SlideShare a Scribd company logo
1 of 25
Download to read offline
ESTIMACIÓN DEL PERIODO
DE LA ESTRUCTURA
 Fórmulas de Wilbur.
Determinación de Rigideces
Diseño Sísmico de Edificios (Bazan-Meli)
𝑀𝑜𝑑𝑒𝑙𝑜 𝑒𝑛 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑑𝑜𝑟𝑎.
𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎
𝑁𝑖𝑣𝑒𝑙 1
𝑁𝑖𝑣𝑒𝑙 2
𝑁𝑖𝑣𝑒𝑙 3
𝑁𝑖𝑣𝑒𝑙 4
𝑁𝑖𝑣𝑒𝑙 6
𝑁𝑖𝑣𝑒𝑙 5
𝑁𝑖𝑣𝑒𝑙 7
𝑋
z
𝑦
vigas: 90𝑥45 𝑐𝑚
𝐸 = 11000 𝑓´𝑐
𝑓´𝑐 = 250
𝑘𝑔
𝑐𝑚2
𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚
𝑘0
𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6
𝑘7𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻 = 4.3 𝑚
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑐=2733750 𝑐𝑚4
𝐼𝑣 = 3413333.33 𝑐𝑚4
𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎
𝑁𝑖𝑣𝑒𝑙 1
𝑁𝑖𝑣𝑒𝑙 2
𝑁𝑖𝑣𝑒𝑙 3
𝑁𝑖𝑣𝑒𝑙 4
𝑁𝑖𝑣𝑒𝑙 6
𝑁𝑖𝑣𝑒𝑙 5
𝑁𝑖𝑣𝑒𝑙 7
𝑋
z
𝑦
vigas: 90𝑥45 𝑐𝑚
𝐸 = 11000 𝑓´𝑐
𝑓´𝑐 = 250
𝑘𝑔
𝑐𝑚2
𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚
𝑘0
𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6
𝑘7𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻 = 4.3 𝑚
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑐=2733750 𝑐𝑚4
𝐼𝑣 = 3413333.33 𝑐𝑚4
𝐼𝑣 𝐼𝑣
𝐼𝑐𝐼𝑐 𝐼𝑐𝐻
𝐼 𝑚 = 71458333𝑐𝑚4
𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎
𝑁𝑖𝑣𝑒𝑙 1
𝑁𝑖𝑣𝑒𝑙 2
𝑁𝑖𝑣𝑒𝑙 3
𝑁𝑖𝑣𝑒𝑙 4
𝑁𝑖𝑣𝑒𝑙 6
𝑁𝑖𝑣𝑒𝑙 5
𝑁𝑖𝑣𝑒𝑙 7
𝑌
Z
𝑋
vigas: 90𝑥45 𝑐𝑚
𝐸 = 11000 𝑓´𝑐
𝑓´𝑐 = 250
𝑘𝑔
𝑐𝑚2
𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚
𝑘0
𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6
𝑘7𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻 = 4.3 𝑚
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑐=2733750 𝑐𝑚4
𝐼𝑣 = 3413333.33 𝑐𝑚4
𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎
𝑁𝑖𝑣𝑒𝑙 1
𝑁𝑖𝑣𝑒𝑙 2
𝑁𝑖𝑣𝑒𝑙 3
𝑁𝑖𝑣𝑒𝑙 4
𝑁𝑖𝑣𝑒𝑙 6
𝑁𝑖𝑣𝑒𝑙 5
𝑁𝑖𝑣𝑒𝑙 7
𝑌
Z
𝑋
vigas: 90𝑥45 𝑐𝑚
𝐸 = 11000 𝑓´𝑐
𝑓´𝑐 = 250
𝑘𝑔
𝑐𝑚2
𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚
𝑘0
𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6
𝑘7𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻
𝐻 = 4.3 𝑚
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑣 𝐼𝑣 𝐼𝑣
𝐼𝑐=2733750 𝑐𝑚4
𝐼𝑣 = 3413333.33 𝑐𝑚4
𝐼𝑣
𝐼𝑐
𝐼𝑐
𝐻 𝑁𝑖𝑣𝑒𝑙 8
𝐼 𝑚 = 71458333𝑐𝑚4
RIGIDECES EN DIRECCION X
A B C D SUMA (Ton/m)
K0 37226.326 37226.326 37226.326 37226.326 148905.3038
K1 25247.2523 25247.2523 25247.2523 25247.2523 100989.0091
K2 24311.799 24311.799 24311.799 24311.799 97247.19591
K3 24311.799 24311.799 24311.799 24311.799 97247.19591
K4 24311.799 24311.799 24311.799 24311.799 97247.19591
K5 24311.799 24311.799 24311.799 24311.799 97247.19591
