬

‫ب ﻛﺒﺎﻥ ، } - ٣ + ٧٫١ﺕ ، - ٣ - ٧٫١ ﺕ{‬
‫ﻣﺮ‬
‫٤‬
‫٤‬
‫ﺟ ﻛﺒﺎﻥ }٢ + ﺕ ، ٢ - ﺕ{‬
‫ﻣﺮ‬

‫21 ﺟـ = ٤‬
‫51 ﻙ = ١‬

‫ﺩ)ﺱ( <٠ ﻋﻨﺪﻣﺎ ﺱ∋ ]-٢٫١ ، ٢٫٣]‬

‫1 ]-٣، ٣[‬
‫5 [٢، ٥]‬
‫1 ﺏ‬

‫71‬
‫1‬

‫٣‬
‫41 ﺟـ = ٥٢ ، ﺍﻟﺤﻞ ﻫﻮ } ٥ {‬
‫٦‬
‫٢١‬

‫ب‬

‫71 أ ﺱ٢ - ٢ﺱ -٨ = ٠‬
‫ﺟ ٦ﺱ٢ - ٣١ﺱ + ٦ = ٠‬
‫81 ﺱ٢ - ٨ﺱ + ٥ = ٠‬
‫12 أ ﺱ٢ +٤١ﺱ +٢١ =٠‬

‫ﻫـ‬
‫91‬

‫ب‬

‫−‬

‫ﺱ٢ + ٥٢ = ٠‬
‫ﺱ٢ + ٧١ = ٠‬
‫ﺱ٢ - ٩ﺱ -١ = ٠‬
‫ﺱ٢ - ١١ﺱ + ١٢ = ٠‬

‫¯‬

‫2 ]-١، ١[‬
‫6 ]-٣، ١[‬

‫7 ‪z‬‬

‫8 ‪z‬‬

‫2 ﺩ‬
‫ب ١١، -٣١‬

‫أ ٥، -٤‬

‫3 ﺃ‬
‫ﺟ ٤، -٢‬

‫4 ﺏ‬

‫٤‬
‫أ ﻙ= ٣‬

‫3 ﺡ - ]٠، ٢[ 4 ‪z‬‬

‫¯‬

‫2‬
‫3‬

‫أ ﻙ=- ٣ ،ﻙ=٦‬
‫٢‬

‫٣‬
‫ﺟ‬
‫ﻙ< ٢‬
‫٧‬
‫ﺟ‬
‫ﻙ= ٢‬

‫٤‬
‫ب‬
‫ﻙ> ٣‬

‫ب ﻙ=٦‬

‫أ ﺱ٢ - ٩ﺱ + ٨١ = ٠‬

‫ب ﺱ٢ - ٥ﺱ + ٦ = ٠‬

‫6 ﺩ)ﺱ(= ٠ ﻋﻨﺪﻣﺎ ﺱ = -٢ ، ﺱ = ٣ ، ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ [-٢ ، ٣ ]‬
‫٤‬
‫٤‬
‫ﺩ)ﺱ( ﺳﺎﻟﺒﺔ ﻓﻰ [-٣، -٢]∪[ ٣ ، ٢]‬
‫٤‬
‫ب ﺡ - ]١، ٥[‬
‫7 أ ‪z‬‬
‫ﻫ }٥{‬
‫د [-٣ ، ١]‬
‫2 ﺏ‬
‫1 ﺏ‬
‫٢‬
‫6 أ ﺱ - ٣ﺱ +١ = ٠‬
‫ب ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = }-٤، ٢{‬

‫3 ﺏ‬

‫ﺟ ‪z‬‬

‫و ﺡ - [- ٣ ، ٥]‬
‫٢‬

‫4 ‪C‬‬

‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = [-٤، ٢]‬

‫د ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ } ٤ {‬

‫31 ‪٤- = C‬‬
‫61 ﻙ = ٢‬

‫¯‬

‫21 ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ∋ } -٢٫١، ٢٫٣{‬
‫ﺩ)ﺱ( >٠ ﻋﻨﺪﻣﺎ ﺱ∋ ]-٣ ، -٢٫١] ∪ [٢٫٣ ، ٥[‬

‫−‬

‫ﺟ ﺟﺬﺭﺍﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ.‬

‫4‬

‫11 ﻣﻦ ﺍﻟﺮﺳﻢ ﻧﺠﺪ ﺃﻥ : ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ∋ } -٣، ٣{ ، ﺩ)ﺱ( <٠ ﻓﻰ [٣، ٤[‬
‫ﺩ)ﺱ( > ٠ ﻓﻰ [-٣، ٣]‬

‫41 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﻣﻮﺟﺒﺔ ﻟﺠﻤﻴﻊ ﻗﻴﻢ ﻥ ﺍﻟﺤﻘﻴﻘﻴﺔ ، ﻳﺘﻨﺎﻗﺺ ﺍﻹﻧﺘﺎﺝ ﻣﻦ ﻋﺎﻡ ٠٩٩١ ﺣﺘﻰ‬
‫ﻋﺎﻡ ٠٠٠٢، ﺛﻢ ﻳﺒﺪﺃ ﺍﻹﻧﺘﺎﺝ ﻓﻰ ﺍﻟﺰﻳﺎﺩﺓ ﻣﻦ ﻋﺎﻡ ٠٠٠٢ ﺣﺘﻰ ﻋﺎﻡ ٠١٠٢.‬

‫−‬
‫1 ﺏ‬

‫3 ﺡ - }٣{‬
‫7 [ -٥، ١]‬

‫2 ﻣﻮﺟﺒﺔ ، ﺡ‬
‫6 [ -٢ ، ١ ]‬

‫د ﻥ = ٠٣‬

‫أ -١‬

‫4 [٢ ،∞ ]‬

‫ب } -٣ ، ١ {‬
‫٢‬

‫أ }٧٫٤، -٧٫٤{‬

‫أ ٥ - ٣ﺕ‬

‫٨‬
‫52 ﻙ = ٠ ﺃﻭ ﻙ = - ٣‬

‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = ﺡ - ]-٤، ٢[‬

‫7‬

‫أ }٧٩٦٫٠، ٣٠٣٫٤{‬
‫:‬

‫ب ]-٢، ٧[‬

‫‪ï‬‬

‫−‬
‫1 ب ﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﺸﻜﻞ ﺹ ﺱ ﻝ ﻉ‬
‫ﺟ 9 ‪ C‬ﺏ ﺟـ + 9ﻫـ ‪ E‬ﻭ‬

‫، ٠١‬
‫٧‬
‫، ٧‬
‫٢١‬
‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬
‫د ﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﺸﻜﻞ ﻉ ﻝ ﺱ ﺹ‬

‫ﺟ ‪CE‬‬

‫ب ﺟـ ‪E‬‬

‫2‬

‫أ ﺱﺹ‬

‫4‬

‫أ ٦٩ﺳﻢ، ٠٤٥ﺳﻢ‬

‫5‬

‫4 ﺟـ ﻫـ = ٥٫٤ﺳﻢ‬

‫،٥‬
‫٤‬

‫أ ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ١ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ٤‬

‫6‬

‫ب ٨٫٢١ﺳﻢ، ٦٫٩ﺳﻢ‬

‫٢‬

‫٢‬

‫7‬

‫5 ﻉ ﻡ = ٥٫٣١‬
‫ب ٥‬

‫أ ٣‬

‫ب ﻳﻮﺍﺯﻯ‬

‫أ ﻻ ﻳﻮﺍﺯﻯ‬

‫8 ﺱ ﻝ = ٢، ﺱ ﻡ = ٢‬
‫ﺱﺹ ٥ ﺱﻉ ٥‬

‫ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ٢ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ٣‬

‫51‬

‫أ ﻫـ ﻭ‬

‫ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ ﻟﻠﻤﻀﻠﻊ ﻡ = ٣‬
‫٢‬
‫٣ ٢‬

‫71‬

‫أ ﻡ ﻭ = ٠١ﺳﻢ‬

‫91‬

‫6 ﺱ = ٠١١، ﺹ = ٠٠١، ﻉ = ٠٧‬
‫7 ٠١ﺳﻢ ﺗﻘﺮﻳﺒﺎ.‬
‫ً‬
‫أ ٤٫٨ ﻣﺘﺮ، ١٫٥ ﻣﺘﺮ‬
‫ﺟ ٤٤٫٩١ ﻣﺘﺮ ﻣﺮﺑﻊ‬

‫−‬

‫٢‬

‫8 ٠٦ﺳﻢ، ٠٠٤٢ﺳﻢ‬
‫ب ١٫٥ ﻣﺘﺮ، ٩٫٣ ﻣﺘﺮ‬

‫1‬

‫د ٥٢٫٠١١ ﻣﺘﺮ ﻣﺮﺑﻊ.‬

‫د ﺍﻷﺿﻼﻉ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻣﺘﻨﺎﺳﺒﺔ.‬
‫ﻫ ﺗﻄﺎﺑﻖ ﺯﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﻟﺰﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﺁﺧﺮ ﻭﺗﻨﺎﺳﺐ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ‬
‫ﺍﻟﺘﻰ ﺗﺤﺘﻮﻳﻬﺎ.‬
‫و ﺗﻄﺎﺑﻖ ﺯﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﻟﺰﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﺁﺧﺮ ﻭﺗﻨﺎﺳﺐ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ‬
‫ﺍﻟﺘﻰ ﺗﺤﺘﻮﻳﻬﺎ.‬

‫2‬

‫أ ﺱ = ٦٣‬

‫ﺟ ﺱ = ٣، ﺹ = ٤، ﻉ = ٤٫٨‬

‫61‬

‫−‬

‫٥‬

‫−‬
‫1‬

‫أ ٦٩٢١ﺳﻢ‬

‫2‬
‫3 ٥٧ﺳﻢ‬

‫٢‬

‫2‬

‫٢‬

‫ب -١٦١‬

‫أ ٣٦‬

‫ﺟ ﺻﻔﺮ‬

‫د ١‬

‫6 ٨١ ٢ ﺳﻢ‬
‫7 ب ﺱ ﺟـ = ٦ ٦ ، ﺱ ﻭ = ٦ﺳﻢ.‬

‫٢‬

‫−‬

‫21 ٨ ﺃﻣﺘﺎﺭ‬

‫9‬

‫31 ٩٤ﺳﻢ ﺗﻘﺮﻳﺒﺎ‬

‫1 ‪ ،C‬ﺏ، ‪E‬‬
‫5 ب ٤ ﺳﻢ‬
‫7 ٥٫٤ ﻣﺘﺮ‬

‫8‬

‫2 ٢ ﺳﻢ‬
‫4 ب ٩ : ٦١‬
‫6 ﺱ = ١١ﺳﻢ، ﺹ = ٥٫٦١ﺳﻢ‬
‫8 أ ٤ ، ٠٤ﺳﻢ ب - ١ ، ٤١ﺳﻢ‬

‫أ ٦‬

‫3 ‪C‬‬

‫ﺟ ٩ : ٥٢‬

‫2 ٤ﺳﻢ‬

‫د ٤‬

‫: ¯‬

‫‪C‬ﺏ‬

‫1‬
‫3‬

‫أ ٥٫٤‬

‫` ﻫـ ﻭ = ٤٢ﺳﻢ‬

‫‪ C a‬ﺏ = ٠٢١ﺳﻢ‬

‫ﻫـ ٠٢ﺳﻢ‬

‫4 ‪E‬‬

‫ب ٥‬

‫أ ﺱ=٣ ٢‬
‫ﺟ ﺱ = ٠٦‬

‫4‬

‫5 ٢١ﺳﻢ‬

‫أ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﻫـ = ٣ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ‬
‫ب ‪X‬ﻡ)ﺱ( = -٣ * ٢ = -٦ ، ‪X‬ﻡ)ﺱ( = ٠‬
‫¯‬

‫1 ﺟـ‬
‫5 ﺏ‬

‫¯‬
‫ب ٣، ٣‬
‫٤ ٧‬

‫ب ﺹ = ٩١، ﻉ = ٦ ٥١‬

‫1‬

‫3 ﺏ‬
‫2 ﺟـ‬
‫6 ﺱ = ٣ﺳﻢ، ﺹ = ٨١ ﺳﻢ‬
‫01 ﺏ ﻫـ = ٨ﺳﻢ، ﺏ ﺟـ = ٢١ﺳﻢ‬

‫د ﺱ = ١٣‬

‫ﺟ ﺱ = ٥٫٤، ﺹ = ١١‬

‫2 أ ﺱ=٦‬
‫4 ﻟﺘﻜﻦ ﻡ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﺍﻟﺪﻋﺎﻣﺘﻴﻦ‬
‫` 9ﻡ ‪ C‬ﺏ + 9ﻡ ﻭ ﻫـ ، ﻫـ ﻭ = ١‬
‫٥‬

‫−‬
‫أ ٨، ٣‬
‫٣ ٥‬

‫11 ٠٠١‪c‬‬
‫ب ﺱ = ٤١‬

‫¯‬
‫5 ﺟـ‬
‫8 ٦ ٣ ، ٩، ٣‬
‫٣‬

‫أ ٦٢‪c‬‬

‫ب ٤٧‪c‬‬

‫ﺟ ٠٢‪c‬‬

‫٢‬

‫3 ٩ﺳﻢ‬

‫1 ‪E‬‬

‫أ ﺱ = ٠١١‬

‫ب ﺹ = ٠١‬

‫ﺟ ﻉ = ٥٤‬

‫01 ٣٤٫٤٢ﺳﻢ ﺗﻘﺮﻳﺒﺎ.‬
‫ً‬

‫1‬
‫2 ‪ ،C‬ﺏ‬
‫11 ٥ﺳﻢ‬

‫ب ٣‬

‫ﺟ ٠١‬
‫01 ب ٥٫٤ﺳﻢ‬

‫1‬

‫أ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺗﻘﻊ ﺩﺍﺧﻞ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﻡ = ٨ﺳﻢ.‬
‫ب ﺍﻟﻨﻘﻄﺔ ﺏ ﺗﻘﻊ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ، ﺏ ﻡ = ٤١ﺳﻢ‬

‫ب ٢١ﺳﻢ‬
‫ب ٠٠٥ﺳﻢ‬

‫ﺟ ٦، ٥٢‬

‫‪ C‬ﻭ ⊃ ‪ C‬ﺟـ ، ﺟـ ﻭ ⊃ ‪ C‬ﺟـ‬
‫` ﻟﻠﻤﺜﻠﺜﺎﻥ ﻧﻔﺲ ﺍﻻﺭﺗﻔﺎﻉ ﻭﻳﻜﻮﻥ: ‪ C 9) W‬ﺏ ﻭ( = ‪ C‬ﻭ = ٦ = ٢‬
‫‪) W‬ﺟـ ﺏ ﻭ( ﺟـ ﻭ ٣ ١‬
‫1‬

‫أ ١‬
‫٩‬

‫ب ٤‬

‫ﺟ ٢‬

‫د ٢‬

‫ﻛﺎﻥ ﻓﻰ ﺍﻟﺮﺃﺱ ﺏ،‬
‫‪ 99 a‬ﺏ ‪ C‬ﻭ ، ﺏ ﺟـ ﻭ ﻣﺸﺘﺮ‬

‫3‬
‫4 ﺟـ ﻫـ = ٥ﺳﻢ.‬
‫١‬
‫21 9‪ C‬ﺏ ﺟـ + 9‪ E C‬ﻫـ ، ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ =‬
‫أ ٤ﻛﻢ‬

‫ﺟ ‪ E‬ﺟـ‬
‫‪ C‬ﺟـ‬

‫د ﺏ ‪ C * E‬ﺟـ‬

‫` 9‪ C‬ﺏ ﻭ ﻣﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ، ‪ C‬ﻭ = ٦ﺳﻢ‬

‫د ﻥ، ﻡ‬
‫ب ﺹ‬
‫7 ﺏ ‪٦ = E‬ﺳﻢ، ‪ C‬ﺏ = ٦ ٣ ﺳﻢ، ‪ C‬ﺟـ = ٦ ٦ ﺳﻢ‬
‫ب ٤ ٥ ﻛﻢ‬

‫ب ‪ C‬ﻡ = ٨٫٠١ﺳﻢ‬
‫ب ﺱ = ٤، ﺹ = ٣‬

‫5 ‪ E‬ﻫـ = ٨ﺳﻢ ، ‪ ١٥ ٢ = E C‬ﺳﻢ ، ‪ C‬ﻫـ = ٢ ٠١‬
‫01 ﻓﻰ 9‪ C‬ﺏ ﺟـ : ﺏ ﺟـ = ٠١ - ٤ = ٦ﺳﻢ‬
‫‪ a‬ﺏ ‪ ،٢ = C‬ﺏ ‪٢ = E‬‬
‫` ‪ E C‬ﻳﻨﺼﻒ ‪Cc‬‬
‫‪ C‬ﺟـ ٣ ‪ E‬ﺟـ ٣‬
‫ﻓﻰ 9‪ C‬ﺏ ﻭ: ‪ C a‬ﻫـ ﻳﻨﺼﻒ ‪ C ،Cc‬ﻫـ = ﺏ ﻭ‬

‫ﺟ ﺹ‬

‫أ ﺱ‬

‫أ‬

‫د ‪E‬ﻭ‬

‫2‬
‫3 ‪ C‬ﺏ = ٨ﺳﻢ، ﺏ ﺟـ = ٠١ﺳﻢ‬
‫ب ٥٢، ٥١ )٥ + ٥ (‬
‫4 أ ٤ ، ٢٢‬

‫أ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻣﺘﺴﺎﻭﻳﺔ.‬

‫ب ﺱ = ٠٢، ﺹ = ٥١‬

‫ﺏ‪C‬‬
‫‪ C‬ﺟـ‬

‫ﺟ ‪ E‬ﻫـ‬

‫ب ﺟـ ‪E‬‬
‫‪E‬ﺏ‬

‫أ ١١‬

‫−‬
‫1‬

‫` ﻝ ﻡ // ﺹ ﻉ‬

‫أ ﺱ = ٨، ﺹ = ٣‬

‫ﻝ = ١٢، ﻡ = ٨٢، ﻥ = ٠٣‬

‫ﺟ ﻳﻮﺍﺯﻯ‬

‫ب ‪E‬ﻭ‬

‫ب ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ١ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ١‬

‫9‬

‫ﺟ ٩‬

‫د ٣‬

‫:‬
‫2 ﺏ‬

‫6‬
‫¯‬

‫‪E‬‬

‫3 ﺟـ‬
‫7 ﺟـ‬

‫4 ‪C‬‬
‫8 ٦ﺳﻢ‬

‫:‬

‫−‬

‫ﺟ ٥‬
‫٢‬

‫1‬

‫‪ïM‬‬

‫−‬

‫و ٠٧١‪c‬‬

‫ز ﺍﻟﺜﺎﻟﺚ‬

‫ح ٠٣‪c‬‬

‫2 ﺟ‬
‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬
‫3‬

‫أ -٦٠٣‪c‬‬

‫ب ٠٧٢‪c‬‬

‫ﺟ ٥٣٢‪c‬‬

‫د -١٠٣‪c‬‬

‫4‬

‫أ ﺍﻷﻭﻝ‬

‫ب ﺍﻟﺜﺎﻟﺚ‬

‫د ﺍﻟﺜﺎﻧﻰ‬

‫3‬

‫7‬

‫أ ٧٧١‪c‬‬

‫ب ٣٤١‪c‬‬

‫ﺟ ﺍﻟﺮﺍﺑﻊ‬
‫ﺟ ٥٤‪c‬‬

‫د ٠٥١‪c‬‬

‫4‬

‫−‬
‫2 ﺟ‬
‫6 ب‬

‫3‬
‫7‬

‫أ‬

‫٤‬
‫ب ٣‪r‬‬

‫٣‬
‫ﺟ -٤‪r‬‬

‫1 د‬
‫5 ﺟ‬
‫01‬

‫2‬

‫أ ٥‪r‬‬
‫٤‬
‫‪E‬‬
‫أ ٨٨٩٫٠‬

‫ب ٢٤٤٫٠‬

‫11‬
‫41 ٢٫٤ﺳﻢ‬
‫61 ٥٧‪١٫٣٠٩ ، c‬‬

‫‪E‬‬

‫ﺟ ٧٠٨٫٢‬

‫51 ٥٧١٫٢ ، ٦ ً٧٣ َ٤٢١‪c‬‬
‫81 ٧٥٫٨٢ﺳﻢ‬
‫71 ٥ ‪r‬‬
‫٣‬
‫12 ٢١٧٤ ﻛﻢ/ﺱ‬

‫ب ١‬
‫أ - ٣‬
‫٢‬
‫٢‬
‫أ ﺟﺘﺎ‪ ،  ٤ = i‬ﺟﺎ‪ ،  ٣ = i‬ﻇﺎ‪٣ = i‬‬
‫٤‬
‫٥‬
‫٥‬
‫ب ﺟﺘﺎ‪ ،  ٥ = i‬ﺟﺎ‪ ،  ١٢- =i‬ﻇﺎ‪١٢- = i‬‬
‫٥‬
‫٣١‬
‫٣١‬

‫02 ٢‪r‬ﺳﻢ‬
‫32 أ ‪r‬‬
‫٣‬

‫6‬

‫¯‬

‫:‬

‫ﺟ‬

‫1‬

‫22 ٩٢ﺳﻢ‬

‫ب ٨ ﺳﺎﻋﺎﺕ‬

‫ﺟ ٠٢‪r‬‬

‫42 ﺹ = ٣ ﺱ‬

‫2 أ‬
‫6 ﺟ‬

‫3 ﺟ‬
‫7 أ‬

‫د‬

‫١‬
‫٣‬

‫ب ٠١٢‪ c٣٣٠ ،c‬ﺟ ٠٣‪ c٣٣٠ ،c‬د ٠١‪c٣٠٠ ،c‬‬

‫أ ٥٤‪c٢٢٥ ،c‬‬

‫‪E‬‬

‫91 ٦٧٫٦١ﺳﻢ‬

‫٣‬

‫ﺟ‬

‫4 ﺟ‬
‫8 ب‬
‫٥‬
‫د ٣‪r‬‬

‫ب ٨٣ ً٥٤ َ٢٨‪c‬‬

‫أ ٦٫٩ﺳﻢ‬

‫5‬

‫د‬

‫ب ٠٩‪c‬‬

‫أ ٠٠٣‪c‬‬

‫ﺟ ٧١ ً٠١ َ٤٦‪c‬‬

‫أ‬

‫2‬

‫6‬

‫أ ٣‬

‫ب ٤‬
‫٥‬

‫7‬

‫أ ٥٢‬

‫ب‬

‫4 ب‬
‫8 أ‬

‫3‬

‫ﺟ‬

‫ﺟ ٣‬
‫٥‬

‫د ٢١ ً٢٥ َ٦٣‬

‫ﺟ ٤١٫٠١ﻣﺘﺮ‬

‫ﺟﺎ٥٢ = ‪C‬‬

‫٥٢‬

‫−‬

‫1 ﺟ‬
‫5 ﺟ‬
‫9‬

‫‪C‬‬
‫٢‬
‫٣‬

‫ﺟﺘﺎ‪i‬‬

‫ﺏ‬
‫٢‬

‫٥‬

‫ﺟﺎ‪i‬‬

‫٣‬

‫٢‬

‫-‬

‫١‬
‫٢‬

‫٢‬

‫٢‬

‫:‬

‫11 أ )-(‬
‫21 أ -١‬
‫31 ٠٣‪c‬‬

‫أ ٣٫٤، ٧٫٠‬

‫4‬

‫٣‬
‫٤‬

‫ب )+(‬
‫ب ٤‬

‫أ ٧١ + ٦١ﺕ ب‬

‫:‬

‫41 ﺇﺟﺎﺑﺔ ﺃﺣﻤﺪ‬

‫ﺟ )+(‬
‫51 ﺻﺤﻴﺤﺔ‬

‫1 -ﺟﺘﺎ‪i‬‬

‫2 - ﻇﺎ‪i‬‬

‫3 - ﻗﺘﺎ‪i‬‬

‫4 ﺟﺎ‪i‬‬

‫5 ﺟﺘﺎ‪i‬‬

‫6 - ﻇﺎ‪i‬‬

‫7 ﻗﺘﺎ‪i‬‬

‫91 ب‬
‫ب ٥٢‪c‬‬

‫02 د‬
‫ﺟ ٠١‪c‬‬

‫12 ﺟ‬
‫د ٠٦‪c‬‬

‫−‬
‫2 ]-٢، ٢[‬

‫1 ]-١، ١[‬
‫ﺷﻜﻞ )١( ١ﺟﺎ ‪i‬‬

‫4 -٣‬

‫3 ٤‬

‫  ﺷﻜﻞ )٢( ﺟﺘﺎ ‪i‬‬

‫1‬

‫أ ٤، ٠١‬
‫أ ﻣﻮﺟﺒﺔ ﻟﻜﻞ ﺱ = ﺡ‬

‫أ ١، -١، ]-١، ١[‬

‫ب ]-٣، ٣[‬

‫6‬

‫1‬

‫−‬
‫2 ﺟ‬
‫أ‬
‫أ ١، ٣‬
‫ب ١ ، - ١ ﺟ -٣، ٤‬

‫1‬
‫3‬

‫أ -٣، - ١‬
‫٣‬

‫٢‬

‫ب -٥، -٣‬
‫٣ ٥‬

‫ﺟ ٣، ٤‬
‫٤ ٣‬

‫4‬

‫أ ٠٣‪c‬‬

‫ب ٥٣١‪c‬‬

‫5‬

‫أ ٢١ ً٢٥ َ٦٣‪c‬‬

‫ب ٤ ً٩ َ٤٦‪c‬‬

‫ﺟ ٣١ ً٠٣ ٥٥‪c‬‬

‫6‬

‫ب ٨٢ ً٦٥ َ٩٢١‪c٢٣٠َ ٣ً ٣٢ ، c‬‬
‫أ ٧٣ ً٧٣ َ٣١‪c١٦٦َ ٢٢ً ٢٣ ، c‬‬
‫أ ٤٤ ً١٣ َ٠٦١ ب -٨٢٤٩٫٠ ، -٦٣٥٣٫٠ ، -٧٠٦٠٫١‬