K6 24311.799 24311.799 24311.799 24311.799 97247.19591
K7 24311.799 24311.799 24311.799 24311.799 97247.19591
K8 13381.0151 13381.0151 26762.03024
RIGIDECES EN DIRECCION Y
1 2 3 4 5 6 7 SUMA (Ton/m)
K0 20227.2746 20227.2746 20227.2746 20227.27459 20227.2746 20227.2746 20227.2746 141590.9221
K1 13345.9107 13345.9107 13345.9107 13345.91073 13345.9107 13345.9107 13345.9107 93421.37513
K2 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K3 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K4 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K5 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K6 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K7 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116
K8 7620.93707 7620.937068 7620.93707 22862.81121
Análisis Estático
DATOS DIRECCION (X,Y)
Q 2
c 0.45
F.I. 1.5
a´=(c/Q)*F.I. 0.3375
𝑭
𝒊=𝒂´
𝒘𝒊
𝒘𝒊∗𝒉𝒊
∗𝒘𝒊𝒉𝒊
Calculo de Fuerzas (Fi).
𝐶𝑂𝑀𝑃𝑅𝑂𝐵𝐴𝐶𝐼Ó𝑁
𝑉0
𝑊𝑇
= 0.3375
Nivel wi (Ton) hi (m) wi*hi Fi (Ton) Vi(Ton)
8 151.2 38.7 5851.9 102 102
7 1150.6 34.4 39581.5 689 790
6 1311.8 30.1 39486.1 687 1478
5 1311.8 25.8 33845.2 589 2066
4 1311.8 21.5 28204.3 491 2557
3 1311.8 17.2 22563.5 393 2950
2 1311.8 12.9 16922.6 294 3244
1 1311.8 8.6 11281.7 196 3440
PB. 1311.8 4.3 5640.9 98 3539
10484.6 203377.6
Determinación del periodo fundamental de
la estructura, en dos direcciones.
𝑻 = 𝟐𝝅
𝑾𝒊 𝑿𝒊
𝟐
𝒈 𝑭𝒊 𝑿𝒊
𝑇𝑋 = 1.205 𝑠𝑒𝑔.
𝑇𝑌 = 1.252 𝑠𝑒𝑔.
Kx(Ton/m) Vi/K(m) xi(cm) wi*xi^2(ton-cm2) Fi*xi(ton-cm) Tx
26762.0 0.0038 0.2 5.8 20.0
97247.2 0.0081 0.2 42.6 132.5
97247.2 0.0152 0.2 44.5 126.6
97247.2 0.0212 0.2 37.5 99.6
97247.2 0.0263 0.1 28.7 72.5
97247.2 0.0303 0.1 19.4 47.7
97247.2 0.0334 0.1 10.9 26.8
100989.0 0.0341 0.1 4.4 11.4
148905.0 0.0238 0.0 0.7 2.3 1.205
194.5 539.4
Ky(Ton/m) Vi/K(m) xi(cm) wi*xi^2(ton-cm2) Fi*xi(ton-cm) Ty
22863.0 0.0 0.2 6.8 21.7
89338.0 0.0 0.2 49.9 143.4
89338.0 0.0 0.2 52.2 137.0
89338.0 0.0 0.2 43.9 107.7
89338.0 0.0 0.2 33.5 78.4
89338.0 0.0 0.1 22.6 51.5
89338.0 0.0 0.1 12.6 28.9
93421.0 0.0 0.1 5.0 12.1
141591.0 0.0 0.0 0.8 2.5 1.2525
227.3 583.2
Análisis Dinámico (Modal Espectral)
RIGIDEZ DE ENTREPISO EN DIRECCION X (Ton/m)
K0 148905 K1 100989 K2 97247 K3 97247 K4 97247 K5 97247 K6 97247 K7 97247 K8 26762
Matriz de rigidez lateral
Klat
K0 K1
K1
0
0
0
0
0
0
0
K1
K1 K2
K2
0
0
0
0
0
0
0
K2
K2 K3
K3
0
0
0
0
0
0
0
K3
K3 K4
K4
0
0
0
0
0
0
0
K4
K4 K5
K5
0
0
0
0
0
0
0
K5
K5 K6
K6
0
0
0
0
0
0
0
K6
K6 K7
K7
0
0
0
0
0
0
0
K7
K7 K8
K8
0
0
0
0
0
0
0
K8
K8























PROPIEDADES
Pesos en Toneladas Altura de entrepiso en m Modulo de elasticidad Ton/m2
w0 1311.8 H 4.30
w1 1311.8 E 14000 2500
w2 1311.8
w3 1311.8 E 7 10
5

w4 1311.8
w5 1311.8
w6 1311.8
w7 1150.6
w8 151.2
Matriz de masas (Ton*seg2)/m
M
w0
g
0
0
0
0
0
0
0
0
0
w1
g
0
0
0
0
0
0
0
0
0
w2
g
0
0
0
0
0
0
0
0
0
w3
g
0
0
0
0
0
0
0
0
0
w4
g
0
0
0
0
0
0
0
0
0
w5
g
0
0
0
0
0
0
0
0
0
w6
g
0
0
0
0
0
0
0
0
0
w7
g
0
0
0
0
0
0
0
0
0
w8
g
















































 M
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
133.721
0
0
0
0
0
0
0
0
0
117.288
0
0
0
0
0
0
0
0
0
15.413























Matriz de Masas.
Frecuencias y Periodos.
Frecuencias
freq genvals Klat M( )
W
2
2.656 10
3

1.594 10
3

1.994 10
3

2.337 10
3

2.853 10
3

1.101 10
3

617.229
236.81
27.181





























Periodos
T 2

W

T
0.122
0.157
0.141
0.13
0.118
0.189
0.253
0.408
1.205























MODOS
modos genvecs Klat M( )
modo
0
0.125
0.305
0.48
0.637
0.771
0.876
0.948
0.984
1
0
0.339
0.732
0.902
0.778
0.401
0.107
0.579
0.864
1
0
0.449
0.744
0.419
0.262
0.72
0.568
0.067
0.645
1
0
0.421
0.429
0.212
0.532
0.046
0.509
0.294
0.366
1
0
0.701
0.914
0.995
1
0.928
0.785
0.583
0.335
0.521
0
0.331
0.205
0.102
0.329
0.297
0.032
0.259
0.346
1
0
0.214
0.036
0.197
0.182
0.062
0.228
0.107
0.149
1
0
0.295
0.107
0.323
0.045
0.332
0.019
0.328
0.082
1
0
0.686
0.715
0.442
0.015
0.417
0.704
0.747
0.53
1





























Modos en dirección X
1 0.5 0 0.5 1
2
4
6
8
10
modo 1
1 0.5 0 0.5 1
2
4
6
8
10
modo 2
1 0.5 0 0.5 1
2
4
6
8
10
modo 3
1 0.5 0 0.5 1
2
4
6
8
10
modo 4
1 0.5 0 0.5 1
2
4
6
8
10
modo 5
1 0.5 0 0.5 1
2
4
6
8
10
modo 6
1 0.5 0 0.5 1
2
4
6
8
10
modo 7
1 0.5 0 0.5 1
2
4
6
8
10
modo 8
1 0.5 0 0.5 1
2
4
6
8
10
modo 9
RIGIDEZ DE ENTREPISO EN DIRECCION Y (Ton/m)
K0 141591 K1 93422 K2 89338 K3 89338 K4 89338 K5 89338 K6 89338 K7 89338 K8 22863
Matriz de rigidez lateral
Klat
K0 K1
K1
0
0
0
0
0
0
0
K1
K1 K2
K2
0
0
0
0
0
0
0
K2
K2 K3
K3
0
0
0
0
0
0
0
K3
K3 K4
K4
0
0
0
0
0
0
0
K4
K4 K5
K5
0
0
0
0
0
0
0
K5
K5 K6
K6
0
0
0
0
0
0
0
K6
K6 K7
K7
0
0
0
0
0
0
0
K7
K7 K8
K8
0
0
0
0
0
0
0
K8
K8