‫1‬

‫أ ٩٠٫٢‬

‫‪E‬‬

‫‪E‬‬

‫ﺟ ٥٨٫٣‬

‫‪E‬‬

‫¯‬

‫−‬

‫أ ٢ﺱ٢ + ﺱ > ٠، [-١، ٠]‬

‫4‬

‫٢‬

‫:‬
‫4 ‪E‬‬

‫3 ﺏ‬

‫¯ :‬

‫5 ﺏ‬

‫أ ٧‬

‫ب ٧ﺳﻢ‬
‫ب‬

‫٢‬

‫أ‬

‫3‬

‫٣:٥ ب‬

‫ً‬
‫ب ٠١ﺳﻢ 2 ﺃﻭﻻ: ٦ﺳﻢ‬

‫:‬
‫أ ‪ C‬ﺏ * ‪ C‬ﺟـ‬

‫ً‬
‫1 ب ﺃﻭﻻ: )‪(E C‬‬

‫٢‬

‫٣:٨‬

‫ﺛﺎﻧﻴﺎ : ١٢ﺳﻢ‬
‫ً‬

‫:‬
‫ب ﺏ ﻥ * ﻥ ﺟـ‬
‫3 ﺱ ﻥ = ٦٫٣ﺳﻢ‬

‫:‬

‫2‬

‫١‬‫٥‬

‫:‬

‫1 ب ﺛﺎﻧﻴﺎ: ٨٫٢ﺳﻢ‬
‫ً‬

‫3‬

‫¯‬

‫ب ٧‬
‫٢١‬
‫ب ٣٤ ، ٠٤٢‪c‬‬
‫٦٣‬

‫1 أ ٢ﺱ٢ - ﺱ - ٨ = ٠‬
‫ب ٨٤٨٫٠‬
‫2 أ -ﺕ‬
‫4 أ ]-٤، ١[‬
‫3 ب ٦ + ٣ﺕ‬

‫1‬
‫ب ٣١٫١‬

‫5 ﺏ‬

‫:‬

‫3‬

‫ﺟ ٢١ ً ٢٥ َ ٦٠٣‪c‬‬

‫7‬

‫1 ‪E‬‬

‫1‬

‫٥ ٥‬

‫٢‬

‫:‬
‫2 ﺟـ‬

‫2 ٠٠١ﺳﻢ‬

‫أ ]-٤، ٤[‬

‫٢ ٢‬

‫3‬

‫ب ٣، -٣ ]-٣، ٣[‬

‫ﺟ ٣ ، -٣، ]-٣، ٣ [‬
‫٢ ٢ ٢ ٢‬

‫4 ﺏ‬

‫3 ﺟـ‬

‫أ ﻣﺘﺴﺎﻭﻳﺎﻥ، }٣{‬

‫8 - ﺟﺎ‪i‬‬

‫5‬

‫٢٫٤ﻣﺘﺮ‬

‫2‬

‫81 أ‬

‫2‬

‫:‬

‫٣‬

‫أ ٦١‪c٨٠ ،c‬‬

‫أ ٦، ﺻﻔﺮ‬

‫:‬

‫2‪C‬‬

‫1 ‪E‬‬

‫−‬

‫32‬

‫ب ﺻﻔﺮ‬

‫1‬

‫٣‬‫٥‬

‫١‬‫٣‬

‫٢‬

‫-١‬

‫٥‬

‫ﻇﺎ‪i‬‬

‫٢‬

‫3 ﺱ٢ + ١ = ٠‬

‫2 ﻣﻮﺟﺒﺔ ﻟﻜﻞ ﺱ ∋ ﺡ‬

‫1 ١‬

‫‪E‬‬

‫ﺟـ‬
‫-‬

‫:‬

‫٤‬‫٥‬

‫٣‬

‫:‬

‫ﺛﺎﻧﻴﺎ: ٤ﺳﻢ‬
‫ً‬

‫ﺛﺎﻟﺜﺎ: ٦‬
‫ً‬

‫أ ٤ : ٧، ٤ : ٧‬
‫أ ‪ C‬ﺏ = ٥٫٤ﺳﻢ، ﻉ ﺹ = ٥ﺳﻢ‬
‫ب ٤ ٣ ﺳﻢ‬
‫أ ﺻﻔﺮ‬

‫ﺟ 9‪ C‬ﺏ ‪E‬‬
 كتاب الانشطه - مصر- ترم اول -  2014

كتاب الانشطه - مصر- ترم اول - 2014

  • 2.
    äÉ«°VÉjôdG äÉÑjQóàdG h ᣰûfC’GÜÉàc ∫hC’G ≈°SGQódG π°üØdG iƒfÉãdG ∫hC’G ∞°üdG OGóYEGh ¿óªdG §«£îJh iQÉÑμdGh ¥ô£dG AɰûfEG É¡æe IOó©àe ä’Éée ≈a á«∏ªY äÉ≤«Ñ£J äÉ«°VÉjô∏d ∫ƒ£dG ø«H Ö°SÉæJ ≥ah É¡d á©WÉ≤dG äɪ«≤à°ùªdG h äɪ«≤à°ùªdG iRGƒJ ≈∏Y óªà©J ≈àdG É¡£FGôN .º°SôdG ≈a ∫ƒ£dGh ≈≤«≤ëdG ¢ùjƒ°ùdG IÉæb ≈àØ°V ø«H §Hôj iòdG ΩÓ°ùdG iôHƒμd IQƒ°üdGh
  • 3.
    ‫‪OGóYEG‬‬ ‫‪ˆG ÜÉL OGDƒaôªY /CG‬‬ ‫‪™Ñ°†dG ≥«aƒJ π«Ñf /O.CG ídɰU ìƒàØdG ƒHCG ±ÉØY /O.CG‬‬ ‫‪Qóæμ°SEG ¢SÉ«dEG º«aGÒ°S /CG‬‬ ‫‪π«FÉahQ ≈ذUh ΩɰüY /O.Ω.CG‬‬ ‫‪á°ûÑc ¢ùfƒj ∫ɪc /CG‬‬ ‫ﺟﻤﻴﻊ ﺍﻟﺤﻘﻮﻕ ﻣﺤﻔﻮﻇﺔ ﻻ ﻳﺠﻮﺯ ﻧﺸﺮ ﺃ￯ ﺟﺰﺀ ﻣﻦ ﻫﺬﺍ ﺍﻟﻜﺘﺎﺏ ﺃﻭ ﺗﺼﻮﻳﺮﻩ ﺃﻭ ﺗﺨﺰﻳﻨﻪ ﺃﻭ ﺗﺴﺠﻴﻠﻪ‬ ‫ﺑﺄ￯ ﻭﺳﻴﻠﺔ ﺩﻭﻥ ﻣﻮﺍﻓﻘﺔ ﺧﻄﻴﺔ ﻣﻦ ﺍﻟﻨﺎﺷﺮ.‬ ‫ﺷﺮﻛﺔ ﺳﻘﺎرة ﻟﻠﻨﺸﺮ‬ ‫‪Ω .Ω .¢T‬‬ ‫ﺍﻟﻄﺒﻌــﺔ ﺍﻷﻭﻟﻰ ٣١٠٢/٤١٠٢‬ ‫ﺭﻗﻢ ﺍﻹﻳــﺪﺍﻉ ٨٤٩٧ / ٣١٠٢‬ ‫ﺍﻟﺮﻗﻢ ﺍﻟﺪﻭﻟﻰ 4 - 000 - 607 - 779 - 879‬
  • 4.
  • 5.
    ‫ﺍﻟﻤﻘﺪﻣﺔ‬ ‫بسم الل ّٰهالرحمن الرحيم‬ ‫ﻳﺴﻌﺪﻧﺎ وﻧﺤﻦ ﻧﻘﺪم ﻫﺬا اﻟﻜﺘﺎب أن ﻧﻮﺿﺢ اﻟﻔﻠﺴﻔﺔ اﻟﺘﻰ ﺗﻢ ﻓﻰ ﺿﻮﺋﻬﺎ ﺑﻨﺎء اﻟﻤﺎدة اﻟﺘﻌﻠﻴﻤﻴﺔ وﻧﻮﺟﺰﻫﺎ ﻓﻴﻤﺎﻳﻠﻰ:‬ ‫1‬ ‫اﻟﺘﺄﻛﻴﺪ ﻋﲆ أن اﻟﻐﺎﻳﺔ اﻷﺳﺎﺳﻴﺔ ﻣﻦ ﻫﺬه اﻟﻜﺘﺐ ﻫﻰ ﻣﺴﺎﻋﺪة املﺘﻌﻠﻢ ﻋﲆ ﺣﻞ املﺸﻜﻼت واﺗﺨﺎذ اﻟﻘﺮارات ﰱ ﺣﻴﺎﺗﻪ‬ ‫اﻟﻴﻮﻣﻴﺔ، واﻟﺘﻰ ﺗﺴﺎﻋﺪه ﻋﲆ املﺸﺎرﻛﻪ ﰱ املﺠﺘﻤﻊ.‬ ‫2‬ ‫اﻟﺘﺄﻛﻴﺪ ﻋﲆ ﻣﺒﺪأ اﺳﺘﻤﺮارﻳﺔ اﻟﺘﻌﻠﻢ ﻣﺪى اﻟﺤﻴﺎة ﻣﻦ ﺧﻼل اﻟﻌﻤﻞ ﻋﲆ إﻛﺴﺎب اﻟﻄﻼب ﻣﻨﻬﺠﻴﺔ اﻟﺘﻔﻜري اﻟﻌﻠﻤﻰ، وأن‬ ‫ﻳﻤﺎرﺳﻮا اﻟﺘﻌﻠﻢ املﻤﺘﺰج ﺑﺎملﺘﻌﺔ واﻟﺘﺸﻮﻳﻖ، وذﻟﻚ ﺑﺎﻻﻋﺘﻤﺎد ﻋﲆ ﺗﻨﻤﻴﺔ ﻣﻬﺎرات ﺣﻞ املﺸﻜﻼت وﺗﻨﻤﻴﺔ ﻣﻬﺎرات اﻻﺳﺘﻨﺘﺎج‬ ‫واﻟﺘﻌﻠﻴﻞ، واﺳﺘﺨﺪام أﺳﺎﻟﻴﺐ اﻟﺘﻌﻠﻢ اﻟﺬاﺗﻰ واﻟﺘﻌﻠﻢ اﻟﻨﺸﻂ واﻟﺘﻌﻠﻢ اﻟﺘﻌﺎوﻧﻰ ﺑﺮوح اﻟﻔﺮﻳﻖ، واملﻨﺎﻗﺸﺔ واﻟﺤﻮار، وﺗﻘﺒﻞ‬ ‫آراء اﻵﺧﺮﻳﻦ، واملﻮﺿﻮﻋﻴﺔ ﰱ إﺻﺪار اﻷﺣﻜﺎم، ﺑﺎﻹﺿﺎﻓﺔ إﱃ اﻟﺘﻌﺮﻳﻒ ﺑﺒﻌﺾ اﻷﻧﺸﻄﺔ واﻹﻧﺠﺎزات اﻟﻮﻃﻨﻴﺔ.‬ ‫3‬ ‫ﺗﻘﺪﻳﻢ رؤى ﺷﺎﻣﻠﺔ ﻣﺘﻤﺎﺳﻜﺔ ﻟﻠﻌﻼﻗﺔ ﺑني اﻟﻌﻠﻢ واﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ واملﺠﺘﻤﻊ)‪ (STS‬ﺗﻌﻜﺲ دور اﻟﺘﻘﺪﱡم اﻟﻌﻠﻤﻰ ﰱ ﺗﻨﻤﻴﺔ‬ ‫املﺠﺘﻤﻊ املﺤﲆ، ﺑﺎﻹﺿﺎﻓﺔ إﱃ اﻟﱰﻛﻴﺰ ﻋﲆ ﻣﻤﺎرﺳﺔ اﻟﻄﻼب اﻟﺘﴫﱡف اﻟﻮاﻋﻰ اﻟﻔﻌّﺎل ﺣِ ﻴﺎل اﺳﺘﺨﺪام اﻷدوات اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺔ.‬ ‫4‬ ‫5‬ ‫6‬ ‫ﺗﻨﻤﻴﺔ اﺗﺠﺎﻫﺎت إﻳﺠﺎﺑﻴﺔ ﺗﺠﺎه اﻟﺮﻳﺎﺿﻴﺎت ودراﺳﺘﻬﺎ وﺗﻘﺪﻳﺮ ﻋﻠﻤﺎﺋﻬﺎ.‬ ‫ﺗﺰوﻳﺪ اﻟﻄﻼب ﺑﺜﻘﺎﻓﺔ ﺷﺎﻣﻠﺔ ﻟﺤﺴﻦ اﺳﺘﺨﺪام املﻮارد اﻟﺒﻴﺌﻴﺔ املﺘﺎﺣﺔ.‬ ‫اﻻﻋﺘﻤﺎد ﻋﲆ أﺳﺎﺳﻴﺎت املﻌﺮﻓﺔ وﺗﻨﻤﻴﺔ ﻃﺮاﺋﻖ اﻟﺘﻔﻜري، وﺗﻨﻤﻴﺔ املﻬﺎرات اﻟﻌﻠﻤﻴﺔ، واﻟﺒﻌﺪ ﻋﻦ اﻟﺘﻔﺎﺻﻴﻞ واﻟﺤﺸﻮ،‬ ‫واﻹﺑﺘﻌﺎد ﻋﻦ اﻟﺘﻌﻠﻴﻢ اﻟﺘﻠﻘﻴﻨﻰ؛ ﻟﻬﺬا ﻓﺎﻻﻫﺘﻤﺎم ﻳﻮﺟﻪ إﱃ إﺑﺮاز املﻔﺎﻫﻴﻢ واملﺒﺎدئ اﻟﻌﺎﻣﺔ وأﺳﺎﻟﻴﺐ اﻟﺒﺤﺚ وﺣﻞ املﺸﻜﻼت‬ ‫وﻃﺮاﺋﻖ اﻟﺘﻔﻜري اﻷﺳﺎﺳﻴﺔ اﻟﺘﻰ ﺗﻤﻴﺰ ﻣﺎدة اﻟﺮﻳﺎﺿﻴﺎت ﻋﻦ ﻏريﻫﺎ.‬ ‫‪:≈∏j Ée ÜÉàμdG Gòg ≈a ≈YhQ ≥ѰS Ée Aƒ°V ≈ah‬‬ ‫ﺗﻘﺪﻳﻢ ﺗﻤﺎرﻳﻦ ﺗﺒﺪأ ﻣﻦ اﻟﺴﻬﻞ إﱃ اﻟﺼﻌﺐ، وﺗﺸﻤﻞ ﻣﺴﺘﻮﻳﺎت ﺗﻔﻜري ﻣﺘﻨﻮﻋﺔ.‬ ‫ﺗﻨﺘﻬﻰ ﻛﻞ وﺣﺪة ﺑﺘﻤﺎرﻳﻦ ﻋﺎﻣﺔ ﻋﲆ اﻟﻮﺣﺪة واﺧﺘﺒﺎر ﻟﻠﻮﺣﺪة واﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ ﻳﺸﻤﻞ اﻟﻌﺪﻳﺪ ﻣﻦ اﻷﺳﺌﻠﺔ اﻟﺘﻰ ﺗﻨﻮﻋﺖ‬ ‫َ‬ ‫ﺑني اﻷﺳﺌﻠﺔ املﻮﺿﻮﻋﻴﺔ، واملﻘﺎﻟﻴﺔ وذات اﻹﺟﺎﺑﺎت اﻟﻘﺼرية، وﺗﺘﻨﺎول اﻟﻮﺣﺪات اﻟﺴﺎﺑﻖ دراﺳﺘﻬﺎ وﺷﻤﻞ اﻟﻜﺘﺎب اﺧﺘﺒﺎرات‬ ‫ﻧﻬﺎﻳﺔ ﻛﻞ ﻓﺼﻞ دراﳻ.‬ ‫ﻛﻤﺎ روﻋﻰ اﺳﺘﺨﺪام ﻟﻐﺔ ﻣﻨﺎﺳﺒﺔ ﰱ ﻛﺘﺎﺑﺔ املﺴﺎﺋﻞ اﻟﺮﻳﺎﺿﻴﺔ واﻟﺤﻴﺎﺗﻴﺔ ﻣﻌﺘﻤﺪًا ﻋﲆ ﻣﺎﺳﺒﻖ دراﺳﺘﻪ ﺑﺎﻟﺴﻨﻮات‬ ‫اﻟﺴﺎﺑﻘﺔ، وﰱ ﺿﻮء املﺤﺼﻮل اﻟﻠﻐﻮى ﻟﻄﻼب ﻫﺬا اﻟﺼﻒ.‬ ‫وأخير ًا ..نتمنى أن نكون قد وفقنا فى إنجاز هذا العمل لما فيه خير لأولادنا، ولمصرنا العزيزة.‬ ‫والل ّٰه من وراء القصد، وهو يهدى إلى سواء السبيل‬
  • 6.
    ‫‪äÉjƒàëªdG‬‬ ‫‪IóMƒdG‬‬ ‫‪≈dhC’G‬‬ ‫ﺍﻟﺠ‪ ‬ﻭﺍﻟﻌﻼﻗﺎﺕ ﻭﺍﻟﺪﻭﺍﻝ‬ ‫1-1‬ ‫ﺣﻞ ﻣﻌﺎدﻻت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ واﺣﺪ.‬ ‫1- 2‬ ‫ﻣﻘﺪﻣﺔ ﻋﻦ اﻷﻋﺪاد اﻟﻤﺮﻛﺒﺔ.‬ ‫1- 3‬ ‫ﺗﺤﺪﻳﺪ ﻧﻮع ﺟﺬرى اﻟﻤﻌﺎدﻟﺔ اﻟﺘﺮﺑﻴﻌﻴﺔ.‬ ‫1- 4‬ ‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬري ﻣﻌﺎدﻟﺔ اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ وﻣﻌﺎﻣﻼت ﺣﺪودﻫﺎ.‬ ‫1- 5‬ ‫إﺷﺎرة اﻟﺪاﻟﺔ.‬ ‫21‬ ‫1- 6‬ ‫ﻣﺘﺒﺎﻳﻨﺎت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ.‬ ‫41‬ ‫51‬ ‫71‬ ‫81‬ ‫................................................................................................................................................‬ ‫2‬ ‫...................................................................................................................................................................................................‬ ‫5‬ ‫.....................................................................................................................................................................‬ ‫7‬ ‫............................................................................................‬ ‫9‬ ‫............................................................................................................................................................................................................................................‬ ‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬ ‫........................................................................................................................................................................................................‬ ‫.........................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬ ‫......................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬ ‫....................................................................................................................................................................................................................................‬ ‫‪IóMƒdG‬‬ ‫‪á«fÉãdG‬‬ ‫ﺍﻟﺘﺸﺎﺑﻪ‬ ‫2-1‬ ‫ﺗﺸﺎﺑﻪ اﻟﻤﻀﻠﻌﺎت‬ ‫02‬ ‫2-2‬ ‫ﺗﺸﺎﺑﻪ اﻟﻤﺜﻠﺜﺎت.‬ ‫22‬ ‫2-3‬ ‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ.‬ ‫62‬ ‫2-4‬ ‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﺸﺎﺑﻪ ﻓﻰ اﻟﺪاﺋﺮة‬ ‫82‬ ‫23‬ ‫43‬ ‫53‬ ‫.....................................................................................................................................................................................................................‬ ‫..........................................................................................................................................................................................................................‬ ‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬ ‫...........................................................................................‬ ‫.............................................................................................................................................................................‬ ‫.........................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬ ‫......................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬ ‫....................................................................................................................................................................................................................................‬
  • 7.
    ‫‪IóMƒdG‬‬ ‫‪áãdÉãdG‬‬ ‫ﻧﻈﺮﻳﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰﺍﻟﻤﺜﻠﺚ‬ ‫3-1‬ ‫اﻟﻤﺴﺘﻘﻴﻤﺎت اﻟﻤﺘﻮازﻳﺔ واﻷﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬ ‫3-2‬ ‫ﻣﻨﺼﻔﺎ اﻟﺰاوﻳﺔ ﻓﻰ اﻟﻤﺜﻠﺚ واﻷﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬ ‫3-3‬ ‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﻨﺎﺳﺐ ﻓﻰ اﻟﺪاﺋﺮة‬ ‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬ ‫.................................................................................................................................................‬ ‫83‬ ‫.......................................................................................................................................‬ ‫14‬ ‫.......................................................................................................................................................................................‬ ‫.........................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬ ‫......................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬ ‫....................................................................................................................................................................................................................................‬ ‫‪IóMƒdG‬‬ ‫‪á©HGôdG‬‬ ‫34‬ ‫54‬ ‫64‬ ‫74‬ ‫ﺣﺴﺎﺏ ﺍﻟﻤﺜﻠﺜﺎﺕ‬ ‫4-1‬ ‫اﻟﺰاوﻳﺔ اﻟﻤﻮﺟﻬﺔ.‬ ‫4-2‬ ‫ﻃﺮق ﻗﻴﺎس اﻟﺰاوﻳﺔ.‬ ‫4-3‬ ‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-4‬ ‫اﻟﻌﻼﻗﺎت ﺑﻴﻦ اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-5‬ ‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻰ ﻟﻠﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-6‬ ‫إﻳﺠﺎد ﻗﻴﺎس زاوﻳﺔ ﺑﻤﻌﻠﻮﻣﻴﺔ داﻟﺔ ﻣﺜﻠﺜﻴﺔ‬ ‫..............................................................................................................................................................................................................................‬ ‫05‬ ‫.....................................................................................................................................................................................................................‬ ‫25‬ ‫.......................................................................................................................................................................................................................................‬ ‫55‬ ‫.............................................................................................................................................................................................‬ ‫75‬ ‫.......................................................................................................................................................................................‬ ‫06‬ ‫........................................................................................................................................................‬ ‫ﺗﻤﺎرﻳﻦ ﻋﺎﻣﺔ‬ ‫.........................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر اﻟﻮﺣﺪة‬ ‫......................................................................................................................................................................................................................................‬ ‫اﺧﺘﺒﺎر ﺗﺮاﻛﻤﻰ‬ ‫اﺧﺘﺒﺎرات ﻋﺎﻣﺔ‬ ‫....................................................................................................................................................................................................................................‬ ‫.......................................................................................................................................................................................................................................................................‬ ‫إﺟﺎﺑﺎت ﺑﻌﺾ اﻟﺘﻤﺎرﻳﻦ‬ ‫.................................................................................................................................................................................................................................................‬ ‫16‬ ‫36‬ ‫46‬ ‫56‬ ‫66‬ ‫27‬
  • 8.
    ‫ﺍﻟﺠﺒﺮ‬ ‫‪IóMƒdG‬‬ ‫1‬ ‫ﺍﻟﺠﺒﺮ ﻭﺍﻟﻌﻼﻗﺎﺕ ﻭﺍﻟﺪﻭﺍﻝ‬ ‫‪Algebra,Relations and‬‬ ‫‪Functions‬‬ ‫دروس اﻟﻮﺣﺪة‬ ‫ﺍﻟﺪﺭﺱ )١ - ١(: ﺣﻞ ﻣﻌﺎﺩﻻﺕ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ ﻭﺍﺣﺪ.‬ ‫ﺍﻟﺪﺭﺱ )١ - ٢(: ﻣﻘﺪﻣﺔ ﻋﻦ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻤﺮﻛﺒﺔ.‬ ‫ﺍﻟﺪﺭﺱ )١ - ٣(: ﺗﺤﺪﻳﺪ ﻧﻮﻉ ﺟﺬﺭ￯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ.‬ ‫ﺍﻟﺪﺭﺱ )١ - ٤(: ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬﺭ￯ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻭﻣﻌﺎﻣﻼﺕ ﺣﺪﻭﺩﻫﺎ.‬ ‫ﺍﻟﺪﺭﺱ )١ - ٥(: ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ.‬ ‫ﺍﻟﺪﺭﺱ )١ - ٦(: ﻣﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ.‬
  • 9.
    ‫ﺣﻞ ﻣﻌﺎدﻻت اﻟﺪرﺟﺔاﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ واﺣﺪ‬ ‫1-1‬ ‫‪Solving Quadratic Equations in One Variable‬‬ ‫‪k‬‬ ‫‪Oó©àe øe QÉ«àN’G :’hCG‬‬ ‫1 ﺍﻟﻤﻌﺎﺩﻟﺔ: )ﺱ – ١( )ﺱ + ٢( = ٠ ﻣﻦ ﺍﻟﺪﺭﺟﺔ:‬ ‫ب ﺍﻟﺜﺎﻧﻴﺔ‬ ‫أ ﺍﻷﻭﻟﻰ‬ ‫2 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ = ﺱ ﻓﻰ ﺡ ﻫﻰ:‬ ‫ب }١{‬ ‫أ }٠{‬ ‫..................................................................................................................................‬ ‫ﺟ ﺍﻟﺜﺎﻟﺜﺔ‬ ‫د ﺍﻟﺮﺍﺑﻌﺔ‬ ‫.....................................................................................................................................‬ ‫ﺟ }- ١، ١{‬ ‫3 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ = ٠ ﻓﻰ ﺡ ﻫﻰ:‬ ‫ب }- ٣ {‬ ‫أ }-٣{‬ ‫د }0، ١{‬ ‫.................................................................................................................................‬ ‫4 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢ﺱ = -١ ﻓﻰ ﺡ ﻫﻰ:‬ ‫ب ‪z‬‬ ‫أ }-١{‬ ‫ﺟ } ٣ {‬ ‫د ‪z‬‬ ‫........................................................................................................................‬ ‫ﺟ }-١، ١{‬ ‫د }١{‬ ‫5 ﻳﻤﺜﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﺩ.‬ ‫ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ)ﺱ( = ٠ ﻓﻰ ﺡ ﻫﻰ: ......................................‬ ‫ب }٤{‬ ‫أ }-٢{‬ ‫د }-٢، ٤{‬ ‫ﺟ ‪z‬‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫6 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ:‬ ‫ب ﺱ٢ + ٣ﺱ = ٠‬ ‫أ ﺱ٢ - ١ = ٠‬ ‫ﺟ )ﺱ – ٤(٢ = ٠‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫ﻫ ﺱ٢ + ٩ = ٠‬ ‫د ﺱ٢ - ٦ﺱ + ٩ = ٠‬ ‫و ﺱ )ﺱ+ ١( )ﺱ - ١( = ٠‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫............................................................‬ ‫............................................................‬ ‫...........................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 10.
    ‫¯‬ ‫7 ﻳﺒﻴﻦ ﻛﻞﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ.‬ ‫ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺩ )ﺱ( = ٠ ﻓﻰ ﻛﻞ ﺷﻜﻞ.‬ ‫ب‬ ‫أ‬ ‫ﺟ‬ ‫− −‬ ‫− − − − −‬ ‫−‬ ‫−‬ ‫− − −‬ ‫−‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ ﻭﺣﻘﻖ ﺍﻟﻨﺎﺗﺞ ﺑﻴﺎﻧﻴﺎ:‬ ‫ًّ‬ ‫ب ٢ﺱ٢ = ٣ – ٥ﺱ‬ ‫أ ﺱ٢ = ٣ﺱ + ٠٤‬ ‫............................................................‬ ‫............................................................‬ ‫ﺟ ٦ﺱ٢ = ٦ – ٥ﺱ‬ ‫د )ﺱ – ٣( = ٥‬ ‫٢‬ ‫............................................................‬ ‫............................................................‬ ‫و ١ ﺱ٢ - ٣ ﺱ = ١‬ ‫٥‬ ‫٢‬ ‫ﻫ ﺱ٢ + ٢ﺱ = ٢١‬ ‫............................................................‬ ‫............................................................‬ ‫9 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﺡ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻟﺮﻗﻢ ﻋﺸﺮﻯ ﻭﺍﺣﺪ.‬ ‫ً‬ ‫ب ﺱ٢ – ٦ﺱ + ٧ = ٠‬ ‫أ ٣ﺱ٢ – ٥٦ = ٠‬ ‫............................................................‬ ‫............................................................‬ ‫ﺟ ﺱ٢ + ٦ﺱ + ٨ = ٠‬ ‫د ٢ﺱ٢+٣ﺱ–٤ = ٠‬ ‫............................................................‬ ‫............................................................‬ ‫و ٣ﺱ٢ – ٦ﺱ – ٤ = ٠‬ ‫ﻫ ٥ﺱ٢ – ٣ﺱ – ١ = ٠‬ ‫............................................................‬ ‫............................................................‬ ‫01 ﺃﻋﺪﺍﺩ: ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )١ + ٢ + ٣ + ... + ﻥ(ﻳﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺟـ = ﻥ )١ + ﻥ(‬ ‫٢‬ ‫ﻓﻜﻢ ﻋﺪﺩﺍ ﺻﺤﻴﺤﺎ ﻣﺘﺘﺎﻟﻴﺎ ﺑﺪﺀﺍ ﻣﻦ ﺍﻟﻌﺪﺩ ١ ﻳﻜﻮﻥ ﻣﺠﻤﻮﻋﻬﺎ ﻣﺴﺎﻭ ﻳﺎ:‬ ‫ً‬ ‫ً‬ ‫ً‬ ‫ً ً‬ ‫ب ١٧١‬ ‫أ ٨٧‬ ‫..............................................‬ ‫...............................................‬ ‫ﺟ ٣٥٢‬ ‫د ٥٦٤‬ ‫...............................................‬ ‫...............................................‬ ‫‪M‬‬ ‫−‬
  • 11.
    ‫11 ﻳﺒﻴﻦ ﻛﻞﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻰ ﻟﺪﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﻣﺘﻐﻴﺮ ﻭﺍﺣﺪ. ﺃﻭﺟﺪ ﻗﺎﻋﺪﺓ ﻛﻞ‬ ‫ﺩﺍﻟﺔ ﻣﻦ ﻫﺬه ﺍﻟﺪﻭﺍﻝ.‬ ‫ب‬ ‫أ‬ ‫ﺟ‬ ‫− − − −‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫− − − −‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫...............................................................‬ ‫...............................................................‬ ‫...............................................................‬ ‫21 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ )ﺱ – ٣(٢ = )ﺱ – ٣(.‬ ‫¯‬ ‫‪) a‬ﺱ – ٣(٢ = )ﺱ – ٣(‬ ‫–‬ ‫‪¯M‬‬ ‫ ‬ ‫‪F‬‬ ‫` ﺱ – ٣ = ١‬ ‫` ﺱ = ٤‬ ‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ = }٤{‬ ‫!‬ ‫‪) a‬ﺱ – ٣(٢ = )ﺱ – ٣(‬ ‫` )ﺱ – ٣(٢ – )ﺱ – ٣( = ٠‬ ‫` )ﺱ – ٣(])ﺱ – ٣( – ١[ = ٠‬ ‫‪ :F‬ﺱ – ٣=٠ ﺃﻭ ﺱ – ٤=٠‬ ‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ = }٣، ٤{‬ ‫ﺃﻱ ﺍﻟﺤﻠﻴﻦ ﺻﺤﻴﺢ? ﻟﻤﺎﺫﺍ?‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫31 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﻗُﺬﻓﺖ ﻛﺮﺓ ﺭﺃﺳﻴﺎ ﺇﻟﻰ ﺃﻋﻠﻰ ﺑﺴﺮﻋﺔ ﻉ ﺗﺴﺎﻭﻯ ٤٫٩٢ ﻣﺘﺮ/ﺙ. ﺍﺣﺴﺐ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺰﻣﻨﻴﺔ ﻥ ﺑﺎﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ‬ ‫ُ‬ ‫ًّ‬ ‫ﺗﺴﺘﻐﺮﻗﻬﺎ ﺍﻟﻜﺮﺓ ﺣﺘﻰ ﺗﺼﻞ ﺇﻟﻰ ﺍﺭﺗﻔﺎﻉ ﻑ ﻣﺘﺮﺍ، ﺣﻴﺚ ﻑ ﺗﺴﺎﻭﻯ ٢٫٩٣ ﻣﺘﺮﺍ ﻋﻠﻤﺎ ﺑﺄﻥ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻑ، ﻥ ﺗﻌﻄﻰ‬ ‫ُْ‬ ‫ً ً‬ ‫ً‬ ‫ﻛﺎﻵﺗﻰ ﻑ = ﻉ ﻥ – ٩٫٤ ﻥ٢.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 12.
    ‫ﻣﻘﺪﻣﺔ ﻋﻦ اﻋﺪاد اﻟﻤﺮﻛﺒﺔ‬ ‫1-2‬ ‫‪Complex Numbers‬‬ ‫1 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ:‬ ‫ًّ‬ ‫ ٥٤‬‫٦٦‬ ‫ب ﺕ‬ ‫أ ﺕ‬ ‫......................................‬ ‫ﺟ ﺕ‬ ‫......................................‬ ‫٤ﻥ + ٢‬ ‫......................................‬ ‫د ﺕ‬ ‫٤ﻥ – ١‬ ‫......................................‬ ‫2 ﺑﺴﻂ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫ًّ‬ ‫أ‬ ‫-٨١ * -٢١‬ ‫ب ٣ ﺕ )- ٢ﺕ(‬ ‫..........................................‬ ‫ﺟ )- ٤ ﺕ( )- ٦ ﺕ(‬ ‫..........................................‬ ‫...........................................‬ ‫د )- ٢ ﺕ(٣ )- ٣ ﺕ(‬ ‫٢‬ ‫.........................................‬ ‫3 ﺃﻭﺟﺪ ﻧﺎﺗﺞ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ:‬ ‫ٍّ‬ ‫أ )٣ + ٢ﺕ( + )٢ – ٥ ﺕ(   ب )٦٢ – ٤ﺕ( – )٩ – ٠٢ ﺕ(   ﺟ )٠٢ + ٥٢ ﺕ( – )٩ – ٠٢ ﺕ(‬ ‫.................................................................................       ..................................................................................      ..................................................................................‬ ‫4 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻋﻠﻰ ﺻﻮﺭﺓ ‪ + C‬ﺏ ﺕ‬ ‫ًّ‬ ‫ب )١ + ٢ﺕ٣( )٢ + ٣ ﺕ٥ + ٤ ﺕ٦(‬ ‫أ )٢ + ٣ ﺕ( – )١ – ٢ﺕ(‬ ‫5 ﺿﻊ ﻛﻼ ﻣﻤﺎ ﻳﺄﺗﻰ ﻋﻠﻰ ﺻﻮﺭﺓ ‪ + C‬ﺏ ﺕ‬ ‫ًّ‬ ‫٢‬ ‫ب ٤+ﺕ‬ ‫أ‬ ‫ﺕ‬ ‫ﺟ‬ ‫١+ﺕ‬ ‫......................................‬ ‫......................................‬ ‫......................................‬ ‫6 ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫ب ٤ ﺹ٢ + ٠٢ = ٠‬ ‫أ ٣ ﺱ٢ + ٢١ = ٠‬ ‫......................................‬ ‫٢ - ٣ﺕ‬ ‫٣+ﺕ‬ ‫ﺟ ٤ ﻉ٢ + ٢٧ = ٠‬ ‫......................................‬ ‫......................................‬ ‫د )٣ + ﺕ()٣ - ﺕ(‬ ‫٣-٤ﺕ‬ ‫......................................‬ ‫د ٣ ﺹ٢ + ٥١ = ٠‬ ‫٥‬ ‫......................................‬ ‫7 ﻛﻬﺮﺑﺎﺀ: ﺃﻭﺟﺪ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺮﺑﻰ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻤﺎﺭ ﻓﻰ ﻣﻘﺎﻭﻣﺘﻴﻦ ﻣﺘﺼﻠﺘﻴﻦ ﻋﻠﻰ ﺍﻟﺘﻮﺍﺯﻯ ﻓﻰ ﺩﺍﺋﺮﺓ ﻛﻬﺮﺑﺎﺋﻴﺔ‬ ‫ﻣﻐﻠﻘﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﻓﻰ ﺍﻟﻤﻘﺎﻭﻣﺔ ﺍﻷ ﻟﻰ ٤ – ٢ﺕ ﺃﻣﺒﻴﺮ، ﻭﻓﻰ ﺍﻟﻤﻘﺎﻭﻣﺔ ﺍﻟﺜﺎﻧﻴﺔ ٦ + ٣ﺕ ﺃﻣﺒﻴﺮ .................‬ ‫ﻭ‬ ‫٢+ﺕ‬ ‫8 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺃﻭﺟﺪ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ: )٢ + ٣ﺕ(٢ )٢ – ٣ﺕ(‬ ‫¯‬ ‫)٢ + ٣ﺕ(٢)٢– ٣ﺕ( = )٤ + ٩ﺕ٢()٢ – ٣ﺕ(‬ ‫= )٤ – ٩()٢ – ٣ﺕ( = - ٥ )٢ – ٣ﺕ(‬ ‫= - ٠١ + ٥١ ﺕ‬ ‫)٢ + ٣ﺕ()٢ + ٣ﺕ()٢ – ٣ﺕ(‬ ‫= )٢ + ٣ﺕ( )٤ – ٩ﺕ٢(‬ ‫= )٢ + ٣ﺕ( )٤ + ٩( = ٣١)٢ + ٣ﺕ(‬ ‫= ٦٢ + ٩٣ ﺕ‬ ‫ﺃﻯ ﺍﻟﺤﻠﻴﻦ ﺻﺤﻴﺢ? ﻟﻤﺎﺫﺍ?‬ ‫............................................................................................................................................................................‬ ‫‪M‬‬ ‫−‬
  • 13.
    ‫ﻧﺸﺎط‬ ‫١-‬ ‫٢-‬ ‫٣-‬ ‫٤-‬ ‫٥-‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﺣﺪ ﺍﻟﺒﺮﺍﻣﺞﺍﻟﺮﺳﻮﻣﻴﺔ ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٣ - ١ .‬ ‫ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻳﻤﺜﻞ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ، ﻫﻞ ﻳﻤﻜﻨﻚ ﺇﻳﺠﺎﺩ ﻣﺠﻤﻮﻋﺔ ﺣﻞ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٣ -١ = ٠ ﻣﻦ ﺍﻟﺮﺳﻢ?‬ ‫ﻫﻞ ﺗﺘﻮﻗﻊ ﻭﺟﻮﺩ ﺟﺬﻭﺭ ﺃﺧﺮﻯ ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺘﻰ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ ﻣﻦ‬ ‫ﺍﻟﺮﺳﻢ، ﻭﺫﻟﻚ ﻣﻦ ﺧﻼﻝ ﺩﺭﺍﺳﺘﻚ ﻟﻤﺠﻤﻮﻋﺎﺕ ﺍﻷﻋﺪﺍﺩ?‬ ‫ﻫﻞ ﻳﻤﻜﻨﻚ ﺣﻞ ﺱ٣ - ١ = ٠ ﺟﺒﺮ ﻳﺎ?‬ ‫ًّ‬ ‫ﺍﺳﺘﺨﺪﻡ ﻃﺮﻕ ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺘﻰ ﺳﺒﻖ ﻟﻚ ﺩﺭﺍﺳﺘﻬﺎ ﻓﻰ ﺣﻞ ﻫﺬه ﺍﻟﻤﻌﺎﺩﻟﺔ.‬ ‫: ﺱ٣ - ١ = )ﺱ - ١()ﺱ٢ + ﺱ + ١( =٠‬ ‫¯‬ ‫¯‬ ‫٦- ﺗﻌﻠﻢ ﺃﻧﻪ ﻣﻦ ﺧﻮﺍﺹ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺇﺫﺍ ﻛﺎﻥ ‪ * C‬ﺏ * ﺟـ = ٠ ﻓﺈﻥ ‪ ، ٠ = C‬ﺏ = ٠، ﺟـ = ٠ ﻓﻬﻞ ﻳﻤﻜﻨﻚ ﺍﺳﺘﺨﺪﺍﻡ ﺫﻟﻚ‬ ‫ﻓﻰ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ?‬ ‫  ﺱ = ١  ﻭﻫﺬﺍ ﻳﻄﺎﺑﻖ ﺍﻟﺤﻞ ﺍﻟﺒﻴﺎﻧﻰ ﺃﻭ:‬ ‫ﺱ - ١ = ٠ ‬ ‫¯‬ ‫ﺱ٢ + ﺱ +١ = ٠ ﻫﻞ ﻳﻤﻜﻨﻚ ﺣﻞ ﻫﺬه ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺎﻟﺘﺤﻠﻴﻞ?‬ ‫٧- ﺍﺳﺘﺨﺪﻡ ﻣﻔﻬﻮﻡ ﻣﻤﻴﺰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻟﺘﺤﺪﻳﺪ ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ + ١ = ٠ ﺣﻴﺚ ‪ ، ١ =C‬ﺏ = ١ ، ﺟـ = ١‬ ‫  ﺏ٢ - ٤ ‪ C‬ﺟـ > ٠‬ ‫ﺍﻟﻤﻤﻴﺰ )ﺏ٢- ٤ ‪C‬ﺟـ( = ١ - ٤ *١ *١ = -٣‬ ‫¯‬ ‫¯‬ ‫,‬ ‫٨- ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ + ١ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ .‬ ‫ﺍﻟﻤﺮ‬ ‫ﺱ = - ﺏ ! ﺏ ٢-٤‪C‬ﺟـ‬ ‫٢‪C‬‬ ‫ﻓﺘﻜﻮﻥ ﺱ = - ١ !‬ ‫٩- ﺍﻛﺘﺐ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٣ - ١ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ.‬ ‫ﺍﻟﻤﺮ‬ ‫ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻫﻰ}١، - ١ +‬ ‫٢*١‬ ‫-٣ ،‬ ‫١-‬‫٢*١‬ ‫-٣‬ ‫٢*١‬ ‫-٣ {‬ ‫٠١-ﻛﻢ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻛﻢ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﻛﺒﺔ ?‬ ‫ﺍﻟﻤﺮ‬ ‫ﻭ‬ ‫١١- ﺃﻭﺟﺪ ﻣﺠﻤﻮﻉ ﺍﻟﺠﺬﻭﺭ ﺍﻟﺜﻼﺛﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ - ﻣﺎﺫﺍ ﺗﻼﺣﻆ?‬ ‫٢١- ﺃﻭﺟﺪ ﺣﺎﺻﻞ ﺿﺮﺏ ﺍﻟﺠﺬﺭﻳﻦ ﺍﻟﺘﺨﻴﻠﻴﻴﻦ - ﻣﺎﺫﺍ ﺗﻼﺣﻆ?‬ ‫٣١- ﺃﻭﺟﺪ ﻣﺮﺑﻊ ﺃﺣﺪ ﺍﻟﺠﺬﺭﻳﻦ ﺍﻟﺘﺨﻴﻠﻴﻴﻦ ﻭﻗﺎﺭﻧﻪ ﻣﻊ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ.‬ ‫٤١- ﻟﻤﺎﺫﺍ ﺃﻋﻄﻰ ﺍﻟﺤﻞ ﺍﻟﺒﻴﺎﻧﻰ ﺟﺬﺭﺍ ﻭﺍﺣﺪﺍ ﻓﻘﻂ، ﺑﻴﻨﻤﺎ ﺃﻋﻄﻰ ﺍﻟﺤﻞ ﺍﻟﺠﺒﺮﻯ ﺛﻼﺛﺔ ﺟﺬﻭﺭ ? ﻓﺴﺮ ﺫﻟﻚ.‬ ‫ً‬ ‫ً‬ ‫ِّ‬ ‫٥١- ﺍﺑﺤﺚ ﻓﻰ ﺍﻟﺸﺒﻜﺔ ﺍﻟﻌﻨﻜﺒﻮﺗﻴﺔ ﻋﻦ ﻛﻴﻔﻴﺔ ﺗﻤﺜﻴﻞ ﺟﺬﻭﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻜﻌﻴﺒﻴﺔ ﺑﻴﺎﻧﻴﺎ ﺑﻤﺎ ﻳﺘﻨﺎﺳﺐ ﻣﻊ ﻣﻌﻠﻮﻣﺎﺗﻚ.‬ ‫ًّ‬ ‫¯‬ ‫−‬ ‫¯‬
  • 14.
    ‫ﺗﺤﺪﻳﺪ ﻧﻮع ﺟﺬرىاﻟﻤﻌﺎدﻟﺔ اﻟﺘﺮﺑﻴﻌﻴﺔ‬ ‫1-3‬ ‫‪Determining The Type of Roots of a Quadratic Equation‬‬ ‫‪k‬‬ ‫‪:Oó©àe øe QÉ«àNG :’hCG‬‬ ‫1 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ + ﻙ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬ ‫ﺟ ﻙ=٨‬ ‫ب ﻙ=٤‬ ‫أ ﻙ=١‬ ‫............................................................................................‬ ‫2 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢ﺱ + ﻡ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬ ‫ﺟ ﻡ<١‬ ‫ب ﻡ>١‬ ‫أ ﻡ=١‬ ‫د ﻙ = ٦١‬ ‫............................................................................‬ ‫3 ﻳﻜﻮﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻝ ﺱ٢ – ٢١ﺱ + ٩ = ٠ ﻛﺒﻴﻦ ﺇﺫﺍ ﻛﺎﻧﺖ:‬ ‫ﻣﺮ‬ ‫ﺟ ﻝ=٤‬ ‫ب ﻝ>٤‬ ‫أ ﻝ<٤‬ ‫د ﻡ=٤‬ ‫...........................................................................................‬ ‫د ﻝ=١‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫4 ﺣﺪﺩ ﻋﺪﺩ ﺍﻟﺠﺬﻭﺭ ﻭﺃﻧﻮﺍﻋﻬﺎ ﻟﻜﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻵﺗﻴﺔ:‬ ‫ب ٣ﺱ٢ + ٠١ﺱ - ٤ = ٠‬ ‫أ ﺱ٢ - ٢ﺱ + ٥ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫ﺟ ﺱ٢ – ٠١ﺱ + ٥٢ = ٠‬ ‫د ٦ﺱ٢ – ٩١ﺱ + ٥٣ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫و )ﺱ – ١( )ﺱ – ٧( = ٢ )ﺱ – ٣( )ﺱ – ٤(‬ ‫ﻫ )ﺱ – ١١( – ﺱ)ﺱ – ٦( = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫5 ﺃﻭﺟﺪ ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ.‬ ‫ﺍﻟﻤﺮ‬ ‫ٍّ‬ ‫ب ٢ﺱ٢ + ٦ﺱ + ٥ = ٠‬ ‫أ ﺱ٢ - ٤ﺱ + ٥ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫ﺟ ٣ﺱ٢ - ٧ﺱ + ٦ = ٠‬ ‫د ٤ﺱ٢ - ﺱ + ١ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫6 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٤ﺱ + ﻙ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ.‬ ‫.......................................................................................................................................................................................................................‬ ‫‪M‬‬ ‫−‬
  • 15.
    ‫١‬ ‫ب ﺇﺫﺍ ﻛﺎﻥﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ + ﻙ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬ ‫.......................................................................................................................................................................................................................‬ ‫ﺟ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻙ ﺱ٢ – ٨ﺱ + ٦١ = ٠ ﻛﺒﻴﻦ.‬ ‫ﻣﺮ‬ ‫..................................................................................................................................................................................................................................‬ ‫7 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﻋﺪﺩﻳﻦ ﻧﺴﺒﻴﻴﻦ، ﻓﺄﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﻝ ﺱ٢ + )ﻝ – ﻡ( ﺱ – ﻡ = ٠ ﻋﺪﺩﺍﻥ ﻧﺴﺒﻴﺎﻥ.‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ﻳﻘﺪﺭ ﻋﺪﺩ ﺳﻜﺎﻥ ﺟﻤﻬﻮﺭﻳﺔ ﻣﺼﺮ ﺍﻟﻌﺮﺑﻴﺔ ﻋﺎﻡ ٣١٠٢ ﺑﺎﻟﻌﻼﻗﺔ:‬ ‫ﻉ = ﻥ٢ + ٢٫١ ﻥ + ١٩ ﺣﻴﺚ )ﻉ( ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﺑﺎﻟﻤﻠﻴﻮﻥ، )ﻥ( ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ‬ ‫.................................................................................................................‬ ‫أ ﻛﻢ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻋﺎﻡ ٣١٠٢?‬ ‫.................................................................................................................‬ ‫ب ﻗﺪﺭ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻋﺎﻡ ٣٢٠٢.‬ ‫ﺟ‬ ‫ﻗﺪﺭ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ ﺍﻟﺘﻰ ﻳﺒﻠﻎ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻴﻬﺎ ٤٣٣ ﻣﻠﻴ ﻧًﺎ. ...........................................................................................‬ ‫ﻮ‬ ‫ً‬ ‫د ﺍﻛﺘﺐ ﻣﻘﺎﻻ ﺗﻮﺿﺢ ﻓﻴﻪ ﺃﺳﺒﺎﺏ ﺍﻟﺰﻳﺎﺩﺓ ﺍﻟﻤﻄﺮﺩﺓ ﻓﻰ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻛﻴﻔﻴﺔ ﻋﻼﺟﻬﺎ.‬ ‫ﻭ‬ ‫9 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﻣﺎ ﻋﺪﺩ ﺣﻠﻮﻝ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٦ ﺱ = ٥ ﻓﻰ ﺡ‬ ‫¯‬ ‫ﺏ٢– ٤‪C‬ﺟـ = )- ٦(٢ – ٤ * ٢ * ٥‬ ‫     = ٦٣ – ٠٤ = - ٤‬ ‫¯,‬ ‫ﺏ٢– ٤‪C‬ﺟـ = )- ٦(٢ – ٤ * ٢ )- ٥(‬ ‫     = ٦٣ +٠٤ = ٦٧‬ ‫¯,‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫01 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٢ )ﻙ - ١( ﺱ + )٢ﻙ + ١( =٠ ﻣﺘﺴﺎﻭﻳﻴﻦ، ﻓﺄﻭﺟﺪ ﻗﻴﻢ ﻙ ﺍﻟﺤﻘﻴﻘﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ‬ ‫ﺍﻟﺠﺬﺭﻳﻴﻦ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫11 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ٦٣ ﺱ٢ – ٨٤ ﺱ + ٥٢ = ٠ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ.‬ ‫ﺍﻟﻤﺮ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 16.
    ‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺟﺬرىﻣﻌﺎدﻟﺔ اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ وﻣﻌﺎﻣﻼت ﺣﺪودﻫﺎ‬ ‫‪The relation between two roots of the second degree‬‬ ‫‪equation and the coefficients of its terms‬‬ ‫1-4‬ ‫‪k‬‬ ‫‪:≈JCÉjÉe πªcCG :’hCG‬‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ﺱ = ٣ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﻡ ﺱ – ٧٢ = ٠ ﻓﺈﻥ ﻡ = .................................، ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ =‬ ‫................................‬ ‫2 ﺇﺫﺍ ﻛﺎﻥ ﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ٢ ﺱ٢ + ٧ ﺱ + ٣ ﻙ = ٠ ﻳﺴﺎﻭﻯ ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ:‬ ‫٢‬ ‫ﺱ – )ﻙ + ٤( ﺱ = ٠ ﻓﺈﻥ ﻙ = ................................‬ ‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺰﻳﺪ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ ﺱ + ٢ = ٠ ﻫﻰ‬ ‫...............................‬ ‫4 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﻨﻘﺺ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٥ ﺱ + ٦ = ٠ ﻫﻰ‬ ‫...............................‬ ‫‪Oó©àe øe QÉ«àN’G :Ék«fÉK‬‬ ‫5 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ - ٣ ﺱ + ﺟـ = ٠ ﺿﻌﻒ ﺍﻵﺧﺮ ﻓﺈﻥ ﺟـ ﺗﺴﺎﻭﻯ‬ ‫د ٤‬ ‫ﺟ ٢‬ ‫ب -٢‬ ‫أ -٤‬ ‫.......................................................‬ ‫6 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ C‬ﺱ٢ – ٣ﺱ+ ٢ =٠ ﻣﻌﻜﻮﺳﺎ ﺿﺮﺑﻴﺎ ﻟﻶﺧﺮ، ﻓﺈﻥ ‪ C‬ﺗﺴﺎﻭﻯ‬ ‫ً‬ ‫ًّ‬ ‫ب ١‬ ‫أ ١‬ ‫د ٣‬ ‫ﺟ ٢‬ ‫٢‬ ‫٣‬ ‫...........................................‬ ‫7 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢– )ﺏ – ٣( ﺱ + ٥ = ٠ ﻣﻌﻜﻮﺳﺎ ﺟﻤﻌﻴﺎ ﻟﻶﺧﺮ، ﻓﺈﻥ ﺏ ﺗﺴﺎﻭﻯ‬ ‫ً‬ ‫ًّ‬ ‫د ٥‬ ‫ﺟ ٣‬ ‫ب -٣‬ ‫أ -٥‬ ‫........................‬ ‫‪k‬‬ ‫‪á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬ ‫8 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻉ ﻭﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻰ:‬ ‫ب ٤ ﺱ٢ + ٤ ﺱ – ٥٣ = ٠‬ ‫أ ٣ ﺱ٢ + ٩١ ﺱ – ٤١ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫9 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ﻟﻠﻤﻌﺎﺩﻟﺔ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ  ﺱ٢ – ٢ ﺱ + ‪٠ = C‬‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ: ﺱ = - ١‬ ‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ  ‪ C‬ﺱ٢ – ٥ ﺱ + ‪٠ = C‬‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ: ﺱ = ٢‬ ‫........................................................‬ ‫........................................................‬ ‫01 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ ،C‬ﺏ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﺇﺫﺍ ﻛﺎﻥ:‬ ‫......................................................................................................‬ ‫أ ٢، ٥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ‪ C‬ﺱ + ﺏ = ٠‬ ‫......................................................................................................‬ ‫ب -٣، ٧ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪C‬ﺱ٢ – ﺏ ﺱ - ١٢ = ٠‬ ‫ﺟ -١، ٣ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ C‬ﺱ٢ – ﺱ + ﺏ = ٠‬ ‫......................................................................................................‬ ‫٢‬ ‫٢‬ ‫د‬ ‫٣ ﺕ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ + ‪ C‬ﺱ + ﺏ = ٠ ..........................................................................................‬ ‫٣ ﺕ،-‬ ‫‪M‬‬ ‫−‬
  • 17.
    ‫11 ﺍﺑﺤﺚ ﻧﻮﻉﺍﻟﺠﺬﺭﻳﻦ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻨﻬﺎ:‬ ‫ب ٢ﺱ٢ + ٣ﺱ + ٧ = ٠‬ ‫أ ﺱ٢ + ٢ﺱ – ٥٣ = ٠‬ ‫..................................................................................‬ ‫ﺟ ﺱ)ﺱ – ٤( + ٥ = ٠‬ ‫..................................................................................‬ ‫د ٣ﺱ)٣ﺱ – ٨( + ٦١ = ٠‬ ‫..................................................................................‬ ‫..................................................................................‬ ‫21 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺟـ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺟـ ﺱ٢ – ٢١ﺱ + ٩ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬ ‫..................................................................................................................................................................................................................................‬ ‫31 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ + ١ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ.‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫41 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺟـ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٣ ﺱ٢ – ٥ ﺱ + ﺟـ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ، ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺠﺬﺭﻳﻦ.‬ ‫..................................................................................................................................................................................................................................‬ ‫51 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + )ﻙ - ١( ﺱ – ٣ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﺠﻤﻌﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬ ‫..................................................................................................................................................................................................................................‬ ‫61 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ٤ ﻙ ﺱ٢ + ٧ ﺱ + ﻙ٢ + ٤ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬ ‫..................................................................................................................................................................................................................................‬ ‫71 ﻛﻮﻥ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻛﺎﻵﺗﻰ :‬ ‫ب - ٥ ﺕ، ٥ ﺕ‬ ‫أ – ٢، ٤‬ ‫...................................................................................‬ ‫د ١ - ٣ﺕ ، ١ + ٣ﺕ‬ ‫...................................................................................‬ ‫ﺟ ٢،٣‬ ‫٣ ٢‬ ‫...................................................................................‬ ‫................................................................‬ ‫ﻫ ٣ - ٢ ٢ ﺕ ، ٣ + ٢ ٢ ﺕ‬ ‫...................................................................................‬ ‫81 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﺿﻌﻔﺎ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٨ﺱ + ٥ = ٠‬ ‫..................................................................................................................................................................................................................................‬ ‫91 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ ١ ﻋﻦ ﻛﻞ ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﺱ٢ – ٧ﺱ – ٩ = ٠‬ ‫..................................................................................................................................................................................................................................‬ ‫02 ﺃﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﻛﻞ ﻣﻦ ﺟﺬﺭﻳﻬﺎ ﻳﺴﺎﻭﻯ ﻣﺮﺑﻊ ﻧﻈﻴﺮه ﻣﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ : ﺱ٢ + ٣ﺱ – ٥ = ٠‬ ‫..................................................................................................................................................................................................................................‬ ‫12 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٧ ﺱ + ٣ = ٠ ﻓﺄﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ:‬ ‫ﺟ ٢،٢‬ ‫د ﻝ + ﻡ، ﻝ ﻡ‬ ‫ب ﻝ + ٢، ﻡ + ٢‬ ‫أ ٢ ﻝ، ٢ ﻡ‬ ‫ﻝ ﻡ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 18.
    ‫22 ﻣﺴﺎﺣﺎﺕ: ﻗﻄﻌﺔﺃﺭﺽ ﻋﻠﻰ ﺷﻜﻞ ﻣﺴﺘﻄﻴﻞ ﺑﻌﺪﺍه ٦، ٩ ﻣﻦ ﺍﻷﻣﺘﺎﺭ، ﻳﺮﺍﺩ ﻣﻀﺎﻋﻔﺔ ﻣﺴﺎﺣﺔ ﻫﺬه ﺍﻟﻘﻄﻌﺔ ﻭﺫﻟﻚ‬ ‫ﺑﺰﻳﺎﺩﺓ ﻃﻮﻝ ﻛﻞ ﺑﻌﺪ ﻣﻦ ﺃﺑﻌﺎﺩﻫﺎ ﺑﻨﻔﺲ ﺍﻟﻤﻘﺪﺍﺭ.ﺃﻭﺟﺪ ﺍﻟﻤﻘﺪﺍﺭ ﺍﻟﻤﻀﺎﻑ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫32 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﻗﻴﻢ ﺟـ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ٧ ﺱ٢ + ٤١ ﺱ + ﺟـ = ٠ ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ:‬ ‫أ ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ.‬ ‫ب ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ.‬ ‫ﺟ ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ.‬ ‫ﻣﺮ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫42 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺇﺫﺍ ﻛﺎﻥ ﻝ + ١، ﻡ + ١ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٥ﺱ + ٣ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ‬ ‫ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬ ‫¯‬ ‫‪) a‬ﻝ + ١( + )ﻡ+١( = - ٥‬ ‫` ﻝ + ﻡ = - ٧،‬ ‫`ﻝ+ﻡ+٢=-٥‬ ‫‪) a‬ﻝ + ١()ﻡ + ١( = ٣ ` ﻝ ﻡ + )ﻝ + ﻡ( + ١ = ٣‬ ‫`ﻝﻡ=٩‬ ‫`ﻝﻡ–٧+١=٣‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻰ: ﺱ٢ + ٧ﺱ + ٩ = ٠‬ ‫¯‬ ‫‪ a‬ﻝ + ﻡ = - ٥، ﻝ ﻡ = ٣‬ ‫` )ﻝ +١ ( + )ﻡ + ١(   = ﻝ+ ﻡ + ٢‬ ‫              = - ٥ + ٢ = -٣،‬ ‫‪) a‬ﻝ+١()ﻡ + ١( = ﻝ ﻡ + )ﻝ + ﻡ( + ١‬ ‫              = ٣ – ٣ + ١ = ١‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻰ: ﺱ٢ + ٣ﺱ + ١ = ٠‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫52 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﻙ ﺱ + ٢ﻙ = ٠ ﻳﺴﺎﻭﻯ ﺿﻌﻒ ﺣﺎﺻﻞ ﺿﺮﺏ ﺟﺬﺭﻯ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ ﺱ + ﻙ = ٠ ﻓﺄﻭﺟﺪ ﻙ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪M‬‬ ‫−‬
  • 19.
    ‫إﺷﺎرة اﻟﺪاﻟﺔ‬ ‫1-5‬ ‫‪Sign ofa Function‬‬ ‫‪k‬‬ ‫‪:≈JCÉj Ée πªcCG :’hCG‬‬ ‫1 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = - ٥ ﺇﺷﺎﺭﺍﺗﻬﺎ .................................................... ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫....................................................‬ ‫2 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ١ ﺇﺷﺎﺭﺍﺗﻬﺎ .................................................... ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫3 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ – ٦ ﺱ + ٩ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫4 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ – ٢ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫5 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٣ – ﺱ ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫....................................................‬ ‫....................................................‬ ‫....................................................‬ ‫....................................................‬ ‫6 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = - )ﺱ – ١( )ﺱ +٢( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫7 ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٤ ﺱ – ٥ ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫....................................................‬ ‫....................................................‬ ‫8 ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺳﻮﻡ ﻳﻤﺜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻷﻭﻟﻰ ﻓﻰ ﺱ:‬ ‫أ ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ....................................................‬ ‫ب‬ ‫ﺩ)ﺱ( ﺳﺎﻟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ....................................................‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫9 ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺳﻮﻡ ﻳﻤﺜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻰ ﺱ:‬ ‫أ ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬ ‫ب‬ ‫ﺩ)ﺱ( < ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬ ‫ﺟ‬ ‫ﺩ)ﺱ( > ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ....................................................‬ ‫¯‬ ‫−‬ ‫¯‬ ‫− − −‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬
  • 20.
    ‫‪:á«JB’G á∏İSC’G øYÖLCG :Ék«fÉK‬‬ ‫01 ﻓﻰ ﺍﻟﺘﻤﺎﺭﻳﻦ ﻣﻦ أ ﺇﻟﻰ ن ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻵﺗﻴﺔ:‬ ‫ب ﺩ)ﺱ( = ٢ﺱ‬ ‫.......................................‬ ‫أ ﺩ)ﺱ( = ٢‬ ‫د ﺩ)ﺱ( =٢ﺱ+٤‬ ‫.......................................‬ ‫ﺟ ﺩ)ﺱ( = - ٣ﺱ‬ ‫.......................................‬ ‫و ﺩ)ﺱ( = ﺱ‬ ‫ح ﺩ)ﺱ( = ﺱ٢ – ٤‬ ‫.......................................‬ ‫.......................................‬ ‫ﻫ ﺩ)ﺱ( =٣ – ٢ﺱ‬ ‫٢‬ ‫ز ﺩ)ﺱ( = ٢ﺱ‬ ‫ط ﺩ)ﺱ( = ١ – ﺱ‬ ‫.......................................‬ ‫ى ﺩ)ﺱ( = )ﺱ – ٢( )ﺱ + ٣(‬ ‫.......................................‬ ‫......................................‬ ‫ل ﺩ)ﺱ( = ﺱ٢– ﺱ – ٢‬ ‫.......................................‬ ‫.......................................‬ ‫ن ﺩ)ﺱ( = - ٤ ﺱ٢ + ٠١ ﺱ – ٥٢‬ ‫.......................................‬ ‫٢‬ ‫.......................................‬ ‫.......................................‬ ‫٢‬ ‫ك ﺩ)ﺱ( = )٢ ﺱ – ٣(‬ ‫م ﺩ)ﺱ( = ﺱ٢– ٨ ﺱ + ٦١‬ ‫٢‬ ‫.......................................‬ ‫11 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ)ﺱ( = ﺱ٢ – ٩ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ] - ٣، ٤ [، ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ)ﺱ(.‬ ‫21 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ)ﺱ( = – ﺱ٢ + ٢ ﺱ + ٤ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]- ٣، ٥[، ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ)ﺱ(.‬ ‫31 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ)ﺱ( = ﺱ + ١، ﺭ)ﺱ( = ١ – ﺱ٢ ﻓﻌﻴﻦ ﺍﻟﻔﺘﺮﺓ ﺍﻟﺘﻰ ﺗﻜﻮﻥ ﻓﻴﻬﺎ ﺍﻟﺪﺍﻟﺘﺎﻥ‬ ‫ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ.‬ ‫ً‬ ‫¯‬ ‫¯‬ ‫ﺗﺠﻌﻞ ﺩ)ﺱ( = ٠‬ ‫ﺱ=-١‬ ‫ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ∞]،‬ ‫ﺗﺠﻌﻞ ﺭ)ﺱ( = ٠‬ ‫ﺱ=!١‬ ‫ﺭ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ١]‬ ‫ﻟﺬﻟﻚ ﻓﺈﻥ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺗﻜﻮﻧﺎﻥ ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫ً‬ ‫[- ١، ∞] ∪ [- ١، ١] = [- ١، ∞]‬ ‫ﺗﺠﻌﻞ ﺩ)ﺱ( = ٠‬ ‫ﺱ=-١‬ ‫ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ∞]،‬ ‫ﺗﺠﻌﻞ ﺭ)ﺱ( = ٠‬ ‫ﺱ=!١‬ ‫ﺭ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ [- ١، ١]‬ ‫ﻟﺬﻟﻚ ﻓﺈﻥ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺗﻜﻮﻧﺎﻥ ﻣﻮﺟﺒﺘﻴﻦ ﻣﻌﺎ ﻓﻰ ﺍﻟﻔﺘﺮﺓ‬ ‫ً‬ ‫[- ١، ∞] ∩ [- ١، ١] = [- ١، ١]‬ ‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﻳﻜﻮﻥ ﺻﺤﻴﺤﺎ? ﻣﺜﻞ ﻛﻼ ﻣﻦ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺑﻴﺎﻧﻴﺎ ﻭﺗﺄﻛﺪ ﻣﻦ ﺻﺤﺔ ﺍﻹﺟﺎﺑﺔ.‬ ‫ً ِّ ًّ‬ ‫ًّ‬ ‫..................................................................................................................................................................................................................................‬ ‫41 ﻣﻨﺎﺟﻢ ﺍﻟﺬﻫﺐ: ﻓﻰ ﺍﻟﻔﺘﺮﺓ ﻣﻦ ﻋﺎﻡ ٠٩٩١ ﺇﻟﻰ ٠١٠٢ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺃﺣﺪ ﻣﻨﺎﺟﻢ ﺍﻟﺬﻫﺐ ﻣﻘﺪﺭﺍ ﺑﺎﻷﻟﻒ ﺃﻭﻗﻴﺔ‬ ‫ً‬ ‫ﻳﺘﺤﺪﺩ ﺑﺎﻟﺪﺍﻟﺔ ﺩ : ﺩ)ﻥ( = ٢١ ﻥ٢ - ٦٩ ﻥ + ٠٨٤ ﺣﻴﺚ ﻥ ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ، ﺩ)ﻥ( ﺍﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ‬ ‫: ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺩﺍﻟﺔ ﺍﻹﻧﺘﺎﺝ ﺩ. ...........................................................................................................................................................‬ ‫: ﺧﻼﻝ ﺍﻷﻋﻮﺍﻡ ﻣﻦ ٠٩٩١ﺇﻟﻰ ٠١٠٢ ﻓﻰ ﺃﻯ ﺍﻷﻋﻮﺍﻡ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ ﻳﺘﻨﺎﻗﺺ? .................................................‬ ‫: ﺧﻼﻝ ﺍﻷﻋﻮﺍﻡ ﻣﻦ ٠٩٩١ﺇﻟﻰ ٠١٠٢ ﻓﻰ ﺃﻯ ﺍﻷﻋﻮﺍﻡ ﻛﺎﻥ ﺇﻧﺘﺎﺝ ﺍﻟﺬﻫﺐ ﻳﺘﺰﺍﻳﺪ? ....................................................‬ ‫‪M‬‬ ‫−‬
  • 21.
    ‫ﻣﺘﺒﺎﻳﻨﺎت اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ‬ ‫1-6‬ ‫‪QuadraticInequalities‬‬ ‫¯‬ ‫1 ﺱ٢ ‪٩ H‬‬ ‫:‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫2 ﺱ٢ - ١ ‪٠ H‬‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫3 ٢ﺱ – ﺱ٢ > ٠‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫4 ﺱ٢ + ٥ ‪١ H‬‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫5 )ﺱ - ٢( )ﺱ - ٥( > ٠‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫6 ﺱ )ﺱ + ٢( - ٣ ‪٠ H‬‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫7 )ﺱ - ٢(٢ ‪٥ - H‬‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫8 ٥ – ٢ﺱ ‪ H‬ﺱ‬ ‫٢‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫9 ﺱ٢ ‪ ٦ G‬ﺱ – ٩‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫01 ٣ ﺱ٢ ‪ ١١ H‬ﺱ + ٤‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫11 ﺱ٢ - ٤ ﺱ + ٤ ‪٠ G‬‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫21 ٧ + ﺱ٢ - ٤ ﺱ > ٠‬ ‫..........................................................................................................................................................................‬ ‫..........................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 22.
    ‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫‪k‬‬ ‫‪:IÉ£©ªdG äÉHÉLE’Gø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬ ‫1 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ ﺱ + ٩ = ٠ ﻓﻰ ﺡ ﻫﻰ :‬ ‫ﺟ }-٣، ٣{‬ ‫ب }٣{‬ ‫أ }-٣{‬ ‫..............................................................................................................‬ ‫2 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٤ = ٠ ﻫﻰ :‬ ‫ب }٢{‬ ‫أ }-٢{‬ ‫3 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ )١ – ﺕ(٤ ﻫﻮ :‬ ‫ب ٤‬ ‫أ -٤‬ ‫د ‪z‬‬ ‫............................................................................................................................................‬ ‫ﺟ }-٢، ٢{‬ ‫د }-٢ﺕ، ٢ﺕ{‬ ‫...................................................................................................................................................‬ ‫ﺟ -٤ ﺕ‬ ‫4 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ + ﻙ = ٠ ﺣﻘﻴﻘﻴﻴﻦ ﻭﻣﺨﺘﻠﻔﻴﻦ ﻓﺈﻥ:‬ ‫ﺟ ﻙ=٤‬ ‫ب ﻙ>٤‬ ‫أ ﻙ<٤‬ ‫د ٤ﺕ‬ ‫..................................................................................‬ ‫5 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٢١ﺱ + ﻡ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﻓﺈﻥ ﻡ ﺗﺴﺎﻭﻯ:‬ ‫ﺟ ٦‬ ‫ب -٦‬ ‫أ -٦٣‬ ‫د ﻙ‪٤G‬‬ ‫..............................................................................‬ ‫د ٦٣‬ ‫6 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ٢ – ٣ﺕ ، ٢ + ٣ﺕ ﻫﻰ :‬ ‫أ ﺱ٢ + ٤ﺱ + ٣١ = ٠ ب ﺱ٢ – ٤ﺱ + ٣١ = ٠ ﺟ ﺱ٢ + ٤ﺱ – ٣١ = ٠ د ﺱ٢ – ٤ﺱ – ٣١ = ٠‬ ‫...........................................................................................................‬ ‫7 ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ : ]- ٢ ، ٤[ # ‪ I‬ﺣﻴﺚ ﺩ)ﺱ( = ٢ – ﺱ ﻓﺈﻥ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺳﺎﻟﺒﺔ ﻓﻰ:‬ ‫د [٢ ، ٤[‬ ‫ﺟ ]٢ ، ٤[‬ ‫ب ]- ٢ ، ٢[‬ ‫أ ]-٢ ، ٢]‬ ‫8 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ) ﻡ + ٢( ﺱ + ٣ = ٠ ﻣﻌﻜﻮﺳﺎ ﺟﻤﻌﻴﺎ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ﻡ ﺗﺴﺎﻭﻯ:‬ ‫ً‬ ‫ًّ‬ ‫د‬ ‫٣‬ ‫ﺟ ٢‬ ‫ب -٢‬ ‫أ -٣‬ ‫9 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ ﺱ٢ + ٧ ﺱ + ﻙ = ٠ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ﻙ ﺗﺴﺎﻭﻯ:‬ ‫د ٧‬ ‫ﺟ ٢‬ ‫ب -٢‬ ‫أ -٧‬ ‫01 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺱ٢ + ﺱ – ٢ > ٠ ﻫﻰ :‬ ‫ب ]- ٢ ، ١[‬ ‫أ [- ٢ ، ١]‬ ‫ﺟ ﺡ – ]-٢ ، ١[‬ ‫د ﺡ – [-٢ ، ١]‬ ‫‪O á«©«HôJ ádGód ≈fÉ«ÑdG π«ãªàdG πHÉ≤ªdG πμ°ûdG πãªj :Ék«fÉK‬‬ ‫11 ﺃﻛﻤﻞ ﻣﺎﻳﺄﺗﻰ :‬ ‫أ ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﻫﻮ .............................................................................................‬ ‫ب‬ ‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ ﺩ = ............................................................................‬ ‫ﺟ‬ ‫ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ )ﺱ( = ٠ .............................................................‬ ‫د ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺩ)ﺱ( = ٠ ﻫﻰ ..................................................‬ ‫ﻫ ﺩ)ﺱ( < ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ...............................................................................‬ ‫و‬ ‫ﺩ)ﺱ( > ٠ ﻋﻨﺪﻣﺎ ﺱ ∋ ...............................................................................‬ ‫ز‬ ‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = ..................................................................................‬ ‫‪M‬‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫− −‬
  • 23.
    ‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫21 ﺍﻛﺘﺐﻗﺎﻋﺪﺓ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﻰ ﺗﻤﺮ ﺑﺎﻟﻨﻘﺎﻁ )- ٣، ٠( ، )٢، ٠( ، )٢، ١(‬ ‫..................................................................................................................................................................................................................................‬ ‫31 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ :‬ ‫أ ﺍﻛﺘﺐ ﻧﻘﺎﻁ ﺗﻘﺎﻃﻊ ﻣﻨﺤﻨﻰ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﻰ ﻗﺎﻋﺪﺗﻬﺎ ﺹ = ﺱ٢ ، ﺹ = ﺱ‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺍﻛﺘﺐ ﻧﻘﺎﻁ ﺗﻘﺎﻃﻊ ﻣﻨﺤﻨﻰ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﻰ ﻗﺎﻋﺪﺗﻬﺎ ﺹ = - ﺱ٢، ﺹ = - ﺱ ﻣﺎﺫﺍ ﺗﻼﺣﻆ ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬ ‫.......................................................................................................................................................................................................................‬ ‫‪k‬‬ ‫‪á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬ ‫41 ﺑﻴﻦ ﻧﻮﻉ ﺟﺬﺭﻯ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﺄﺗﻰ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ.‬ ‫ب )ﺱ – ١(٢ = ٤‬ ‫أ ﺱ٢ – ٢ﺱ = ٠‬ ‫........................................................‬ ‫د ﺱ٢ + ٣ﺱ – ٨٢ = ٠‬ ‫........................................................‬ ‫ﺟ ﺱ٢ – ٦ ﺱ+ ٩ = ٠‬ ‫........................................................‬ ‫........................................................‬ ‫ﻫ ٦ﺱ )ﺱ – ١( = ٦ – ﺱ‬ ‫........................................................‬ ‫51 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ.‬ ‫ً‬ ‫ب ﺱ٢ – ٣)ﺱ -٢( = ٥‬ ‫أ ﺱ٢ + ٤ﺱ + ٢ = ٠‬ ‫........................................................‬ ‫........................................................‬ ‫61 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ .‬ ‫ﺍﻟﻤﺮ‬ ‫ب ﺱ٢ + ٢ﺱ + ٢ = ٠‬ ‫أ ﺱ٢ + ٩ = ٠‬ ‫........................................................‬ ‫ﺟ ﺱ٢ + ٤ﺱ + ٥ = ٠‬ ‫........................................................‬ ‫71 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ ،C‬ﺏ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬ ‫أ )٧ – ٣ﺕ( – )٢ + ﺕ( = ‪ + C‬ﺏ ﺕ‬ ‫ﺟ ٢ ٠١ﺕ = ‪ + C‬ﺏ ﺕ‬ ‫+‬ ‫........................................................‬ ‫ب )٢ – ٥ﺕ()٣ + ﺕ( = ‪ + C‬ﺏ ﺕ‬ ‫‬‫د ٦١ -٤ﺕ = ‪ + C‬ﺏ ﺕ‬ ‫ﺕ‬ ‫81 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻡ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬ ‫٢‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ + ﻡ ﺱ + ٨١ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ..............................................................................................‬ ‫٢‬ ‫ب‬ ‫ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ + ٣ ﺱ + ﻙ = ٠ ﺿﻌﻒ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ..............................................................‬ ‫91 ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﻓﻰ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ :‬ ‫أ ﺩ)ﺱ( = ﺱ٢ – ٢ ﺱ – ٨‬ ‫........................................................‬ ‫02 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻵﺗﻴﺔ :‬ ‫أ ﺱ٢ – ﺱ – ٢١ < ٠‬ ‫........................................................‬ ‫¯‬ ‫−‬ ‫¯‬ ‫ب ﺩ)ﺱ( = ٤ – ٣ﺱ – ﺱ‬ ‫........................................................‬ ‫ب ﺱ٢ – ٧ﺱ + ٠١ ‪٠ H‬‬ ‫........................................................‬ ‫٢‬
  • 24.
    ‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬ ‫‪k‬‬ ‫‪: Oó©àeøe QÉ«àNC’G :’hCG‬‬ ‫1 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٤ﺱ = -٤ ﻓﻰ ﺡ ﻫﻰ:‬ ‫ب }٢{‬ ‫أ }-٢{‬ ‫2 ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺱ٢ + ٩ < ٦ﺱ ﻓﻰ ﺡ ﻫﻰ:‬ ‫ب ﺡ – }٣{‬ ‫أ ﺡ‬ ‫.......................................................................................................................‬ ‫ﺟ }-٢، ٢{‬ ‫د ‪z‬‬ ‫............................................................................................................................................‬ ‫ﺟ [- ٣، ٣]‬ ‫3 ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٢ﺱ٢ – ٥ﺱ + ٣ = ٠‬ ‫أ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ ب ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ‬ ‫د ﺡ – ]-٣، ٣[‬ ‫......................................................................................................................................................‬ ‫ﺟ ﻛﺒﺎﻥ‬ ‫ﻣﺮ‬ ‫4 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ )١ + ﺕ(، )١ – ﺕ( ﻫﻰ :‬ ‫أ ﺱ٢ – ٢ﺱ + ٢ = ٠ ب ﺱ٢ + ٢ﺱ – ٢ = ٠ ﺟ ﺱ٢ + ٢ﺱ + ٢ = ٠‬ ‫د ﻛﺒﺎﻥ ﻭ ﻣﺘﺮﺍﻓﻘﺎﻥ‬ ‫ﻣﺮ‬ ‫.........................................................................................................‬ ‫د ﺱ٢ – ٢ﺱ – ٢ = ٠‬ ‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫5 ﺇﺫﺍ ﻛﺎﻥ )‪(٣ + C‬ﺱ٢ + )٢ – ‪ (C‬ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫أ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻣﻌﻜﻮﺱ ﺟﻤﻌﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ.‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻳﺴﺎﻭﻯ ٦.‬ ‫.......................................................................................................................................................................................................................‬ ‫6‬ ‫٢ ٢‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ﻡ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٨ – ٢ﺱ – ﺱ‬ ‫٢‬ ‫.......................................................................................................................................................................................................................‬ ‫7‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٣ = ٥ﺱ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻰ ﺡ‬ ‫ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻋﺸﺮﻳﺔ.‬ ‫ً‬ ‫.........................................................................................................................................................................................................................‬ ‫ب ﺃﻭﺟﺪ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ : ﺱ٢ – ٥ﺱ – ٤١ ‪٠ H‬‬ ‫.......................................................................................................................................................................................................................‬ ‫8 ﺗﻄ ﻴﻘﺎﺕ ﻓﻴ ﺎﺋﻴﺔ: ﺃُﻃْﻠﻖ ﺻﺎﺭﻭﺥ ﺭﺃﺳﻴﺎ ﺇﻟﻰ ﺃﻋﻠﻰ ﺑﺴﺮﻋﺔ ٨٩ ﻣﺘﺮﺍ/ﺛﺎﻧﻴﺔ، ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻤﺴﺎﻓﺔ‬ ‫ًّ‬ ‫ً‬ ‫٢‬ ‫ﺍﻟﻤﻘﻄﻮﻋﺔ ﻑ ﺑﺎﻟﻤﺘﺮ ﻭﺍﻟﺰﻣﻦ ﻥ ﺑﺎﻟﺜﺎﻧﻴﺔ ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ : ﻑ = ٨٩ ﻥ – ٩٫٤ ﻥ ﻓﺄﻭﺟﺪ :‬ ‫أ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻰ ﻳﻘﻄﻌﻬﺎ ﺍﻟﺼﺎﺭﻭﺥ ﻓﻰ ﺛﺎﻧﻴﺘﻴﻦ. ............................................................................................................................‬ ‫ب ﺍﻟﺰﻣﻦ ﺍﻟﺬﻯ ﻳﺴﺘﻐﺮﻗﻪ ﺍﻟﺼﺎﺭﻭﺥ ﺣﺘﻰ ﻳﻘﻄﻊ ﻣﺴﺎﻓﺔ ٤٫٠٧٤ ﻣﺘﺮﺍ. ﺑﻤﺎ ﺗﻔﺴﺮ ﻭﺟﻮﺩ ﺇﺟﺎﺑﺘﻴﻦ?‬ ‫ً‬ ‫‪M‬‬ ‫−‬
  • 25.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬ ‫1 ﺃﻭﺟﺪﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ٣ﺱ٢ + ٤ﺱ + ﻙ = ٠ ﺟﺬﺭﻳﻦ :‬ ‫أ ﺣﻘﻴﻘﻴﻴﻦ ﻣﺘﺴﺎﻭﻳﻴﻦ ......................................‬ ‫ب‬ ‫ﺣﻘﻴﻘﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ......................................‬ ‫ﻛﺒﻴﻦ ......................................‬ ‫ﺟ ﻣﺮ‬ ‫2 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻙ ﺍﻟﺘﻰ ﺗﺠﻌﻞ:‬ ‫٢‬ ‫أ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ – ﻙ ﺱ + ﻙ + ٢ = ٠ ﺿﻌﻒ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ. .......................................................................‬ ‫٢‬ ‫ب‬ ‫ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ – ﻙ ﺱ + ٨ = ٠ ﻳﺰﻳﺪ ﻋﻦ ﺍﻟﺠﺬﺭ ﺍﻵﺧﺮ ﺑﻤﻘﺪﺍﺭ ٢. ......................................................‬ ‫ﺟ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ﻙ ﺱ + ٣ = ٠ ﻳﺰﻳﺪ ﻋﻦ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﺑﻤﻘﺪﺍﺭ ١.‬ ‫3 ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٣ﺱ + ٢ = ٠ ﻓﺄﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ :‬ ‫ﺟ ١ ١‬ ‫د ﻝ + ﻡ، ﻝ ﻡ‬ ‫ب ﻝ + ١، ﻡ + ١‬ ‫أ ٣ ﻝ، ٣ ﻡ‬ ‫ﻝ، ﻡ‬ ‫..................................................................................................................................................................................................................................‬ ‫١ ١‬ ‫4 ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ﻡ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٦ﺱ٢ – ٥ ﺱ +١ = ٠ ﻓﻜﻮﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ، ﻡ.‬ ‫..................................................................................................................................................................................................................................‬ ‫5 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢– ٤ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]- ٣،٣[ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ ﻓﻰ ﻫﺬه ﺍﻟﻔﺘﺮﺓ.‬ ‫6 ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﺩ، ﺣﻴﺚ ﺩ)ﺱ( = ٦ – ٥ﺱ – ٤ﺱ٢ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ]-٣،٢[ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﻋﻴﻦ ﺇﺷﺎﺭﺓ ﺩ ﻓﻰ ﻫﺬه ﺍﻟﻔﺘﺮﺓ.‬ ‫7 ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻟﻠﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻵﺗﻴﺔ:‬ ‫ﺟ )ﺱ - ٢(٢ ‪٩ - G‬‬ ‫ب ﺱ٢ - ٦ ﺱ < - ٥‬ ‫أ ﺱ٢ + ٤ ﺱ + ٤ > ٠‬ ‫.................................................................‬ ‫د ٣ – ٢ﺱ ‪ G‬ﺱ‬ ‫..................................................................‬ ‫.................................................................‬ ‫و ٢ﺱ٢ - ٧ﺱ ‪١٥ H‬‬ ‫ﻫ ﺱ٢ ‪١٠ H‬ﺱ – ٥٢‬ ‫٢‬ ‫.................................................................‬ ‫..................................................................‬ ‫.................................................................‬ ‫8 ﺃﻋﻤﺎﻝ ﺗﺠﺎ ﺔ: ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﻤﻨﺘﺠﺔ ﻭﺍﻟﻤﺒﺎﻋﺔ ﻣﻦ ﺳﻠﻌﺔ ﻣﻌﻴﻨﺔ ﻓﻰ ﺍﻷﺳﺒﻮﻉ ﻫﻰ ﺱ ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ‬ ‫ﻛﺎﻥ ﺳﻌﺮ ﺑﻴﻊ ﺍﻟﻮﺣﺪﺓ ﻫﻮ ﻉ ﺣﻴﺚ ﻉ = ٢ – ﺱ، ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺘﻜﺎﻟﻴﻒ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻼﺯﻣﺔ ﻹﻧﺘﺎﺝ ﺱ ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ‬ ‫ﻭ‬ ‫ﻓﻰ ﺍﻷﺳﺒﻮﻉ ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺕ = )٣٫٠ + ٥٫٠ﺱ( ﻣﻠﻴﻮﻥ ﻭﺣﺪﺓ ﻓﺄﻭﺟﺪ :‬ ‫أ ﺩﺍﻟﺔ ﺍﻹﻳﺮﺍﺩ ﺍﻟﻜﻠﻰ )ﻯ( ..................................................................‬ ‫ب‬ ‫ﺩﺍﻟﺔ ﺍﻟﺮﺑﺢ )ﺭ( ..................................................................‬ ‫ﺟ‬ ‫ﺃﻭﺟﺪ ﺱ ﻋﻨﺪ ﻣﺴﺘﻮﻯ ﺭﺑﺢ ٢٫٠ ﻣﻠﻴﻮﻥ ﺟﻨﻴﻪ. ........................................................................................................................‬ ‫9 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ ٣ + ١ = C‬ﺕ  ،  ﺏ = - ١ – ﺕ، ﺟـ = - ٢ - ٣ + ﺕ ﻓﺄﺛﺒﺖ ﺃﻥ: ﺟـ - ﺏ = )‪ – C‬ﺏ(ﺕ‬ ‫:‬ ‫‪M‬‬ ‫ﺭﻗﻢ ﺍﻟﺴﺆﺍﻝ‬ ‫١‬ ‫ﺃ، ﺏ‬ ‫١-٣‬ ‫ﺭﻗﻢ ﺍﻟﺪﺭﺱ‬ ‫¯‬ ‫٢‬ ‫ﺟـ‬ ‫١- ٢‬ ‫−‬ ‫¯‬ ‫٣‬ ‫٤‬ ‫٥‬ ‫٦‬ ‫٧‬ ‫٨‬ ‫٩‬ ‫١- ٤‬ ‫١-٤‬ ‫١-٤‬ ‫١-٥‬ ‫١- ٥‬ ‫١-٦‬ ‫١-١‬ ‫١-٢‬
  • 26.
    ‫-‬ ‫‪IóMƒdG‬‬ ‫2‬ ‫ﺍﻟﺘﺸﺎﺑﻪ‬ ‫‪Similarity‬‬ ‫دروس اﻟﻮﺣﺪة‬ ‫ﺍﻟﺪﺭﺱ )٢- ١(: ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻌﺎﺕ.‬ ‫ﺍﻟﺪﺭﺱ )٢ - ٢(: ﺗﺸﺎﺑﻪ ﺍﻟﻤﺜﻠﺜﺎﺕ.‬ ‫ﺍﻟﺪﺭﺱ )٢ - ٣(: ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ.‬ ‫ﺍﻟﺪﺭﺱ )٢ - ٤(: ﺗﻄﺒﻴﻘﺎﺕ ﺍﻟﺘﺸﺎﺑﻪ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ.‬ ‫‪ïM‬‬ ‫−‬
  • 27.
    ‫ﺗﺸﺎﺑﻪ اﻟﻤﻀﻠﻌﺎت‬ ‫2-1‬ ‫‪Similarity ofPolygons‬‬ ‫1 ﺑﻴﻦ ﺃﻳﺎ ﻣﻦ ﺃﺯﻭﺍﺝ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﻣﺘﺸﺎﺑﻬﺔ، ﻭﺍﻛﺘﺐ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﻤﺘﺸﺎﺑﻬﺔ ﺑﺘﺮﺗﻴﺐ‬ ‫ًّ‬ ‫ﺍﻟﺮﺅﻭﺱ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ، ﻭﺣﺪﺩ ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(.‬ ‫‪C‬‬ ‫ب‬ ‫أ‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪E c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫.................................................................................‬ ‫ﺟ‬ ‫د‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫2 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺹ ﻉ ﻝ، ﺃﻛﻤﻞ:‬ ‫أ ‪C‬ﺏ‬ ‫ﺏ ﺟـ = ﺹ ﻉ‬ ‫ﺟ ﺏ ﺟـ + ﺹ ﻉ‬ ‫ﺹﻉ =‬ ‫................‬ ‫ب ‪C‬ﺏ*ﻉﻝ=ﺱﺹ*‬ ‫................ + ﻝ ﺱ‬ ‫ﻝﺱ‬ ‫ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ‬ ‫د‬ ‫ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ.........................‬ ‫.........................‬ ‫.........................‬ ‫ﺱﺹ‬ ‫=‬ ‫‪C‬ﺏ‬ ‫3 ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺹ ﻉ ﻝ. ﻓﺈﺫﺍ ﻛﺎﻥ: ‪ C‬ﺏ = ٢٣ﺳﻢ، ﺏ ﺟـ = ٠٤ﺳﻢ، ﺱ ﺹ = ٣ﻡ - ١،‬ ‫ﺹ ﻉ = ٣ﻡ +١. ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻡ ﺍﻟﻌﺪﺩﻳﺔ. ................................................................................................................................................‬ ‫4 ﻣﺴﺘﻄﻴﻞ ﺑﻌﺪﺍه ٠١ﺳﻢ، ٦ﺳﻢ. ﺃﻭﺟﺪ ﻣﺤﻴﻂ ﻭﻣﺴﺎﺣﺔ ﻣﺴﺘﻄﻴﻞ ﺁﺧﺮ ﻣﺸﺎﺑﻪ ﻟﻪ ﺇﺫﺍ ﻛﺎﻥ:‬ ‫ب ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ ٤٫٠‬ ‫أ ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ ٣‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 28.
    ‫‪ï‬‬ ‫5 ﻓﻰ ﻛﻞﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﻤﻀﻠﻊ ﻡ١ + ﺍﻟﻤﻀﻠﻊ ﻡ٢ + ﺍﻟﻤﻀﻠﻊ ﻡ٣.‬ ‫ﺃﻭﺟﺪ ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﻛﻞ ﻣﻦ ﺍﻟﻤﻀﻠﻊ ﻡ١، ﺍﻟﻤﻀﻠﻊ ﻡ٢ ﻟﻠﻤﻀﻠﻊ ﻡ٣.‬ ‫ب‬ ‫أ‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫...........................................................................................‬ ‫6 ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺘﺸﺎﺑﻬﺔ. ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻠﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫..................................................................................................................................................................................................................................‬ ‫7 ﻋﻠﺒﺔ ﻋﻠﻰ ﺷﻜﻞ ﻣﺴﺘﻄﻴﻞ ﺫﻫﺒﻰ ﻃﻮﻟﻪ ٢٫٦١ﺳﻢ. ﺍﺣﺴﺐ ﻋﺮﺽ ﺍﻟﻌﻠﺒﺔ ﻷﻗﺮﺏ ﺳﻨﺘﻴﻤﺘﺮ.‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ﻣﺴﺘﻄﻴﻼﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ ﺑﻌﺪﺍ ﺍﻷﻭﻝ ٨ﺳﻢ، ٢١ﺳﻢ، ﻭﻣﺤﻴﻂ ﺍﻟﺜﺎﻧﻰ ٠٠٢ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺍﻟﺜﺎﻧﻰ ﻭﻣﺴﺎﺣﺘﻪ.‬ ‫ُ‬ ‫..................................................................................................................................................................................................................................‬ ‫ﻧﺸﺎط‬ ‫9 ﻫﻨﺪﺳﺔ ﻣﻌﻤﺎ ﺔ: ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﺨﻄﻄًﺎ‬ ‫ﻹﺣﺪﻯ ﺍﻟﻮﺣﺪﺍﺕ ﺍﻟﺴﻜﻨﻴﺔ ﺑﻤﻘﻴﺎﺱ ﺭﺳﻢ ١ : ٠٥١ ﺃﻭﺟﺪ:‬ ‫......................................................‬ ‫أ ﺃﺑﻌﺎﺩ ﺣﺠﺮﺓ ﺍﻻﺳﺘﻘﺒﺎﻝ.‬ ‫.................................................................‬ ‫ب ﺃﺑﻌﺎﺩ ﺣﺠﺮﺓ ﺍﻟﻨﻮﻡ.‬ ‫......................................................‬ ‫ﺟ ﻣﺴﺎﺣﺔ ﺣﺠﺮﺓ ﺍﻟﻤﻌﻴﺸﺔ.‬ ‫د ﻣﺴﺎﺣﺔ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺴﻜﻨﻴﺔ. ......................................................‬ ‫‪ïM‬‬ ‫−‬ ‫¯‬ ‫¯‬ ‫¯‬ ‫‪M‬‬
  • 29.
    ‫ﺗﺸﺎﺑﻪ اﻟﻤﺜﻠﺜﺎت‬ ‫2-2‬ ‫‪Similarity OfTriangles‬‬ ‫1 ﺍﺫﻛﺮ ﺃﻯ ﺍﻟﺤﺎﻻﺕ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﺍﻟﻤﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﻴﻦ، ﻭﻓﻰ ﺣﺎﻟﺔ ﺍﻟﺘﺸﺎﺑﻪ ﺍﺫﻛﺮ ﺳﺒﺐ ﺍﻟﺘﺸﺎﺑﻪ.‬ ‫ﺟ‬ ‫ب‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫أ‬ ‫‪c‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪c‬‬ ‫................................................................‬ ‫د‬ ‫................................................................‬ ‫................................................................‬ ‫‪E‬‬ ‫و‬ ‫ﻫ‬ ‫‪C‬‬ ‫................................................................‬ ‫................................................................‬ ‫2 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ:‬ ‫‪C‬‬ ‫ب‬ ‫أ‬ ‫‪C‬‬ ‫................................................................‬ ‫ﺟ‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫................................................................‬ ‫................................................................‬ ‫‪C‬‬ ‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ‪ = E C‬ﺏ ﺟـ‬ ‫3‬ ‫: ﺃﻛﻤﻞ: 9‪ C‬ﺏ ﺟـ + 9 ........................... + 9‬ ‫...........................‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﺱ ، ﺹ، ﻉ، ﻝ،ﻡ، ﻥ ﻫﻰ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ‬ ‫ﻭﺍﻟﻤﻌﻴﻨﺔ ﺑﺎﻟﺸﻜﻞ: ﻓﺄﻛﻤﻞ ﺍﻟﺘﻨﺎﺳﺒﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬ ‫ﺱ‬ ‫ﺟ ﻡ‬ ‫ﻝ‬ ‫ب ﺱ‬ ‫ﻡ‬ ‫ﺱ‬ ‫أ‬ ‫ﻝ = ...............‬ ‫ﻉ = ...............‬ ‫ﻉ = ...............‬ ‫...............‬ ‫ﺱ‬ ‫ﻫ ............... =‬ ‫ﺱ‬ ‫¯‬ ‫و‬ ‫−‬ ‫¯‬ ‫...............‬ ‫ﺹ =‬ ‫ﺹ‬ ‫...............‬ ‫................................................................‬ ‫...............‬ ‫ﻝ‬ ‫ز ﺱ =‬ ‫ﻉ‬ ‫‪E‬‬ ‫...............‬ ‫د ﻝ‬ ‫............... = ﻝ‬ ‫...............‬ ‫ﻝ‬ ‫ح ﺱ =‬ ‫ﺹ‬
  • 30.
    ‫‪ï‬‬ ‫4 ‪ C‬ﺏ، ‪ E‬ﺟـ ﻭﺗﺮﺍﻥ ﻓﻰ ﺩﺍﺋﺮﺓ، ‪ C‬ﺏ ∩ ‪ E‬ﺟـ = }ﻫـ{ ﺣﻴﺚ ﻫـ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﺏ = ٤ﺳﻢ، ‪ E‬ﺟـ = ٧ﺳﻢ،‬ ‫ﺏ ﻫـ = ٦ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ 9‪ E C‬ﻫـ + 9ﺟـ ﺏ ﻫـ، ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ﻫـ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫5 ‪ C‬ﺏ ﺟـ، ‪ E‬ﻫـ ﻭ ﻣﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ. ﺭﺳﻢ ‪ C‬ﺱ = ﺏ ﺟـ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ﺱ، ﻭﺭﺳﻢ ‪ E‬ﺹ = ﻫـ ﻭ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ﺹ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ ﺏ ﺱ * ﺹ ﻭ = ﺟـ ﺱ * ﺹ ﻫـ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫6 ﻓﻰ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ، ‪ C‬ﺟـ < ‪ C‬ﺏ، ﻡ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ Cc)X‬ﺏ ﻡ( = ‪c) X‬ﺟـ( ﺃﺛﺒﺖ ﺃﻥ )‪ C‬ﺏ(٢ = ‪ C‬ﻡ * ‪ C‬ﺟـ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ ،C‬ﺭﺳﻢ‬ ‫‪EC‬‬ ‫ﺏ‪E‬‬ ‫= ﺏ ﺟـ ﻟﻴﻘﻄﻌﻪ ﻓﻰ ‪ .E‬ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﺟـ = ١ ، ‪ ٢ ٦ = E C‬ﺳﻢ‬ ‫٢‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺏ ‪ C ، E‬ﺏ ، ‪ C‬ﺟـ .‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫8‬ ‫:‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪،C‬‬ ‫‪C‬‬ ‫‪ = E C‬ﺏ ﺟـ ، ‪ E‬ﻫـ = ‪ C‬ﺏ ، ‪ E‬ﻭ = ‪ C‬ﺟـ‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9‪ E C‬ﻫـ + 9ﺟـ ‪ E‬ﻭ‬ ‫ب ﻣﺴﺎﺣﺔ ﺍﻟﻤﺴﺘﻄﻴﻞ ‪ C‬ﻫـ ‪ E‬ﻭ = ‪C‬ﻫـ * ﻫـ ﺏ * ‪ C‬ﻭ * ﻭ ﺟـ‬ ‫‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 31.
    ‫: ‪ C‬ﺏﺟـ ﻣﺜﻠﺚ ﻣﻨﻔﺮﺝ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪،C‬‬ ‫9‬ ‫‪ C‬ﺏ = ‪ C‬ﺟـ. ﺭﺳﻢ‬ ‫‪EC‬‬ ‫‪C‬‬ ‫= ‪ C‬ﺏ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ‪.E‬‬ ‫ﺃﺛﺒﺖ ﺃﻥ: ٢)‪ C‬ﺏ(٢ = ﺏ ‪ * E‬ﺏ ﺟـ‬ ‫‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫01 ﺗﻌﺒﺮ ﺍﻟﻤﺠﻤﻮﻋﺘﺎﻥ ‪ ،C‬ﺏ ﻋﻦ ﺃﻃﻮﺍﻝ ﺃﺿﻼﻉ ﻣﺜﻠﺜﺎﺕ ﻣﺨﺘﻠﻔﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬ ‫ﺍﻛﺘﺐ ﺃﻣﺎﻡ ﻛﻞ ﻣﺜﻠﺚ ﻣﻦ ﺍﻟﻤﺠﻤﻮﻋﺔ ‪ C‬ﺭﻣﺰ ﺍﻟﻤﺜﻠﺚ ﺍﻟﺬﻯ ﻳﺸﺎﺑﻬﻪ ﻣﻦ ﺍﻟﻤﺠﻤﻮﻋﺔ ﺏ‬ ‫ﻣﺠﻤﻮﻋﺔ )ﺏ(‬ ‫ﻣﺠﻤﻮﻋﺔ )‪(C‬‬ ‫‪٥ ، ٤ ، ٢٫٥ C‬‬ ‫١ ٦ ، ٦ ، ٦‬ ‫ﺏ ٨ ، ٥٫٣١ ، ٤١‬ ‫٢ ٥ ، ٧ ، ١١‬ ‫ﺟـ ٥٢ ، ٥٣ ، ٥٥‬ ‫٣ ٥ ، ٨ ، ٠١‬ ‫‪١١ ، ١١ ، ١١ E‬‬ ‫٤ ٧ ، ٨ ، ٢١‬ ‫ﻫـ ٥٫٣ ، ٤ ، ٦‬ ‫٥ ٦١ ، ٧٢ ، ٨٢‬ ‫ﻭ ٨ ، ٦ ، ٠١‬ ‫ﺯ ٢٣ ، ٤٥ ، ٢٤‬ ‫11‬ ‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ ، ﺏ ﺟـ = ٩ﺳﻢ ،‬ ‫‪E‬‬ ‫‪ C‬ﺟـ = ٥٫٧ﺳﻢ ، ‪ E‬ﻧﻘﻄﺔ ﺧﺎﺭﺟﺔ ﻋﻦ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ‬ ‫ﺣﻴﺚ ‪ E‬ﺏ = ٤ﺳﻢ ، ‪٥ = C E‬ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9‪ C‬ﺏ ﺟـ + 9‪ E‬ﺏ ‪C‬‬ ‫ب ﺏ ‪ C‬ﻳﻨﺼﻒ ‪ E c‬ﺏ ﺟـ‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫ﺃﻛﻤﻞ:‬ ‫9 ‪ C‬ﺏ ﺟـ + 9‬ ‫ﻭﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ = .............................‬ ‫ﺳﻢ‬ ‫21‬ ‫‪C‬‬ ‫...............................‬ ‫ﺳﻢ ‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 32.
    ‫‪ï‬‬ ‫: ‪ C‬ﺏﺟـ + ﺱ ﺹ ﻉ، ﻫـ ﻣﻨﺘﺼﻒ ﺏ ﺟـ ،‬ ‫31‬ ‫‪C‬‬ ‫ﻡ ﻣﻨﺘﺼﻒ ﺹ ﻉ ، ﺟـ ‪ C = E‬ﺏ ، ﻉ ﻝ = ﺱ ﺹ ﺃﺛﺒﺖ ﺃﻥ:‬ ‫‪E‬‬ ‫أ 9‪ C‬ﻫـ ﺟـ + 9ﺱ ﻡ ﻉ‬ ‫ب ﺟـ ‪E‬‬ ‫‪ C‬ﻫـ‬ ‫ﻉﻝ = ﺱﻡ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫41 ‪ C‬ﺏ ﺟـ، ﺱ ﺹ ﻉ ﻣﺜﻠﺜﺎﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ، ﺣﻴﺚ ‪ C‬ﺏ < ‪ C‬ﺟـ، ﺱ ﺹ < ﺱ ﻉ.‬ ‫ﻫـ، ﻝ ﻣﻨﺘﺼﻔﻰ ﺏ ﺟـ ، ﺹ ﻉ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ، ﺭﺳﻢ ‪ C‬ﻭ = ﺏ ﺟـ ، ﺱ ﻡ = ﺹ ﻉ‬ ‫ﺃﺛﺒﺖ ﺃﻥ 9 ‪ C‬ﻫـ ﻭ + 9 ﺱ ﻝ ﻡ‬ ‫..................................................................................................................................................................................................................................‬ ‫51 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ﺣﻴﺚ )‪ = ٢(E C‬ﺏ ‪ E * E‬ﺟـ ، ﺏ ‪ = E C * C‬ﺏ ‪ C * E‬ﺟـ ﺃﺛﺒﺖ ﺃﻥ:‬ ‫ﺟ ‪ c) X‬ﺏ ‪ C‬ﺟـ( = ٠٩‪c‬‬ ‫أ 9 ‪ C‬ﺏ ‪9 + E‬ﺟـ ‪E C‬‬ ‫ب ‪ = E C‬ﺏ ﺟـ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫61 ﻳﺒﻴﻦ ﺍﻟﻤﺨﻄﻂ ﺍﻟﻤﻘﺎﺑﻞ ﻣﻮﻗﻊ ﻣﺤﻄﺔ ﺧﺪﻣﺔ ﻭﺗﻤﻮﻳﻦ ﺳﻴﺎﺭﺍﺕ ﻳﺮﺍﺩ‬ ‫ﺇﻗﺎﻣﺘﻬﺎ ﻋﻠﻰ ﺍﻟﻄﺮﻳﻖ ﺍﻟﺴﺮﻳﻊ ﻋﻨﺪ ﺗﻘﺎﻃﻊ ﻃﺮﻳﻖ ﺟﺎﻧﺒﻰ ﻳﺆﺩﻯ ﺇﻟﻰ‬ ‫ﺍﻟﻤﺪﻳﻨﺔ ﺟـ ﻭﻋﻤﻮﺩﻳﺎ ﻋﻠﻰ ﺍﻟﻄﺮﻳﻖ ﺍﻟﺴﺮﻳﻊ ﺑﻴﻦ ﺍﻟﻤﺪﻳﻨﺘﻴﻦ ‪ ،C‬ﺏ.‬ ‫ًّ‬ ‫أ ﻛﻢ ﻳﻨﺒﻐﻰ ﺃﻥ ﺗﺒﻌﺪ ﺍﻟﻤﺤﻄﺔ ﻋﻦ ﺍﻟﻤﺪﻳﻨﺔ ﺟـ?‬ ‫ب ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺪﻳﻨﺘﻴﻦ ﺏ، ﺟـ?‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫ﻧﺸﺎط‬ ‫ﺍﺳﺘﺨﺪﺍﻡ ﺑﺮﻧﺎﻣﺞ ﺧﺮﺍﺋﻂ)‪ (Google Earth‬ﻟﺤﺴﺎﺏ ﺃﻗﺼﺮ ﺑﻌﺪ ﺑﻴﻦ ﻋﻮﺍﺻﻢ ﻣﺤﺎﻓﻈﺎﺕ ﺟﻤﻬﻮﺭﻳﺔ ﻣﺼﺮ ﺍﻟﻌﺮﺑﻴﺔ‬ ‫‪ïM‬‬ ‫−‬
  • 33.
    ‫اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ‬ ‫2-3‬ ‫‪The Relation between the Area of two Similar Polygons‬‬ ‫1 ﺃﻛﻤﻞ:‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ 9‪ C‬ﺏ ﺟـ + 9ﺱ ﺹ ﻉ، ﻛﺎﻥ ‪ C‬ﺏ = ٣ ﺱ ﺹ ﻓﺈﻥ ‪9) W‬ﺱ ﺹ ﻉ( = ...............................‬ ‫ﻭ‬ ‫‪ C9) W‬ﺏ ﺟـ(‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ E‬ﻫـ ﻭ، ‪ C 9) W‬ﺏ ﺟـ( = ٩ ‪ E 9)W‬ﻫـ ﻭ( ﻛﺎﻥ ‪ E‬ﻫـ = ٤ﺳﻢ ﻓﺈﻥ:‬ ‫ﻭ‬ ‫‪ C‬ﺏ = .............................. ﺳﻢ‬ ‫2 ﺍﺩﺭﺱ ﻛﻼ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺣﻴﺚ ﻙ ﺛﺎﺑﺖ ﺗﻨﺎﺳﺐ، ﺛﻢ ﺃﻛﻤﻞ:‬ ‫ًّ‬ ‫ب‬ ‫‪C‬‬ ‫أ‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{‬ ‫٢‬ ‫‪ C 9)W‬ﺟـ ﻫـ( = ٠٠٩ ﺳﻢ‬ ‫٢‬ ‫ﻓﺈﻥ: ‪ E 9)W‬ﻫـ ﺏ( = ............................... ﺳﻢ‬ ‫‪c)X‬ﺏ ‪ C‬ﺟـ( = ٠٩‪ = E C ،c‬ﺏ ﺟـ‬ ‫‪ E C 9)W‬ﺟـ( = ٠٨١ ﺳﻢ٢ ﻓﺈﻥ:‬ ‫٢‬ ‫‪ C 9)W‬ﺏ ﺟـ( = ............................... ﺳﻢ‬ ‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C ∋E‬ﺏ ﺣﻴﺚ ‪ ٢ = E C‬ﺏ ‪ ،E‬ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ E‬ﻫـ // ﺏ ﺟـ‬ ‫ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ 9 ‪ E C‬ﻫـ = ٠٦ﺳﻢ٢. ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺷﺒﻪ ﺍﻟﻤﻨﺤﺮﻑ ‪ E‬ﺏ ﺟـ ﻫـ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ، ﺭﺳﻤﺖ ﺍﻟﻤﺜﻠﺜﺎﺙ ﺍﻟﻤﺘﺴﺎﻭﻳﺔ ﺍﻷﺿﻼﻉ ‪ C‬ﺏ ﺱ، ﺏ ﺟـ ﺹ، ‪ C‬ﺟـ ﻉ‬ ‫ﺃﺛﺒﺖ ﺃﻥ: ‪ C9) W‬ﺏ ﺱ( + ‪9) W‬ﺏ ﺟـ ﺹ( = ‪ C9) W‬ﺟـ ﻉ(.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪C‬ﺏ‬ ‫5 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ﺏ ﺟـ = ٤ ، ﺭﺳﻤﺖ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﻤﺎﺭﺓ ﺑﺮﺅﻭﺳﻪ. ﻣﻦ ﻧﻘﻄﺔ ﺏ ﺭﺳﻢ ﺍﻟﻤﻤﺎﺱ ﻟﻬﺬه ﺍﻟﺪﺋﺮﺓ ﻓﻘﻄﻊ‬ ‫٣‬ ‫‪ C 9) W‬ﺏ ﺟـ( ٧‬ ‫‪ C‬ﺟـ ﻓﻰ ﻫـ. ﺃﺛﺒﺖ ﺃﻥ: ‪ C 9) W‬ﺏ ﻫـ( = ٦١‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 34.
    ‫‪M‬‬ ‫6 ‪ C‬ﺏﺟـ ‪ E‬ﻣﺘﻮﺍﺯﻯ ﺃﺿﻼﻉ ﺱ ∋ ‪ C‬ﺏ ، ﺱ ∌ ‪ C‬ﺏ ﺣﻴﺚ ﺏ ﺱ = ٢ ‪ C‬ﺏ، ﺹ ∋ ﺟـ ﺏ ، ﺹ ∌ ﺟـ ﺏ‬ ‫ﺣﻴﺚ ﺏ ﺹ = ٢ ﺏ ﺟـ ، ﺭﺳﻢ ﻣﺘﻮﺍﺯﻯ ﺍﻷﺿﻼﻉ ﺏ ﺱ ﻉ ﺹ ﺃﺛﺒﺖ ﺃﻥ: ‪ C) W‬ﺏ ﺟـ ‪١ = (E‬‬ ‫‪) W‬ﺱ ﺏ ﺹ ﻉ( ٤‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ، ﺏ ‪ C = E‬ﺟـ ﻳﻘﻄﻌﺔ ﻓﻰ ‪ ،E‬ﺭﺳﻢ ﻋﻠﻰ ‪ C‬ﺏ ، ﺏ ﺟـ ﺍﻟﻤﺮﺑﻌﺎﻥ‬ ‫ُ‬ ‫‪ C‬ﺱ ﺹ ﺏ، ﺏ ﻡ ﻥ ﺟـ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ = ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻡ ﻥ ﺟـ‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﺟـ = ٠١ﺳﻢ. ﺃﻭﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﺍﻟﻤﻀﻠﻌﻴﻦ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C‬ﺏ ، ﺏ ﺟـ ، ‪ C‬ﺟـ ﺃﺿﻼﻉ ﻣﺘﻨﺎﻇﺮﺓ ﻟﺜﻼﺛﺔ ﻣﻀﻠﻌﺎﺕ ﻣﺘﺸﺎﺑﻬﺔ ﻣﺮﺳﻮﻣﺔ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ، ﻭﻫﻰ‬ ‫ﺍﻟﻤﻀﻠﻌﺎﺕ ﺑﻴﻦ ‪ ،N ،M‬ﻉ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬ ‫ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ‪٤٠ = M‬ﺳﻢ٢، ﻭﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ‪ ٨٥= N‬ﺳﻢ٢، ﻭﻣﺴﺎﺣﺔ ﺍﻟﻤﻀﻠﻊ ﻉ = ٥٢١ﺳﻢ٢.‬ ‫ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫9 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺮﺑﻊ ﻗﺴﻤﺖ ‪ C‬ﺏ ، ﺏ ﺟـ ، ﺟـ ‪ C E ، E‬ﺑﺎﻟﻨﻘﺎﻁ ﺱ، ﺹ، ﻉ، ﻝ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﺑﻨﺴﺒﺔ ١ : ٣‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫‪ W‬ﺍﻟﻤﺮﺑﻊ ﺱ ﺹ ﻉ ﻝ‬ ‫=٥‬ ‫ب‬ ‫أ ﺍﻟﺸﻜﻞ ﺱ ﺹ ﻉ ﻝ ﻣﺮﺑﻊ‬ ‫٨‬ ‫‪ W‬ﺍﻟﻤﺮﺑﻊ ‪ C‬ﺏ ﺟـ ‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫01 ﺻﺎﻟﺔ ﺃﻟﻌﺎﺏ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ ﺃﺑﻌﺎﺩﻫﺎ ٨ ﻣﺘﺮ، ٢١ ﻣﺘﺮ، ﺗﻢ ﺗﻐﻄﻴﺔ ﺃﺭﺿﻴﺘﻬﺎ ﺑﺎﻟﺨﺸﺐ، ﻓﻜﻠﻔﺖ ٠٠٢٣ ﺟﻨﻴﻪ.‬ ‫ﺍﺣﺴﺐ )ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺘﺸﺎﺑﻪ( ﺗﻜﺎﻟﻴﻒ ﺗﻐﻄﻴﺔ ﺃﺭﺿﻴﺔ ﺻﺎﻟﺔ ﻣﺴﺘﻄﻴﻠﺔ ﺃﻛﺒﺮ ﺑﻨﻔﺲ ﻧﻮﻉ ﺍﻟﺨﺸﺐ ﻭﺑﻨﻔﺲ‬ ‫ﺍﻷﺳﻌﺎﺭ، ﺇﺫﺍ ﻛﺎﻥ ﺃﺑﻌﺎﺩﻫﺎ ٤١، ١٢ ﻣﻦ ﺍﻷﻣﺘﺎﺭ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 35.
    ‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﺸﺎﺑﻪ ﻓﻰاﻟﺪاﺋﺮة‬ ‫2-4‬ ‫‪Applications of similarity in the circle‬‬ ‫1 ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭ ﺍﻟﺤﺴﺎﺏ ﺍﻟﻌﻘﻠﻰ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ.‬ ‫    )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬ ‫ﺟ‬ ‫ب‬ ‫أ‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫................................................................................‬ ‫د‬ ‫‪E‬‬ ‫................................................................................‬ ‫................................................................................‬ ‫و‬ ‫ﻫ‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫+‬ ‫‪E‬‬ ‫‪C‬‬ ‫................................................................................‬ ‫ز‬ ‫................................................................................‬ ‫ح‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫................................................................................‬ ‫ى‬ ‫ط‬ ‫‪E‬‬ ‫‪E‬‬ ‫................................................................................‬ ‫‪C‬‬ ‫................................................................................‬ ‫ك‬ ‫................................................................................‬ ‫ل‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬ ‫................................................................................‬ ‫................................................................................‬
  • 36.
    ‫‪M‬‬ ‫¯‬ ‫‪ï‬‬ ‫2 ﻓﻰ ﺃﻯﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻘﻊ ﺍﻟﻨﻘﻂ ‪ ،C‬ﺏ، ﺟـ، ‪ E‬ﻋﻠﻰ ﺩﺍﺋﺮﺓ ﻭﺍﺣﺪﺓ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬ ‫ِّ‬ ‫ٍّ‬ ‫)ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬ ‫ﺟ‬ ‫ب‬ ‫‪C‬‬ ‫‪C‬‬ ‫أ‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫....................................................................................................................................................................................................................................................................................‬ ‫3 ﻓﻰ ﺃﻯ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ‪ C‬ﺏ ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﺍﻟﻤﺎﺭﺓ ﺑﺎﻟﻨﻘﻂ ﺏ، ﺟـ، ‪.E‬‬ ‫ٍّ‬ ‫ﺟ‬ ‫‪ C‬ب‬ ‫‪C‬‬ ‫أ‬ ‫‪E‬‬ ‫٩٢‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫..............................................................................................................................................................................................................................................................................................‬ ‫ِ‬ ‫4 ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ . ﺟـ ∋ ‪ C‬ﺏ ، ﺟـ ∌ ‪ C‬ﺏ ﺭﺳﻢ ﻣﻦ ﺟـ ﺍﻟﻘﻄﻌﺘﺎﻥ ﺟـ ﺱ ، ﺟـ ﺹ ﻣﻤﺎﺳﺘﺎﻥ‬ ‫ُ َ‬ ‫ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻋﻨﺪ ﺱ، ﺹ. ﺃﺛﺒﺖ ﺃﻥ ﺟـ ﺱ = ﺟـ ﺹ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫.‬ ‫5‬ ‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻤﺎﺳﺘﺎﻥ ﻋﻨﺪ ﻫـ‬ ‫‪ C‬ﺟـ ﻳﻤﺲ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻋﻨﺪ ﺏ، ﻭﻳﻤﺲ ﺍﻟﺪﺍﺋﺮﺓ ﻥ ﻋﻨﺪ ﺟـ،‬ ‫‪ C‬ﻫـ ﻳﻘﻄﻊ ﺍﻟﺪﺍﺋﺮﺗﻴﻦ ﻋﻨﺪ ﻭ، ‪ E‬ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ‬ ‫ﺣﻴﺚ ‪ C‬ﻭ = ٤ﺳﻢ، ﻭ ﻫـ = ٥ﺳﻢ، ﻫـ ‪٧ = E‬ﺳﻢ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻣﻨﺘﺼﻒ ‪ C‬ﺟـ‬ ‫‪E‬‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 37.
    ‫6‬ ‫: ﻝ ∋ﺱ ﺹ ﺣﻴﺚ ﺱ ﻝ = ٤ﺳﻢ،‬ ‫ﺹ ﻝ = ٨ﺳﻢ ، ﻡ ∋ ﺱ ﻉ ﺣﻴﺚ ﺱ ﻡ = ٦ﺳﻢ ، ﻉ ﻡ = ٢ﺳﻢ‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9ﺱ ﻝ ﻡ + 9ﺱ ﻉ ﺹ‬ ‫ب ﺍﻟﺸﻜﻞ ﻝ ﺹ ﻉ ﻡ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫٥‬ ‫7 ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{، ‪ C‬ﻫـ = ٢١ ﺏ ﻫـ، ‪ E‬ﻫـ = ٣ ﻫـ ﺟـ، ﺇﺫﺍ ﻛﺎﻥ ﺏ ﻫـ = ٦ﺳﻢ، ﺟـ ﻫـ = ٥ﺳﻢ.‬ ‫٥‬ ‫ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﻂ ‪ ،C‬ﺏ، ﺟـ، ‪ E‬ﺗﻘﻊ ﻋﻠﻰ ﺩﺍﺋﺮﺓ ﻭﺍﺣﺪﺓ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ﺣﻴﺚ ‪ E‬ﺏ = ٥ﺳﻢ، ‪ E‬ﺟـ = ٤ﺳﻢ. ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺟـ = ٦ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ ‪ C‬ﺟـ ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ ﺍﻟﺘﻰ ﺗﻤﺮ ﺑﺎﻟﻨﻘﻂ ‪ ،C‬ﺏ، ‪.E‬‬ ‫ب 9‪ C‬ﺟـ ‪9 + E‬ﺏ ﺟـ ‪C‬‬ ‫ﺟ ‪ C9) W‬ﺏ ‪ C9) W : (E‬ﺏ ﺟـ( = ٥ : ٩‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫9 ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﺤﺪﺗﺎ ﻛﺰ ﻡ، ﻃﻮﻻ ﻧﺼﻔﻰ ﻗﻄﺮﻳﻬﻤﺎ ٢١ﺳﻢ، ٧ﺳﻢ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ‪ E C‬ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﻜﺒﺮﻯ ﻟﻴﻘﻄﻊ‬ ‫ﺍﻟﻤﺮ‬ ‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺼﻐﺮﻯ ﻓﻰ ﺏ ، ﺟـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ. ﺃﺛﺒﺖ ﺃﻥ: ‪ C‬ﺏ * ﺏ ‪٩٥ = E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫01 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ، ﺏ ﺟـ = ٨ﺳﻢ. ﺭﺳﻢ ﺏ ﻫـ = ‪ C‬ﺟـ ﻓﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻫـ، ‪ E C‬ﻓﻰ ﻭ.‬ ‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﻭ .‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ )‪ C‬ﺏ(٢ = ‪ C‬ﻭ * ‪.E C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 38.