Frecuencias
freq genvals Klat M( )
W
51.247
49.41
38.019
42.217
46.101
31.798
23.863
14.795
5.015























Periodos
Ty 2

W

Ty
0.123
0.127
0.165
0.149
0.136
0.198
0.263
0.425
1.253























Modos en dirección Y
1 0.5 0 0.5 1
2
4
6
8
10
modo 1
1 0.5 0 0.5 1
2
4
6
8
10
modo 2
1 0.5 0 0.5 1
2
4
6
8
10
modo 3
1 0.5 0 0.5 1
2
4
6
8
10
modo 4
1 0.5 0 0.5 1
2
4
6
8
10
modo 5
1 0.5 0 0.5 1
2
4
6
8
10
modo 6
1 0.5 0 0.5 1
2
4
6
8
10
modo 7
1 0.5 0 0.5 1
2
4
6
8
10
modo 8
1 0.5 0 0.5 1
2
4
6
8
10
modo 9
PERIODOS
 M. Estático
 M. Dinámico.
𝑇𝑋 = 1.205 𝑠𝑒𝑔.
𝑇𝑌 = 1.252 𝑠𝑒𝑔.
Tx
0.117
0.121
0.128
0.137
0.155
0.187
0.251
0.405
1.195























MODOS
Ty
0.123
0.127
0.165
0.149
0.136
0.198
0.263
0.425
1.253























Masas y Periodos calculados (3D).
Nivel Peso (ton)
Masa Traslacional
(Ton*s2/m)
Masa
Rotacional.
9 151.2 15.41 3012.7
8 1151 117.33 242789.1
7 1312 133.74 276750
6 1312 133.74 276750
5 1312 133.74 276750
4 1312 133.74 276750
3 1312 133.74 276750
2 1312 133.74 276750
P.B. 1312 133.74 276750
Modo Periodo (seg)
1 Transversal 1.1556
2 Longitudinal 1.081
3 Rotacional 1.0415
4 0.3572
5 0.3371
6 0.312
7 0.2015
8 0.1926
9 0.1769
10 0.1378
11 0.1323
12 0.1193
Modo 1
Periodo correspondiente al primer modo (Transversal), T=1.1556 seg.
Modo 2
Periodo correspondiente al segundo modo (Longitudinal), T=1.0981 seg.
Modo 3
Periodo correspondiente al primer modo (Rotacional), T=1.0415 seg.

More Related Content

What's hot

CHI^2 CON LA FUNCION DE EXCEL
CHI^2 CON LA FUNCION DE EXCELCHI^2 CON LA FUNCION DE EXCEL
CHI^2 CON LA FUNCION DE EXCELagracia28
 
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.agracia28
 
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONMEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONSumarno Feriyal
 
Tabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaTabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaYusrizal Mahendra
 
การดูแลสุขภาพ
การดูแลสุขภาพการดูแลสุขภาพ
การดูแลสุขภาพAsadawich
 
Perhitungan alinyemen horizontal ls = 33,3
Perhitungan alinyemen horizontal ls = 33,3Perhitungan alinyemen horizontal ls = 33,3
Perhitungan alinyemen horizontal ls = 33,3royfebi
 

What's hot (7)

CHI^2 CON LA FUNCION DE EXCEL
CHI^2 CON LA FUNCION DE EXCELCHI^2 CON LA FUNCION DE EXCEL
CHI^2 CON LA FUNCION DE EXCEL
 
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.
CHI^2 UTILIZANDO HERRAMIENTA DE EXCEL.
 
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONMEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
 
Analisis matricial sol gallagher
Analisis matricial sol gallagherAnalisis matricial sol gallagher
Analisis matricial sol gallagher
 
Tabel Profil Konstruksi Baja
Tabel Profil Konstruksi BajaTabel Profil Konstruksi Baja
Tabel Profil Konstruksi Baja
 
การดูแลสุขภาพ
การดูแลสุขภาพการดูแลสุขภาพ
การดูแลสุขภาพ
 
Perhitungan alinyemen horizontal ls = 33,3
Perhitungan alinyemen horizontal ls = 33,3Perhitungan alinyemen horizontal ls = 33,3
Perhitungan alinyemen horizontal ls = 33,3
 

Viewers also liked

Intervencion labiodental
Intervencion labiodentalIntervencion labiodental
Intervencion labiodentalantunez82
 
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...anshkhurana01
 
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...anshkhurana01
 
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...Expert and Consulting (EnC)
 
Esquemes tema 1
Esquemes tema 1Esquemes tema 1
Esquemes tema 1llulsil23
 
BJ Dooley's IT Toons COMICBOOK
BJ Dooley's IT Toons COMICBOOKBJ Dooley's IT Toons COMICBOOK
BJ Dooley's IT Toons COMICBOOKBrian Dooley
 

Viewers also liked (12)

гис
гисгис
гис
 
презентация к уроку 2
презентация к уроку 2презентация к уроку 2
презентация к уроку 2
 
Intervencion labiodental
Intervencion labiodentalIntervencion labiodental
Intervencion labiodental
 
Single cartridge seal
Single cartridge sealSingle cartridge seal
Single cartridge seal
 
Kinematika gelombang
Kinematika gelombangKinematika gelombang
Kinematika gelombang
 
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...
Embeddedsystem training-course-navi-mumbai-embeddedsysteml-course-provider-na...
 
CARTRIDGE SEAL INSTALLATION
CARTRIDGE SEAL INSTALLATIONCARTRIDGE SEAL INSTALLATION
CARTRIDGE SEAL INSTALLATION
 
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...
Php mysql classes in navi-mumbai,php-mysql course provider-in-navi-mumbai,bes...
 
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...
E&C Вrodaband 2015 Власть перезагрузка создание коммуникациинной платформы дл...
 
Esquemes tema 1
Esquemes tema 1Esquemes tema 1
Esquemes tema 1
 
BJ Dooley's IT Toons COMICBOOK
BJ Dooley's IT Toons COMICBOOKBJ Dooley's IT Toons COMICBOOK
BJ Dooley's IT Toons COMICBOOK
 