    ‫‪M‬‬ ‫¯‬ ‫‪ï‬‬ ‫11 ﺍﻟﺮﺑﻂ ﻣﻊﺍﻟﺼﻨﺎﻋﺔ: ﻛُﺴﺮ ﺃﺣﺪ ﺗﺮﻭﺱ ﺁﻟﺔ ﻭﻻﺳﺘﺒﺪﺍﻟﻪ ﻣﻄﻠﻮﺏ‬ ‫ﻣﻌﺮﻓﺔ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻪ. ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺟﺰﺀﺍ ﻣﻦ‬ ‫ً‬ ‫ﻫﺬﺍ ﺍﻟﺘﺮﺱ، ﻭﺍﻟﻤﻄﻠﻮﺏ ﺗﻌﻴﻴﻦ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋ ﺗﻪ ................... .‬ ‫ﺮ‬ ‫‪C‬‬ ‫¯‬ ‫21 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟ ﻴﺌﺔ: ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﺨﻄﻄًّﺎ ﻟﺤﺪﻳﻘﺔ ﻋﻠﻰ‬ ‫ﺷﻜﻞ ﺩﺍﺋﺮﺓ ﺑﻬﺎ ﻃﺮﻳﻘﺎﻥ ﻳﺘﻘﺎﻃﻌﺎﻥ ﻋﻨﺪ ﻧﺎﻓﻮﺭﺓ ﺍﻟﻤﻴﺎه. ﺃﻭﺟﺪ ﺑﻌﺪ‬ ‫ُْ‬ ‫ﻧﺎﻓﻮﺭﺓ ﺍﻟﻤﻴﺎه ﻋﻨﺪ ﺍﻟﻤﺪﺧﻞ ﺟـ.‬ ‫‪E‬‬ ‫¯‬ ‫¯‬ ‫31 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﻤﻨ ﻝ: ﺗﺴﺘﺨﺪﻡ ﻫﺪﻯ ﺷﺒﻜﺔ ﻟﺸﻰ ﺍﻟﻠﺤﻮﻡ ﻋﻠﻰ ﺷﻜﻞ‬ ‫ﺩﺍﺋﺮﺓ ﻣﻦ ﺍﻟﺴﻠﻚ، ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٠٥ﺳﻢ، ﻳﺪﻋﻤﻬﺎ ﻣﻦ ﺍﻟﻮﺳﻂ ﺳﻠﻜﺎﻥ‬ ‫ﻣﺘﻮﺍﺯﻳﺎﻥ ﻭﻣﺘﺴﺎﻭﻳﺎﻥ ﻓﻰ ﺍﻟﻄﻮﻝ ﻛﻤﺎ ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ، ﻭﺍﻟﺒﻌﺪ‬ ‫ﺑﻴﻨﻬﻤﺎ ٠١ﺳﻢ.‬ ‫ﺍﺣﺴﺐ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺳﻠﻜﻰ ﺍﻟﺪﻋﺎﻣﺔ. .........................................................‬ ‫‪C‬‬ ‫41 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻻ ﺼﺎﻝ: ﺗﻨﻘﻞ ﺍﻷﻗﻤﺎﺭ ﺍﻟﺼﻨﺎﻋﻴﺔ ﺍﻟﺒﺮﺍﻣﺞ ﺍﻟﺘﻠﻴﻔﺰﻳﻮﻧﻴﺔ‬ ‫ﺇﻟﻰ ﻛﺎﻓﺔ ﻣﻨﺎﻃﻖ ﺍﻷﺭﺽ، ﻭﺗﺴﺘﺨﺪﻡ ﺃﻃﺒﺎﻕ ﺧﺎﺻﺔ ﻻﺳﺘﻘﺒﺎﻝ‬ ‫ﺇﺷﺎﺭﺍﺕ ﺍﻟﺒﺚ ﺍﻟﺘﻠﻴﻔﺰﻳﻮﻧﻰ، ﻭﻫﻰ ﺃﻃﺒﺎﻕ ﻣﻘﻌﺮﺓ ﻋﻠﻰ ﺷﻜﻞ ﺟﺰﺀ‬ ‫ﻣﻦ ﺳﻄﺢ ﻛﺮﺓ.‬ ‫ﻳﺒﻴﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻣﻘﻄﻌﺎ ﻓﻰ ﺃﺣﺪ ﻫﺬه ﺍﻷﻃﺒﺎﻕ، ﻃﻮﻝ ﻗﻄﺮه‬ ‫ً‬ ‫٠٨١ﺳﻢ، ﻭﺍﻟﻤﻄﻠﻮﺏ ﺣﺴﺎﺏ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﻛﺮﺓ ﺗﻘﻌﺮه ﻡ ‪. C‬‬ ‫.......................................................................................................................................‬ ‫.......................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 39.
    ‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫1‬ ‫أ‬ ‫ب‬ ‫ﺟ‬ ‫د‬ ‫: ﺃﻯﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻏﻴﺮ ﺻﺤﻴﺤﺔ:‬ ‫)‪ E = ٢(E C‬ﺏ * ‪ E‬ﺟـ‬ ‫)‪ C‬ﺏ(٢ = ﺏ ‪ * E‬ﺏ ﺟـ‬ ‫‪ C‬ﺟـ * ﺏ ﺟـ = ‪ C‬ﺏ * ‪E C‬‬ ‫‪ C‬ﺏ * ‪ C‬ﺟـ = ‪ * E C‬ﺏ ﺟـ‬ ‫‪C‬‬ ‫‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫2‬ ‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ‪ C ∋ E‬ﺏ ، ﻫـ ∋ ‪ C‬ﺟـ .‬ ‫ﺃﺛﺒﺖ ﺃﻥ 9‪ E C‬ﻫـ + 9‪ C‬ﺟـ ﺏ‬ ‫ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫: ‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻃﻮﻟﻪ ٢١ﺳﻢ‬ ‫3‬ ‫‪ C ∋ E‬ﺏ ﺣﻴﺚ ‪١٦ = E C‬ﺳﻢ، ﺟـ ﺗﻘﻊ ﻋﻠﻰ ﺍﻟﺪﺍﺋﺮﺓ‬ ‫ﺣﻴﺚ ﺟـ ‪٨ = E‬ﺳﻢ. ﺟـ ﻫـ = ‪ C‬ﺏ . ﺃﺛﺒﺖ ﺃﻥ:‬ ‫‪C‬‬ ‫‪E‬‬ ‫أ ﺟـ ‪ E‬ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ ﻡ.‬ ‫ب 9‪ E‬ﺟـ ﺏ + 9‪ C E‬ﺟـ‬ ‫ﺟ ﺟـ ﻫـ = ٨٫٤ﺳﻢ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺏ. ﺏ ‪ C = E‬ﺟـ ، ‪ C‬ﺏ = ٥١ﺳﻢ، ‪٩ = E C‬ﺳﻢ. ﺭﺳﻢ ﻋﻠﻰ ‪ C‬ﺏ ، ﺏ ﺟـ ﻣﻦ‬ ‫ﺍﻟﺨﺎﺭﺝ ﺍﻟﻤﺮﺑﻌﺎﻥ ‪ C‬ﺏ ﺹ ﺱ، ﺏ ﺟـ ﻫـ ﻭ.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ + ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻭ ﻫـ ﺟـ.‬ ‫ب ﺃﻭﺟﺪ ‪) W‬ﺍﻟﻤﻀﻠﻊ ‪ C E‬ﺱ ﺹ ﺏ( : ‪) W‬ﺍﻟﻤﻀﻠﻊ ‪ E‬ﺏ ﻭ ﻫـ ﺟـ(‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 40.
    ‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫5‬ ‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ‬ ‫‪ C‬ﺏ ∩ ﺟـ ‪ ∩ E‬ﻫـ ﻭ = }ﺱ{ ﺣﻴﺚ‬ ‫ﺱ ‪ E ٢ = E‬ﺟـ، ﻫـ ﻭ = ٠١ﺳﻢ، ﻭ ﺱ = ٦ ﺳﻢ‬ ‫‪E‬‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ﺟـ ‪ E‬ﻭ ﻫـ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬ ‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪E‬‬ ‫.................................................................................................................................‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫6‬ ‫: ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﺤﺪﺗﺎ ﻛﺰ،‬ ‫ﺍﻟﻤﺮ‬ ‫ﻭﺍﻷﻃﻮﺍﻝ ﺍﻟﻤﺒﻴﻨﺔ ﻟﻠﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬ ‫ﺃﻭﺟﺪ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ.‬ ‫............................................................................................................................................‬ ‫............................................................................................................................................‬ ‫¯‬ ‫7 ﺣﺪﻳﻘﺔ ﺣﻴﻮﺍﻥ: ﻓﻰ ﺭﺣﻠﺔ ﻣﺪﺭﺳﻴﺔ ﺇﻟﻰ ﺣﺪﻳﻘﺔ ﺍﻟﺤﻴﻮﺍﻥ ﺃﺭﺍﺩ‬ ‫ﺣﺴﺎﻡ ﺃﻥ ﻳﻌﺮﻑ ﺍﺭﺗﻔﺎﻉ ﺣﻴﻮﺍﻥ ﺍﻟﺰﺭﺍﻓﺔ. ﻭﺿﻊ ﺣﺴﺎﻡ ﻣﺮﺁﺓ‬ ‫ﻣﺴﺘﻮﻳﺔ ﻋﻠﻰ ﺍﻷﺭﺽ ﺗﺒﻌﺪ ﻋﻨﻪ ﻣﺘﺮﺍﻥ ﻭﻋﻦ ﺍﻟﺰﺭﺍﻓﺔ ٦ ﺃﻣﺘﺎﺭ،‬ ‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺣﺴﺎﻡ ﻭﺍﻟﻤﺮﺁﺓ ﻭﺍﻟﺰﺭﺍﻓﺔ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ‬ ‫ﻭﺍﺭﺗﻔﺎﻉ ﺣﺴﺎﻡ ٥٫١ ﻣﺘﺮﺍ . ﻛﻢ ﻳﺒﻠﻎ ﺍﺭﺗﻔﺎﻉ ﺍﻟﺰﺭﺍﻓﺔ.‬ ‫ً‬ ‫¯‬ ‫¯‬ ‫.................................................................................................................................‬ ‫.................................................................................................................................‬ ‫8 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻔﻴ ﺎﺀ: ﺍﺣﺴﺐ ﻣﻌﺎﻣﻞ ﻣﻐﻴﺮ ﺍﻟﺒﻌﺪ، ﻭﺍﺣﺴﺐ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻤﺎ ﻳﻠﻰ.‬ ‫ب‬ ‫أ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 41.
    ‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬ ‫1 ﺃﻛﻤﻞﻣﺎ ﻳﺄﺗﻲ:‬ ‫أ ﺍﻟﻤﻀﻠﻌﺎﻥ ﺍﻟﻤﺸﺎﺑﻬﺎﻥ ﻟﺜﺎﻟﺚ .............................................................................................................................................................‬ ‫ب‬ ‫ﺇﺫﺍ ﺗﻨﺎﺳﺒﺖ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻓﻰ ﻣﺜﻠﺜﻴﻦ ﻓﺈﻧﻬﻤﺎ ..................................................................................................‬ ‫ﺟ‬ ‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺤﻴﻄﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ٣ : ٥ ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻴﻬﻤﺎ ...........................................‬ ‫د ﺇﺫﺍ ﺗﻘﺎﻃﻊ ﻭﺗﺮﺍﻥ ‪ C‬ﺏ ، ﺟـ ‪ E‬ﻟﺪﺍﺋﺮﺓ ﻓﻰ ﻧﻘﻄﺔ ﺱ ﻓﺈﻥ:‬ ‫................... * ................... = ................... *‬ ‫‪E‬‬ ‫...................‬ ‫ﻫ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻄﻴﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﺴﺘﻄﻴﻞ ﺱ ﺏ ﻉ ﺹ،‬ ‫‪١٥ = E C‬ﺳﻢ ، ﺟـ ‪٢٠ = E‬ﺳﻢ، ﺹ ﻉ = ٦١ﺳﻢ‬ ‫ﻓﺈﻥ: ﺱ ﻉ = ...........................................................‬ ‫‪C‬‬ ‫‪C‬‬ ‫2‬ ‫: ‪ C‬ﻫـ // ‪ E‬ﺟـ ، ‪ C‬ﺟـ = ﻫـ ‪} ∩ E‬ﺏ{،‬ ‫‪ C‬ﺏ = ٣ﺳﻢ، ﺏ ﺟـ = ٦ﺳﻢ، ﻫـ ‪١٢ = E‬ﺳﻢ‬ ‫ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﻫـ ﺏ‬ ‫.......................................................................................................................................‬ ‫‪E‬‬ ‫.......................................................................................................................................‬ ‫‪E‬‬ ‫: ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﻫـ ﺟـ ﻭ‬ ‫3‬ ‫‪C‬‬ ‫ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺏ // ﺱ ﻫـ‬ ‫١‬ ‫ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺱ ﻫـ = ٢ ‪C‬ﺏ، ﺟـ ﻭ = ٩ﺳﻢ ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﻭ ‪E‬‬ ‫.......................................................................................................................................‬ ‫.......................................................................................................................................‬ ‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ﺱ ∋ ‪ C‬ﺏ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺱ = ٨ﺳﻢ، ﺱ ﺏ = ٢١ﺳﻢ‬ ‫ﺹ ∋ ‪ C‬ﺟـ ، ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺹ = ٠١ﺳﻢ، ﺹ ﺟـ = ٦ﺳﻢ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ C‬ﺹ ﺱ‬ ‫ب ﺍﻟﺸﻜﻞ ﺱ ﺏ ﺟـ ﺹ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬ ‫‪C‬‬ ‫.......................................................................................................................................‬ ‫.......................................................................................................................................‬ ‫5 ‪ C‬ﺏ ، ﺟـ ‪ E‬ﻭﺗﺮﺍﻥ ﻓﻰ ﺩﺍﺋﺮﺓ ﻣﺘﻘﺎﻃﻌﺎﻥ، ﻓﻰ ﻫـ ﻓﺈﺫﺍ ﻛﺎﻥ ﻫـ ﻣﻨﺘﺼﻒ ‪ C‬ﺏ ، ﺟـ ﻫـ = ٤ﺳﻢ، ﻫـ ‪٩ = E‬ﺳﻢ‬ ‫..........................................................................................................................................................................‬ ‫ﻓﺄﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﺏ .‬ ‫¯‬ ‫−‬ ‫¯‬
  • 42.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬ ‫‪Oó©àe øeQÉ«àN’G á∏İSCG‬‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ٢ﺱ +١١ = ٣ ﻓﺈﻥ ١١ - ﺱ ﺗﺴﺎﻭﻯ:‬ ‫٢‬ ‫ﺱ+‬ ‫ب‬ ‫ﺻﻔﺮﺍ‬ ‫أ -٠١‬ ‫ً‬ ‫ﺟ ٥‬ ‫2 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬ ‫ً‬ ‫ب‬ ‫٨١‬ ‫أ ٢٣‬ ‫د ١٥‬ ‫ﺟ ٧٢‬ ‫د ٠١‬ ‫+‬ ‫‪c‬‬ ‫− ‪c‬‬ ‫‪c‬‬ ‫−‬ ‫3 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬ ‫ً‬ ‫ب ١١‬ ‫أ ٥‬ ‫د ٤١‬ ‫ﺟ ٢١‬ ‫‪E‬‬ ‫4‬ ‫أ ٥ ﺳﻢ‬ ‫ﺟ ٨ ﺳﻢ‬ ‫: ‪ C‬ﺏ = ٢١ﺳﻢ، ﺟـ ﻫـ = ٤ ﺳﻢ، ﻓﺈﻥ ﻫـ ‪ E‬ﺗﺴﺎﻭﻯ:‬ ‫ب ٦ ﺳﻢ‬ ‫د ٩ ﺳﻢ‬ ‫‪C‬‬ ‫5 ﻣﺴﺘﻄﻴﻼﻥ ﻣﺘﺸﺎﺑﻬﺎﻥ ﺑﻌﺪﺍ ﺍﻷﻭﻝ ٠١ ﺳﻢ، ٨ ﺳﻢ، ﻭﻣﺤﻴﻂ ﺍﻟﺜﺎﻧﻰ ٨٠١ ﺳﻢ ﻓﺈﻥ ﻃﻮﻝ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺍﻟﺜﺎﻧﻰ ﻳﺴﺎﻭﻯ:‬ ‫د ٦٣ ﺳﻢ‬ ‫ﺟ ٠٣ ﺳﻢ‬ ‫ب ٤٢ ﺳﻢ‬ ‫أ ٨١ ﺳﻢ‬ ‫‪C‬‬ ‫‪:Iô«°ü≤dG äÉHÉLE’G äGP á∏İSC’G‬‬ ‫6‬ ‫: ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ ﺱ، ﺹ‬ ‫ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ.‬ ‫+‬ ‫‪E‬‬ ‫−‬ ‫7 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ‪ C‬ﺟـ، ‪ ∋ E‬ﺏ ﺟـ . ﺭﺳﻢ ‪ E‬ﻫـ = ‪ C‬ﺏ ، ‪ E‬ﻭ = ‪ C‬ﺟـ .‬ ‫ﺏ ﻫـ ‪ E‬ﻫـ‬ ‫ﺃﺛﺒﺖ ﺃﻥ: ﺟـ ﻭ =‬ ‫‪E‬ﻭ‬ ‫‪ïM‬‬ ‫−‬
  • 43.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬ ‫8‬ ‫: ‪C‬ﺏ = ‪ C‬ﺟـ ، ‪ = E C‬ﺏ ﺟـ‬ ‫‪ c) X‬ﺏ( = ٠٣‪ C ، c‬ﺟـ = ٦ ﺳﻢ‬ ‫‪C‬‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ: ‪ C‬ﺏ ، ﺏ ‪E C ، E‬‬ ‫‪c‬‬ ‫‪E‬‬ ‫‪:á∏jƒ£dG äÉHÉLE’G äGP øjQɪàdG‬‬ ‫‪ E‬ﻫـ‬ ‫‪ C‬ﻫـ‬ ‫9 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﺒﻪ ﻣﻨﺤﺮﻑ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻫـ، ﺇﺫﺍ ﻛﺎﻥ ‪ // E C‬ﺏ ﺟـ ﺃﺛﺒﺖ ﺃﻥ: ﻫـ ﺟـ = ﻫـ ﺏ‬ ‫: ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ، ﻡ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ‬ ‫01‬ ‫‪E‬‬ ‫ﻭﺗﻤﺲ ‪ C‬ﺏ ﻋﻨﺪ ﻫـ، ﺟـ ‪ E‬ﻋﻨﺪ ﻭ.‬ ‫ﺭﺳﻢ ﻡ ﺹ // ‪ C‬ﺏ ﻭﻳﻘﻄﻊ ﺍﻟﺪﺍﺋﺮﺓ ﻓﻰ ﺱ، ‪ E C‬ﻓﻰ ﺹ.‬ ‫ﺇﺫﺍ ﻛﺎﻥ: ﺱ ﺹ = ٢ﺳﻢ، ‪ C 9) W‬ﻫـ ﻡ( = ١‬ ‫‪ C 9) W‬ﺏ ﺟـ( ٤‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺏ ﻫـ ، ﺏ ﺟـ‬ ‫‪C‬‬ ‫‪?á«aɰVCG IóYɰùªd êÉàëJ πg‬‬ ‫ﺇﻥ ﻟﻢ ﺗﺴﺘﻄﻊ ﺍﻹﺟﺎﺑﺔ ﻋﻦ ﺃﻯ ﻣﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻓﺎﺭﺟﻊ ﻟﻠﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻰ:‬ ‫١‬ ‫¯‬ ‫٢‬ ‫−‬ ‫٣‬ ‫¯‬ ‫٤‬ ‫٥‬ ‫٦‬ ‫٧‬ ‫٨‬ ‫٩‬ ‫٠١‬
  • 44.
    ‫-‬ ‫‪IóMƒdG‬‬ ‫3‬ ‫ﻧﻈﺮﻳﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰﺍﻟﻤﺜﻠﺚ‬ ‫‪The Triangle Proportionality Theorems‬‬ ‫ﻣﻌﺒﺪ ﺣﺘﺸﺒﺴﻮت )اﻷﻗﺼﺮ(‬ ‫دروس اﻟﻮﺣﺪة‬ ‫ﺍﻟﺪﺭﺱ )٣ - ١(: ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﺘﻮﺍﺯﻳﺔ ﻭﺍﻷﺟﺰﺍﺀ ﺍﻟﻤﺘﻨﺎﺳﺒﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٣ - ٢(: ﻣﻨﺼﻔﺎ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻤﺜﻠﺚ ﻭﺍﻷﺟﺰﺍﺀ ﺍﻟﻤﺘﻨﺎﺳﺒﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٣ - ٣(: ﺗﻄﺒﻴﻘﺎﺕ ﺍﻟﺘﻨﺎﺳﺐ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ.‬ ‫‪ïM‬‬ ‫−‬
  • 45.
    ‫اﻟﻤﺴﺘﻘﻴﻤﺎت اﻟﻤﺘﻮازﻳﺔ واﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬ ‫3-1‬ ‫‪Parallel lines and proportional parts‬‬ ‫1‬ ‫‪C‬‬ ‫‪ E‬ﻫـ // ﺏ ﺟـ ﺃﻛﻤﻞ:‬ ‫ﺏ‬ ‫ﺟـ ﻫـ‬ ‫‪C‬‬ ‫‪EC‬‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﺏ = ٥ ﻓﺈﻥ : ﺏ ‪ ،  ............. = E‬‬ ‫= .............‬ ‫٣‬ ‫ﻫـ ‪C‬‬ ‫.............‬ ‫.............‬ ‫ﺟـ ﻫـ‬ ‫ﺏ‪E‬‬ ‫ﻫـ‬ ‫= .............  ، ‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ ٤ = C‬ﻓﺈﻥ :‬ ‫= .............‬ ‫‪ C‬ﺟـ‬ ‫2‬ ‫.............‬ ‫ﻫـ ‪C‬‬ ‫٧‬ ‫.............‬ ‫‪E‬‬ ‫‪C‬ﺏ‬ ‫‪ E‬ﻫـ // ﺏ ﺟـ . ﺣﺪﺩ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺼﺤﻴﺤﺔ ﻣﻦ ﻣﺎ ﻳﻠﻲ:‬ ‫‪C‬ﺏ‬ ‫أ ‪E‬ﺏ‬ ‫ﺟ ‪C‬ﺏ‬ ‫ﺏ‪E‬‬ ‫ﻫ ‪ C‬ﺟـ‬ ‫‪EC‬‬ ‫ﺏ‪E‬‬ ‫ب ‪EC‬‬ ‫‪ C‬ﻫـ = ﻫـ ﺟـ‬ ‫‪C‬ﺏ‬ ‫‪ C‬ﺟـ‬ ‫د ﺏ‪= E‬‬ ‫ﺟـ ﻫـ‬ ‫و ﺟـ ﻫـ ‪ C‬ﺟـ‬ ‫ﺏ‪C = E‬ﺏ‬ ‫‪ C‬ﻫـ‬ ‫= ﻫـ ﺟـ‬ ‫‪ C‬ﺟـ‬ ‫= ‪ C‬ﻫـ‬ ‫‪C‬ﺏ‬ ‫= ‪ C‬ﻫـ‬ ‫3‬ ‫‪E‬‬ ‫‪ E‬ﻫـ // ﺏ ﺟـ . ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ ﺍﻟﻌﺪﺩﻳﺔ )ﺍﻷﻃﻮﺍﻝ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(.‬ ‫ﺟ‬ ‫ب‬ ‫‪C‬‬ ‫أ‬ ‫‪E‬‬ ‫‪E‬‬ ‫+‬ ‫‪E‬‬ ‫د‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫ﻫ‬ ‫‪C‬‬ ‫و‬ ‫+‬ ‫+‬ ‫‪E‬‬ ‫+‬ ‫4‬ ‫: ‪ C‬ﺏ // ‪ E‬ﻫـ ، ‪ C‬ﻫـ ∩ ﺏ ‪} = E‬ﺟـ{‬ ‫‪ C‬ﺟـ = ٦ﺳﻢ، ﺏ ﺟـ = ٤ﺳﻢ، ﺟـ ‪٣ = E‬ﺳﻢ‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ﻫـ‬ ‫¯‬ ‫−‬ ‫¯‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬
  • 46.
    ‫5 ﺱ ﺹ∩ ﻉ ﻝ = }ﻡ{، ﺣﻴﺚ ﺱ ﻉ // ﻝ ﺹ ، ﻓﺈﺫﺍ ﻛﺎﻥ ﺱ ﻡ = ٩ﺳﻢ، ﺹ ﻡ = ٥١ﺳﻢ، ﻉ ﻝ = ٦٣ ﺳﻢ.‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻉ ﻡ .‬ ‫6 ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ: ﺍﺳﺘﺨﺪﻡ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻭﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ ﻹﻳﺠﺎﺩ ﻗﻴﻤﺔ ﺱ:‬ ‫أ ‪ ، ٤ = E C‬ﺏ ‪ ،  ٨ = E‬ﺟـ ﻫـ = ٦ ، ‪ C‬ﻫـ = ﺱ.‬ ‫ب ‪ C‬ﻫـ = ﺱ ، ﻫـ ﺟـ = ٥ ، ‪ = E C‬ﺱ - ٢ ، ‪ E‬ﺏ = ٣.‬ ‫ﺟ ‪ C‬ﺏ = ١٢ ، ﺏ ﻭ = ٨ ، ﻭ ﺟـ = ٦ ، ‪ = E C‬ﺱ.‬ ‫‪C‬‬ ‫‪E‬‬ ‫د ‪ = E C‬ﺱ  ، ﺏ ﻭ = ﺱ + ٥ ، ٢‪ E‬ﺏ = ٣ﻭ ﺟـ = ٢١.‬ ‫7 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ // ﺏ ﺟـ‬ ‫ب‬ ‫أ‬ ‫ﺟ‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫8 ﺱ ﺹ ﻉ ﻣﺜﻠﺚ ﻓﻴﻪ ﺱ ﺹ = ٤١ﺳﻢ، ﺱ ﻉ = ١٢ﺳﻢ، ﻝ ∋ ﺱ ﺹ ﺑﺤﻴﺚ ﺱ ﻝ = ٦٫٥ﺳﻢ،‬ ‫ﻡ ∋ ﺱ ﻉ ﺣﻴﺚ ﺱ ﻡ = ٤٫٨ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ ﻝ ﻡ // ﺹ ﻉ‬ ‫9 ﻓﻰ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ، ‪ C ∋ E‬ﺏ ، ﻫـ ∋ ‪ C‬ﺟـ ، ٥‪ C‬ﻫـ = ٤ ﻫـ ﺟـ.‬ ‫ﺇﺫﺍ ﻛﺎﻥ ‪ ١٠ = E C‬ﺳﻢ، ‪ E‬ﺏ = ٨ﺳﻢ. ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﻫـ // ﺏ ﺟـ . ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬ ‫01 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﻜﻞ ﺭﺑﺎﻋﻰ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻫـ. ﻓﺈﺫﺍ ﻛﺎﻥ ‪ C‬ﻫـ = ٦ﺳﻢ، ﺏ ﻫـ = ٣١ﺳﻢ، ﻫـ ﻭ = ٠١ﺳﻢ،‬ ‫ﻫـ ‪٧٫٨ = E‬ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﺒﻪ ﻣﻨﺤﺮﻑ.‬ ‫11 ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺮﺳﻮﻣﺔ ﺑﻴﻦ ﻣﻨﺘﺼﻔﻰ ﺿﻠﻌﻴﻦ ﻓﻰ ﻣﺜﻠﺚ ﻳﻮﺍﺯﻯ ﺿﻠﻌﻪ ﺍﻟﺜﺎﻟﺚ، ﻭﻃﻮﻟﻬﺎ ﻳﺴﺎﻭﻯ‬ ‫ﻧﺼﻒ ﻃﻮﻝ ﻫﺬﺍ ﺍﻟﻀﻠﻊ.‬ ‫21 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ C ∋ E‬ﺏ ﺣﻴﺚ ٣‪ E ٢ = E C‬ﺏ، ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ٥ ﺟـ ﻫـ = ٣ ‪ C‬ﺟـ، ﺭﺳﻢ ‪ C‬ﺱ ﻳﻘﻄﻊ ﺏ ﺟـ‬ ‫ﻓﻰ ﺱ. ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﻭ = ٨ﺳﻢ، ‪ C‬ﺱ = ٠٢ﺳﻢ، ﺣﻴﺚ ﻭ ∋ ‪ C‬ﺱ . ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﻂ ‪ ،E‬ﻭ، ﻫـ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ.‬ ‫ﻫـ‬ ‫‪E‬‬ ‫31 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ، ﺑﺤﻴﺚ ﺏﺟـ = ٣ ، ﻫـ ∋ ‪ ، E C‬ﺑﺤﻴﺚ ‪ ، ٣ = E C‬ﺭﺳﻢ ﺟـ ﻫـ ﻓﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ،‬ ‫٧‬ ‫٤‬ ‫‪E‬‬ ‫‪C‬‬ ‫ﺭﺳﻢ ‪ E‬ﺹ // ﺟـ ﺱ ﻓﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺹ. ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺱ = ﺏ ﺹ.‬ ‫41 ‪ C‬ﺏ ﺟـ ‪ E‬ﻣﺴﺘﻄﻴﻞ ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻡ. ﻫـ ﻣﻨﺘﺼﻒ ‪ C‬ﻡ ، ﻭ ﻣﻨﺘﺼﻒ ﻡ ﺟـ . ﺭﺳﻢ ‪ E‬ﻫـ ﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ،‬ ‫ﻭﺭﺳﻢ ‪ E‬ﻭ ﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﺹ. ﺃﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ‪ C‬ﺟـ .‬ ‫‪ïM‬‬ ‫−‬
  • 47.
    ‫51 ﺍﻛﺘﺐ ﻣﺎﺗﺴﺎﻭﻳﻪ ﻛﻞ ﻣﻦ ﺍﻟﻨﺴﺐ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺴﺘﺨﺪﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ:‬ ‫ً‬ ‫أ‬ ‫ﺟ‬ ‫ﻫ‬ ‫ز‬ ‫‪ C‬ﺏ = ‪ E‬ﻫـ‬ ‫ﺏ ﺟـ‬ ‫ﻡ‪E‬‬ ‫ﻡ‪C‬‬ ‫= ................‬ ‫‪C‬ﺏ‬ ‫................‬ ‫ﻡﺏ‬ ‫=‬ ‫‪ C‬ﺏ ‪ E‬ﻫـ‬ ‫ﺏ ﺟـ ﻫـ ﻭ‬ ‫ﻡ ﺏ = ................‬ ‫................‬ ‫ب ‪ C‬ﺟـ‬ ‫ﺏ ﺟـ = ﻫـ ﻭ‬ ‫................‬ ‫‪C‬‬ ‫................‬ ‫ﺟـ‬ ‫د ‪= C‬‬ ‫‪ C‬ﺏ ‪ E‬ﻫـ‬ ‫و ﻡ ﺟـ ﻡ ﻭ‬ ‫= ................‬ ‫‪E‬‬ ‫‪ C‬ﺟـ‬ ‫ح ‪ E‬ﻭ = ‪ C‬ﺟـ‬ ‫................‬ ‫ﻡﻭ‬ ‫61 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺍﺣﺴﺐ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬ ‫ﺟ‬ ‫ب‬ ‫أ‬ ‫+‬ ‫+‬ ‫−‬ ‫−‬ ‫+‬ ‫+‬ ‫:‬ ‫71‬ ‫‪E‬‬ ‫‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻡ{، ﻫـ ∋ ﻡ ﺏ ،‬ ‫‪C‬‬ ‫ﻭ ∋ ﻡ ‪ C ، E‬ﺟـ // ﻭ ﻫـ // ‪ E‬ﺏ‬ ‫ﺃﻭﺟﺪ:‬ ‫أ ﻃﻮﻝ ﻡ ﻭ‬ ‫ب ﻃﻮﻝ ‪ C‬ﻡ‬ ‫ﻭ‬ ‫81 ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{ ، ﺱ ∋ ‪ C‬ﺏ ، ﺹ ∋ ﺟـ ‪ ، E‬ﻛﺎﻥ ﺱ ﺹ // ﺏ ‪ C // E‬ﺟـ‬ ‫ﺃﺛﺒﺖ ﺃﻥ: ‪ C‬ﺱ * ﻫـ ‪ = E‬ﺟـ ﺹ * ﻫـ ﺏ‬ ‫91 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺍﺣﺴﺐ ﻗﻴﻢ ﺱ، ﺹ ﺍﻟﻌﺪﺩﻳﺔ:‬ ‫ب‬ ‫‪C‬‬ ‫أ‬ ‫−‬ ‫‪E‬‬ ‫+‬ ‫+‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫02 ‪ C‬ﺏ ﺟـ ‪ E‬ﺷﻜﻞ ﺭﺑﺎﻋﻰ ﻓﻴﻪ ‪ C‬ﺏ // ﺟـ ‪ ، E‬ﺗﻘﺎﻃﻊ ﻗﻄﺮﺍه ﻓﻰ ﻡ، ﻧﺼﻒ ﺏ ﺟـ ﻓﻰ ﻫـ،‬ ‫ﻭﺭﺳﻢ ﻫـ ﻭ // ﺏ ‪ ، C‬ﻭﻳﻘﻄﻊ ﺏ ‪ E‬ﻓﻰ ﺱ ، ‪ C‬ﺟـ ﻓﻰ ﺹ ، ‪ E C‬ﻓﻰ ﻭ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ ﻫـ ﺹ = ١ ‪ C‬ﺏ.‬ ‫٢‬ ‫¯‬ ‫−‬ ‫+‬ ‫+‬ ‫ﺟ‬ ‫+‬ ‫ب ‪C‬ﺹ ﺏﺱ‬ ‫=‬ ‫ﺟـ ﻡ ‪ E‬ﻡ‬ ‫−‬ ‫¯‬ ‫−‬
  • 48.
    ‫ﻣﻨﺼﻔﺎ اﻟﺰواﻳﺔ ﻓﻰاﻟﻤﺜﻠﺚ وا ﺟﺰاء اﻟﻤﺘﻨﺎﺳﺒﺔ‬ ‫3-2‬ ‫‪Angle Bisectors and Proportional Parts‬‬ ‫: ‪ E C‬ﻳﻨﺼﻒ ‪ . Cc‬ﺃﻛﻤﻞ:‬ ‫1‬ ‫‪E‬‬ ‫أ ﺏﺟـ =‬ ‫‪E‬‬ ‫ب ‪ C‬ﺟـ =‬ ‫.....................................‬ ‫‪C‬ﺏ‬ ‫ﺟ ﺏ‪E‬‬ ‫= ........................................‬ ‫ﺏ‪C‬‬ ‫‪C‬‬ ‫........................................‬ ‫د ‪ C‬ﺏ * ﺟـ ‪= E‬‬ ‫‪E‬‬ ‫........................‬ ‫2 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ )ﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ(‬ ‫ب‬ ‫‪C‬‬ ‫أ ‪C‬‬ ‫+‬ ‫−‬ ‫‪E‬‬ ‫‪E‬‬ ‫......................................................................................................‬ ‫‪C‬‬ ‫ﺟ‬ ‫......................................................................................................‬ ‫د‬ ‫+‬ ‫‪C‬‬ ‫+‬ ‫+‬ ‫‪E‬‬ ‫‪E‬‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻣﺤﻴﻄﻪ ٧٢ﺳﻢ، ﺭﺳﻢ ﺏ ‪ E‬ﻳﻨﺼﻒ ‪ c‬ﺏ ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ‪.E‬‬ ‫ﺇﺫﺍ ﻛﺎﻥ ‪٤ = E C‬ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ، ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ﺏ ﺟـ ، ‪E C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫4 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺱ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺤﻴﻂ 9‪ C‬ﺏ ﺟـ.‬ ‫ﺟ‬ ‫ب‬ ‫‪C‬‬ ‫‪C‬‬ ‫أ‬ ‫+‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫5 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٨ﺳﻢ، ‪ C‬ﺟـ = ٤ﺳﻢ، ﺏ ﺟـ = ٦ﺳﻢ، ﺭﺳﻢ ‪ E C‬ﻳﻨﺼﻒ ‪ C‬ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ‪ ،E‬ﻭﺭﺳﻢ‬ ‫‪ C‬ﻫـ ﻳﻨﺼﻒ ‪ Cc‬ﺍﻟﺨﺎﺭﺟﺔ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﻫـ ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ E‬ﻫـ ، ‪ C ، E C‬ﻫـ .‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 49.
    ‫6 ﻓﻰ ﻛﻞﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ: ﺃﺛﺒﺖ ﺃﻥ ﺱ ﺹ // ﺏ ﺟـ‬ ‫‪E‬‬ ‫أ‬ ‫ب‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫7 ﻓﻰ ﻛﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ، ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻫـ ﻳﻨﺼﻒ ‪ Cc‬ﺏ ﺟـ.‬ ‫ب‬ ‫‪C‬‬ ‫أ‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫‪C‬‬ ‫8‬ ‫: ﻫـ ‪ // E‬ﺱ ﺹ // ﺏ ﺟـ ،‬ ‫‪ * E C‬ﺏ ﺱ = ‪ C‬ﺟـ * ﻫـ ﺱ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺹ ﻳﻨﺼﻒ ‪c‬ﺟـ ‪.E C‬‬ ‫‪E‬‬ ‫.................................................................................................................................‬ ‫.................................................................................................................................‬ ‫9 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ‪ ∋ E‬ﺏ ﺟـ ، ‪ ∌ E‬ﺏ ﺟـ ﺣﻴﺚ ﺟـ ‪ C = E‬ﺏ. ﺭﺳﻢ ﺟـ ﻫـ // ‪ C E‬ﻭﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﻫـ، ﻭﺭﺳﻢ‬ ‫ﻫـ ﻭ // ﺏ ﺟـ ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻭ ﺃﺛﺒﺖ ﺃﻥ ﺏ ﻭ ﻳﻨﺼﻒ ‪ Cc‬ﺏ ﺟـ‬ ‫..................................................................................................................................................................................................................................‬ ‫01‬ ‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﺟـ = ٩ﺳﻢ،‬ ‫ﺏ ﺟـ = ٠١ﺳﻢ. ‪ ∋ E‬ﺏ ﺟـ ﺑﺤﻴﺚ ﺏ ‪٤ = E‬ﺳﻢ .‬ ‫ﺭﺳﻢ ﺏ ﻫـ = ‪ E C‬ﻭﻳﻘﻄﻊ ‪ C ، E C‬ﺏ ﻓﻰ ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ‪ E C‬ﻳﻨﺼﻒ ‪.Cc‬‬ ‫ب ﺃﻭﺟﺪ ‪ C9) W‬ﺏ ﻭ( : ‪9) W‬ﺟـ ﺏ ﻭ(‬ ‫‪C‬‬ ‫‪E‬‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 50.
    ‫ﺗﻄﺒﻴﻘﺎت اﻟﺘﻨﺎﺳﺐ ﻓﻰاﻟﺪاﺋﺮة‬ ‫3-3‬ ‫‪Applications of Proportionality in the Circle‬‬ ‫1 ﺣﺪﺩ ﻣﻮﻗﻊ ﻛﻞ ﻣﻦ ﺍﻟﻨﻘﻂ ﺍﻟﺘﺎﻟﻴﺔ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻭﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠١ﺳﻢ، ﺛﻢ ﺍﺣﺴﺐ ﺑﻌﺪ ﻛﻞ‬ ‫ُ َ‬ ‫ﻧﻘﻄﺔ ﻋﻦ ﻛﺰ ﺍﻟﺪﺍﺋﺮﺓ.‬ ‫ﻣﺮ‬ ‫ﺟ ‪X‬ﻡ)ﺟـ( = ﺻﻔﺮ‬ ‫ب ‪X‬ﻡ)ﺏ( = ٦٩‬ ‫أ ‪X‬ﻡ) ‪٣٦ - = ( C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫2 ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺍﻟﻤﻌﻄﺎﺓ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﻭﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪:H‬‬ ‫.................................................................................................................‬ ‫أ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺣﻴﺚ ‪ C‬ﻡ = ٢١ﺳﻢ ، ‪ ٩ = H‬ﺳﻢ‬ ‫.................................................................................................................‬ ‫ب ﺍﻟﻨﻘﻄﺔ ﺏ ﺣﻴﺚ ﺏ ﻡ = ٨ ﺳﻢ ، ‪ ١٥ = H‬ﺳﻢ‬ ‫.................................................................................................................‬ ‫ﺟ ﺍﻟﻨﻘﻄﺔ ﺟـ ﺣﻴﺚ ﺟـ ﻡ = ٧ ﺳﻢ ، ‪ ٧ = H‬ﺳﻢ‬ ‫.................................................................................................................‬ ‫د ﺍﻟﻨﻘﻄﺔ ‪ E‬ﺣﻴﺚ ‪ E‬ﻡ = ٧١ ﺳﻢ، ‪ ٤ = H‬ﺳﻢ‬ ‫3 ﺇﺫﺍﻛﺎﻥ ﺑﻌﺪ ﻧﻘﻄﺔ ﻋﻦ ﻛﺰ ﺩﺍﺋﺮﺓ ﻳﺴﺎﻭﻯ ٥٢ﺳﻢ ﻭﻗﻮﺓ ﻫﺬه ﺍﻟﻨﻘﻄﺔ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻳﺴﺎﻭﻯ ٠٠٤.‬ ‫ﻣﺮ‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﻫﺬه ﺍﻟﺪﺍﺋﺮﺓ.  ..............................................................................................................................................‬ ‫ﻣﺮ‬ ‫4 ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠٢ﺳﻢ. ‪ C‬ﻧﻘﻄﺔ ﺗﺒﻌﺪ ﻋﻦ ﻛﺰ ﺍﻟﺪﺍﺋﺮﺓ ﻣﺴﺎﻓﺔ ٦١ﺳﻢ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ﺏ ﺟـ‬ ‫ﺣﻴﺚ ‪ ∋ C‬ﺏ ﺟـ ، ‪ C‬ﺏ = ٢ ‪ C‬ﺟـ. ﺇﺣﺴﺐ ﻃﻮﻝ ﺍﻟﻮﺗﺮ ﺏ ﺟـ .‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫5‬ ‫: ﺍﻟﺪﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ‬ ‫ﺣﻴﺚ ‪ C‬ﺏ ∩ ﺟـ ‪ ∩ E‬ﻫـ ﻭ = }ﺱ{، ﺱ ‪ E ٢ = E‬ﺟـ ، ﻫـ ﻭ = ٠١ﺳﻢ،‬ ‫‪X‬ﻥ )ﺱ( = ٤٤١.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ ‪ C‬ﺏ ﻣﺤﻮﺭ ﺃﺳﺎﺳﻰ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻡ، ﻥ.‬ ‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺱ ﺟـ ، ﺱ ﻭ‬ ‫ﺟ ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺸﻜﻞ ﺟـ ‪ E‬ﻭ ﻫـ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬ ‫‪E‬‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 51.
    ‫6 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬ ‫ً‬ ‫ب‬ ‫‪E‬‬ ‫‪C‬‬ ‫أ‬ ‫‪c‬‬ ‫‪E‬‬ ‫‪E‬‬ ‫ﺟ‬ ‫‪c‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫................................................................‬ ‫د‬ ‫................................................................‬ ‫‪E‬‬ ‫ﻫ‬ ‫و‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫ز‬ ‫................................................................‬ ‫ح‬ ‫‪E‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪C‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫ط‬ ‫‪E‬‬ ‫− ‪c‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫+‬ ‫‪C‬‬ ‫................................................................‬ ‫− ‪c‬‬ ‫‪c‬‬ ‫................................................................‬ ‫+‬ ‫‪E‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪E c‬‬ ‫................................................................‬ ‫+‬ ‫‪c‬‬ ‫................................................................‬ ‫‪c‬‬ ‫................................................................‬ ‫‪c‬‬ ‫7‬ ‫: ‪c)X‬ﺏ ‪ C‬ﺟـ( = ٣٣‪c)X ،c‬ﺏ ‪ E‬ﺟـ( = ٠٧‪،c‬‬ ‫‪ C )X‬ﺏ ( = ٤٩‪ )X ، c‬ﺟـ ﺹ ( = ٠٠١‪ c‬ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﻛﻞ ﻣﻦ:‬ ‫أ ﺱﺹ‬ ‫ب ‪C‬ﺱ‬ ‫ﺟ ‪c‬ﺏ ﻫـ ﺟـ‬ ‫‪c‬‬ ‫‪E‬‬ ‫‪c‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﺼﻨﺎﻋﺔ: ﻣﻨﺸﺎﺭ ﺩﺍﺋﺮﻯ ﻟﻘﻄﻊ ﺍﻟﺨﺸﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ‬ ‫ﺩﺍﺋﺮﺗﻪ ٠١ﺳﻢ. ﻳﺪﻭﺭ ﺩﺍﺧﻞ ﺣﺎﻓﻈﺔ ﺣﻤﺎﻳﺔ، ﻓﺈﺫﺍ ﻛﺎﻥ ‪c)X‬ﺏ ‪= (E C‬‬ ‫٥٤‪ )X ،c‬ﺏ ‪ c١٥٥ = ( E‬ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻮﺱ ﻗﺮﺹ ﺍﻟﻤﻨﺸﺎﺭ ﺧﺎﺭﺝ ﺣﺎﻓﻈﺔ‬ ‫ﺍﻟﺤﻤﺎﻳﺔ.‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫‪C‬‬ ‫9 ﺍ ﺼﺎﻻﺕ: ﺗﺘﺒﻊ ﺍﻹﺷﺎﺭﺍﺕ ﺍﻟﺘﻰ ﺗﺼﺪﺭ ﻋﻦ ﺑﺮﺝ ﺍﻻﺗﺼﺎﻻﺕ ﻓﻰ ﻣﺴﺎﺭﻫﺎ‬ ‫ﺷﻌﺎﻋﺎ، ﻧﻘﻄﺔ ﺑﺪﺍﻳﺘﻪ ﻋﻠﻰ ﻗﻤﺔ ﺍﻟﺒﺮﺝ، ﻭﻳﻜﻮﻥ ﻣﻤﺎﺳﺎ ﻟﺴﻄﺢ ﺍﻷﺭﺽ،‬ ‫ً‬ ‫ً‬ ‫ﻛﻤﺎ ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ. ﺣﺪﺩ ﻗﻴﺎﺱ ﺍﻟﻘﻮﺱ ﺍﻟﻤﺤﺼﻮﺭ ﺑﺎﻟﻤﻤﺎﺳﻴﻦ‬ ‫ﺑﻔﺮﺽ ﺃﻥ ﺍﻟﺒﺮﺝ ﻳﻘﻊ ﻋﻠﻰ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ، ‪c)X‬ﺟـ ‪ C‬ﺏ( = ٠٨‪c‬‬ ‫¯‬ ‫−‬ ‫¯‬
  • 52.
    ‫ﺗﻤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫1 ﺃﻛﻤﻞﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬ ‫أ‬ ‫ب‬ ‫ﺟ‬ ‫د‬ ‫ﻫ‬ ‫ﺍﻟﻤﻨﺼﻔﺎﻥ ﺍﻟﺪﺍﺧﻠﻰ ﻭﺍﻟﺨﺎﺭﺟﻰ ﻟﺰﺍﻭﻳﺔ ﻭﺍﺣﺪﺓ‬ ‫ﻣﻨﺼﻔﺎﺕ ﺯﻭﺍﻳﺎ ﺍﻟﻤﺜﻠﺚ ﺗﺘﻘﺎﻃﻊ ﻓﻰ ..............................................................................................................................................‬ ‫ﺇﺫﺍ ﺭﺳﻢ ﻣﺴﺘﻘﻴﻢ ﻳﻮﺍﺯﻯ ﺃﺣﺪ ﺃﺿﻼﻉ ﻣﺜﻠﺚ، ﻭﻳﻘﻄﻊ ﺍﻟﻀﻠﻌﻴﻦ ﺍﻵﺧﺮﻳﻦ ﻓﺈﻧﻪ .........................................................‬ ‫ﺍﻟﻤﻨﺼﻒ ﺍﻟﺨﺎﺭﺟﻰ ﻟﺰﺍﻭﻳﺔ ﺭﺃﺱ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ .................................... ﻗﺎﻋﺪﺓ ﺍﻟﻤﺜﻠﺚ.‬ ‫ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﺋﺮﺓ ﻡ ﻛﻤﻴﺔ ﺳﺎﻟﺒﺔ، ﻓﺈﻥ ﻧﻘﻄﺔ ‪ C‬ﺗﻘﻊ .....................................................................‬ ‫......................................................................................................................‬ ‫2 ﻣﺴﺘﻌﻴﻨﺎ ﺑﻤﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬ ‫ً‬ ‫ب‬ ‫+‬ ‫أ‬ ‫+‬ ‫‪E‬‬ ‫‪c‬‬ ‫−‬ ‫‪c‬‬ ‫ﺟ‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪c‬‬ ‫‪C‬‬ ‫−‬ ‫3 ﺩﺍﺋﺮﺗﺎﻥ ﻡ، ﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ.‬ ‫ﻫـ ‪ E‬ﻣﻤﺎﺱ ﻣﺸﺘﺮﻙ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ ﻡ، ﻥ ﻋﻨﺪ ‪ ،E‬ﻫـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ،‬ ‫ﺏ ‪ E ∩ C‬ﻫـ = }ﺟـ{‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ: ﺏ ﺟـ ﻣﺤﻮﺭ ﺃﺳﺎﺳﻰ ﻟﻠﺪﺍﺋﺮﺗﻴﻦ.‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٩ﺳﻢ، ‪) X‬ﺟـ( = ٦٣، ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪ ، C‬ﺟـ ‪E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫ﻥ‬ ‫4‬ ‫ﺃﺣﺪ ﺍﻟﺤﻮﺍﺟﺰ ﺍﻟﻤﺮﻭﺭﻳﺔ ‪ C‬ﺏ ﺟـ ‪ E‬ﻋﻠﻰ ﺷﻜﻞ‬ ‫ﻣﺴﺘﻄﻴﻞ ﻭﻣﻜﻮﻥ ﻣﻦ ﻣﺘﻮﺍﺯﻳﺔ ﻭﻣﺘﻄﺎﺑﻘﺔ، ﻭﻋﻠﻰ ﺃﺑﻌﺎﺩ ﻣﺘﺴﺎﻭﻳﺔ،‬ ‫ﻭﻣﺜﺒﺖ ﺑﻪ ﺩﻋﺎﻣﺘﺎﻥ ‪ C‬ﺟـ ، ﺏ ‪ ، E‬ﺗﻘﻄﻌﺎﻥ ﺃﺣﺪ ﺍﻟﻘﻀﺒﺎﻥ ﺍﻟﺮﺃﺳﻴﺔ ﻓﻰ‬ ‫ﻭ، ﻫـ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﻓﺈﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ٠٢١ﺳﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ﻭ .‬ ‫5 ﻫﻨﺪﺳﺔ ﻣﻌﻤﺎ ﺔ: ﻣﻦ ﻧﻘﻄﺔ ‪ C‬ﻭﺍﻟﺘﻲ ﺗﺒﻌﺪ ٦٫١ ﻣﺘﺮﺍ ﻋﻦ ﻗﺎﻋﺪﺓ ﻗﻨﻄﺮﺓ‬ ‫ً‬ ‫ﺗﻌﻠﻮ ﺑﺎﺏ ﻣﻨﺰﻝ، ﻭﺟﺪ ﺃﻥ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﺋﺮﺓ ﻗﻮﺱ ﺍﻟﻘﻨﻄﺮﺓ‬ ‫ﻳﺴﺎﻭﻯ ٤٫٦ ﻣﺘﺮ ﻣﺮﺑﻊ.‬ ‫أ ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﺎﻋﺪﺓ ﺍﻟﻘﻨﻄﺮﺓ )ﺏ ﺟـ(.‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﺍﺭﺗﻔﺎﻉ ﺍﻟﻘﻨﻄﺮﺓ ﻳﺴﺎﻭﻯ ٠٨ﺳﻢ، ﻓﺄﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪E‬‬ ‫ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻘﻨﻄﺮﺓ ﻭﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ.‬ ‫‪ïM‬‬ ‫−‬ ‫‪E‬‬ ‫‪C‬‬ ‫¯‬ ‫‪E‬‬ ‫‪C‬‬
  • 53.
    ‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬ ‫1 ﻣﺴﺘﺨﺪﻣﺎﻣﻌﻄﻴﺎﺕ ﺍﻟﺸﻜﻞ، ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺮﻣﺰ ﺍﻟﻤﺴﺘﺨﺪﻡ ﻓﻰ ﺍﻟﻘﻴﺎﺱ.‬ ‫ً‬ ‫ب‬ ‫‪E‬‬ ‫‪C‬‬ ‫أ‬ ‫‪C‬‬ ‫ﺟ‬ ‫−‬ ‫‪E‬‬ ‫‪E‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪C‬‬ ‫+‬ ‫‪c‬‬ ‫: ‪ C c‬ﺟـ ﺏ ﻗﺎﺋﻤﺔ، ﺏ ﺟـ // ‪ E‬ﻫـ‬ ‫2‬ ‫ﺟـ ‪ // E‬ﻫـ ﻭ . ﺃﺛﺒﺖ ﺃﻥ:‬ ‫٢‬ ‫‪ C‬ﻭ * ‪ C‬ﺏ = )‪ C‬ﻫـ(٢ + )ﻫـ ‪(E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫3 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ﻥ ﻧﻘﻄﺔ ﺩﺍﺧﻞ ﺍﻟﻤﺜﻠﺚ. ﻧﺼﻔﺖ ﺍﻟﺰﻭﺍﻳﺎ ‪ C‬ﻥ ﺏ، ﺏ ﻥ ﺟـ ، ﺟـ ﻥ ‪C‬‬ ‫ﺑﻤﻨﺼﻔﺎﺕ ﻻﻗﺖ ‪ C‬ﺏ ، ﺏ ﺟـ ، ﺟـ ‪ C‬ﻓﻰ ‪ ،E‬ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ.‬ ‫‪ E C‬ﺏ ﻫـ ﺟـ ﻭ‬ ‫*‬ ‫*‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫‪ E‬ﺏ ﻫـ ﺟـ ﻭ ‪C‬‬ ‫=١‬ ‫4 ‪ C‬ﻧﻘﻄﺔ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ‪ C‬ﺏ ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ﺏ.‬ ‫ﺭﺳﻢ ‪ C‬ﺟـ ، ‪ C‬ﻫـ ﻳﻘﻄﻌﺎﻥ ﺍﻟﺪﺍﺋﺮﺓ ﻓﻰ ﺟـ، ‪ ،E‬ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ،‬ ‫‪ C‬ﺟـ = ٤ﺳﻢ، ﻫـ ﻭ = ٩ﺳﻢ.‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ‪X‬ﻡ) ‪ ٣٦ = ( C‬ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ‪ C‬ﻫـ ، ﺟـ ‪E‬‬ ‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺱ ∋ ﺟـ ‪ E‬ﺣﻴﺚ ﺟـ ﺱ = ٢ﺳﻢ ﺃﻭﺟﺪ ‪X‬ﻡ)ﺱ(، ‪X‬ﻡ )‪.(E‬‬ ‫‪E‬‬ ‫‪C‬‬ ‫5 ‪ E C‬ﻣﺘﻮﺳﻂ ﻓﻰ 9‪ C‬ﺏ ﺟـ، ﺟـ ﺱ ﻳﻨﺼﻒ ‪ E C c‬ﺏ ﻭﻳﻘﻄﻊ ‪ C‬ﺏ ﻓﻰ ﺱ، ‪ E‬ﺹ ﻳﻨﺼﻒ ‪ E Cc‬ﺟـ ﻭﻳﻘﻄﻊ‬ ‫‪ C‬ﺟـ ﻓﻰ ﺹ.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ﺏ ﺟـ‬ ‫ب ﺇﺫﺍ ﺭﺳﻢ ‪ E‬ﻉ = ﺱ ﺹ ﻭ ﻳﻘﻄﻌﻪ ﻓﻰ ﻉ، ﻛﺎﻥ ﺱ ﻉ = ٩ﺳﻢ، ﻉ ﺹ = ٦١ﺳﻢ‬ ‫ﻭ‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ : ‪ E‬ﺱ ، ‪ E‬ﺹ .‬ ‫¯‬ ‫−‬ ‫¯‬
  • 54.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬ ‫‪Oó©àe øeQÉ«àN’G á∏İSCG‬‬ ‫ﺱ‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ٦ = ٩ ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬ ‫٢‬ ‫ب ٦١‬ ‫أ ٢١‬ ‫ﺟ ٧٢‬ ‫2 ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ﺱ - ٠٢ = ﺻﻔﺮ ﻫﻤﺎ:‬ ‫ب ٤، -٥‬ ‫أ ٢، -٠١‬ ‫ﺟ ٥، -٤‬ ‫د ١٨‬ ‫د -٤، ٥‬ ‫‪C‬‬ ‫3 ﺇﺫﺍ ﻛﺎﻥ ‪ E‬ﻫـ // ﺏ ﺟـ ﻓﺈﻥ ‪ C‬ﺟـ ﻳﺴﺎﻭﻯ:‬ ‫ب ٤ﺳﻢ‬ ‫أ ٣ﺳﻢ‬ ‫د ٠١ﺳﻢ‬ ‫ﺟ ٦ﺳﻢ‬ ‫‪E‬‬ ‫4 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﻝ١، ﻝ٢، ﻝ٣ ﻣﺘﻮﺍﺯﻳﺔ، ﻳﻘﻄﻌﻬﺎ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ‬ ‫ﻡ، ﻡ/ ﻭﺍﻷﻃﻮﺍﻝ ﻣﻘﺪﺭﺓ ﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ ﻓﺈﻥ ﺱ ﺗﺴﺎﻭﻯ:‬ ‫ب ٣‬ ‫أ ٥‬ ‫د ٢‬ ‫ﺟ ٧‬ ‫−‬ ‫+‬ ‫5‬ ‫‪ E C‬ﻳﻨﺼﻒ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺨﺎﺭﺟﺔ‬ ‫ﻋﻨﺪ ‪ C‬ﻓﺈﻥ ﻃﻮﻝ ﺟـ ‪ E‬ﻳﺴﺎﻭﻯ:‬ ‫ب ٠١ﺳﻢ‬ ‫أ ٥ﺳﻢ‬ ‫د ٨١ﺳﻢ‬ ‫ﺟ ٢١ﺳﻢ‬ ‫‪C‬‬ ‫‪E‬‬ ‫6 ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥ﺳﻢ، ‪ E C‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ‪،E‬‬ ‫‪١٢ = E C‬ﺳﻢ ﻓﺈﻥ ﻃﻮﻝ ‪ C‬ﺟـ ﻳﺴﺎﻭﻯ:‬ ‫ب ٢١ﺳﻢ‬ ‫أ ٧ﺳﻢ‬ ‫د ٨١ﺳﻢ‬ ‫ﺟ ٥١ﺳﻢ‬ ‫7 ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺳﻄﺢ 9‪ E C‬ﻫـ = ٦١ﺳﻢ‬ ‫ﻓﺈﻥ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ = .......................... ﺳﻢ٢.‬ ‫أ ٦١‬ ‫ب ٢٣‬ ‫ﺟ ٤٦‬ ‫د ٨٢١‬ ‫‪E‬‬ ‫‪C‬‬ ‫٢‬ ‫‪ïM‬‬ ‫−‬ ‫‪C‬‬ ‫‪E‬‬
  • 55.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻰ‬ ‫‪:Iô«°ü≤dG äÉHÉLE’GäGP á∏İSC’G‬‬ ‫8‬ ‫:‬ ‫‪ C‬ﺏ // ﺟـ ‪ ، E‬ﺏ ﻫـ = ٢ﺳﻢ، ﺟـ ﻫـ = ٣ﺳﻢ،‬ ‫‪١٠ = E C‬ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫: ﺏ ﻫـ ﻳﻨﺼﻒ ‪c‬ﺏ،‬ ‫9‬ ‫ﻭﻳﻘﻄﻊ ‪ C‬ﺟـ ﻓﻰ ﻫـ. ‪ C‬ﺏ = ٦ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ، ‪٧٫٥ = C E‬ﺳﻢ‬ ‫ﺏ ﺟـ = ٤ﺳﻢ . ﺃﺛﺒﺖ ﺃﻥ ‪ E‬ﻫـ ﻳﻨﺼﻒ ‪ E C c‬ﺟـ.‬ ‫‪E‬‬ ‫‪C‬‬ ‫:‬ ‫01‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪ C‬ﺏ ، ﺟـ ‪ E‬ﻭﺗﺮﺍﻥ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﺏ ∩ ﺟـ ‪} = E‬ﻫـ{‬ ‫ﺃﺛﺒﺖ ﺃﻥ 9‪ C‬ﻫـ ﺟـ + 9‪ E‬ﻫـ ﺏ‬ ‫‪á∏jƒ£dG äÉHÉLE’G äGP øjQɪàdG‬‬ ‫11‬ ‫: ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻓﻴﻪ ‪ C‬ﺏ = ٢ ﺏ ﺟـ = ٢١ﺳﻢ،‬ ‫‪ C‬ﺟـ = ٩ﺳﻢ، ‪ C ∋ E‬ﺏ ﺣﻴﺚ ‪٣ = E C‬ﺳﻢ،‬ ‫ﻫـ ∋ ‪ C‬ﺟـ ﺣﻴﺚ ‪ C‬ﻫـ = ٤ﺳﻢ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ C‬ﻫـ ‪E‬‬ ‫ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﻫـ ‪. E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫21 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ‪ ∋ E‬ﺏ ﺟـ ، ‪ ∌ E‬ﺏ ﺟـ ، ﺭﺳﻢ ‪ E‬ﻭ ﻓﻘﻄﻊ ‪ C‬ﺟـ ، ‪ C‬ﺏ ﻓﻰ ﻫـ، ﻭ ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ‬ ‫ﻭﺏ‬ ‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﺸﻜﻞ ﺏ ﺟـ ﻫـ ﻭ ﺭﺑﺎﻋﻴﺎ ﺩﺍﺋﺮ ﻳﺎ ﺃﺛﺒﺖ ﺃﻥ ﺏ ‪ = E‬ﺟـ ﻫـ .‬ ‫ًّ‬ ‫ًّ‬ ‫‪ E‬ﻫـ‬ ‫‪?á«aɰVEG IóYɰùªd êÉàëJ πg‬‬ ‫ﺃﻥ ﻟﻢ ﺗﺴﺘﻄﻊ ﺇﺟﺎﺑﺔ ﺃﻯ ﻣﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻓﺎﺭﺟﻊ ﻟﻠﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ:‬ ‫١‬ ‫−‬ ‫¯‬ ‫٢‬ ‫٣‬ ‫٤‬ ‫٥‬ ‫٦‬ ‫٧‬ ‫٨‬ ‫٩‬ ‫٠١‬ ‫١١‬ ‫٢١‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫−‬ ‫¯‬
  • 56.
    ‫‪IóMƒdG‬‬ ‫4‬ ‫ﺣﺴﺎﺏ ﺍﻟﻤﺜﻠﺜﺎﺕ‬ ‫‪Trigonometry‬‬ ‫دروس اﻟﻮﺣﺪة‬ ‫ﺍﻟﺪﺭﺱ)٤ - ١(: ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٤ - ٢(: ﻃﺮﻕ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٤ - ٣(: ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٤ - ٤(: ﺍﻟﻌﻼﻗﺎﺕ ﺑﻴﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٤ - ٥(: ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻰ ﻟﻠﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ.‬ ‫ﺍﻟﺪﺭﺱ )٤ - ٦(: ﺇﻳﺠﺎﺩ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺑﻤﻌﻠﻮﻣﻴﺔ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ.‬
  • 57.
    ‫اﻟﺰاوﻳﺔ اﻟﻤﻮﺟﻬﺔ‬ ‫4-1‬ ‫‪Directed Angle‬‬ ‫:‬ ‫1‬ ‫أﺗﻜﻮﻥ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﻭﺿﻊ ﻗﻴﺎﺳﻰ ﺇﺫﺍ ﻛﺎﻥ‬ ‫ب‬ ‫ﻳﻘﺎﻝ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺃﻧﻬﺎ ﻣﺘﻜﺎﻓﺌﺔ ﺇﺫﺍ ﻛﺎﻥ .............................................................................‬ ‫.................................................................................................‬ ‫ﺟ ﺗﻜﻮﻥ ﺍﻟﺰﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﻛﺎﻥ ﺩﻭﺭﺍﻥ ﺍﻟﺰﺍﻭﻳﺔ.................................. ﻭﺗﻜﻮﻥ ﺳﺎﻟﺒﺔ ﺇﺫﺍ ﻛﺎﻥ ﺩﻭﺭﺍﻥ ﺍﻟﺰﺍﻭﻳﺔ‬ ‫د ﺇﺫﺍ ﻭﻗﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ﻋﻠﻰ ﺃﺣﺪ ﻣﺤﺎﻭﺭ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﺗﺴﻤﻰ ..................................‬ ‫ﻫ ﺇﺫﺍ ﻛﺎﻥ )‪ (i‬ﺯﺍﻭﻳﺔ ﻣﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻥ∋ ‪ N‬ﻓﺈﻥ )‪ + i‬ﻥ * ٠٦٣‪ (c‬ﺗﺴﻤﻰ ﺑﺎﻟﺰﻭﺍﻳﺎ‬ ‫و‬ ‫ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣٥‪ c‬ﻫﻮ ..................................‬ ‫ز ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣٩‪ c‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ‬ ‫2 ﺃﻱ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻮﺟﻬﺔ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ‬ ‫..................................‬ ‫......................................................................................................................‬ ‫ب‬ ‫ﺟ‬ ‫د‬ ‫3 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻮﺟﻬﺔ ‪ i‬ﺍﻟﻤﺸﺎﺭ ﺇﻟﻴﻬﺎ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ:‬ ‫ﺟ‬ ‫ب‬ ‫د‬ ‫أ‬ ‫‪i‬‬ ‫‪i‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫..................................‬ ‫..................................‬ ‫ح ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ –٠٩٦‪ c‬ﻫﻮ‬ ‫أ‬ ‫...............................‬ ‫‪c‬‬ ‫‪i‬‬ ‫..............................................................‬ ‫..............................................................‬ ‫..............................................................‬ ‫.............................................................‬ ‫4 ﻋﻴﻦ ﺍﻟﺮﺑﻊ ﺍﻟﺬﻯ ﺗﻘﻊ ﻓﻴﻪ ﻛﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ:‬ ‫أ ٤٢‪       c‬ب ٥١٢‪       c‬ﺟ - ٠٤‪       c‬د -٠٢٢‪       c‬ﻫ ٠٤٦‪c‬‬ ‫........................................  ........................................    ........................................    ........................................     ........................................‬ ‫¯‬ ‫‪i‬‬ ‫−‬ ‫¯‬
  • 58.
    ‫5 ﺿﻊ ﻛﻼﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻣﻮﺿﺤﺎ ﺫﻟﻚ ﺑﺎﻟﺮﺳﻢ:‬ ‫ًّ‬ ‫ً‬ ‫أ ٢٣‪       c‬ب ٠٤١‪       c‬ﺟ - ٠٨‪       c‬د -٠١١‪       c‬ﻫ -٥١٣‪c‬‬ ‫6 ﻋﻴﻦ ﺃﺣﺪ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﺴﺎﻟﺒﺔ ﻟﻜﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ:‬ ‫ﺟ ٠٩‪c‬‬ ‫ب ٦٣١‪c‬‬ ‫أ ٣٨‪c‬‬ ‫........................................‬ ‫د ٤٦٢‪c‬‬ ‫........................................‬ ‫........................................‬ ‫و ٠٧٠١‪c‬‬ ‫ﻫ ٤٦٩‪c‬‬ ‫........................................‬ ‫........................................‬ ‫........................................‬ ‫7 ﻋﻴﻦ ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻜﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺍﻟﺰﺍﻭﻳﺎ ﺍﻵﺗﻴﺔ:‬ ‫ﺟ -٥١٣‪c‬‬ ‫ب -٧١٢‪c‬‬ ‫أ -٣٨١‪c‬‬ ‫8 ﺃﻯ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻮﺟﻬﺔ ﻓﻰ ﺍﻷﺯﻭﺍﺝ ﺍﻟﻤﺮﺗﺒﺔ ﺍﻵﺗﻴﺔ ﻓﻰ ﺍﻟﺸﻜﻞ‬ ‫ﺍﻟﻤﻘﺎﺑﻞ ﻓﻰ ﻭﺿﻊ ﻗﻴﺎﺳﻰ? ﻟﻤﺎﺫﺍ?‬ ‫أ ) ﻭ‪ ، C‬ﻭ ‪( E‬‬ ‫ب ) ﻭ ﺯ ، ﻭ ﺟـ (‬ ‫ﺟ ) ‪C‬ﺏ ، ‪ C‬ﺟـ (‬ ‫‪E‬‬ ‫د ) ﻭ ﻫـ ، ﻭ ‪( E‬‬ ‫ﻫ ) ﻭ‪ ، E‬ﻭ ﺯ (‬ ‫د -٠٧٥‪c‬‬ ‫و ) ﻭﺏ ، ﻭﺯ (‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫9 ﻳﺪﻭﺭ ﺃﺣﺪ ﻻﻋﺒﻰ ﺍﻟﺠﻤﺒﺎﺯ ﻋﻠﻰ ﺟﻬﺎﺯ ﺍﻷﻟﻌﺎﺏ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٠٢‪ c‬ﺍﺭﺳﻢ ﻫﺬه ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ‬ ‫ﻛﺎﻥ ﻣﻊ‬ ‫01 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺍﻛﺘﺐ ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ ﻭﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ ﺗﺸﺘﺮ‬ ‫ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ )-٥٣١‪(c‬‬ ‫¯‬ ‫ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ = -٥٣١‪ c٤٥ = c١٨٠+ c‬ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﻣﻮﺟﺐ = -٥٣١‪c٢٢٥ = c٣٦٠+ c‬‬ ‫ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ = -٥٣١‪ c٣١٥- = c١٨٠ - c‬ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﺑﻘﻴﺎﺱ ﺳﺎﻟﺐ = -٥٣١‪c٤٩٥- = c٣٦٠ - c‬‬ ‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﺻﺤﻴﺢ ? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 59.
    ‫ﻃﺮق ﻗﻴﺎس اﻟﺰاوﻳﺔ‬ ‫4-2‬ ‫‪Methodsof measuring the angle‬‬ ‫‪k‬‬ ‫‪:Oó©àe øe QÉ«àNG :’hCG‬‬ ‫1 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٦‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺗﻜﺎﻓﺊ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ:‬ ‫ب ٠٤٢‪c‬‬ ‫أ ٠٢١‪c‬‬ ‫ﺟ ٠٠٣‪c‬‬ ‫١٣‬ ‫2 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٦‪ r‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬ ‫٩‬‫3 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٤‪ r‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬ ‫ﺟ ﺍﻟﺜﺎﻟﺚ‬ ‫د ﺍﻟﺮﺍﺑﻊ‬ ‫.............................................................................................................................................‬ ‫ب ﺍﻟﺜﺎﻧﻰ‬ ‫أ ﺍﻷﻭﻝ‬ ‫د ٠٢٤‪c‬‬ ‫....................................................................................................................................‬ ‫ب ﺍﻟﺜﺎﻧﻰ‬ ‫أ ﺍﻷﻭﻝ‬ ‫........................................................................‬ ‫ﺟ ﺍﻟﺜﺎﻟﺚ‬ ‫د ﺍﻟﺮﺍﺑﻊ‬ ‫4 ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺯﻭﺍﻳﺎ ﺃﻯ ﻣﻀﻠﻊ ﻣﻨﺘﻈﻢ ﺗﺴﺎﻭﻯ ٠٨١ ْ)ﻥ – ٢( ﺣﻴﺚ ﻥ ﻋﺪﺩ ﺍﻷﺿﻼﻉ، ﻓﺈﻥ ﻗﻴﺎﺱ‬ ‫ﺯﺍﻭﻳﺔ ﺍﻟﻤﺨﻤﺲ ﺍﻟﻤﻨﺘﻈﻢ ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﺗﺴﺎﻭﻯ: .....................................................................................................................‬ ‫أ‬ ‫ب ٧‪r‬‬ ‫٢‬ ‫‪r‬‬ ‫٣‬ ‫ﺟ‬ ‫5 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٧‪ r‬ﻗﻴﺎﺳﻬﺎ ﺍﻟﺴﺘﻴﻨﻰ ﻳﺴﺎﻭﻯ:‬ ‫٣‬ ‫ب ٠١٢‪c‬‬ ‫أ ٥٠١‪c‬‬ ‫٣‪r‬‬ ‫٥‬ ‫........................................................................................................................‬ ‫ﺟ ٠٢٤‪c‬‬ ‫6 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﺰﺍﻭﻳﺔ ﻫﻮ ٨٤ َ ٤٦ ْ ﻓﺈﻥ ﻗﻴﺎﺳﻬﺎ ﺍﻟﺪﺍﺋﺮﻯ ﻳﺴﺎﻭﻯ:‬ ‫أ ٨١٫٠‬ ‫ب ٦٣٫٠‬ ‫‪E‬‬ ‫‪E‬‬ ‫د‬ ‫٢‪r‬‬ ‫٣‬ ‫ﺟ ٨١٫٠ ‪r‬‬ ‫د ٠٤٨‪c‬‬ ‫.......................................................................‬ ‫د ٦٣٫٠ ‪r‬‬ ‫7 ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٤٢ ﺳﻢ ﻭﻳﻘﺎﺑﻞ ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﻳﺴﺎﻭﻯ:‬ ‫ﻣﺮ‬ ‫د ٥‪ r‬ﺳﻢ‬ ‫ﺟ ٤‪ r‬ﺳﻢ‬ ‫ب ٣‪ r‬ﺳﻢ‬ ‫أ ٢‪ r‬ﺳﻢ‬ ‫............................................‬ ‫8 ﺍﻟﻘﻮﺱ ﺍﻟﺬﻯ ﻃﻮﻟﻪ ٥‪r‬ﺳﻢ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥١ﺳﻢ ﻳﻘﺎﺑﻞ ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ﻳﺴﺎﻭﻯ:‬ ‫ﻣﺮ‬ ‫ب ٠٦‪c‬‬ ‫أ ٠٣‪c‬‬ ‫ﺟ ٠٩‪c‬‬ ‫.................‬ ‫د ٠٨١‪c‬‬ ‫9 ﺇﺫﺍ ﻛﺎﻥ ﻗﻴﺎﺱ ﺇﺣﺪﻯ ﺯﺍﻭﻳﺎ ﻣﺜﻠﺚ ٥٧‪ c‬ﻭﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﻓﻴﻪ ‪ r‬ﻓﺈﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺜﺎﻟﺜﺔ‬ ‫٤‬ ‫ﻳﺴﺎﻭﻯ: .................................................................................................................................................................................................................‬ ‫د ٥‪r‬‬ ‫ﺟ ‪r‬‬ ‫ب ‪r‬‬ ‫أ ‪r‬‬ ‫٣‬ ‫٤‬ ‫٦‬ ‫٢١‬ ‫¯‬ ‫−‬ ‫¯‬
  • 60.
    ‫‪¯I‬‬ ‫‪:á«JB’G á∏İSC’G øYÖLCG :Ék«fÉK‬‬ ‫01 ﺃﻭﺟﺪ ﺑﺪﻻﻟﺔ ‪ r‬ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ:‬ ‫.........................................‬ ‫ب  ٠٤٢‪c‬‬ ‫.........................................‬ ‫أ ٥٢٢‪c‬‬ ‫ﺟ‬ ‫.........................................‬ ‫د  ٠٠٣‪c‬‬ ‫٥٣١‪......................................... c‬‬‫.........................................‬ ‫و  ٠٨٧‪c‬‬ ‫.........................................‬ ‫ﻫ ٠٩٣‪c‬‬ ‫11 ﺃﻭﺟﺪ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ، ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻟﺜﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻋﺸﺮﻳﺔ:‬ ‫ً‬ ‫ﺟ‬ ‫٨٤ ً ٠٥ َ ٠٦١‪c‬‬ ‫ب ٨١ َ ٥٢‪c‬‬ ‫أ ٦٫٦٥‪c‬‬ ‫.................................................‬ ‫.................................................‬ ‫21 ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﻠﺰﻭﺍﻳﺎ ﺍﻟﺘﻰ ﻗﻴﺎﺳﺎﺗﻬﺎ ﻛﺎﻵﺗﻰ، ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺛﺎﻧﻴﺔ:‬ ‫ً‬ ‫‪E‬‬ ‫‪E‬‬ ‫ب ٧٢٫٢‬ ‫أ ٩٤٫٠‬ ‫.................................................‬ ‫.................................................‬ ‫.................................................‬ ‫١ ‪E‬‬ ‫ﺟ -٢٣‬ ‫.................................................‬ ‫31 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪ H‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ﻝ :‬ ‫ﻣﺮ‬ ‫ً‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ ٢٠ = H‬ﺳﻢ، ‪ c٧٨ َ ١٥ ً ٢٠ = i‬ﺃﻭﺟﺪ ﻝ. .......................................................... )ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ = ٣٫٧٢ ﺳﻢ، ‪ c٧٨ َ ٠ ً ٢٤ = i‬ﺃﻭﺟﺪ ‪) ......................................................... .H‬ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬ ‫41 ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٥١‪ c‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ١١ ﺳﻢ، ﺍﺣﺴﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻬﺎ )ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ(‬ ‫ﻣﺮ‬ ‫ً‬ ‫..................................................................................................................................................................................................................................‬ ‫51 ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﻠﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٧٫٨ ﺳﻢ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ‬ ‫ﺍﻟﻤﺮ‬ ‫ً‬ ‫ﻗﻄﺮﻫﺎ ٤ ﺳﻢ. ................................................................................................................................................................................................................‬ ‫61 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﻣﺜﻠﺚ ﻗﻴﺎﺱ ﺇﺣﺪﻯ ﺯﻭﺍﻳﺎه ٠٦‪ c‬ﻭﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺃﺧﺮﻯ ﻣﻨﻪ ﻳﺴﺎﻭﻯ ‪ r‬ﺃﻭﺟﺪ ﺍﻟﻘﻴﺎﺱ‬ ‫٤‬ ‫ﺍﻟﺪﺍﺋﺮﻯ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻟﺰﺍﻭﻳﺘﻪ ﺍﻟﺜﺎﻟﺜﺔ. .........................................................................................................................................‬ ‫71 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٤ ﺳﻢ، ﺭﺳﻤﺖ ‪ Cc‬ﺏ ﺟـ ﺍﻟﻤﺤﻴﻄﻴﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﺃﻭﺟﺪ‬ ‫ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﺻﻐﺮ ‪ C‬ﺟـ .......................................................................................................................................................................‬ ‫81 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﻴﺔ: ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﺇﺫﺍ ﻛﺎﻥ ﻣﺴﺎﺣﺔ ﺍﻟﻤﺜﻠﺚ ﻡ ‪ C‬ﺏ‬ ‫ﺍﻟﻘﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ﻡ = ٢٣ ﺳﻢ٢ ﻓﺄﻭﺟﺪ ﻣﺤﻴﻂ ﺍﻟﺸﻜﻞ ﻣﻘﺮﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ‬ ‫ً‬ ‫ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ ............................................................................................................................‬ ‫‪C‬‬ ‫‪ïM‬‬ ‫−‬
  • 61.
    ‫91 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ:‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻟﻪ ٤٢ ﺳﻢ ، ﺭﺳﻢ ﺍﻟﻮﺗﺮ ‪ C‬ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ﻕ)‪c‬ﺏ ‪C‬ﺟـ( = ٠٥‪c‬‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﺻﻐﺮ ‪ C‬ﺟـ ﻣﻘﺮ ﺑﺎ ﺍﻟﻨﺎﺗﺞ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻴﻦ ﻋﺸﺮﻳﻴﻦ. ..........................................................................‬ ‫ً‬ ‫02 ﻣﺴﺎﻓﺎﺕ: ﻛﻢ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻰ ﺗﻘﻄﻌﻬﺎ ﻧﻘﻄﺔ ﻋﻠﻰ ﻃﺮﻑ ﻋﻘﺮﺏ ﺍﻟﺪﻗﺎﺋﻖ ﺧﻼﻝ ٠١ ﺩﻗﺎﺋﻖ ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﻫﺬﺍ‬ ‫ﺍﻟﻌﻘﺮﺏ ٦ ﺳﻢ?‬ ‫..................................................................................................................................................................................................................................‬ ‫12 ﻓﻠﻚ: ﻗﻤﺮ ﺻﻨﺎﻋﻰ ﻳﺪﻭﺭ ﺣﻮﻝ ﺍﻷﺭﺽ ﻓﻰ ﻣﺴﺎﺭ ﺩﺍﺋﺮﻯ ﺩﻭﺭﺓ ﻛﺎﻣﻠﺔ ﻛﻞ ٦ ﺳﺎﻋﺎﺕ، ﻓﺈﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﻧﺼﻒ‬ ‫ﻗﻄﺮ ﻣﺴﺎﺭه ﻋﻦ ﻛﺰ ﺍﻷﺭﺽ ٠٠٠٩ ﻛﻢ، ﻓﺄﻭﺟﺪ ﺳﺮﻋﺘﻪ ﺑﺎﻟﻜﻴﻠﻮﻣﺘﺮ ﻓﻰ ﺍﻟﺴﺎﻋﺔ.‬ ‫ﻣﺮ‬ ‫..................................................................................................................................................................................................................................‬ ‫22 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻬﻨﺪﺳﺔ: ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ:‬ ‫‪ C‬ﺏ ، ‪ C‬ﺟـ ﻣﻤﺎﺳﺎﻥ ﻟﻠﺪﺍﺋﺮﺓ ﻡ، ‪ c) X‬ﺟـ‪ C‬ﺏ ( = ٠٦‪ C ،c‬ﺏ = ٢١ ﺳﻢ.‬ ‫ﺃﻭﺟﺪ ﻷﻗﺮﺏ ﻋﺪﺩ ﺻﺤﻴﺢ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻷﻛﺒﺮ ﺏ ﺟـ .‬ ‫‪C‬‬ ‫‪c‬‬ ‫.....................................................................................................................................................‬ ‫32 ﺍﻟﺮﺑﻂ ﺑﺎﻟﺰﻣﻦ: ﺗﺴﺘﺨﺪﻡ ﺍﻟﻤﺰﻭﻟﺔ ﺍﻟﺸﻤﺴﻴﺔ ﻟﺘﺤﺪﻳﺪ ﺍﻟﻮﻗﺖ ﺃﺛﻨﺎﺀ ﺍﻟﻨﻬﺎﺭ ﻣﻦ‬ ‫ﺧﻼﻝ ﻃﻮﻝ ﺍﻟﻈﻞ ﺍﻟﺬﻯ ﻳﺴﻘﻂ ﻋﻠﻰ ﺳﻄﺢ ﻣﺪﺭﺝ ﻹﻇﻬﺎﺭ ﺍﻟﺴﺎﻋﺔ ﻭﺃﺟﺰﺍﺋﻬﺎ،‬ ‫ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﻈﻞ ﻳﺪﻭﺭ ﻋﻠﻰ ﺍﻟﻘﺮﺹ ﺑﻤﻌﺪﻝ ٥١‪ c‬ﻟﻜﻞ ﺳﺎﻋﺔ.‬ ‫أ ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺍﻟﺘﻰ ﻳﺪﻭﺭ ﺍﻟﻈﻞ ﻋﻨﻬﺎ ﺑﻌﺪ ﻣﺮﻭﺭ ٤ ﺳﺎﻋﺎﺕ.‬ ‫......................................................................................................................................................................‬ ‫ب ﺑﻌﺪ ﻛﻢ ﺳﺎﻋﺔ ﻳﺪﻭﺭ ﺍﻟﻈﻞ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٢‪ r‬ﺭﺍﺩﻳﺎﻥ?‬ ‫٣‬ ‫....................................‬ ‫ﺟ ﻣﺰﻭﻟﺔ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٤٢ ﺳﻢ، ﺃﻭﺟﺪ ﺑﺪﻻﻟﺔ ‪ r‬ﻃﻮﻝ ﺍﻟﻘﻮﺱ ﺍﻟﺬﻯ ﻳﺼﻨﻌﻪ ﺩﻭﺭﺍﻥ ﺍﻟﻈﻞ ﻋﻠﻰ ﺣﺎﻓﺔ‬ ‫ﺍﻟﻘﺮﺹ ﺑﻌﺪ ﻣﺮﻭﺭ ٠١ ﺳﺎﻋﺎﺕ. ......................................................................................................................................................‬ ‫42 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﻣﺴﺘﻘﻴﻢ ﻳﺼﻨﻊ ﺯﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ‪ r‬ﺭﺍﺩﻳﺎﻥ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻣﻊ ﺍﻻﺗﺠﺎه ﺍﻟﻤﻮﺟﺐ‬ ‫٣‬ ‫ﻟﻤﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ. ﺃﻭﺟﺪ ﻣﻌﺎﺩﻟﺔ ﻫﺬﺍ ﺍﻟﻤﺴﺘﻘﻴﻢ. .................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 62.
    ‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-3‬ ‫‪Trigonometric Functions‬‬ ‫‪k‬‬ ‫‪:Oó©àeøe QÉ«àN’G :’hCG‬‬ ‫٣‬ ‫1 ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻟﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﻄﺔ ) ١ ، ٢ (‬ ‫٢‬ ‫ﻓﺈﻥ ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ: ...........................................................................................................................................................................................‬ ‫ﺟ ٣‬ ‫أ ١‬ ‫د ٢‬ ‫ب ١‬ ‫٢‬ ‫٢‬ ‫٣‬ ‫٣‬ ‫2 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺎ ‪ ١ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔﺣﺎﺩﺓ ﻓﺈﻥ ‪ (ic)X‬ﺗﺴﺎﻭﻯ‬ ‫٢‬ ‫ﺟ ٠٦‪c‬‬ ‫ب ٥٤‪c‬‬ ‫أ ٠٣‪c‬‬ ‫3 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺎ ‪ ،١ - = i‬ﺟﺘﺎ ‪ ٠ = i‬ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫ﺟ ٣‪r‬‬ ‫أ ‪r‬‬ ‫ب ‪r‬‬ ‫...........................................................................................‬ ‫د ٠٩‪c‬‬ ‫..............................................................................................‬ ‫د ٢‪r‬‬ ‫٢‬ ‫٢‬ ‫4 ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﺘﺎ ‪ ٢ = i‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫ﺟ ٥٤‪c‬‬ ‫ب ٠٣‪c‬‬ ‫أ ٥١‪c‬‬ ‫٣‬ ‫5 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ، ١ = i‬ﺟﺎ ‪ ٢ - = i‬ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫٢‬ ‫ﺟ ٥‪r‬‬ ‫ب ٥‪r‬‬ ‫٢‪r‬‬ ‫أ‬ ‫٦‬ ‫٣‬ ‫....................................................................‬ ‫.........................................................................................‬ ‫٣‬ ‫6 ﺇﺫﺍ ﻛﺎﻧﺖ ﻇﺎ ‪ ١ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫ﺟ ٥٤‪c‬‬ ‫ب ٠٣‪c‬‬ ‫أ ٠١‪c‬‬ ‫7 ﻇﺎ ٥٤‪ + c‬ﻇﺘﺎ ٥٤‪ - c‬ﻗﺎ ٠٦‪ c‬ﺗﺴﺎﻭﻯ‬ ‫ب ١‬ ‫أ ﺻﻔﺮﺍ‬ ‫ً‬ ‫٢‬ ‫د‬ ‫١١‪r‬‬ ‫٦‬ ‫..................................................................‬ ‫د ٠٦‪c‬‬ ‫........................................................................................................................................................‬ ‫ﺟ‬ ‫٣‬ ‫د ١‬ ‫٢‬ ‫٣‬ ‫8 ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ٢ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻓﺈﻥ ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫أ ١‬ ‫ﺟ ٢‬ ‫ب ١‬ ‫٢‬ ‫د ٠٦‪c‬‬ ‫٣‬ ‫.............................................................................................‬ ‫٣‬ ‫د‬ ‫٣‬ ‫٢‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫9 ﺃﻭﺟﺪ ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺍﻟﻤﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻭﺍﻟﺘﻰ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﺎﻁ ﺍﻵﺗﻴﺔ.‬ ‫٥‬ ‫أ )٢، ٣ (‬ ‫٣‬ ‫٣‬ ‫ﺟ )- ٢ ، ١ (‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫ب ) ٢ ،- ٢ (‬ ‫د )- ٣ ، - ٤ (‬ ‫٥ ٥‬ ‫..................................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 63.
    ‫01 ﺇﺫﺍ ﻛﺎﻥ‪ i‬ﻫﻮ ﻗﻴﺎﺱ ﺯﺍﻭﻳﻪ ﻣﻮﺟﻬﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﻭﺍﻟﺘﻰ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺪﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﺄﻭﺟﺪ‬ ‫ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫ﺣﻴﺚ ‪٠ < C‬‬ ‫أ )٣ ‪(C٤ - ،C‬‬ ‫ب ) ٣ ‪(C٢- ،C‬‬ ‫٣‪r‬‬ ‫ﺣﻴﺚ ٢ > ‪r٢ > i‬‬ ‫٢‬ ‫.................................................................................................................‬ ‫.................................................................................................................‬ ‫11 ﺍﻛﺘﺐ ﺇﺷﺎﺭﺍﺕ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻵﺗﻴﺔ:‬ ‫ب ﻇﺎ ٥٦٣‪c‬‬ ‫أ ﺟﺎ ٠٤٢‪c‬‬ ‫....................................‬ ‫ﺟ ﻗﺘﺎ ٠١٤‪c‬‬ ‫....................................‬ ‫٩‪r‬‬ ‫....................................‬ ‫ﻫ ﻗﺎ - ٩‪r‬‬ ‫٤‬ ‫د‬ ‫ﻇﺘﺎ ٤‬ ‫....................................‬ ‫و ﻇﺎ‬ ‫....................................‬ ‫-٠٢‪r‬‬ ‫٩‬ ‫...................................‬ ‫:‬ ‫21‬ ‫‪r‬‬ ‫٣‪r‬‬ ‫‪r‬‬ ‫أ ﺟﺘﺎ ٢ * ﺟﺘﺎ ٠ + ﺟﺎ ٢ * ﺟﺎ ٢‬ ‫ب ﻇﺎ٢ ٠٣‪ ٢ + c‬ﺟﺎ٢ ٥٤‪ + c‬ﺟﺘﺎ٢ ٠٩‪c‬‬ ‫......................................................................................................‬ ‫......................................................................................................‬ ‫31 ﺍﻟﺮﺑﻂ ﺑﺎﻟﻔﻴ ﺎﺀ: ﻋﻨﺪ ﺳﻘﻮﻁ ﺃﺷﻌﺔ ﺍﻟﻀﻮﺀ ﻋﻠﻰ ﺳﻄﺢ‬ ‫ﺷﺒﻪ ﺷﻔﺎﻑ، ﻓﺈﻧﻬﺎ ﺗﻨﻌﻜﺲ ﺑﻨﻔﺲ ﺯﺍﻭﻳﺔ ﺍﻟﺴﻘﻮﻁ ﻭﻟﻜﻦ‬ ‫ﺍﻟﺒﻌﺾ ﻣﻨﻬﺎ ﻳﻨﻜﺴﺮ ﻋﻨﺪ ﻣﺮﻭﺭه ﺧﻼﻝ ﻫﺬﺍ ﺍﻟﺴﻄﺢ. ﻛﻤﺎ‬ ‫ﻓﻰ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ:‬ ‫ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ = ١i‬ﻙ ﺟﺎ‪،٢i‬ﻛﺎﻧﺖ ﻙ = ٣ ، ‪c٦٠ = ١i‬‬ ‫ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪................................................................................ . i‬‬ ‫٢‬ ‫‪U‬‬ ‫‪i‬‬ ‫‪F‬‬ ‫‪i‬‬ ‫‪i‬‬ ‫41 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﻃﻠﺐ ﺍﻟﻤﻌﻠﻢ ﻣﻦ ﻃﻼﺏ ﺍﻟﻔﺼﻞ ﺇﻳﺠﺎﺩ ﻧﺎﺗﺞ ٢ ﺟﺎ ٥٤‪.c‬‬ ‫¯‬ ‫٢ ﺟﺎ ٥٤‪ = c‬ﺟﺎ ٢ * ٥٤‪c‬‬ ‫  = ﺟﺎ ٠٩‪١ = c‬‬ ‫ﺃﻯ ﺍﻹﺟﺎﺑﺘﻴﻦ ﺻﺤﻴﺢ?ﻭﻟﻤﺎﺫﺍ?‬ ‫٢ ﺟﺎ ٥٤ = ٢ * ١ = ٢ *‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫         = ٢‬ ‫......................................................................................................................................................................‬ ‫51 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ: ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻇﺘﺎ ‪ ،١ - = i‬ﻗﺘﺎ ‪ . ٢ = i‬ﻫﻞ ﻣﻦ‬ ‫٣‪r‬‬ ‫? ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ. .......................................................................................................................‬ ‫ﺍﻟﻤﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻕ)‪٤ = (ic‬‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 64.