Gcp powerpoint
Gcp powerpointGcp powerpoint
Gcp powerpoint
 

02 estimación del periodo de la estructura15 o

  • 2.  Fórmulas de Wilbur. Determinación de Rigideces
  • 3. Diseño Sísmico de Edificios (Bazan-Meli)
  • 4.
  • 6. 𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎 𝑁𝑖𝑣𝑒𝑙 1 𝑁𝑖𝑣𝑒𝑙 2 𝑁𝑖𝑣𝑒𝑙 3 𝑁𝑖𝑣𝑒𝑙 4 𝑁𝑖𝑣𝑒𝑙 6 𝑁𝑖𝑣𝑒𝑙 5 𝑁𝑖𝑣𝑒𝑙 7 𝑋 z 𝑦 vigas: 90𝑥45 𝑐𝑚 𝐸 = 11000 𝑓´𝑐 𝑓´𝑐 = 250 𝑘𝑔 𝑐𝑚2 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 = 4.3 𝑚 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑐=2733750 𝑐𝑚4 𝐼𝑣 = 3413333.33 𝑐𝑚4
  • 7. 𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎 𝑁𝑖𝑣𝑒𝑙 1 𝑁𝑖𝑣𝑒𝑙 2 𝑁𝑖𝑣𝑒𝑙 3 𝑁𝑖𝑣𝑒𝑙 4 𝑁𝑖𝑣𝑒𝑙 6 𝑁𝑖𝑣𝑒𝑙 5 𝑁𝑖𝑣𝑒𝑙 7 𝑋 z 𝑦 vigas: 90𝑥45 𝑐𝑚 𝐸 = 11000 𝑓´𝑐 𝑓´𝑐 = 250 𝑘𝑔 𝑐𝑚2 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 = 4.3 𝑚 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑐=2733750 𝑐𝑚4 𝐼𝑣 = 3413333.33 𝑐𝑚4 𝐼𝑣 𝐼𝑣 𝐼𝑐𝐼𝑐 𝐼𝑐𝐻 𝐼 𝑚 = 71458333𝑐𝑚4
  • 8. 𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎 𝑁𝑖𝑣𝑒𝑙 1 𝑁𝑖𝑣𝑒𝑙 2 𝑁𝑖𝑣𝑒𝑙 3 𝑁𝑖𝑣𝑒𝑙 4 𝑁𝑖𝑣𝑒𝑙 6 𝑁𝑖𝑣𝑒𝑙 5 𝑁𝑖𝑣𝑒𝑙 7 𝑌 Z 𝑋 vigas: 90𝑥45 𝑐𝑚 𝐸 = 11000 𝑓´𝑐 𝑓´𝑐 = 250 𝑘𝑔 𝑐𝑚2 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 = 4.3 𝑚 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑐=2733750 𝑐𝑚4 𝐼𝑣 = 3413333.33 𝑐𝑚4
  • 9. 𝑃𝑙𝑎𝑛𝑡𝑎 𝐵𝑎𝑗𝑎 𝑁𝑖𝑣𝑒𝑙 1 𝑁𝑖𝑣𝑒𝑙 2 𝑁𝑖𝑣𝑒𝑙 3 𝑁𝑖𝑣𝑒𝑙 4 𝑁𝑖𝑣𝑒𝑙 6 𝑁𝑖𝑣𝑒𝑙 5 𝑁𝑖𝑣𝑒𝑙 7 𝑌 Z 𝑋 vigas: 90𝑥45 𝑐𝑚 𝐸 = 11000 𝑓´𝑐 𝑓´𝑐 = 250 𝑘𝑔 𝑐𝑚2 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑠: 80𝑥80𝑐𝑚 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 = 4.3 𝑚 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑐 𝐼𝑐𝐼𝑐 𝐼𝑐 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑣 𝐼𝑐=2733750 𝑐𝑚4 𝐼𝑣 = 3413333.33 𝑐𝑚4 𝐼𝑣 𝐼𝑐 𝐼𝑐 𝐻 𝑁𝑖𝑣𝑒𝑙 8 𝐼 𝑚 = 71458333𝑐𝑚4
  • 10. RIGIDECES EN DIRECCION X A B C D SUMA (Ton/m) K0 37226.326 37226.326 37226.326 37226.326 148905.3038 K1 25247.2523 25247.2523 25247.2523 25247.2523 100989.0091 K2 24311.799 24311.799 24311.799 24311.799 97247.19591 K3 24311.799 24311.799 24311.799 24311.799 97247.19591 K4 24311.799 24311.799 24311.799 24311.799 97247.19591 K5 24311.799 24311.799 24311.799 24311.799 97247.19591 K6 24311.799 24311.799 24311.799 24311.799 97247.19591 K7 24311.799 24311.799 24311.799 24311.799 97247.19591 K8 13381.0151 13381.0151 26762.03024 RIGIDECES EN DIRECCION Y 1 2 3 4 5 6 7 SUMA (Ton/m) K0 20227.2746 20227.2746 20227.2746 20227.27459 20227.2746 20227.2746 20227.2746 141590.9221 K1 13345.9107 13345.9107 13345.9107 13345.91073 13345.9107 13345.9107 13345.9107 93421.37513 K2 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K3 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K4 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K5 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K6 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K7 12762.543 12762.543 12762.543 12762.54302 12762.543 12762.543 12762.543 89337.80116 K8 7620.93707 7620.937068 7620.93707 22862.81121