    ‫اﻟﻌﻼﻗﺎت ﺑﻴﻦ اﻟﺪوالاﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-4‬ ‫‪Relations between trigonometric functions‬‬ ‫‪k‬‬ ‫‪:≈JCÉjÉe πªcCG :’hCG‬‬ ‫2 ﻇﺎ ) ٠٨١‪= (i - c‬‬ ‫...............................‬ ‫1 ﺟﺘﺎ )٠٨١ ‪= (i +c‬‬ ‫4 ﺟﺎ )٠٦٣‪= ( i + c‬‬ ‫...............................‬ ‫5 ﺟﺎ )٠٩ ‪= (i +c‬‬ ‫...............................‬ ‫6 ﻇﺘﺎ ) ٠٩‪= (i - c‬‬ ‫...............................‬ ‫7 ﻗﺎ ) ٠٧٢‪= (i+ c‬‬ ‫...............................‬ ‫8 ﺟﺘﺎ )٠٧٢‪= (i - c‬‬ ‫3 ﻗﺘﺎ )٠٦٣‪= (i - c‬‬ ‫...............................‬ ‫...............................‬ ‫...............................‬ ‫‪v‬‬ ‫‪IOÉM ájhGR ¢SÉ«≤H ≈JCÉj ɪe Óc πªcCG :Ék«fÉK‬‬ ‫9 ﺟﺎ ٥٢‪ = c‬ﺟﺘﺎ ...............................‪c‬‬ ‫01 ﺟﺘﺎ ٧٦‪ = c‬ﺟﺎ ...............................‪c‬‬ ‫11 ﻇﺎ ٢٤‪ = c‬ﻇﺘﺎ ...............................‪c‬‬ ‫21 ﻗﺘﺎ ٣١‪ = c‬ﻗﺎ ...............................‪c‬‬ ‫31 ﺇﺫﺍ ﻛﺎﻥ ﻇﺘﺎ٢‪ = i‬ﻃﺎ‪ i‬ﺣﻴﺚ ٠‪ c٩٠ >i>c‬ﻓﺈﻥ ‪=(i c) X‬‬ ‫...............................‬ ‫41 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ٥‪ = i‬ﺟﺘﺎ٤‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ‪c............................... = i‬‬ ‫51 ﺇﺫﺍ ﻛﺎﻥ ﻗﺎ ‪ = i‬ﻗﺎ)٠٩‪ (i - c‬ﻓﺈﻥ ﻇﺘﺎ ‪= i‬‬ ‫...............................‬ ‫61 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ٢‪ = i‬ﻇﺘﺎ٣‪ i‬ﺣﻴﺚ ‪ ] r ، ٠[∋ i‬ﻓﺈﻥ ‪= =(i c) X‬‬ ‫٢‬ ‫71 ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ‪ = i‬ﺟﺎ٢‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﺟﺎ٣‪= i‬‬ ‫...............................‬ ‫‪E‬‬ ‫...............................‬ ‫‪k‬‬ ‫‪:Oó©àe øe QÉ«àN’G :ÉãdÉK‬‬ ‫81 ﺇﺫﺍ ﻛﺎﻧﺖ ﻇﺎ )٠٨١‪ ١ = (i + c‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ‪ i‬ﻳﺴﺎﻭﻯ‬ ‫د ٥٣١‪c‬‬ ‫ﺟ ٠٦‪c‬‬ ‫ب ٠٣‪c‬‬ ‫أ ٥٤‪c‬‬ ‫91 ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ٢‪ = i‬ﺟﺎ‪ i‬ﺣﻴﺚ ‪ ] r ،٠[∋ i‬ﻓﺈﻥ ﺟﺘﺎ ٢‪ i‬ﺗﺴﺎﻭﻯ‬ ‫٢‬ ‫ﺟ ٣‬ ‫ب ١‬ ‫أ ١‬ ‫٢‬ ‫٢‬ ‫............................................................................................‬ ‫٢‬ ‫02 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ = a‬ﺟﺘﺎ ‪ ،b‬ﺣﻴﺚ ‪ b ،a‬ﺯﺍﻭﻳﺘﺎﻥ ﺣﺎﺩﺗﺎﻥ ﻓﺈﻥ ﻇﺎ)‪ (b + a‬ﺗﺴﺎﻭﻯ‬ ‫أ ١‬ ‫ب ١‬ ‫ﺟ ٣‬ ‫٣‬ ‫د ١‬ ‫.............................................................‬ ‫د ﻏﻴﺮ ﻣﻌﺮﻭﻑ‬ ‫12 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ٢‪ = i‬ﺟﺘﺎ ٤‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻇﺎ)٠٩‪ (i٣ - c‬ﺗﺴﺎﻭﻯ‬ ‫ب ١‬ ‫د‬ ‫ﺟ ١‬ ‫أ -١‬ ‫......................................................‬ ‫٣‬ ‫‪ïM‬‬ ‫−‬ ‫٣‬
  • 65.
    ‫22 ﺇﺫﺍ ﻛﺎﻥﺟﺘﺎ)٠٩‪ ١ = (i + c‬ﺣﻴﺚ ‪ i‬ﻗﻴﺎﺱ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﻗﻴﺎﺱ ‪ i‬ﻳﺴﺎﻭﻯ‬ ‫٢‬ ‫ﺟ‬ ‫ب‬ ‫د‬ ‫٠٣٣‪c‬‬ ‫٠٤٢‪c‬‬ ‫٠١٢‪c‬‬ ‫أ ٠٥١‪c‬‬ ‫..................................................‬ ‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék©HGQ‬‬ ‫32 ﺃﻭﺟﺪ ﺇﺣﺪﻯ ﻗﻴﻢ ‪ i‬ﺣﻴﺚ٠‪c٩٠ > i H‬ﺍﻟﺘﻰ ﺗﺤﻘﻖ ﻛﻼ ﻣﻦ ﺍﻵﺗﻰ:‬ ‫ًّ‬ ‫.................................................................................................................‬ ‫أ ﺟﺎ)٣‪ = (c١٥ + i‬ﺟﺘﺎ)٢‪(c٥ - i‬‬ ‫ب ﻗﺎ)‪ =       (c٢٥ + i‬ﻗﺘﺎ)‪(c١٥ + i‬‬ ‫.................................................................................................................‬ ‫ﺟ ﻇﺎ)‪ =     (c٢٠ + i‬ﻇﺘﺎ )٣‪(c٣٠ + i‬‬ ‫.................................................................................................................‬ ‫د ﺟﺘﺎ ‪ =       c٢٠ + i‬ﺟﺎ ‪c٤٠ + i‬‬ ‫.................................................................................................................‬ ‫٢‬ ‫٢‬ ‫42 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫ب ﻗﺘﺎ ٥٢٢‬ ‫أ ﺟﺎ ٠٥١‪c‬‬ ‫.....................................‬ ‫ﻫ ﻗﺘﺎ‬ ‫.....................................‬ ‫١١‪r‬‬ ‫و ﺟﺎ‬ ‫٦‬ ‫.....................................‬ ‫٧‪r‬‬ ‫٤‬ ‫.....................................‬ ‫ﺟ ﻗﺎ٠٠٣‪c‬‬ ‫.....................................‬ ‫ز ﻇﺘﺎ‬ ‫-٢‪r‬‬ ‫٣‬ ‫.....................................‬ ‫د ﻇﺎ ٠٨٧‪c‬‬ ‫.....................................‬ ‫ح ﺟﺘﺎ‬ ‫-٧‪r‬‬ ‫٤‬ ‫.....................................‬ ‫52 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺍﻟﻤﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ )- ٣ ، ٤ (‬ ‫٥ ٥‬ ‫ﻓﺄﻭﺟﺪ:‬ ‫ب ﺟﺘﺎ ) ‪(i - r‬‬ ‫أ ﺟﺎ)٠٨١‪(i + c‬‬ ‫٢‬ ‫.................................................‬ ‫.................................................‬ ‫د ﻗﺘﺎ ) ٣‪(i - r‬‬ ‫٢‬ ‫ﺟ ﻇﺎ )٠٦٣‪(i -c‬‬ ‫.................................................‬ ‫.................................................‬ ‫62 ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ: ﺟﻤﻴﻊ ﺍﻹﺟﺎﺑﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺻﺤﻴﺤﺔ ﻣﺎﻋﺪﺍ ﺇﺟﺎﺑﺔ ﻭﺍﺣﺪﺓ ﻓﻘﻂ ﺧﻄﺄ، ﻓﻤﺎ ﻫﻰ:‬ ‫١- ﺟﺘﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫.................................................................................................................................................................................................‬ ‫ب ﺟﺎ ) ٠٧٢‪(i - c‬‬ ‫أ ﺟﺎ )‪(c٢٧٠ - i‬‬ ‫٢- ﺟﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫أ ﺟﺘﺎ ) ‪( i - r‬‬ ‫٢‬ ‫ﺟ ﺟﺘﺎ )٠٦٣‪(i - c‬‬ ‫د ﺟﺘﺎ ) ٠٦٣ ‪(i +c‬‬ ‫...................................................................................................................................................................................................‬ ‫٣- ﻇﺎ ‪ i‬ﺗﺴﺎﻭﻯ‬ ‫ب ﺟﺎ ) ‪(i - r‬‬ ‫٣‪r‬‬ ‫ﺟ ﺟﺘﺎ ) ٢ + ‪(i‬‬ ‫‪r‬‬ ‫د ﺟﺎ ) ٢ + ‪(i‬‬ ‫.....................................................................................................................................................................................................‬ ‫ب ﻇﺘﺎ ) ٠٧٢‪(i - c‬‬ ‫أ ﻇﺘﺎ ) ٠٩‪(i-c‬‬ ‫¯‬ ‫−‬ ‫¯‬ ‫ﺟ ﻇﺎ )٠٧٢‪(i - c‬‬ ‫د ﻇﺎ ) ٠٨١ ‪(i +c‬‬
  • 66.
    ‫72 ﺍﻟﺮﺑﻂ ﺑﺎﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ:ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﻛﺮﻳﻢ ﺣﺎﺳﻮﺑﻪ ﺍﻟﻤﺤﻤﻮﻝ‬ ‫ﻛﺎﻧﺖ ﺯﺍﻭﻳﺔ ﻣﻴﻠﻪ ﻣﻊ ﺍﻷﻓﻘﻰ ٢٣١‪ c‬ﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ.‬ ‫أ ﺍﺭﺳﻢ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻓﻰ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻰ، ﺑﺤﻴﺚ ﺗﻜﻮﻥ‬ ‫ﺍﻟﺰﺍﻭﻳﺔ ٢٣١‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺛﻢ ﺃﻭﺟﺪ ﺯﺍﻭﻳﺘﻬﺎ ﺍﻟﻤﻨﺘﺴﺒﺔ.‬ ‫............................................................................................................................................‬ ‫‪c‬‬ ‫ب ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻓﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻢ ‪ ،C‬ﺛﻢ ﺃﻭﺟﺪ‬ ‫ﻗﻴﻤﺔ ‪ C‬ﻷﻗﺮﺏ ﺳﻨﺘﻴﻤﺘﺮ.‬ ‫‪C‬‬ ‫..................................................................................................................................................................................................................................‬ ‫ﺃﻟﻌﺎﺏ: ﺗﻨﺘﺸﺮ ﻟﻌﺒﺔ ﺍﻟﻌﺠﻠﺔ ﺍﻟﺪﻭﺍﺭﺓ ﻓﻰ ﻣﺪﻳﻨﺔ ﺍﻟﻤﻼﻫﻰ، ﻭﻫﻰ‬ ‫ﻋﺒﺎﺭﺓ ﻋﻦ ﻋﺪﺩ ﻣﻦ ﺍﻟﺼﻨﺎﺩﻳﻖ ﺗﺪﻭﺭ ﻓﻰ ﻗﻮﺱ ﺩﺍﺋﺮﻯ ﻳﺒﻠﻎ‬ ‫ﻛﺔ‬ ‫ﻧﺼﻒ ﻗﻄﺮه ٢١ ﻣﺘﺮﺍ، ﻓﺈﺫﺍ ﻛﺎﻥ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺸﺘﺮ‬ ‫ً‬ ‫ﻣﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ٥‪r‬‬ ‫٤ .‬ ‫أ ﺍﺭﺳﻢ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ ٥‪ r‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ.‬ ‫٤‬ ‫‪C‬‬ ‫...........................................................................................................‬ ‫ب ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻓﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻤﺔ‬ ‫‪ C‬ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﺑﺎﻟﻤﺘﺮ ﻷﻗﺮﺏ ﺭﻗﻤﻴﻦ ﻋﺸﺮﻳﻴﻦ.‬ ‫...........................................................................................................‬ ‫82 ﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ:‬ ‫أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻇﺘﺎ ‪ ، ١- = i‬ﻗﺘﺎ ‪ . ٢ = i‬ﻓﻬﻞ ﻳﻤﻜﻦ ﺃﻥ‬ ‫٣‪r‬‬ ‫ﻳﻜﻮﻥ ‪ ? ٤ = (ic) X‬ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ?‬ ‫.......................................................................................................................................................................................................................‬ ‫٣‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﺟﺘﺎ ) ٣‪ ، ٢ = (i - r‬ﺟﺎ ) ‪ ١ = (i + r‬ﻓﺄﻭﺟﺪ ﺃﺻﻐﺮ ﻗﻴﺎﺱ ﻣﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ‪.i‬‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫.......................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 67.
    ‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻰ ﻟﻠﺪوالاﻟﻤﺜﻠﺜﻴﺔ‬ ‫4-5‬ ‫‪Graphing trigonometric functions‬‬ ‫‪k‬‬ ‫‪:≈JCÉjÉe πªcCG :’hCG‬‬ ‫1 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬ ‫................................‬ ‫2 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ ٢ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬ ‫................................‬ ‫3 ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ ﻉ ﺣﻴﺚ ﻉ)‪٤ = (i‬ﺟﺎ‪ i‬ﻫﻰ‬ ‫................................‬ ‫4 ﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ ﻫـ ﺣﻴﺚ ﻫـ)‪٣ = (i‬ﺟﺘﺎ‪ i‬ﻫﻰ‬ ‫................................‬ ‫‪.É¡d ôXÉæªdG πμ°ûdG QGƒéH á«ã∏ãe ádGO πc IóYÉb ÖàcG :Ék«fÉK‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫−‬ ‫−‪r− r‬‬ ‫− ‪r −r‬‬ ‫ﺷﻜﻞ )١( ﺍﻟﻘﺎﻋﺪﺓ ﻫﻰ:‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫−‬ ‫−‪r− r‬‬ ‫− ‪r − r‬‬ ‫ﺷﻜﻞ )٢( ﺍﻟﻘﺎﻋﺪﺓ ﻫﻲ:‬ ‫........................................................................................................‬ ‫........................................................................................................‬ ‫‪k‬‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :ÉãdÉK‬‬ ‫5 ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ، ﺛﻢ ﺍﺣﺴﺐ ﺍﻟﻤﺪﻯ ﻟﻜﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻵﺗﻴﺔ :‬ ‫أ ﺹ = ﺟﺎ‪i‬‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺹ = ٣ ﺟﺘﺎ‪i‬‬ ‫.......................................................................................................................................................................................................................‬ ‫ﺟ ﺹ = ٣ ﺟﺎ‪i‬‬ ‫٢‬ ‫.......................................................................................................................................................................................................................‬ ‫6 ﻣﺜﻞ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺹ = ٤ ﺟﺘﺎ‪ ، i‬ﺹ = ٣ ﺟﺎ‪ i‬ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺍﻟﺮﺳﻮﻣﻴﺔ ﺃﻭ ﺑﺄﺣﺪ ﺑﺮﺍﻣﺞ ﺍﻟﺤﺎﺳﻮﺏ‬ ‫ﺍﻟﺮﺳﻮﻣﻴﺔ ﻭﻣﻦ ﺍﻟﺮﺳﻢ ﺃﻭﺟﺪ :‬ ‫ب ﺍﻟﻘﻴﻢ ﺍﻟﻌﻈﻤﻰ ﻭﺍﻟﻘﻴﻢ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ.‬ ‫أ ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ.‬ ‫.‬ ‫.................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬ ‫.................................................................................................‬
  • 68.
    ‫إﻳﺠﺎد ﻗﻴﺎس زاوﻳﺔﺑﻤﻌﻠﻮﻣﻴﺔ داﻟﺔ ﻣﺜﻠﺜﻴﺔ‬ ‫‪Finding the measure of an angle given the‬‬ ‫4-6‬ ‫‪value of one of its functions‬‬ ‫‪k‬‬ ‫‪:Oó©àe øe QÉ«àN’G :’hCG‬‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ٠٫٤٣٢٥ = i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ‪ (i) c X‬ﺗﺴﺎﻭﻯ‬ ‫ﺟ ٨٨٣٫٢٣‪c‬‬ ‫ب ٧٤٣٫٤٦‪c‬‬ ‫أ ٦٢٦٫٥٢‪c‬‬ ‫2 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ‪ ١٫٨ = i‬ﻛﺎﻧﺖ ٠٩‪ c٣٦٠ H iHc‬ﻓﺈﻥ ‪ (i) c X‬ﺗﺴﺎﻭﻯ‬ ‫ﻭ‬ ‫ﺟ ٥٤٩٫٠٤٢‪c‬‬ ‫ب ٥٥٠٫٩١١‪c‬‬ ‫أ ٥٤٩٫٠٦‪c‬‬ ‫.............................................................‬ ‫د ٦١٣٫٦٤‪c‬‬ ‫............................................................................‬ ‫د ٥٥٠٫٩٩٢‪c‬‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬ ‫ًّ‬ ‫ﺟﺘﺎ ‪ ،i‬ﺟﺎ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫٣‬ ‫أ ﺏ )١، ٢ (‬ ‫٢‬ ‫ب ﺏ) ١ ، - ١ (‬ ‫٢‬ ‫٢‬ ‫٦ ٨‬ ‫ﺟ ﺏ )- ٠١ ، ٠١ (‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫................................................................‬ ‫2 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬ ‫ًّ‬ ‫ﻗﺎ‪ ،i‬ﻗﺘﺎ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫٢‬ ‫٢‬ ‫ﺟ ﺏ )- ٥ ، - ٢١‬ ‫ب ﺏ)- ١ ، - ٢‬ ‫٣١ ٣١ (‬ ‫(‬ ‫أ ﺏ) ٢ ،- ٢ (‬ ‫٥‬ ‫٥‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫................................................................‬ ‫3 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ، ﻓﺄﻭﺟﺪ ﻛﻼ ﻣﻦ‬ ‫ًّ‬ ‫ﻇﺎ ‪ ،i‬ﻇﺘﺎ ‪ i‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫ﺟ ﺏ )- ٤ ، - ٣ (‬ ‫ب ﺏ) ٣ ،- ٥ (‬ ‫أ ﺏ) ١ ،- ٣ (‬ ‫٥‬ ‫٥‬ ‫٠١‬ ‫٠١‬ ‫٤٣‬ ‫٤٣‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫..................................................................‬ ‫................................................................‬ ‫4 ﺇﺫﺍ ﻗﻄﻊ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻓﻰ ﺍﻟﻨﻘﻄﺔ ﺏ‬ ‫ﻓﺄﻭﺟﺪ: ‪ (ic)X‬ﺣﻴﺚ ٠ ْ > ‪ ْ ٣٦٠ > i‬ﻋﻨﺪﻣﺎ:‬ ‫٣‬ ‫أ ﺏ ) ٢ ، ١(‬ ‫٢‬ ‫ب ﺏ)- ١ ، ١ (‬ ‫٢‬ ‫..................................................................‬ ‫٢‬ ‫..................................................................‬ ‫‪ïM‬‬ ‫−‬ ‫٦‬ ‫ﺟ ﺏ ) ٠١ ، -٨ (‬ ‫٠١‬ ‫..................................................................‬
  • 69.
    ‫5 ﺃﻭﺟﺪ ﺑﺎﻟﻘﻴﺎﺱﺍﻟﺴﺘﻴﻨﻰ ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺗﺤﻘﻖ ﻛﻼ ﻣﻦ:‬ ‫ًّ‬ ‫ب ﺟﺘﺎ-١ ٦٣٤٫٠‬ ‫أ ﺟﺎ-١ ٦٫٠‬ ‫..................................................................‬ ‫د ﻗﺎ-١ )- ٤٦٣٢٫٢(‬ ‫ﺟ ﻇﺎ-١ ٢٥٥٤٫١‬ ‫..................................................................‬ ‫ﻫ ﻇﺘﺎ-١ ٨١٢٦٫٣‬ ‫..................................................................‬ ‫..................................................................‬ ‫و ﻗﺘﺎ-١ )-٤٠٠٦٫١(‬ ‫..................................................................‬ ‫6 ﺇﺫﺍ ﻛﺎﻧﺖ ٠‪ c٣٦٠ H iHc‬ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫ب ﺟﺘﺎ-١ )- ٢٤٦٫٠(‬ ‫أ ﺟﺎ-١ )٦٥٣٢٫٠(‬ ‫..................................................................‬ ‫..................................................................‬ ‫ﺟ ﻇﺎ-١ )- ٦٥٤١٫٢(‬ ‫..................................................................‬ ‫..................................................................‬ ‫7 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ١ = i‬ﻛﺎﻧﺖ ٠٩‪c١٨٠ H iHc‬‬ ‫٣ﻭ‬ ‫أ ﺍﺣﺴﺐ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﻷﻗﺮﺏ ﺛﺎﻧﻴﺔ‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ: ﺟﺘﺎ‪ ، i‬ﻇﺎ‪ ، i‬ﻗﺎ‪. i‬‬ ‫ٍّ‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫8 ﺳﻼﻟﻢ: ﺳﻠﻢ ﻃﻮﻟﻪ ٥ ﺃﻣﺘﺎﺭ ﻳﺴﺘﻨﺪ ﻋﻠﻰ ﺟﺪﺍﺭ ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﺭﺗﻔﺎﻉ ﺍﻟﺴﻠﻢ ﻋﻦ‬ ‫ﺳﻄﺢ ﺍﻷﺭﺽ ﻳﺴﺎﻭﻯ ٣ ﺃﻣﺘﺎﺭ ﻓﺄﻭﺟﺪ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺯﺍﻭﻳﺔ ﻣﻴﻞ ﺍﻟﺴﻠﻢ ﻋﻠﻰ ﺍﻷﻓﻘﻰ.‬ ‫‪ci‬‬ ‫.‬ ‫..................................................................................................................................................................................................................................‬ ‫..................................................................................................................................................................................................................................‬ ‫9 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ‪ i‬ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺴﺘﻴﻨﻰ ﻓﻰ ﻛﻞ ﺷﻜﻞ ﻣﻦ ﺍﻷﺷﻜﺎﻝ ﺍﻵﺗﻴﺔ:‬ ‫ب‬ ‫أ‬ ‫ﺟ‬ ‫‪i‬‬ ‫‪i‬‬ ‫............................................................‬ ‫¯‬ ‫−‬ ‫............................................................‬ ‫¯‬ ‫‪i‬‬ ‫............................................................‬
  • 70.
    ‫ﲤﺎﺭﻳﻦ ﻋﺎﻣﺔ‬ ‫‪:ø«jô°ûY ø«ªbQÜôbC’ èJÉædG ÉkHô≤e á«JB’G á∏İSC’G øY ÖLCG‬‬ ‫1 ﺣﻮﻝ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻣﻦ ﺩﺭﺟﺎﺕ ﺇﻟﻰ ﺭﺍﺩﻳﺎﻥ:‬ ‫ِّ‬ ‫أ ٠٢١‪c‬‬ ‫ب ٨٫٤٦‪c‬‬ ‫   ...............................‬ ‫               ...............................‬ ‫ﺟ ٦٣ َ ٠٢٢‪c‬‬ ‫................................‬ ‫2 ﺣﻮﻝ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻣﻦ ﺭﺍﺩﻳﺎﻥ ﺇﻟﻰ ﺩﺭﺟﺎﺕ:‬ ‫أ ٥‪r‬‬ ‫٣‬ ‫ب - ٣‪r‬‬ ‫٢‬ ‫       ...............................‬ ‫      ...............................‬ ‫ﺟ ٢١٫١‬ ‫‪E‬‬ ‫      ...............................‬ ‫3 ‪ i‬ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪ H‬ﻭﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ﻝ:‬ ‫ﻣﺮ‬ ‫ً‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ‪ ٨ = H‬ﺳﻢ،  ‪ E١٫٢ = i‬ﺃﻭﺟﺪ ﻝ.‬ ‫    ‬ ‫................................................................................................‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ = ٦٢ ﺳﻢ، ‪ ١٨ = H‬ﺳﻢ ﺃﻭﺟﺪ ‪ i‬ﺑﺎﻟﺪﺭﺟﺎﺕ.‬ ‫...............................................................................................‬ ‫4 ﺑﺪﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫٣١‬ ‫أ ﻇﺎ ٠٢١‪    c‬ب ﺟﺎ ) ٦‪    ( r‬ﺟ ﺟﺘﺎ ٠٣٣‪    c‬د ﻇﺘﺎ )- ٠٠٣‪    (c‬ﻫ ﻗﺘﺎ )- ‪( r‬‬ ‫٣‬ ‫..............................        ..............................            ..............................            ..............................               ..............................‬ ‫5 ﺃﻭﺟﺪ ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻣﺮﺳﻮﻣﺎ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻭﻳﻤﺮ ﺑﻜﻞ ﻧﻘﻄﺔ‬ ‫ً‬ ‫ﻣﻦ ﺍﻟﻨﻘﺎﻁ ﺍﻵﺗﻴﺔ:‬ ‫ﺟ )- ٣‬ ‫د )- ٥ ، ٢(‬ ‫٢ ، - ٢(‬ ‫ب - )٥، - ٢١(‬ ‫أ )٤، ٣(‬ ‫.............................................‬ ‫6‬ ‫.............................................‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ:‬ ‫: ﺟﺎ ٠٦ = ٢ ﺟﺎ ٠٣‪ c‬ﺟﺘﺎ ٠٣‪c‬‬ ‫.............................................‬ ‫.............................................‬ ‫: ﺟﺘﺎ ٠٠٣‪ ٢ = c‬ﺟﺎ٢ ٠٦‪١- c‬‬ ‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﺘﺎ ‪ ٤ - = i‬ﺣﻴﺚ ٠٩‪ c١٨٠ > i > c‬ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ:‬ ‫٥‬ ‫ً‬ ‫: ﻇﺎ )‪(c١٨٠- i‬‬ ‫ﺃﻭﻻ: ﺟﺎ )٠٨١‪( i -c‬‬ ‫............................................................‬ ‫............................................................‬ ‫7 ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﻭﺍﻳﺎ ﺑﺎﻟﺪﺭﺟﺎﺕ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ٠‪ c٣٦٠ H iHc‬ﻟﻜﻞ ﻣﻤﺎ ﻳﺄﺗﻰ:‬ ‫٣‬ ‫ﺟ ﺟﺘﺎ-١ )  ٢ (‬ ‫ب ﺟﺎ-١ )- ١ (‬ ‫أ ﻇﺎ-١ ١‬ ‫٢‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫د ﻇﺎ-١)- ٣ (‬ ‫.............................................‬ ‫8 ﻣﻨﺤﺪﺭﺍ ﻃﻮﻟﻪ ٤٢ ﻣﺘﺮﺍ، ﻭﺍﺭﺗﻔﺎﻋﻪ ﻋﻦ ﺳﻄﺢ ﺍﻷﺭﺽ ٩ ﺃﻣﺘﺎﺭ، ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﺎ ﻹﻳﺠﺎﺩ ﻗﻴﺎﺱ‬ ‫ً‬ ‫ً‬ ‫ﺯﺍﻭﻳﺔ ﻣﻴﻞ ﺍﻟﻤﻨﺤﺪﺭ ﻣﻊ ﺍﻷﺭﺽ ﺍﻷﻓﻘﻴﺔ، ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﺎﺳﻬﺎ. ..........................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 71.
    ‫ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ‬ ‫‪.√É£©ªdG äÉHÉLE’Gø«H øe áë«ë°üdG áHÉL’G ôàNG‬‬ ‫1 ﺍﻟﺰﺍﻭﻳﺔ ٥٨٥‪ c‬ﺗﻜﺎﻓﻲﺀ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ:‬ ‫ﺟ ٥٢٢‪c‬‬ ‫ب ٥٣١‪c‬‬ ‫أ ٥٤‪c‬‬ ‫د ٥١٣‪c‬‬ ‫2 ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ‪ ،٠ > i‬ﻇﺎ ‪ ٠ < i‬ﻓﺈﻥ ﺯﺍﻭﻳﺔ ﺗﻘﻊ ‪ i‬ﻓﻰ ﺍﻟﺮﺑﻊ:‬ ‫ﺟ ﺍﻟﺜﺎﻟﺚ‬ ‫ب ﺍﻟﺜﺎﻧﻰ‬ ‫أ ﺍﻷﻭﻝ‬ ‫د ﺍﻟﺮﺍﺑﻊ‬ ‫3 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻛﺎﻥ ﺟﺎ )‪ = (c٢٠ + i‬ﺟﺘﺎ ٠٣‪ c‬ﻓﺈﻥ ﻕ )‪ (i c‬ﺗﺴﺎﻭﻯ:‬ ‫ﻭ‬ ‫د ٠٥‪c‬‬ ‫ﺟ ٠٤‪c‬‬ ‫ب ٠٣‪c‬‬ ‫أ ٠٢‪c‬‬ ‫4 ﺍﻟﺰﺍﻭﻳﺔ )-٠٥٨‪ (c‬ﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ:‬ ‫ب ﺍﻟﺜﺎﻧﻰ‬ ‫أ ﺍﻷﻭﻝ‬ ‫ﺟ ﺍﻟﺜﺎﻟﺚ‬ ‫د ﺍﻟﺮﺍﺑﻊ‬ ‫5 ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺑﺎﻟﺪﺭﺟﺎﺕ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٦‪ r‬ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٩ﺳﻢ ﺗﺴﺎﻭﻯ:‬ ‫ً‬ ‫د ٠٥١‪c‬‬ ‫ﺟ ٠٢١‪c‬‬ ‫ب ٠٦‪c‬‬ ‫أ ٠٣‪c‬‬ ‫6 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻤﻘﺪﺍﺭ: ﺟﺘﺎ )٠٨١‪ + (i + c‬ﺟﺎ )٠٩‪ (i + c‬ﻳﺴﺎﻭﻯ:‬ ‫ﺟ ٢ ﺟﺘﺎ ‪i‬‬ ‫ب ٢‬ ‫أ ٠‬ ‫7 ﻇﺎ )-٠٣‪ (c‬ﺗﺴﺎﻭﻯ:‬ ‫أ - ٣‬ ‫ب - ١‬ ‫٣‬ ‫ﺟ‬ ‫د ٢ ﺟﺎ ‪i‬‬ ‫١‬ ‫٣‬ ‫د‬ ‫٣‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG‬‬ ‫8 ‪ C‬ﺏ ﻗﻮﺱ ﻓﻰ ﺩﺍﺋﺮﺓ ﻛﺰﻫﺎ ﻭ ﻭﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٠١ ﺳﻢ ، ‪ C‬ﺏ = ٦١ ﺳﻢ.‬ ‫ﻣﺮ‬ ‫ﺃﻭﺟﺪ ‪ i‬ﺑﺎﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﺛﻢ ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻘﻮﺱ ‪ C‬ﺏ :‬ ‫‪C‬‬ ‫‪i‬‬ ‫9 ﺇﺫﺍ ﻛﺎﻥ ٥ ﺟﺎ ‪ ٤ = C‬ﺣﻴﺚ ٠٩‪c١٨٠ > C > c‬‬ ‫ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ ﺟﺎ )٠٨١‪+ (C - c‬ﻇﺎ )٠٦٣‪٢+ (C - c‬ﺟﺎ )٠٧٢‪(C - c‬‬ ‫01 ﺃﻭﺟﺪ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ: ﺟﺎ ٠٢١‪ c‬ﺟﺘﺎ٠٣٣‪ - c‬ﺟﺘﺎ ٠٢٤‪ c‬ﺟﺎ )-٠٣‪.(c‬‬ ‫11 ﺍﻭﺟﺪ ﺑﺎﻟﺮﺩﻳﺎﻥ ‪ (C c) X‬ﺇﺫﺍ ﻛﺎﻥ ٢ ﺟﺘﺎ ‪ ٠ = ٢ + C‬ﺣﻴﺚ ‪ C‬ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ.‬ ‫٣‬ ‫21 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻲ ﻟﻠﺰﺍﻭﻳﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ )- ٢ ، ١ ( ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ‬ ‫٢‬ ‫ﻛﻞ ﻣﻦ: ﻃﺎ‪ ، i‬ﻗﺎ‪i‬‬ ‫31 ﺃﻭﺟﺪ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻤﺜﻠﺜﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻲ ﻣﺮﺳﻮﻣﺎ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻲ ﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ‬ ‫ً‬ ‫)٦، -٨(‬ ‫¯‬ ‫−‬ ‫¯‬
  • 72.
    ‫ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ‬ ‫‪k‬‬ ‫‪Oó©àe øeQÉ«àN’G á∏İSCG :’hCG‬‬ ‫1 ﺃﻯ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﻳﻜﻮﻥ ﺍﻟﺠﻴﺐ ﻭﺟﻴﺐ ﺍﻟﺘﻤﺎﻡ ﻟﻬﺎ ﺳﺎﻟﺒﻴﻦ :‬ ‫ﺟ ٠٢٢‪c‬‬ ‫ب ٠٤١‪c‬‬ ‫أ ٠٤‪c‬‬ ‫.............................................‬ ‫.............................................‬ ‫د ٠٢٣‪c‬‬ ‫.............................................‬ ‫.............................................‬ ‫2 ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺍﻟﺘﻰ ﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٢‪ r‬ﻓﻰ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ ﻳﺴﺎﻭﻯ :‬ ‫ﺍﻟﻤﺮ‬ ‫ً‬ ‫د ‪r‬‬ ‫ﺟ ‪r‬‬ ‫ب ‪r‬‬ ‫‪r‬‬ ‫أ‬ ‫٤‬ ‫٦‬ ‫.............................................‬ ‫٣‬ ‫.............................................‬ ‫٢‬ ‫.............................................‬ ‫.............................................‬ ‫3 ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ٤‪ = i‬ﻇﺘﺎ٢‪ i‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ ﻓﺈﻥ ﺟﺎ)٠٩ ْ - ‪ (i‬ﺗﺴﺎﻭﻯ :‬ ‫ﺟ ٣‬ ‫أ ١‬ ‫ب ١‬ ‫د ١‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫٣‬ ‫4 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ ‪ i‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ ) ١ ، ٢ ( ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ‬ ‫٢‬ ‫ﻛﻞ ﻣﻦ ﻇﺘﺎ ‪ ،i‬ﻗﺘﺎ‪...................................................................................................................................................................................... .i‬‬ ‫5 ﺑﺪﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ ﺃﻭﺟﺪ )ﺇﻥ ﺃﻣﻜﻦ ﺫﻟﻚ( ﻗﻴﻤﺔ ﻛﻞ ﻣﻦ :‬ ‫ﺟ ﻗﺎ ٣‪r‬‬ ‫ب ﺟﺎ )- ٥٣١‪(c‬‬ ‫أ ﺟﺘﺎ ٠١٢‪c‬‬ ‫د ﻇﺘﺎ )- ٢‪( r‬‬ ‫٣‬ ‫٢‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫6 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻀﻠﻊ ﺍﻟﻨﻬﺎﺋﻰ ﻟﻠﺰﺍﻭﻳﺔ )٠٩‪ (i - c‬ﺣﻴﺚ ‪ i‬ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ ﻣﻮﺟﺒﺔ، ﻳﻘﻄﻊ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٥‬ ‫ﻭﺣﺪﺍﺕ ﻃﻮﻝ ﻓﻰ ﺍﻟﻨﻘﻄﺔ )٤ ، ﻙ( ﻓﺄﻭﺟﺪ :‬ ‫د ﻕ)‪(i c‬‬ ‫ﺟ ﺟﺘﺎ )٠٩‪(i - c‬‬ ‫ب ﺟﺎ )٠٩‪(i - c‬‬ ‫أ ﻗﻴﻤﺔ ﻙ‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫.............................................‬ ‫7 ﺩ ﺍﺟﺎﺕ: ﻳﺼﻌﺪ ﻛﺮﻳﻢ ﺑﺪﺭﺍﺟﺘﻪ ﻣﻨﺤﺪﺭﺍ ﻳﻤﻴﻞ ﻋﻠﻰ ﺍﻷﻓﻘﻰ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٥٥١‪ c‬ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ‬ ‫ً‬ ‫أ ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻣﺜﻠﺜﻴﺔ ﺗﺒﻴﻦ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ‪ C‬ﻭﻃﻮﻝ ﺍﻟﻤﻨﺤﺪﺭ.‬ ‫ب ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻷﻗﺮﺏ ﻋﺪﺩﻳﻦ ﻋﺸﺮﻳﻴﻦ.‬ ‫¯‬ ‫‪ï‬‬ ‫¯‬ ‫١‬ ‫٢‬ ‫٣‬ ‫٤‬ ‫٥‬ ‫٦‬ ‫٧‬ ‫٤- ٣‬ ‫٤-٢‬ ‫٤-٤‬ ‫٤-٣‬ ‫٤- ٤‬ ‫٤-٤‬ ‫٤-٤‬ ‫‪ïM‬‬ ‫−‬