  • 11. Análisis Estático DATOS DIRECCION (X,Y) Q 2 c 0.45 F.I. 1.5 a´=(c/Q)*F.I. 0.3375 𝑭 𝒊=𝒂´ 𝒘𝒊 𝒘𝒊∗𝒉𝒊 ∗𝒘𝒊𝒉𝒊 Calculo de Fuerzas (Fi). 𝐶𝑂𝑀𝑃𝑅𝑂𝐵𝐴𝐶𝐼Ó𝑁 𝑉0 𝑊𝑇 = 0.3375 Nivel wi (Ton) hi (m) wi*hi Fi (Ton) Vi(Ton) 8 151.2 38.7 5851.9 102 102 7 1150.6 34.4 39581.5 689 790 6 1311.8 30.1 39486.1 687 1478 5 1311.8 25.8 33845.2 589 2066 4 1311.8 21.5 28204.3 491 2557 3 1311.8 17.2 22563.5 393 2950 2 1311.8 12.9 16922.6 294 3244 1 1311.8 8.6 11281.7 196 3440 PB. 1311.8 4.3 5640.9 98 3539 10484.6 203377.6
  • 12. Determinación del periodo fundamental de la estructura, en dos direcciones. 𝑻 = 𝟐𝝅 𝑾𝒊 𝑿𝒊 𝟐 𝒈 𝑭𝒊 𝑿𝒊 𝑇𝑋 = 1.205 𝑠𝑒𝑔. 𝑇𝑌 = 1.252 𝑠𝑒𝑔. Kx(Ton/m) Vi/K(m) xi(cm) wi*xi^2(ton-cm2) Fi*xi(ton-cm) Tx 26762.0 0.0038 0.2 5.8 20.0 97247.2 0.0081 0.2 42.6 132.5 97247.2 0.0152 0.2 44.5 126.6 97247.2 0.0212 0.2 37.5 99.6 97247.2 0.0263 0.1 28.7 72.5 97247.2 0.0303 0.1 19.4 47.7 97247.2 0.0334 0.1 10.9 26.8 100989.0 0.0341 0.1 4.4 11.4 148905.0 0.0238 0.0 0.7 2.3 1.205 194.5 539.4 Ky(Ton/m) Vi/K(m) xi(cm) wi*xi^2(ton-cm2) Fi*xi(ton-cm) Ty 22863.0 0.0 0.2 6.8 21.7 89338.0 0.0 0.2 49.9 143.4 89338.0 0.0 0.2 52.2 137.0 89338.0 0.0 0.2 43.9 107.7 89338.0 0.0 0.2 33.5 78.4 89338.0 0.0 0.1 22.6 51.5 89338.0 0.0 0.1 12.6 28.9 93421.0 0.0 0.1 5.0 12.1 141591.0 0.0 0.0 0.8 2.5 1.2525 227.3 583.2
  • 14. RIGIDEZ DE ENTREPISO EN DIRECCION X (Ton/m) K0 148905 K1 100989 K2 97247 K3 97247 K4 97247 K5 97247 K6 97247 K7 97247 K8 26762 Matriz de rigidez lateral Klat K0 K1 K1 0 0 0 0 0 0 0 K1 K1 K2 K2 0 0 0 0 0 0 0 K2 K2 K3 K3 0 0 0 0 0 0 0 K3 K3 K4 K4 0 0 0 0 0 0 0 K4 K4 K5 K5 0 0 0 0 0 0 0 K5 K5 K6 K6 0 0 0 0 0 0 0 K6 K6 K7 K7 0 0 0 0 0 0 0 K7 K7 K8 K8 0 0 0 0 0 0 0 K8 K8                        PROPIEDADES Pesos en Toneladas Altura de entrepiso en m Modulo de elasticidad Ton/m2 w0 1311.8 H 4.30 w1 1311.8 E 14000 2500 w2 1311.8 w3 1311.8 E 7 10 5  w4 1311.8 w5 1311.8 w6 1311.8 w7 1150.6 w8 151.2
  • 15. Matriz de masas (Ton*seg2)/m M w0 g 0 0 0 0 0 0 0 0 0 w1 g 0 0 0 0 0 0 0 0 0 w2 g 0 0 0 0 0 0 0 0 0 w3 g 0 0 0 0 0 0 0 0 0 w4 g 0 0 0 0 0 0 0 0 0 w5 g 0 0 0 0 0 0 0 0 0 w6 g 0 0 0 0 0 0 0 0 0 w7 g 0 0 0 0 0 0 0 0 0 w8 g                                                  M 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 133.721 0 0 0 0 0 0 0 0 0 117.288 0 0 0 0 0 0 0 0 0 15.413                        Matriz de Masas.
  • 16. Frecuencias y Periodos. Frecuencias freq genvals Klat M( ) W 2 2.656 10 3  1.594 10 3  1.994 10 3  2.337 10 3  2.853 10 3  1.101 10 3  617.229 236.81 27.181                              Periodos T 2  W  T 0.122 0.157 0.141 0.13 0.118 0.189 0.253 0.408 1.205                       