  • 73.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﺠﺒﺮ وﺣﺴﺎباﻟﻤﺜﻠﺜﺎت(‬ ‫اﻻﺧﺘﺒﺎر ا ول‬ ‫‪k‬‬ ‫‪≈`JCÉjÉe πªcCG :’hCG‬‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ﺱ = -١ ﻫﻰ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ‪ C‬ﺱ – ٢ = ٠ ﻓﺈﻥ ‪= C‬‬ ‫2 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٣ ﺗﻜﻮﻥ‬ ‫...............................................................................‬ ‫..................................................................................................................................‬ ‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻓﻰ ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﻛﺒﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ – ﺕ، ﺕ ﻫﻰ‬ ‫ﺍﻟﻤﺮ‬ ‫4 ﻣﺪﻯ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)‪ ٣ = (i‬ﺟﺎ‪ i‬ﻫﻮ‬ ‫...................................................................‬ ‫................................................................................................................................................‬ ‫5 ﺃﺻﻐﺮ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﻣﻜﺎﻓﺌﺔ ﻟﻠﺰﺍﻭﻳﺔ ﺍﻟﺘﻰ ﻗﻴﺎﺳﻬﺎ )-٠٤٨‪ (c‬ﻗﻴﺎﺳﻬﺎ ............................ ﻭﺗﻘﻊ ﻓﻰ ﺍﻟﺮﺑﻊ‬ ‫................................‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 أ ﺃﺛﺒﺖ ﺃﻥ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ - ٥ﺱ + ٣ = ٠ ﺣﻘﻴﻘﻴﺎﻥ ﻣﺨﺘﻠﻔﺎﻥ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ ﻓﻰ ﺡ ﻣﻘﺮﺑﺎ‬ ‫ً‬ ‫ﺍﻟﻨﺎﺗﺞ ﻟﺮﻗﻢ ﻋﺸﺮﻯ ﻭﺍﺣﺪ. ................................................................................................................................................................‬ ‫ب ﺃﻭﺟﺪ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻗﻴﻤﺔ ﺍﻟﻤﻘﺪﺍﺭ:ﺟﺎ )- ٠٣˚( ﺟﺘﺎ ٠٢٤˚ + ﻇﺎ٥٢‪c‬‬ ‫....................................................................‬ ‫ﻇﺘﺎ٥٦‪c‬‬ ‫2 أ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (٥ – C‬ﺱ٢ + )‪ (١٠ – C‬ﺱ – ٥ = ٠ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ‪ C‬ﻓﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺗﻴﺔ:‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﻤﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ = ٤ ...........................................................................................................................‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻰ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ. ...........................................................‬ ‫ب ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ﺱ٢ + ٢ ﺱ – ٥١ ﻣﻊ ﺗﻮﺿﻴﺢ ﺫﻟﻚ ﻋﻠﻰ ﺧﻂ ﺍﻷﻋﺪﺍﺩ.‬ ‫.......................................................................................................................................................................................................................‬ ‫3‬ ‫أ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ: ٥ﺱ٢ + ٢١ﺱ ‪٤٤ G‬‬ ‫............................................................................................................‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﺟﺎ ‪ ٣ = i‬ﺣﻴﺚ ٠٩‪ ،c١٨٠ > i > c‬ﺃﻭﺟﺪ ﻗﻴﻤﺔ: ﺟﺘﺎ )٠٧٢‪،(i – c‬ﻇﺎ )٠٨١‪(i + c‬‬ ‫٥‬ ‫.........................‬ ‫.......................................................................................................................................................................................................................‬ ‫4 أ ﺿﻊ ﺍﻟﻌﺪﺩ ﻛﺐ ﺍﻵﺗﻰ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ )٦٢ – ٤ﺕ( – )٩ – ٠٢ ﺕ( ﺣﻴﺚ ﺕ٢ = -١‬ ‫ﺍﻟﻤﺮ‬ ‫ب ﺍﻟﺮﺑﻂ ﺑﺎﻟ ﺎﺿﺔ: ﻛﻞ ﻻﻋﺐ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ﺍﻟﻜﺮﺓ ﻧﺤﻮ ﺍﻟﻬﺪﻑ ﻣﻦ ﻣﺴﺎﻓﺔ ﺱ ﻣﺘﺮﺍ ﻋﻦ ﺣﺎﺭﺱ ﺍﻟﻤﺮﻣﻰ،‬ ‫ﻳﺮ‬ ‫ﻓﻴﻘﻔﺰ ﺍﻟﺤﺎﺭﺱ ﻭﻳﻤﺴﻚ ﺍﻟﻜﺮﺓ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ١٫٢ ﻣﺘﺮﺍ ﻋﻦ ﺳﻄﺢ ﺍﻷﺭﺽ ﻓﺈﺫﺍ ﻛﺎﻥ‬ ‫ً‬ ‫ﻣﺴﺎﺭ ﺍﻟﻜﺮﺓ ﻳﻤﻴﻞ ﺑﺰﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٣‪ c‬ﻣﻊ ﺍﻷﻓﻘﻰ. ﻓﺄﻭﺟﺪ ﻷﻗﺮﺏ ﺭﻗﻢ ﻋﺸﺮﻯ‬ ‫‪c‬‬ ‫ﻭﺍﺣﺪ ﺍﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﺍﻟﻼﻋﺐ ﻭﺣﺎﺭﺱ ﺍﻟﻤﺮﻣﻰ ﻋﻨﺪﻣﺎ ﺭﻛﻞ ﺍﻟﻼﻋﺐ ﺍﻟﻜﺮﺓ.‬ ‫.................................‬ ‫.............................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 74.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﺠﺒﺮ وﺣﺴﺎباﻟﻤﺜﻠﺜﺎت(‬ ‫اﻻﺧﺘﺒﺎر اﻟﺜﺎﻧﻰ‬ ‫‪k‬‬ ‫‪:IÉ£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬ ‫1 ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻟﻠﻌﺪﺩ ﺍﻟﺘﺨﻴﻠﻰ ﺕ٣٧ ﻫﻮ:‬ ‫ب ١‬ ‫أ -١‬ ‫...................................................................................................................................................‬ ‫ﺟ -ﺕ‬ ‫د ﺕ‬ ‫2 ﺍﻟﺪﺍﻟﺔ ﺩ: ]- ٤، ٧[ # ﺡ ﺣﻴﺚ ﺩ)ﺱ( = ٦ - ٢ﺱ ﺗﻜﻮﻥ ﺇﺷﺎﺭﺗﻬﺎ ﻣﻮﺟﺒﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ:‬ ‫د [ ٣، ٧ ]‬ ‫ﺟ ]- ٤، ٧[‬ ‫ب [ ٣، ٧ ]‬ ‫أ ]- ٤، ٣ ]‬ ‫.............................................‬ ‫3 ﺇﺫﺍ ﻛﺎﻥ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ٤ ﺱ٢ – ٢١ ﺱ + ﺟـ = ٠ ﻣﺘﺴﺎﻭﻳﻴﻦ ﻓﺈﻥ ﺟـ ﺗﺴﺎﻭﻯ:‬ ‫ﺟ ٩‬ ‫ب ٤‬ ‫أ ٣‬ ‫4 ﻇﺎ ‪ ` r -j‬ﺗﺴﺎﻭﻯ:‬ ‫٦‬ ‫أ - ٣‬ ‫...................................................................‬ ‫د ٦١‬ ‫.........................................................................................................................................................................................‬ ‫ب - ١‬ ‫٣‬ ‫ﺟ‬ ‫١‬ ‫٣‬ ‫د‬ ‫٣‬ ‫5 ﺍﻟﻘﻴﺎﺱ ﺍﻟﺪﺍﺋﺮﻯ ﻟﺰﺍﻭﻳﺔ ﻛﺰﻳﺔ ﺗﺤﺼﺮ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٣ﺳﻢ ﻣﻦ ﺩﺍﺋﺮﺓ ﻃﻮﻝ ﻗﻄﺮﻫﺎ ٤ﺳﻢ ﻫﻮ:‬ ‫ﻣﺮ‬ ‫ً‬ ‫‪E‬‬ ‫‪E‬‬ ‫٣ ‪E‬‬ ‫٢ ‪E‬‬ ‫د ٦‬ ‫ﺟ ٥‬ ‫ب )٢(‬ ‫أ )٣(‬ ‫....................................‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 أ ﺑﻴﻦ ﻧﻮﻉ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ + ٩ = ٦ ﺱ، ﺛﻢ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺍﻟﺤﻞ.‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ: ٧ ﻗﺘﺎ ‪ ٢٥ = C‬ﺣﻴﺚ ‪ .r > C > r‬ﻓﺄﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺪﺩﻳﺔ ﻟﻠﻤﻘﺪﺍﺭ: ﻇﺎ ) ‪ - ( C + r‬ﻇﺘﺎ )‪( r - C‬‬ ‫٢‬ ‫٢‬ ‫.........................................................................‬ ‫.......................................................................................................................................................................................................................‬ ‫2‬ ‫أ ﺃﻭﺟﺪ ﻗﻴﻤﺘﻰ ‪ ،C‬ﺏ ﺍﻟﺤﻘﻴﻘﻴﺘﻴﻦ ﺍﻟﻠﺘﻴﻦ ﺗﺤﻘﻘﺎﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ: )‪) – (٣ + C‬ﺏ – ١( ﺕ = ٧ – ٩ ﺕ ﺣﻴﺚ ﺕ٢ = -١‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺣﻮﻝ ﻗﻴﺎﺱ ﻛﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻜﺘﻮﺑﺔ ﺑﺎﻟﺪﺭﺟﺎﺕ ﺇﻟﻰ ﺭﺍﺩﻳﺎﻥ ﻭﺍﻟﻤﻜﺘﻮﺑﺔ ﺑﺎﻟﺮﺍﺩﻳﺎﻥ ﺇﻟﻰ ﺩﺭﺟﺎﺕ‬ ‫: ٨‪r‬‬ ‫  ..........................................................................‬ ‫: ٥١٢‪................................................................. c‬‬ ‫٦‬ ‫3 أ ﺍﺑﺤﺚ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ٢ﺱ٢ – ٣ ﺱ + ٤ ﻣﻊ ﺗﻮﺿﻴﺢ ﺫﻟﻚ ﻋﻠﻰ ﺧﻂ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ‬ ‫ب ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ‪ i‬ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ، ﺣﻴﺚ ﻳﻤﺮ ﺿﻠﻌﻬﺎ ﺍﻟﻨﻬﺎﺋﻰ ﺑﺎﻟﻨﻘﻄﺔ )٤، - ٣(‬ ‫ﻓﺄﻭﺟﺪ ﺟﺎ‪ ،i‬ﻇﺘﺎ‪.......................................................................................................................................................................... .i‬‬ ‫4‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ )ﺱ + ٢(٢ + )ﺱ + ١( )ﺱ – ٤( > ٠‬ ‫: ﺍﻛﺘﺐ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻓﻰ ﺃﺑﺴﻂ ﺻﻮﺭﺓ.‬ ‫: ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ.‬ ‫.......................................................................................................................................................................................................................‬ ‫٢‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﻝ ، ٢ ﻫﻤﺎ ﺟﺬﺭﺍ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ٢ – ٦ ﺱ + ٤ = ٠ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ )ﻝ + ﻡ(، ﻝ ﻡ.‬ ‫ﻡ‬ ‫.......................................................................................................................................................................................................................‬ ‫‪ïM‬‬ ‫−‬
  • 75.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﺠﺒﺮ وﺣﺴﺎباﻟﻤﺜﻠﺜﺎت(‬ ‫اﻻﺧﺘﺒﺎر اﻟﺜﺎﻟﺚ‬ ‫‪k‬‬ ‫‪IÉ£©ªdG äÉHÉLE’G ø«H øe áë«ë°üdG áHÉLE’G ôàNG :’hCG‬‬ ‫1 ﺇﺫﺍ ﻛﺎﻥ ﺃﺣﺪ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪C‬ﺱ٢ + ٢ ﺱ + ٥ = ٠ ﻣﻌﻜﻮﺳﺎ ﺿﺮﺑﻴﺎ ﻟﻠﺠﺬﺭ ﺍﻵﺧﺮ ﻓﺈﻥ ‪ C‬ﺗﺴﺎﻭﻯ:‬ ‫ً‬ ‫ًّ‬ ‫د ٥‬ ‫ﺟ ٢‬ ‫ب -٢‬ ‫أ -٥‬ ‫2 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﺩ ﺣﻴﺚ ﺩ)ﺱ( = ٦ – ٢ ﺱ ﺗﻜﻮﻥ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﻛﺎﻧﺖ:‬ ‫ﺟ ﺱ>٣‬ ‫ب ﺱ‪٣G‬‬ ‫أ ﺱ<٣‬ ‫..........................‬ ‫..........................................................................................‬ ‫د ﺱ‪٣H‬‬ ‫3 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ١ + ﺕ ، ١ – ﺕ ﺣﻴﺚ ﺕ٢ = -١ ﻫﻰ:‬ ‫أ ﺱ٢ + ٢ﺱ + ٢ = ٠ ب ﺱ٢ – ٢ﺱ + ٢ = ٠ ﺟ ﺱ٢ + ٢ﺱ – ٢ = ٠‬ ‫...............................................................................‬ ‫د ﺱ٢ – ٢ﺱ – ٢ = ٠‬ ‫4 ﺇﺫﺍ ﻛﺎﻧﺖ ‪ i‬ﺯﺍﻭﻳﺔ ﻣﺮﺳﻮﻣﺔ ﻓﻰ ﺍﻟﻮﺿﻊ ﺍﻟﻘﻴﺎﺳﻰ ﺑﺤﻴﺚ ﺟﺘﺎ ‪ ،٠ < i‬ﻓﻰ ﺃﻯ ﺭﺑﻊ ﻳﻘﻊ ﺿﻠﻊ ﺍﻟﻨﻬﺎﻳﺔ ﻟﻠﺰﺍﻭﻳﺔ ‪:i‬‬ ‫د ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺮﺍﺑﻊ‬ ‫ﺟ ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﻟﺚ‬ ‫ب ﺍﻷﻭﻝ ﺃﻭ ﺍﻟﺜﺎﻧﻰ‬ ‫أ ﺍﻷﻭﻝ‬ ‫5 ﺇﺫﺍ ﻛﺎﻧﺖ ٢ ﺟﺘﺎ ‪ ٢ - = C‬ﻓﺈﻥ ﺃﻗﻞ ﺯﺍﻭﻳﺔ ﻣﻮﺟﺒﺔ ﺗﺤﻘﻖ ﻫﺬه ﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻫﻰ:‬ ‫د ٥١٣‪c‬‬ ‫ﺟ ٥٢٢‪c‬‬ ‫ب ٥٣١‪c‬‬ ‫أ ٥٤‪c‬‬ ‫.........................................................‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1‬ ‫أ ﺇﺫﺍ ﻛﺎﻥ ﻝ، ﻡ ﺟﺬﺭﻯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺱ )٢ ﺱ + ٣( = ٥ ﻓﺄﻭﺟﺪ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻰ ﺟﺬﺭﺍﻫﺎ ﻝ + ١ ، ﻡ + ١.‬ ‫.................‬ ‫.......................................................................................................................................................................................................................‬ ‫ب ﺯﺍﻭﻳﺔ ﻛﺰﻳﺔ ﻗﻴﺎﺳﻬﺎ ٠٦‪ c‬ﻭﺗﻘﺎﺑﻞ ﻗﻮﺳﺎ ﻃﻮﻟﻪ ٧‪ r‬ﺳﻢ، ﺍﺣﺴﺐ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮ ﺩﺍﺋﺮﺗﻬﺎ.‬ ‫ﻣﺮ‬ ‫ً‬ ‫٣‬ ‫...........................‬ ‫.......................................................................................................................................................................................................................‬ ‫2 أ ﺿﻊ ﺍﻟﻌﺪﺩ ٢ - ٣ﺕ ﻓﻰ ﺻﻮﺭﺓ ﻋﺪﺩ ﻛﺐ. ﺣﻴﺚ ﺕ٢ = -١.‬ ‫ﻣﺮ‬ ‫٣ + ٢ﺕ‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ٤ ﺟﺎ ‪ ٠ = ٣ - C‬ﺃﻭﺟﺪ ‪ ( Cc) X‬ﺣﻴﺚ ‪ ،٠ [ ∋ C‬ﻁ‬ ‫] ........................................................................................‬ ‫٢‬ ‫.........................................................................................‬ ‫3‬ ‫أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺩ : ﺡ # ﺡ ﺣﻴﺚ ﺩ)ﺱ( = - ﺱ٢ + ٨ ﺱ – ٥١‬ ‫: ﻋﻴﻦ ﻣﻦ ﺍﻟﺮﺳﻢ ﺇﺷﺎﺭﺓ ﻫﺬه ﺍﻟﺪﺍﻟﺔ.‬ ‫: ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ﻓﻰ ﺍﻟﻔﺘﺮﺓ ] ١، ٧ [‬ ‫.......................................................................................................................................................................................................................‬ ‫‬‫ب ﺇﺫﺍ ﻛﺎﻥ ﺱ = ٣ + ٢ﺕ، ﺹ = ٤١ -٢ﺕ ﻓﺄﻭﺟﺪ ﺱ + ﺹ ﻓﻰ ﺻﻮﺭﺓ ﻋﺪﺩ ﻛﺐ.‬ ‫ﻣﺮ‬ ‫ﺕ‬ ‫..................................................‬ ‫4 أ ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﻴﺎﻳﻨﺔ ﺱ٢ + ٣ﺱ – ٤ ‪٠ H‬‬ ‫ب ﺇﺫﺍ ﻛﺎﻥ ﻇﺎ ﺏ = ٣ ﺣﻴﺚ ٠٨١‪ > c‬ﺏ > ٠٧٢‪ c‬ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ: ﺟﺘﺎ )٠٦٣‪ – c‬ﺏ( - ﺟﺘﺎ )٠٩‪ – c‬ﺏ(‬ ‫٤‬ ‫..............................................................................................................‬ ‫.......................................................................................................................................................................................................................‬ ‫¯‬ ‫−‬ ‫¯‬
  • 76.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﻬﻨﺪﺳﺔ(‬ ‫اﻻﺧﺘﺒﺎر اﻟﺮاﺑﻊ‬ ‫‪k‬‬ ‫‪πªcCG:’hCG‬‬ ‫1 ﺇﺫﺍ ﻗﻄﻊ ﻣﺴﺘﻘﻴﻤﺎﻥ ﻋﺪﺓ ﻣﺴﺘﻘﻴﻤﺎﺕ ﻣﺘﻮﺍﺯﻳﺔ، ﻓﺈﻥ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻠﻰ ﺃﺣﺪ ﺍﻟﻘﺎﻃﻌﻴﻦ ﺗﻜﻮﻥ‬ ‫....................‬ ‫2 ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﺜﻠﺜﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﻫﻲ ٣ : ٥، ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ﺍﻷﻭﻝ ٦٣ ﺳﻢ٢ ﻓﺈﻥ‬ ‫ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﺜﻠﺚ ﺍﻟﺜﺎﻧﻰ ﺗﺴﺎﻭﻯ .....................................................................................................................................................‬ ‫‪C‬‬ ‫3‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ // ﺏ ﺟـ ، ﺱ ﺹ : ﺏ ﺟـ = ٣ : ٨ ﻓﺈﻥ:‬ ‫أ ‪C‬ﺱ : ﺱ ﺏ = ........................... : ...........................‬ ‫ب‬ ‫ﻣﺤﻴﻂ 9‪C‬ﺱ ﺹ : ﻣﺤﻴﻂ 9‪C‬ﺏ ﺟـ = ......................... : ..........................‬ ‫4‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﺟـ ‪ E‬ﻳﻨﺼﻒ )‪c‬ﺟـ(،‬ ‫‪ C‬ﺟـ = ٣ ﺳﻢ، ﺏ ﺟـ = ٥٫٧ ﺳﻢ، ﻓﺈﻥ ‪ : E C‬ﺏ ‪..................................................... = E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٣ ﺳﻢ ، ‪C‬ﻡ = ٤ ﺳﻢ.‬ ‫ب ﺭﺳﻢ ﻣﻬﻨﺪﺱ ﻣﻌﻤﺎﺭﻯ ﻣﺨﻄﻄًﺎ ﻟﻘﻄﻌﺔ ﺃﺭﺽ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ، ﻃﻮﻟﻬﺎ ﺿﻌﻒ ﻋﺮﺿﻬﺎ، ﻭﻣﺴﺎﺣﺘﻬﺎ ٠٠٢‬ ‫ﻣﺘﺮ٢ ﺑﻤﻘﻴﺎﺱ ﺭﺳﻢ ١ : ٠٠٢، ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻄﻌﺔ ﺍﻷﺭﺽ ﻓﻰ ﺍﻟﻤﺨﻄﻂ.‬ ‫: ﺱ ﺹ // ‪ E‬ﻫـ // ﻝ ﻉ ﺃﻭﺟﺪ:‬ ‫2‬ ‫: ﻃﻮﻝ ﻫـ ﻡ‬ ‫‪E‬‬ ‫: ﻃﻮﻝ ﻡ ﻉ‬ ‫?‬ ‫?‬ ‫3‬ ‫: ‪ C‬ﺏ ﻗﻄﺮ ﻓﻰ ﺍﻟﺪﺍﺋﺮﺓ،‬ ‫ﺟـ ‪ E‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ﺟـ ، ‪C‬ﺟـ = ٢١ ﺳﻢ، ﺍﺏ = ٣١ ﺳﻢ. ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9 ‪ E‬ﺟـ ﺏ + 9 ‪ C E‬ﺟـ‬ ‫ب ﺃﻭﺟﺪ ﻃﻮﻝ ﺟـ ‪ E‬ﻷﻗﺮﺏ ﺳﻢ‬ ‫ﺟ ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ 9 ‪C‬ﺏ ﺟـ‬ ‫‪C‬‬ ‫‪E‬‬ ‫4 ‪C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ ،C‬ﻓﻴﻪ ‪ C‬ﺏ = ٠٢ ﺳﻢ، ‪C‬ﺟـ = ٥١ ﺳﻢ، ‪ ∋ E‬ﺏ ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ﺏ ‪ ١٠ = E‬ﺳﻢ،‬ ‫ﺭﺳﻢ ‪ C‬ﻫـ = ﺏ ﺟـ ﻭﻳﻘﻄﻊ ﺏ ﺟـ ﻓﻰ ﻫـ ، ﻭﻣﻦ ‪ E‬ﺭﺳﻢ ‪ E‬ﻭ // ﺏ ‪ C‬ﻭﻳﻘﻄﻊ ‪ C‬ﻫـ ﻓﻰ ﻭ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ ﺟـ ﻭ ﻳﻨﺼﻒ ‪c‬ﺟـ.‬ ‫‪ïM‬‬ ‫−‬
  • 77.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﻬﻨﺪﺳﺔ(‬ ‫اﻻﺧﺘﺒﺎر اﻟﺨﺎﻣﺲ‬ ‫‪k‬‬ ‫‪:πªcCG:’hCG‬‬ ‫1 ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﺜﻠﺜﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﻛﺎﻟﻨﺴﺒﺔ ﺑﻴﻦ‬ ‫.....................................................................................................‬ ‫2 ﻳﺘﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻌﺎﻥ ﺇﺫﺍ ﻛﺎﻥ‬ ‫................................................................... ...................................................................‬ ‫3‬ ‫:‬ ‫،‬ ‫‪E‬‬ ‫أ )‪= ٢(E C‬‬ ‫ب‬ ‫‪ E‬ﻥ * ﻥ ﻫـ = ....................................................‬ ‫ﺟ‬ ‫9 ‪ E C‬ﺟـ + 9 ..............................................‬ ‫....................................................................‬ ‫‪C‬‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺏ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ، ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٨ ﺳﻢ، ﺏ ﻡ = ٥ ﺳﻢ‬ ‫ب‬ ‫:‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﻉ ﺹ‬ ‫‪C‬‬ ‫   ﻓﺎﺛﺒﺖ ﺃﻥ: ﺱ ﺹ // ‪. E C‬‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ ‪ C‬ﺏ ﺟـ ‪ ١٤ = E‬ﺳﻢ،‬ ‫   ﻣﺤﻴﻂ ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﻉ ﺹ = ٠١ ﺳﻢ،‬ ‫   ﻃﻮﻝ ﺱ ﺏ = ٢ ﺳﻢ، ﻓﺄﻭﺟﺪ ﻃﻮﻝ ‪ C‬ﺏ‬ ‫2‬ ‫: ‪ C‬ﺏ = ٦ ﺳﻢ، ﺏ ﺟـ = ٢١ ﺳﻢ،‬ ‫ﺟـ ‪ ٨ = C‬ﺳﻢ، ﻭﺟـ = ٣ ﺳﻢ ، ‪ E‬ﺏ = ٥٫٤ ﺳﻢ ، ‪ E‬ﻭ = ٦ ﺳﻢ.‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ 9 ‪ C‬ﺏ ﺟـ + 9 ‪ E‬ﺏ ﻭ‬ ‫ب 9 ﻫـ ﻭ ﺟـ ﻣﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ.‬ ‫‪E‬‬ ‫‪C‬‬ ‫‪E‬‬ ‫3 ﺱ ﺹ ﻉ ﻣﺜﻠﺚ، ﻧﺼﻔﺖ ﺯﺍﻭﻳﺔ ﺹ ﺑﻤﻨﺼﻒ ﻗﻄﻊ ﺱ ﻉ ﻓﻰ ﻡ، ﺛﻢ ﺭﺳﻢ ﻥ ﻡ // ﺹ ﻉ ﻓﻘﻄﻊ ﺱ ﺹ ﻓﻰ ﻥ.‬ ‫ﺱﻥ‬ ‫ﺱﺹ‬ ‫ﺃﺛﺒﺖ ﺃﻥ: ﺹ ﻉ = ﺹ ﻥ ، ﻭﺇﺫﺍ ﻛﺎﻥ ﺱ ﺹ = ٦ ﺳﻢ ، ﺹ ﻉ = ٤ ﺳﻢ، ﻓﺄﻭﺟﺪ ﻃﻮﻝ ﺱ ﻥ .‬ ‫4 ‪ C‬ﺏ ﺟـ ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻓﻰ ‪ .C‬ﺭﺳﻢ ‪ = E C‬ﺏ ﺟـ ﻓﻘﻄﻌﻬﺎ ﻓﻰ ‪.E‬‬ ‫ﺭﺳﻢ ﺍﻟﻤﺜﻠﺜﺎﻥ ﺍﻟﻤﺘﺴﺎﻭﻳﺎ ﺍﻷﺿﻼﻉ ‪ C‬ﺏ ﻫـ ، ﺟـ ‪ C‬ﻭ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ ‪ C‬ﺏ ﺟـ‬ ‫ﺃﺛﺒﺖ ﺃﻥ:‬ ‫أ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻰ ‪ E C‬ﺏ ﻫـ + ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻰ ﺟـ ‪ C E‬ﻭ.‬ ‫ب ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﺸﻜﻞ ‪ E C‬ﺏ ﻫـ ﺏ ‪E‬‬ ‫=‬ ‫ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﺸﻜﻞ ﺟـ ‪ C E‬ﻭ ﺟـ ‪E‬‬ ‫¯‬ ‫−‬ ‫¯‬
  • 78.
    ‫ﺍﺧﺘﺒﺎﺭﺍﺕ ﻋﺎﻣﺔ‬ ‫)اﻟﻬﻨﺪﺳﺔ(‬ ‫اﻻﺧﺘﺒﺎر اﻟﺴﺎدس‬ ‫‪k‬‬ ‫‪:πªcCG:’hCG‬‬ ‫1 أ ﺇﺫﺍ ﺭﺳﻢ ﻣﺴﺘﻘﻴﻢ ﻳﻮﺍﺯﻯ ﺃﺣﺪ ﺃﺿﻼﻉ ﻣﺜﻠﺚ، ﻭ ﻳﻘﻄﻊ ﺍﻟﻀﻠﻌﻴﻦ ﺍﻵﺧﺮﻳﻦ ﻓﺈﻧﻪ‬ ‫ُ‬ ‫ب‬ ‫‪ E C‬ﻣﻤﺎﺱ ﻟﻠﺪﺍﺋﺮﺓ ﻋﻨﺪ ‪ ،E‬ﻓﺈﻥ:‬ ‫:‬ ‫: ‪ C‬ﺟـ * ‪ C‬ﺏ = .........................................‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺟـ = ٨ ﺳﻢ، ‪ C‬ﺏ = ٢ﺳﻢ، ﻓﺈﻥ ‪.................................................... = E C‬‬ ‫٢ ﺳﻢ ﻓﺈﻥ، ‪ C‬ﺟـ = .................................‬ ‫: ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ = ﺏ ﺟـ ، ‪٣ = E C‬‬ ‫........................................................‬ ‫‪C‬‬ ‫‪E‬‬ ‫‪:á«JB’G á∏İSC’G øY ÖLCG :Ék«fÉK‬‬ ‫1 أ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺴﺎﺣﺘﻰ ﺳﻄﺤﻰ ﻣﻀﻠﻌﻴﻦ ﻣﺘﺸﺎﺑﻬﻴﻦ ﺗﺴﺎﻭﻯ ٦١ : ٩٤، ﻓﻤﺎ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻃﻮﻟﻰ ﺿﻠﻌﻴﻦ‬ ‫ﻣﺘﻨﺎﻇﺮﻳﻦ ﻓﻴﻬﻤﺎ? ﻭﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻣﺤﻴﻄﻴﻬﻤﺎ?‬ ‫ب ﺩﺍﺋﺮﺗﺎﻥ ﻣﺘﻘﺎﻃﻌﺘﺎﻥ ﻓﻰ ‪ ،C‬ﺏ ﺭﺳﻢ ﻣﻤﺎﺱ ﻣﺸﺘﺮﻙ ﻳﻤﺴﺎﻧﻬﻤﺎ ﻓﻰ ﺱ، ﺹ.‬ ‫ﺇﺫﺍ ﻛﺎﻥ ‪ C‬ﺏ ∩ ﺱ ﺹ = }ﺟـ{ ﺍﺛﺒﺖ ﺃﻥ ﺟـ ﻣﻨﺘﺼﻒ ﺱ ﺹ .‬ ‫2‬ ‫أ‬ ‫: ‪ C‬ﺱ // ﺏ ﺹ // ﺟـ ﻉ ،‬ ‫ﻭ ‪ ٦ = C‬ﺳﻢ ، ﻭ ﺱ = ٤ ﺳﻢ ، ﺱ ﺹ = ٣ ﺳﻢ،‬ ‫ﺏ ﺟـ = ٥٫٧ ﺳﻢ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ‪ C‬ﺏ ، ﻉ ﺹ‬ ‫‪C‬‬ ‫ب‬ ‫:‬ ‫9 ﺟـ ‪ E‬ﻫـ + 9 ﺟـ ﺏ ‪C‬‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻷﻃﻮﺍﻝ ﺍﻟﻤﻮﺿﺤﺔ ﻋﻠﻰ ﺍﻟﺮﺳﻢ‬ ‫ﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﻦ ﺏ ﻫـ ، ‪ E‬ﻫـ .‬ ‫3‬ ‫‪E‬‬ ‫‪C‬‬ ‫?‬ ‫أ ﺃﻭﺟﺪ ﻗﻮﺓ ﺍﻟﻨﻘﻄﺔ ﺟـ ﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺪﺍﺋﺮﺓ ﻡ ﺍﻟﺘﻰ ﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ٦ ﺳﻢ، ﺟـ ﻡ = ٦ ﺳﻢ‬ ‫ب‬ ‫: ‪ C‬ﺏ ∩ ‪ E‬ﻫـ = }ﺟـ{،‬ ‫ﺟـ ‪ = C‬ﺟـ ﺏ ، ﺟـ ‪٢ = E‬ﺳﻢ ، ﺟـ ﻫـ = ٨ ﺳﻢ،‬ ‫ﻡ ‪ E‬ﻣﻤﺎﺳﺔ ﻟﻠﺪﺍﺋﺮﺓ. ﻡ ﺏ = ١ ‪ C‬ﺏ. ﺃﻭﺟﺪ ﻃﻮﻝ ﻡ ‪. E‬‬ ‫٢‬ ‫‪E‬‬ ‫‪C‬‬ ‫4‬ ‫: ‪C‬ﺏ ﺟـ ﻣﺜﻠﺚ، ﻓﻴﻪ ﺱ ∋ ‪ C‬ﺏ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺱ = ٤ ﺳﻢ،‬ ‫ﺱ ﺏ = ٦ ﺳﻢ، ﺹ ∋ ‪ C‬ﺟـ ﺑﺤﻴﺚ ﻛﺎﻥ ‪ C‬ﺹ = ٥ ﺳﻢ، ﺹ ﺟـ = ٣ ﺳﻢ.‬ ‫أ ﺃﺛﺒﺖ ﺃﻥ: 9 ‪ C‬ﺱ ﺹ + 9 ‪ C‬ﺟـ ﺏ‬ ‫ب ﺍﻟﺸﻜﻞ ﺱ ﺏ ﺟـ ﺹ ﺭﺑﺎﻋﻰ ﺩﺍﺋﺮﻯ.‬ ‫ﺟ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣـ)9 ‪ C‬ﺱ ﺹ( = ٨ ﺳﻢ٢. ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺳﻄﺢ ﺍﻟﻤﻀﻠﻊ ﺱ ﺏ ﺟـ ﺹ.‬ ‫‪ïM‬‬ ‫−‬ ‫‪C‬‬
  • 79.
    ‫‪z‬‬ ‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬ ‫−‬ ‫:‬ ‫¯‬ ‫1ﺏ    2 ﺩ‬ ‫7 أ }-٢{‬ ‫د ﺱ٢ + ٠١ ﺱ - ١٢ = ٠‬ ‫ﺟ ٣ﺱ٢ + ٤١ﺱ + ٤ = ٠‬ ‫22 ٤٥ * ٢ = )ﺱ + ٦()ﺱ + ٩( ﻭﻣﻨﻬﺎ ﺱ٢ +٥١ﺱ -٤٥ = ٠ ﻭﻣﻨﻬﺎ ﺱ = ٣‬ ‫   3 ﺩ‬ ‫ب‬ ‫   4 ﺩ‬ ‫42 ﺣﻞ ﻳﻮﺳﻒ ﺻﺤﻴﺢ‬ ‫‪z‬‬ ‫ﺟ }-٣، ١{‬ ‫8 أ } -٥، ٨{‬ ‫د }٤٧٫٦، -٤٧٫٠{‬ ‫9‬ ‫5 ﺃ‬ ‫−‬ ‫ﺟ }- ٣ ، ٢ {‬ ‫٢ ٣‬ ‫1 ﺳﺎﻟﺒﺔ ، ﺡ‬ ‫5 [٣، ∞]‬ ‫ﻫ }١٦٫٢ ، -١٦٫٤{‬ ‫و }٤١٫٢، -٤٩٫٠{‬ ‫8 [٢، ∞]، [- ∞، ٢]‬ ‫9 }-١، ٣{، ﺡ -]-١، ٣[، [-١، ٣]‬ ‫ب }٤٫٤، ٦٫١‬ ‫ﺟ }-٤، -٢{‬ ‫ﺟ ﻥ = ٢٢‬ ‫ب ﻥ = ٨١‬ ‫01 أ ﻥ = ٢١‬ ‫٢‬ ‫٢‬ ‫11 أ ﺩ)ﺱ( = ﺱ٢ + ﺱ - ٦ ب ﺩ)ﺱ( = -ﺱ - ٣ﺱ ﺟ ﺩ)ﺱ( = ﺱ - ٧ﺱ‬ ‫01 أ ﻣﻮﺟﺒﺔ ﻓﻰ ﺡ‬ ‫ب ﻣﻮﺟﺒﺔ ﻓﻰ [ ٠، ∞ ] ﺳﺎﻟﺒﺔ ﻓﻰ [- ∞،٠ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ =٠‬ ‫ﺟ ﻣﻮﺟﺒﺔ ﻓﻰ[- ∞، ٠ ] ﺳﺎﻟﺒﺔ ﻓﻰ [ ٠،∞ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ =٠‬ ‫د ﻣﻮﺟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ < -٢ ، ﺳﺎﻟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ > -٢، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ = -٢‬ ‫21 ﺇﺟﺎﺑﺔ ﺯﻳﺎﺩ ﺧﻄﺄ؛ ﻷﻧﻪ ﻗﺴﻢ ﺍﻟﻄﺮﻓﻴﻦ ﻋﻠﻰ ﻣﺘﻐﻴﺮ ﻭﻫﻮ )ﺱ - ٣(‬ ‫31 ﻥ = ٢ ﺃﻭ ﻥ = ٤‬ ‫ﻫ ﻣﻮﺟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ > ٣ ، ﺳﺎﻟﺒﺔ ﻋﻨﺪﻣﺎ ﺱ < ٣ ، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ = ٣‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫ح ﻣﻮﺟﺒﺔ ﻓﻰ ﺡ - ]-٢ ،٢[] ﺳﺎﻟﺒﺔ ﻓﻰ [ - ٢، ٢ ]، ﺻﻔﺮ ﻋﻨﺪﻣﺎ ﺱ∋ } -٢، ٢{‬ ‫−‬ ‫1‬ ‫3‬ ‫4‬ ‫أ ١ + ٥ﺕ‬ ‫5‬ ‫أ ١-ﺕ‬ ‫ﺟ !٣ ٢ ﺕ‬ ‫6‬ ‫7 ٧ - ٢ﺕ‬ ‫ﺟ‬ ‫ب -ﺕ‬ ‫ب ٧١ + ٦١ ﺕ ﺟ‬ ‫ب‬ ‫ﺟ‬ ‫ب ١ - ٤ﺕ‬ ‫د‬ ‫د -ﺕ‬ ‫١‬‫١١ + ٥٤ ﺕ‬ ‫٤ + ٧ﺕ‬ ‫٣‬ ‫٠١ - ١١ ﺕ د ٦ + ٨ ﺕ‬ ‫٥ ٥‬ ‫٠١‬ ‫!٥ﺕ‬ ‫8 ﺣﻞ ﺃﺣﻤﺪ ﺻﺤﻴﺢ.‬ ‫2 ﺏ‬ ‫3 ﺃ‬ ‫أ ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ.‬ ‫ﻣﺮ‬ ‫ب ﺟﺬﺭﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﻏﻴﺮ ﻧﺴﺒﻴﻴﻦ‬ ‫د ﺟﺬﺭﺍﻥ ﻛﺒﺎﻥ‬ ‫ﻣﺮ‬ ‫ب - ٣ + ١ ﺕ،- ٣ - ١‬ ‫ﺕ‬ ‫5‬ ‫أ ٢ + ﺕ، ٢ - ﺕ‬ ‫6‬ ‫أ ٦١ - ٤ ﻙ < ٠ ﺃﻯ ﻙ > ٤‬ ‫٢‬ ‫٢‬ ‫ب ٩ - ٤ * )٢ +‬ ‫ﺟ ٤٦ - ٤ * ٦١ ﻙ > ٠ ﺃﻯ ﺃﻥ: ﻙ < ١‬ ‫٢‬ ‫٢‬ ‫١‬ ‫ﻙ ( = ٠ ﺃﻯ ﺃﻥ ﻙ = ٤‬ ‫7 ﺍﻟﻤﻤﻴﺰ = ) ﻝ - ﻡ(٢ + ٤ ﻝ ﻡ = ) ﻝ - ﻡ (٢ ﺃﻱ ﻣﺮﺑﻊ ﻛﺎﻣﻞ، ﻟﺬﻟﻚ ﻓﺈﻥ ﺟﺬﺭﻯ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﻋﺪﺩﺍﻥ ﻧﺴﺒﻴﺎﻥ.‬ ‫9 ﺇﺟﺎﺑﺔ ﺃﺣﻤﺪ ﺧﻄﺄ؛ ﻷﻥ ﺍﻟﺤﺪ ﺍﻟﻤﻄﻠﻖ = -٥ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ.‬ ‫11 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻮ }٣ ﺕ ، - ٢ﺕ{‬ ‫−‬ ‫٦، -٩‬ ‫1‬ ‫5 ﺟـ‬ ‫3 ﺱ٢ - ٥ﺱ + ٦ =٠‬ ‫7 ﺟـ‬ ‫2 ٨‬ ‫6 ﺟـ‬ ‫8‬ ‫أ -٩١ ، -٤١‬ ‫٣‬ ‫٣‬ ‫9‬ ‫أ -٣، ٣‬ ‫01‬ ‫أ ﺗﻜﻮﻥ ‪ ، ٧- = C‬ﺏ = ٠١‬ ‫11‬ ‫ب -١، -٥٣‬ ‫٤‬ ‫ب ٢، ١‬ ‫٢‬ ‫أ ﺣﻘﻴﻘﻴﺎﻥ ﻧﺴﺒﻴﺎﻥ ، }-٧، ٥{‬ ‫ب ‪ ،١ = C‬ﺏ = ٤‬ ‫ب ﻛﺒﺎﻥ ، } - ٣ + ٧٫١ﺕ ، - ٣ - ٧٫١ ﺕ{‬ ‫ﻣﺮ‬ ‫٤‬ ‫٤‬ ‫ﺟ ﻛﺒﺎﻥ }٢ + ﺕ ، ٢ - ﺕ{‬ ‫ﻣﺮ‬ ‫21 ﺟـ = ٤‬ ‫51 ﻙ = ١‬ ‫ﺩ)ﺱ( <٠ ﻋﻨﺪﻣﺎ ﺱ∋ ]-٢٫١ ، ٢٫٣]‬ ‫1 ]-٣، ٣[‬ ‫5 [٢، ٥]‬ ‫1 ﺏ‬ ‫71‬ ‫1‬ ‫٣‬ ‫41 ﺟـ = ٥٢ ، ﺍﻟﺤﻞ ﻫﻮ } ٥ {‬ ‫٦‬ ‫٢١‬ ‫ب‬ ‫71 أ ﺱ٢ - ٢ﺱ -٨ = ٠‬ ‫ﺟ ٦ﺱ٢ - ٣١ﺱ + ٦ = ٠‬ ‫81 ﺱ٢ - ٨ﺱ + ٥ = ٠‬ ‫12 أ ﺱ٢ +٤١ﺱ +٢١ =٠‬ ‫ﻫـ‬ ‫91‬ ‫ب‬ ‫−‬ ‫ﺱ٢ + ٥٢ = ٠‬ ‫ﺱ٢ + ٧١ = ٠‬ ‫ﺱ٢ - ٩ﺱ -١ = ٠‬ ‫ﺱ٢ - ١١ﺱ + ١٢ = ٠‬ ‫¯‬ ‫2 ]-١، ١[‬ ‫6 ]-٣، ١[‬ ‫7 ‪z‬‬ ‫8 ‪z‬‬ ‫2 ﺩ‬ ‫ب ١١، -٣١‬ ‫أ ٥، -٤‬ ‫3 ﺃ‬ ‫ﺟ ٤، -٢‬ ‫4 ﺏ‬ ‫٤‬ ‫أ ﻙ= ٣‬ ‫3 ﺡ - ]٠، ٢[ 4 ‪z‬‬ ‫¯‬ ‫2‬ ‫3‬ ‫أ ﻙ=- ٣ ،ﻙ=٦‬ ‫٢‬ ‫٣‬ ‫ﺟ‬ ‫ﻙ< ٢‬ ‫٧‬ ‫ﺟ‬ ‫ﻙ= ٢‬ ‫٤‬ ‫ب‬ ‫ﻙ> ٣‬ ‫ب ﻙ=٦‬ ‫أ ﺱ٢ - ٩ﺱ + ٨١ = ٠‬ ‫ب ﺱ٢ - ٥ﺱ + ٦ = ٠‬ ‫6 ﺩ)ﺱ(= ٠ ﻋﻨﺪﻣﺎ ﺱ = -٢ ، ﺱ = ٣ ، ﺩ)ﺱ( ﻣﻮﺟﺒﺔ ﻓﻰ [-٢ ، ٣ ]‬ ‫٤‬ ‫٤‬ ‫ﺩ)ﺱ( ﺳﺎﻟﺒﺔ ﻓﻰ [-٣، -٢]∪[ ٣ ، ٢]‬ ‫٤‬ ‫ب ﺡ - ]١، ٥[‬ ‫7 أ ‪z‬‬ ‫ﻫ }٥{‬ ‫د [-٣ ، ١]‬ ‫2 ﺏ‬ ‫1 ﺏ‬ ‫٢‬ ‫6 أ ﺱ - ٣ﺱ +١ = ٠‬ ‫ب ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = }-٤، ٢{‬ ‫3 ﺏ‬ ‫ﺟ ‪z‬‬ ‫و ﺡ - [- ٣ ، ٥]‬ ‫٢‬ ‫4 ‪C‬‬ ‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = [-٤، ٢]‬ ‫د ﺣﻘﻴﻘﻴﺎﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ } ٤ {‬ ‫31 ‪٤- = C‬‬ ‫61 ﻙ = ٢‬ ‫¯‬ ‫21 ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ∋ } -٢٫١، ٢٫٣{‬ ‫ﺩ)ﺱ( >٠ ﻋﻨﺪﻣﺎ ﺱ∋ ]-٣ ، -٢٫١] ∪ [٢٫٣ ، ٥[‬ ‫−‬ ‫ﺟ ﺟﺬﺭﺍﻥ ﻣﺘﺴﺎﻭﻳﺎﻥ.‬ ‫4‬ ‫11 ﻣﻦ ﺍﻟﺮﺳﻢ ﻧﺠﺪ ﺃﻥ : ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ∋ } -٣، ٣{ ، ﺩ)ﺱ( <٠ ﻓﻰ [٣، ٤[‬ ‫ﺩ)ﺱ( > ٠ ﻓﻰ [-٣، ٣]‬ ‫41 ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ﻣﻮﺟﺒﺔ ﻟﺠﻤﻴﻊ ﻗﻴﻢ ﻥ ﺍﻟﺤﻘﻴﻘﻴﺔ ، ﻳﺘﻨﺎﻗﺺ ﺍﻹﻧﺘﺎﺝ ﻣﻦ ﻋﺎﻡ ٠٩٩١ ﺣﺘﻰ‬ ‫ﻋﺎﻡ ٠٠٠٢، ﺛﻢ ﻳﺒﺪﺃ ﺍﻹﻧﺘﺎﺝ ﻓﻰ ﺍﻟﺰﻳﺎﺩﺓ ﻣﻦ ﻋﺎﻡ ٠٠٠٢ ﺣﺘﻰ ﻋﺎﻡ ٠١٠٢.‬ ‫−‬ ‫1 ﺏ‬ ‫3 ﺡ - }٣{‬ ‫7 [ -٥، ١]‬ ‫2 ﻣﻮﺟﺒﺔ ، ﺡ‬ ‫6 [ -٢ ، ١ ]‬ ‫د ﻥ = ٠٣‬ ‫أ -١‬ ‫4 [٢ ،∞ ]‬ ‫ب } -٣ ، ١ {‬ ‫٢‬ ‫أ }٧٫٤، -٧٫٤{‬ ‫أ ٥ - ٣ﺕ‬ ‫٨‬ ‫52 ﻙ = ٠ ﺃﻭ ﻙ = - ٣‬ ‫ﺩ)ﺱ( = ٠ ﻋﻨﺪﻣﺎ ﺱ = ﺡ - ]-٤، ٢[‬ ‫7‬ ‫أ }٧٩٦٫٠، ٣٠٣٫٤{‬ ‫:‬ ‫ب ]-٢، ٧[‬ ‫‪ï‬‬ ‫−‬ ‫1 ب ﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﺸﻜﻞ ﺹ ﺱ ﻝ ﻉ‬ ‫ﺟ 9 ‪ C‬ﺏ ﺟـ + 9ﻫـ ‪ E‬ﻭ‬ ‫، ٠١‬ ‫٧‬ ‫، ٧‬ ‫٢١‬
  • 80.
    ‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬ ‫دﺍﻟﺸﻜﻞ ‪ C‬ﺏ ﺟـ ‪ + E‬ﺍﻟﺸﻜﻞ ﻉ ﻝ ﺱ ﺹ‬ ‫ﺟ ‪CE‬‬ ‫ب ﺟـ ‪E‬‬ ‫2‬ ‫أ ﺱﺹ‬ ‫4‬ ‫أ ٦٩ﺳﻢ، ٠٤٥ﺳﻢ‬ ‫5‬ ‫4 ﺟـ ﻫـ = ٥٫٤ﺳﻢ‬ ‫،٥‬ ‫٤‬ ‫أ ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ١ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ٤‬ ‫6‬ ‫ب ٨٫٢١ﺳﻢ، ٦٫٩ﺳﻢ‬ ‫٢‬ ‫٢‬ ‫7‬ ‫5 ﻉ ﻡ = ٥٫٣١‬ ‫ب ٥‬ ‫أ ٣‬ ‫ب ﻳﻮﺍﺯﻯ‬ ‫أ ﻻ ﻳﻮﺍﺯﻯ‬ ‫8 ﺱ ﻝ = ٢، ﺱ ﻡ = ٢‬ ‫ﺱﺹ ٥ ﺱﻉ ٥‬ ‫ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ٢ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ٣‬ ‫51‬ ‫أ ﻫـ ﻭ‬ ‫ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ ﻟﻠﻤﻀﻠﻊ ﻡ = ٣‬ ‫٢‬ ‫٣ ٢‬ ‫71‬ ‫أ ﻡ ﻭ = ٠١ﺳﻢ‬ ‫91‬ ‫6 ﺱ = ٠١١، ﺹ = ٠٠١، ﻉ = ٠٧‬ ‫7 ٠١ﺳﻢ ﺗﻘﺮﻳﺒﺎ.‬ ‫ً‬ ‫أ ٤٫٨ ﻣﺘﺮ، ١٫٥ ﻣﺘﺮ‬ ‫ﺟ ٤٤٫٩١ ﻣﺘﺮ ﻣﺮﺑﻊ‬ ‫−‬ ‫٢‬ ‫8 ٠٦ﺳﻢ، ٠٠٤٢ﺳﻢ‬ ‫ب ١٫٥ ﻣﺘﺮ، ٩٫٣ ﻣﺘﺮ‬ ‫1‬ ‫د ٥٢٫٠١١ ﻣﺘﺮ ﻣﺮﺑﻊ.‬ ‫د ﺍﻷﺿﻼﻉ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻣﺘﻨﺎﺳﺒﺔ.‬ ‫ﻫ ﺗﻄﺎﺑﻖ ﺯﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﻟﺰﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﺁﺧﺮ ﻭﺗﻨﺎﺳﺐ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ‬ ‫ﺍﻟﺘﻰ ﺗﺤﺘﻮﻳﻬﺎ.‬ ‫و ﺗﻄﺎﺑﻖ ﺯﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﻟﺰﺍﻭﻳﺔ ﻣﻦ ﻣﺜﻠﺚ ﺁﺧﺮ ﻭﺗﻨﺎﺳﺐ ﺃﻃﻮﺍﻝ ﺍﻷﺿﻼﻉ‬ ‫ﺍﻟﺘﻰ ﺗﺤﺘﻮﻳﻬﺎ.‬ ‫2‬ ‫أ ﺱ = ٦٣‬ ‫ﺟ ﺱ = ٣، ﺹ = ٤، ﻉ = ٤٫٨‬ ‫61‬ ‫−‬ ‫٥‬ ‫−‬ ‫1‬ ‫أ ٦٩٢١ﺳﻢ‬ ‫2‬ ‫3 ٥٧ﺳﻢ‬ ‫٢‬ ‫2‬ ‫٢‬ ‫ب -١٦١‬ ‫أ ٣٦‬ ‫ﺟ ﺻﻔﺮ‬ ‫د ١‬ ‫6 ٨١ ٢ ﺳﻢ‬ ‫7 ب ﺱ ﺟـ = ٦ ٦ ، ﺱ ﻭ = ٦ﺳﻢ.‬ ‫٢‬ ‫−‬ ‫21 ٨ ﺃﻣﺘﺎﺭ‬ ‫9‬ ‫31 ٩٤ﺳﻢ ﺗﻘﺮﻳﺒﺎ‬ ‫1 ‪ ،C‬ﺏ، ‪E‬‬ ‫5 ب ٤ ﺳﻢ‬ ‫7 ٥٫٤ ﻣﺘﺮ‬ ‫8‬ ‫2 ٢ ﺳﻢ‬ ‫4 ب ٩ : ٦١‬ ‫6 ﺱ = ١١ﺳﻢ، ﺹ = ٥٫٦١ﺳﻢ‬ ‫8 أ ٤ ، ٠٤ﺳﻢ ب - ١ ، ٤١ﺳﻢ‬ ‫أ ٦‬ ‫3 ‪C‬‬ ‫ﺟ ٩ : ٥٢‬ ‫2 ٤ﺳﻢ‬ ‫د ٤‬ ‫: ¯‬ ‫‪C‬ﺏ‬ ‫1‬ ‫3‬ ‫أ ٥٫٤‬ ‫` ﻫـ ﻭ = ٤٢ﺳﻢ‬ ‫‪ C a‬ﺏ = ٠٢١ﺳﻢ‬ ‫ﻫـ ٠٢ﺳﻢ‬ ‫4 ‪E‬‬ ‫ب ٥‬ ‫أ ﺱ=٣ ٢‬ ‫ﺟ ﺱ = ٠٦‬ ‫4‬ ‫5 ٢١ﺳﻢ‬ ‫أ ‪ C‬ﺏ = ٦ﺳﻢ، ‪ C‬ﻫـ = ٣ﺳﻢ، ﺟـ ‪٥ = E‬ﺳﻢ‬ ‫ب ‪X‬ﻡ)ﺱ( = -٣ * ٢ = -٦ ، ‪X‬ﻡ)ﺱ( = ٠‬ ‫¯‬ ‫1 ﺟـ‬ ‫5 ﺏ‬ ‫¯‬ ‫ب ٣، ٣‬ ‫٤ ٧‬ ‫ب ﺹ = ٩١، ﻉ = ٦ ٥١‬ ‫1‬ ‫3 ﺏ‬ ‫2 ﺟـ‬ ‫6 ﺱ = ٣ﺳﻢ، ﺹ = ٨١ ﺳﻢ‬ ‫01 ﺏ ﻫـ = ٨ﺳﻢ، ﺏ ﺟـ = ٢١ﺳﻢ‬ ‫د ﺱ = ١٣‬ ‫ﺟ ﺱ = ٥٫٤، ﺹ = ١١‬ ‫2 أ ﺱ=٦‬ ‫4 ﻟﺘﻜﻦ ﻡ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﺍﻟﺪﻋﺎﻣﺘﻴﻦ‬ ‫` 9ﻡ ‪ C‬ﺏ + 9ﻡ ﻭ ﻫـ ، ﻫـ ﻭ = ١‬ ‫٥‬ ‫−‬ ‫أ ٨، ٣‬ ‫٣ ٥‬ ‫11 ٠٠١‪c‬‬ ‫ب ﺱ = ٤١‬ ‫¯‬ ‫5 ﺟـ‬ ‫8 ٦ ٣ ، ٩، ٣‬ ‫٣‬ ‫أ ٦٢‪c‬‬ ‫ب ٤٧‪c‬‬ ‫ﺟ ٠٢‪c‬‬ ‫٢‬ ‫3 ٩ﺳﻢ‬ ‫1 ‪E‬‬ ‫أ ﺱ = ٠١١‬ ‫ب ﺹ = ٠١‬ ‫ﺟ ﻉ = ٥٤‬ ‫01 ٣٤٫٤٢ﺳﻢ ﺗﻘﺮﻳﺒﺎ.‬ ‫ً‬ ‫1‬ ‫2 ‪ ،C‬ﺏ‬ ‫11 ٥ﺳﻢ‬ ‫ب ٣‬ ‫ﺟ ٠١‬ ‫01 ب ٥٫٤ﺳﻢ‬ ‫1‬ ‫أ ﺍﻟﻨﻘﻄﺔ ‪ C‬ﺗﻘﻊ ﺩﺍﺧﻞ ﺍﻟﺪﺍﺋﺮﺓ، ‪ C‬ﻡ = ٨ﺳﻢ.‬ ‫ب ﺍﻟﻨﻘﻄﺔ ﺏ ﺗﻘﻊ ﺧﺎﺭﺝ ﺍﻟﺪﺍﺋﺮﺓ، ﺏ ﻡ = ٤١ﺳﻢ‬ ‫ب ٢١ﺳﻢ‬ ‫ب ٠٠٥ﺳﻢ‬ ‫ﺟ ٦، ٥٢‬ ‫‪ C‬ﻭ ⊃ ‪ C‬ﺟـ ، ﺟـ ﻭ ⊃ ‪ C‬ﺟـ‬ ‫` ﻟﻠﻤﺜﻠﺜﺎﻥ ﻧﻔﺲ ﺍﻻﺭﺗﻔﺎﻉ ﻭﻳﻜﻮﻥ: ‪ C 9) W‬ﺏ ﻭ( = ‪ C‬ﻭ = ٦ = ٢‬ ‫‪) W‬ﺟـ ﺏ ﻭ( ﺟـ ﻭ ٣ ١‬ ‫1‬ ‫أ ١‬ ‫٩‬ ‫ب ٤‬ ‫ﺟ ٢‬ ‫د ٢‬ ‫ﻛﺎﻥ ﻓﻰ ﺍﻟﺮﺃﺱ ﺏ،‬ ‫‪ 99 a‬ﺏ ‪ C‬ﻭ ، ﺏ ﺟـ ﻭ ﻣﺸﺘﺮ‬ ‫3‬ ‫4 ﺟـ ﻫـ = ٥ﺳﻢ.‬ ‫١‬ ‫21 9‪ C‬ﺏ ﺟـ + 9‪ E C‬ﻫـ ، ﻣﻌﺎﻣﻞ ﺍﻟﺘﺸﺎﺑﻪ =‬ ‫أ ٤ﻛﻢ‬ ‫ﺟ ‪ E‬ﺟـ‬ ‫‪ C‬ﺟـ‬ ‫د ﺏ ‪ C * E‬ﺟـ‬ ‫` 9‪ C‬ﺏ ﻭ ﻣﺘﺴﺎﻭﻯ ﺍﻟﺴﺎﻗﻴﻦ، ‪ C‬ﻭ = ٦ﺳﻢ‬ ‫د ﻥ، ﻡ‬ ‫ب ﺹ‬ ‫7 ﺏ ‪٦ = E‬ﺳﻢ، ‪ C‬ﺏ = ٦ ٣ ﺳﻢ، ‪ C‬ﺟـ = ٦ ٦ ﺳﻢ‬ ‫ب ٤ ٥ ﻛﻢ‬ ‫ب ‪ C‬ﻡ = ٨٫٠١ﺳﻢ‬ ‫ب ﺱ = ٤، ﺹ = ٣‬ ‫5 ‪ E‬ﻫـ = ٨ﺳﻢ ، ‪ ١٥ ٢ = E C‬ﺳﻢ ، ‪ C‬ﻫـ = ٢ ٠١‬ ‫01 ﻓﻰ 9‪ C‬ﺏ ﺟـ : ﺏ ﺟـ = ٠١ - ٤ = ٦ﺳﻢ‬ ‫‪ a‬ﺏ ‪ ،٢ = C‬ﺏ ‪٢ = E‬‬ ‫` ‪ E C‬ﻳﻨﺼﻒ ‪Cc‬‬ ‫‪ C‬ﺟـ ٣ ‪ E‬ﺟـ ٣‬ ‫ﻓﻰ 9‪ C‬ﺏ ﻭ: ‪ C a‬ﻫـ ﻳﻨﺼﻒ ‪ C ،Cc‬ﻫـ = ﺏ ﻭ‬ ‫ﺟ ﺹ‬ ‫أ ﺱ‬ ‫أ‬ ‫د ‪E‬ﻭ‬ ‫2‬ ‫3 ‪ C‬ﺏ = ٨ﺳﻢ، ﺏ ﺟـ = ٠١ﺳﻢ‬ ‫ب ٥٢، ٥١ )٥ + ٥ (‬ ‫4 أ ٤ ، ٢٢‬ ‫أ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﻨﺎﻇﺮﺓ ﻣﺘﺴﺎﻭﻳﺔ.‬ ‫ب ﺱ = ٠٢، ﺹ = ٥١‬ ‫ﺏ‪C‬‬ ‫‪ C‬ﺟـ‬ ‫ﺟ ‪ E‬ﻫـ‬ ‫ب ﺟـ ‪E‬‬ ‫‪E‬ﺏ‬ ‫أ ١١‬ ‫−‬ ‫1‬ ‫` ﻝ ﻡ // ﺹ ﻉ‬ ‫أ ﺱ = ٨، ﺹ = ٣‬ ‫ﻝ = ١٢، ﻡ = ٨٢، ﻥ = ٠٣‬ ‫ﺟ ﻳﻮﺍﺯﻯ‬ ‫ب ‪E‬ﻭ‬ ‫ب ﻣﻌﺎﻣﻞ ﺗﺸﺎﺑﻪ ﺍﻟﻤﻀﻠﻊ ﻡ١ ﻟﻠﻤﻀﻠﻊ ﻡ٣ = ١‬ ‫9‬ ‫ﺟ ٩‬ ‫د ٣‬ ‫:‬ ‫2 ﺏ‬ ‫6‬ ‫¯‬ ‫‪E‬‬ ‫3 ﺟـ‬ ‫7 ﺟـ‬ ‫4 ‪C‬‬ ‫8 ٦ﺳﻢ‬ ‫:‬ ‫−‬ ‫ﺟ ٥‬ ‫٢‬ ‫1‬ ‫‪ïM‬‬ ‫−‬ ‫و ٠٧١‪c‬‬ ‫ز ﺍﻟﺜﺎﻟﺚ‬ ‫ح ٠٣‪c‬‬ ‫2 ﺟ‬
  • 81.
    ‫ﺇﺟﺎﺑﺎﺕ ﺑﻌﺾ ﺍﻟﺘﻤﺎﺭﻳﻦ‬ ‫3‬ ‫أ-٦٠٣‪c‬‬ ‫ب ٠٧٢‪c‬‬ ‫ﺟ ٥٣٢‪c‬‬ ‫د -١٠٣‪c‬‬ ‫4‬ ‫أ ﺍﻷﻭﻝ‬ ‫ب ﺍﻟﺜﺎﻟﺚ‬ ‫د ﺍﻟﺜﺎﻧﻰ‬ ‫3‬ ‫7‬ ‫أ ٧٧١‪c‬‬ ‫ب ٣٤١‪c‬‬ ‫ﺟ ﺍﻟﺮﺍﺑﻊ‬ ‫ﺟ ٥٤‪c‬‬ ‫د ٠٥١‪c‬‬ ‫4‬ ‫−‬ ‫2 ﺟ‬ ‫6 ب‬ ‫3‬ ‫7‬ ‫أ‬ ‫٤‬ ‫ب ٣‪r‬‬ ‫٣‬ ‫ﺟ -٤‪r‬‬ ‫1 د‬ ‫5 ﺟ‬ ‫01‬ ‫2‬ ‫أ ٥‪r‬‬ ‫٤‬ ‫‪E‬‬ ‫أ ٨٨٩٫٠‬ ‫ب ٢٤٤٫٠‬ ‫11‬ ‫41 ٢٫٤ﺳﻢ‬ ‫61 ٥٧‪١٫٣٠٩ ، c‬‬ ‫‪E‬‬ ‫ﺟ ٧٠٨٫٢‬ ‫51 ٥٧١٫٢ ، ٦ ً٧٣ َ٤٢١‪c‬‬ ‫81 ٧٥٫٨٢ﺳﻢ‬ ‫71 ٥ ‪r‬‬ ‫٣‬ ‫12 ٢١٧٤ ﻛﻢ/ﺱ‬ ‫ب ١‬ ‫أ - ٣‬ ‫٢‬ ‫٢‬ ‫أ ﺟﺘﺎ‪ ،  ٤ = i‬ﺟﺎ‪ ،  ٣ = i‬ﻇﺎ‪٣ = i‬‬ ‫٤‬ ‫٥‬ ‫٥‬ ‫ب ﺟﺘﺎ‪ ،  ٥ = i‬ﺟﺎ‪ ،  ١٢- =i‬ﻇﺎ‪١٢- = i‬‬ ‫٥‬ ‫٣١‬ ‫٣١‬ ‫02 ٢‪r‬ﺳﻢ‬ ‫32 أ ‪r‬‬ ‫٣‬ ‫6‬ ‫¯‬ ‫:‬ ‫ﺟ‬ ‫1‬ ‫22 ٩٢ﺳﻢ‬ ‫ب ٨ ﺳﺎﻋﺎﺕ‬ ‫ﺟ ٠٢‪r‬‬ ‫42 ﺹ = ٣ ﺱ‬ ‫2 أ‬ ‫6 ﺟ‬ ‫3 ﺟ‬ ‫7 أ‬ ‫د‬ ‫١‬ ‫٣‬ ‫ب ٠١٢‪ c٣٣٠ ،c‬ﺟ ٠٣‪ c٣٣٠ ،c‬د ٠١‪c٣٠٠ ،c‬‬ ‫أ ٥٤‪c٢٢٥ ،c‬‬ ‫‪E‬‬ ‫91 ٦٧٫٦١ﺳﻢ‬ ‫٣‬ ‫ﺟ‬ ‫4 ﺟ‬ ‫8 ب‬ ‫٥‬ ‫د ٣‪r‬‬ ‫ب ٨٣ ً٥٤ َ٢٨‪c‬‬ ‫أ ٦٫٩ﺳﻢ‬ ‫5‬ ‫د‬ ‫ب ٠٩‪c‬‬ ‫أ ٠٠٣‪c‬‬ ‫ﺟ ٧١ ً٠١ َ٤٦‪c‬‬ ‫أ‬ ‫2‬ ‫6‬ ‫أ ٣‬ ‫ب ٤‬ ‫٥‬ ‫7‬ ‫أ ٥٢‬ ‫ب‬ ‫4 ب‬ ‫8 أ‬ ‫3‬ ‫ﺟ‬ ‫ﺟ ٣‬ ‫٥‬ ‫د ٢١ ً٢٥ َ٦٣‬ ‫ﺟ ٤١٫٠١ﻣﺘﺮ‬ ‫ﺟﺎ٥٢ = ‪C‬‬ ‫٥٢‬ ‫−‬ ‫1 ﺟ‬ ‫5 ﺟ‬ ‫9‬ ‫‪C‬‬ ‫٢‬ ‫٣‬ ‫ﺟﺘﺎ‪i‬‬ ‫ﺏ‬ ‫٢‬ ‫٥‬ ‫ﺟﺎ‪i‬‬ ‫٣‬ ‫٢‬ ‫-‬ ‫١‬ ‫٢‬ ‫٢‬ ‫٢‬ ‫:‬ ‫11 أ )-(‬ ‫21 أ -١‬ ‫31 ٠٣‪c‬‬ ‫أ ٣٫٤، ٧٫٠‬ ‫4‬ ‫٣‬ ‫٤‬ ‫ب )+(‬ ‫ب ٤‬ ‫أ ٧١ + ٦١ﺕ ب‬ ‫:‬ ‫41 ﺇﺟﺎﺑﺔ ﺃﺣﻤﺪ‬ ‫ﺟ )+(‬ ‫51 ﺻﺤﻴﺤﺔ‬ ‫1 -ﺟﺘﺎ‪i‬‬ ‫2 - ﻇﺎ‪i‬‬ ‫3 - ﻗﺘﺎ‪i‬‬ ‫4 ﺟﺎ‪i‬‬ ‫5 ﺟﺘﺎ‪i‬‬ ‫6 - ﻇﺎ‪i‬‬ ‫7 ﻗﺘﺎ‪i‬‬ ‫91 ب‬ ‫ب ٥٢‪c‬‬ ‫02 د‬ ‫ﺟ ٠١‪c‬‬ ‫12 ﺟ‬ ‫د ٠٦‪c‬‬ ‫−‬ ‫2 ]-٢، ٢[‬ ‫1 ]-١، ١[‬ ‫ﺷﻜﻞ )١( ١ﺟﺎ ‪i‬‬ ‫4 -٣‬ ‫3 ٤‬ ‫  ﺷﻜﻞ )٢( ﺟﺘﺎ ‪i‬‬ ‫1‬ ‫أ ٤، ٠١‬ ‫أ ﻣﻮﺟﺒﺔ ﻟﻜﻞ ﺱ = ﺡ‬ ‫أ ١، -١، ]-١، ١[‬ ‫ب ]-٣، ٣[‬ ‫6‬ ‫1‬ ‫−‬ ‫2 ﺟ‬ ‫أ‬ ‫أ ١، ٣‬ ‫ب ١ ، - ١ ﺟ -٣، ٤‬ ‫1‬ ‫3‬ ‫أ -٣، - ١‬ ‫٣‬ ‫٢‬ ‫ب -٥، -٣‬ ‫٣ ٥‬ ‫ﺟ ٣، ٤‬ ‫٤ ٣‬ ‫4‬ ‫أ ٠٣‪c‬‬ ‫ب ٥٣١‪c‬‬ ‫5‬ ‫أ ٢١ ً٢٥ َ٦٣‪c‬‬ ‫ب ٤ ً٩ َ٤٦‪c‬‬ ‫ﺟ ٣١ ً٠٣ ٥٥‪c‬‬ ‫6‬ ‫ب ٨٢ ً٦٥ َ٩٢١‪c٢٣٠َ ٣ً ٣٢ ، c‬‬ ‫أ ٧٣ ً٧٣ َ٣١‪c١٦٦َ ٢٢ً ٢٣ ، c‬‬ ‫أ ٤٤ ً١٣ َ٠٦١ ب -٨٢٤٩٫٠ ، -٦٣٥٣٫٠ ، -٧٠٦٠٫١‬ ‫1‬ ‫أ ٩٠٫٢‬ ‫‪E‬‬ ‫‪E‬‬ ‫ﺟ ٥٨٫٣‬ ‫‪E‬‬ ‫¯‬ ‫−‬ ‫أ ٢ﺱ٢ + ﺱ > ٠، [-١، ٠]‬ ‫4‬ ‫٢‬ ‫:‬ ‫4 ‪E‬‬ ‫3 ﺏ‬ ‫¯ :‬ ‫5 ﺏ‬ ‫أ ٧‬ ‫ب ٧ﺳﻢ‬ ‫ب‬ ‫٢‬ ‫أ‬ ‫3‬ ‫٣:٥ ب‬ ‫ً‬ ‫ب ٠١ﺳﻢ 2 ﺃﻭﻻ: ٦ﺳﻢ‬ ‫:‬ ‫أ ‪ C‬ﺏ * ‪ C‬ﺟـ‬ ‫ً‬ ‫1 ب ﺃﻭﻻ: )‪(E C‬‬ ‫٢‬ ‫٣:٨‬ ‫ﺛﺎﻧﻴﺎ : ١٢ﺳﻢ‬ ‫ً‬ ‫:‬ ‫ب ﺏ ﻥ * ﻥ ﺟـ‬ ‫3 ﺱ ﻥ = ٦٫٣ﺳﻢ‬ ‫:‬ ‫2‬ ‫١‬‫٥‬ ‫:‬ ‫1 ب ﺛﺎﻧﻴﺎ: ٨٫٢ﺳﻢ‬ ‫ً‬ ‫3‬ ‫¯‬ ‫ب ٧‬ ‫٢١‬ ‫ب ٣٤ ، ٠٤٢‪c‬‬ ‫٦٣‬ ‫1 أ ٢ﺱ٢ - ﺱ - ٨ = ٠‬ ‫ب ٨٤٨٫٠‬ ‫2 أ -ﺕ‬ ‫4 أ ]-٤، ١[‬ ‫3 ب ٦ + ٣ﺕ‬ ‫1‬ ‫ب ٣١٫١‬ ‫5 ﺏ‬ ‫:‬ ‫3‬ ‫ﺟ ٢١ ً ٢٥ َ ٦٠٣‪c‬‬ ‫7‬ ‫1 ‪E‬‬ ‫1‬ ‫٥ ٥‬ ‫٢‬ ‫:‬ ‫2 ﺟـ‬ ‫2 ٠٠١ﺳﻢ‬ ‫أ ]-٤، ٤[‬ ‫٢ ٢‬ ‫3‬ ‫ب ٣، -٣ ]-٣، ٣[‬ ‫ﺟ ٣ ، -٣، ]-٣، ٣ [‬ ‫٢ ٢ ٢ ٢‬ ‫4 ﺏ‬ ‫3 ﺟـ‬ ‫أ ﻣﺘﺴﺎﻭﻳﺎﻥ، }٣{‬ ‫8 - ﺟﺎ‪i‬‬ ‫5‬ ‫٢٫٤ﻣﺘﺮ‬ ‫2‬ ‫81 أ‬ ‫2‬ ‫:‬ ‫٣‬ ‫أ ٦١‪c٨٠ ،c‬‬ ‫أ ٦، ﺻﻔﺮ‬ ‫:‬ ‫2‪C‬‬ ‫1 ‪E‬‬ ‫−‬ ‫32‬ ‫ب ﺻﻔﺮ‬ ‫1‬ ‫٣‬‫٥‬ ‫١‬‫٣‬ ‫٢‬ ‫-١‬ ‫٥‬ ‫ﻇﺎ‪i‬‬ ‫٢‬ ‫3 ﺱ٢ + ١ = ٠‬ ‫2 ﻣﻮﺟﺒﺔ ﻟﻜﻞ ﺱ ∋ ﺡ‬ ‫1 ١‬ ‫‪E‬‬ ‫ﺟـ‬ ‫-‬ ‫:‬ ‫٤‬‫٥‬ ‫٣‬ ‫:‬ ‫ﺛﺎﻧﻴﺎ: ٤ﺳﻢ‬ ‫ً‬ ‫ﺛﺎﻟﺜﺎ: ٦‬ ‫ً‬ ‫أ ٤ : ٧، ٤ : ٧‬ ‫أ ‪ C‬ﺏ = ٥٫٤ﺳﻢ، ﻉ ﺹ = ٥ﺳﻢ‬ ‫ب ٤ ٣ ﺳﻢ‬ ‫أ ﺻﻔﺮ‬ ‫ﺟ 9‪ C‬ﺏ ‪E‬‬