  • 17. MODOS modos genvecs Klat M( ) modo 0 0.125 0.305 0.48 0.637 0.771 0.876 0.948 0.984 1 0 0.339 0.732 0.902 0.778 0.401 0.107 0.579 0.864 1 0 0.449 0.744 0.419 0.262 0.72 0.568 0.067 0.645 1 0 0.421 0.429 0.212 0.532 0.046 0.509 0.294 0.366 1 0 0.701 0.914 0.995 1 0.928 0.785 0.583 0.335 0.521 0 0.331 0.205 0.102 0.329 0.297 0.032 0.259 0.346 1 0 0.214 0.036 0.197 0.182 0.062 0.228 0.107 0.149 1 0 0.295 0.107 0.323 0.045 0.332 0.019 0.328 0.082 1 0 0.686 0.715 0.442 0.015 0.417 0.704 0.747 0.53 1                             
  • 18. Modos en dirección X 1 0.5 0 0.5 1 2 4 6 8 10 modo 1 1 0.5 0 0.5 1 2 4 6 8 10 modo 2 1 0.5 0 0.5 1 2 4 6 8 10 modo 3 1 0.5 0 0.5 1 2 4 6 8 10 modo 4 1 0.5 0 0.5 1 2 4 6 8 10 modo 5 1 0.5 0 0.5 1 2 4 6 8 10 modo 6 1 0.5 0 0.5 1 2 4 6 8 10 modo 7 1 0.5 0 0.5 1 2 4 6 8 10 modo 8 1 0.5 0 0.5 1 2 4 6 8 10 modo 9
  • 19. RIGIDEZ DE ENTREPISO EN DIRECCION Y (Ton/m) K0 141591 K1 93422 K2 89338 K3 89338 K4 89338 K5 89338 K6 89338 K7 89338 K8 22863 Matriz de rigidez lateral Klat K0 K1 K1 0 0 0 0 0 0 0 K1 K1 K2 K2 0 0 0 0 0 0 0 K2 K2 K3 K3 0 0 0 0 0 0 0 K3 K3 K4 K4 0 0 0 0 0 0 0 K4 K4 K5 K5 0 0 0 0 0 0 0 K5 K5 K6 K6 0 0 0 0 0 0 0 K6 K6 K7 K7 0 0 0 0 0 0 0 K7 K7 K8 K8 0 0 0 0 0 0 0 K8 K8                        Frecuencias freq genvals Klat M( ) W 51.247 49.41 38.019 42.217 46.101 31.798 23.863 14.795 5.015                        Periodos Ty 2  W  Ty 0.123 0.127 0.165 0.149 0.136 0.198 0.263 0.425 1.253                       
  • 20. Modos en dirección Y 1 0.5 0 0.5 1 2 4 6 8 10 modo 1 1 0.5 0 0.5 1 2 4 6 8 10 modo 2 1 0.5 0 0.5 1 2 4 6 8 10 modo 3 1 0.5 0 0.5 1 2 4 6 8 10 modo 4 1 0.5 0 0.5 1 2 4 6 8 10 modo 5 1 0.5 0 0.5 1 2 4 6 8 10 modo 6 1 0.5 0 0.5 1 2 4 6 8 10 modo 7 1 0.5 0 0.5 1 2 4 6 8 10 modo 8 1 0.5 0 0.5 1 2 4 6 8 10 modo 9
  • 21. PERIODOS  M. Estático  M. Dinámico. 𝑇𝑋 = 1.205 𝑠𝑒𝑔. 𝑇𝑌 = 1.252 𝑠𝑒𝑔. Tx 0.117 0.121 0.128 0.137 0.155 0.187 0.251 0.405 1.195                        MODOS Ty 0.123 0.127 0.165 0.149 0.136 0.198 0.263 0.425 1.253                       
  • 22. Masas y Periodos calculados (3D). Nivel Peso (ton) Masa Traslacional (Ton*s2/m) Masa Rotacional. 9 151.2 15.41 3012.7 8 1151 117.33 242789.1 7 1312 133.74 276750 6 1312 133.74 276750 5 1312 133.74 276750 4 1312 133.74 276750 3 1312 133.74 276750 2 1312 133.74 276750 P.B. 1312 133.74 276750 Modo Periodo (seg) 1 Transversal 1.1556 2 Longitudinal 1.081 3 Rotacional 1.0415 4 0.3572 5 0.3371 6 0.312 7 0.2015 8 0.1926 9 0.1769 10 0.1378 11 0.1323 12 0.1193
  • 23. Modo 1 Periodo correspondiente al primer modo (Transversal), T=1.1556 seg.
  • 24. Modo 2 Periodo correspondiente al segundo modo (Longitudinal), T=1.0981 seg.
  • 25. Modo 3 Periodo correspondiente al primer modo (Rotacional), T=1.0415 seg.