SlideShare a Scribd company logo
1 of 3
The EMBO Journal vol.5 no.5 pp.I 1 1- 1 1 3, 1986
Higher order structure in ribosomal RNA
R.R.Gutell, H.F.Noller1 and C.R.Woese
Department of Genetics and Development, University of Illinois, Urbana, IL
61801, and 1Thimann Laboratories, University of California at Santa Cruz,
Santa Cruz, CA 95064, USA
Communicated by R.A.Garrett
The only reliable general method currently available for deter-
mining precise higher order structure in the large ribosomal
RNAs is comparative sequence analysis. The method is here
applied to reveal 'tertiary' structure in the 16S-like rRNAs,
i.e. structure more complex than simple double-helical, secon-
dary structure. From a list of computer-generated potential
higher order interactions within 16S rRNA one such interac-
tion considered likely was selected for experimental test. The
putative interaction involves a Watson-Crick one to one cor-
respondence between positions 570 and 866 in the molecule
(E. coli numbering). Using existing oligonucleotide catalog in-
formation several organisms were selected whose 16S rRNA
sequences might test the proposed co-variation. In all of the
(phylogenetically independent) cases selected, full sequence
evidence confirms the predicted one to one (Watson-Crick)
correspondence. An interaction between positions 570 and 866
is, therefore, considered proven phylogenetically.
Key words: ribosomal RNA/comparative sequence analysis
Introduction
The secondary structural elements in the 16S-like ribosomal
RNAs proposed on the basis of sequence comparisons (Woese
et al., 1980; Woese et al., 1983; Gutell et al., 1985) are now
for the most part supported by an overwhelming amount of
evidence. One or more base pair replacements have been noted
for every (or most) position(s) in many of the proposed struc-
tures (Gutell et al., 1985; unpublished results). The results of
recent detailed chemical probing experiments are also con-
sistent with the proposed helices (Moazed et al., 1986). Higher
order structure for the large rRNAs other than that in helices
is another matter, however. Experience with tRNA suggests that
relatively little variation in composition will be seen for most
'tertiary structural' elements (Kim, 1979) and given that such
elements are generally single pairs (or triples), finding sufficient
comparative evidence to demonstrate convincingly their existence
should be difficult.
Results and Discussion
An alignment ofthe existing published 16S-like rRNA sequences
(as of mid 1984) was screened by computer for co-varying posi-
tions (Gutell et al., 1985). One of those for which fairly exten-
sive evidence existed involved positions 570 and 866. The
interaction in question is one of a few that can be traced in part
in the large number of oligonucleotide catalogs (about 400) ex-
isting for 16S-like rRNAs. By this means other rRNAs whose
sequences might serve to test the hypothetical interaction could
be selected. Table IA shows the original information suggesting
the co-variation between positions 570 and 866 (Gutell et al.,
1985).
For those cases in which it is a C (i.e. the eubacteria and most
mitochondria), position 866 tends to be represented in catalogs
by oligonucleotides of the form (G)YUAACR (Woese et al.,
1983; Y = pyrimidine, R = purine). A majority of the
oligonucleotide catalogs in all the major eubacterial groups con-
tain an oligonucleotide of the YUAACR type, except for the
Bacteroides and relatives and the Planctomyces - in which cases
such a sequence has never been found (Woese et al., 1985).
Similarly, cases in which position 570 is a pyrimidine tend to
be represented by oligonucleotides of the form (G)YYUAAAG
(Woese et al., 1983, 1985). All archaebacterial sequences and
catalogs contain an oligonucleotide of the form CYUAAAG.
These are rarely found in eubacterial catalogs, however, with
the exception again ofthe Bacteroides and relatives and the Pkznc-
tomyces - wherein all catalogs do contain such a sequence. Fur-
thermore, in the archaebacterial catalogs a mutually exclusive
relationship exists between CCUAAAG and CUUAAAG (Woese
et al., 1984; unpublished data).
On this information 16S rRNAs of eubacteria from the
bacteroides group (e.g. Bacteroidesfragilis) or the planctomyces
group (e.g. Planctomyces stayleyi) and certain archaebacteria
(e.g. Methanospirillum hungatei, Sulfolobus solfataricus and
Thermoproteus tenax) were selected to test the predicted co-
variation. The composition of positions 570 and 866 in these
sequences is shown in Table LB. In all cases tested (Weisburg
Table I. Sequence of various 16S rRNA in the vacinity of the 570/866 co-
variation. Positions 570 and 886 are in capitals, the remaining positions in
lower case; y = pyrimidine, r = purine, n = any base
A. Original sequences suggesting co-variation (Gutell et al., 1985)
570 866
gc G uaaag gcyaa C gcg eubacteria (four), chloroplasts (three), plant
mitochondria
gc G uauag gcuaa C gca Mycoplasma capricolum
gc G uaaag guuaa C acg chloroplast Euglena
gc G uacag guuaa C aca ciliate mitochondrion
gc C uaaag nnnaa C aa. mammalian mitochondria (four)
gu U uaaag augaa A rug fungal mitochondria (two)
gc C uaaag gggaa G ccg archaebacteria (three)
ag U uaaaa grgaa A yca eucaryotes (six)
B. Additional sequences testing co-variation
570 866
gu U uaaag gcgaa A gca Bacteroides fragilis (Weisberg et al., 1985)
gc U uaaag gcgaa A gug Planctomyces staleyi (Oyaizu and Woese, in
preparation)
gc U uaaag gggaa A ccg Methanospirillum hungatei (Yang et al., 1985)
gc C uaaag gggaa G cyg Sulfolobus solfataricus (Olsen et al., 1985)
gc U uaaag gggaa A ccg 7hermoproteus tenax (Leinfelder et al., 1985)
© IRL Press Limited, Oxford, England 1111
R.R.Gutell, H.F.Noller and C.R.Woese
et al., 1985; Yang et al., 1985; Leinfelder et al., 1985; Olsen
et al., 1985; Oyaizu and Woese, in preparation) the predicted
co-variation between positions 570 and 866 holds. Thus, within
the eubacteria and mitochondria two versions of the cor-
respondence (G/C and U/A) exist, and their phylogenetic distribu-
tion demands that one of them (probably U/A) has arisen at least
twice, if not three times. The archaebacteria show the two ver-
sions C/G and U/A, and their phylogenetic distribution again re-
quires at least two independent occurrences for one of the
versions. Eucaryotes seem to exhibit only the U/A version of
the correspondence. Many new 16S-like rRNA sequences have
been deduced since 1984 (when the initial computer screen was
carried out), and none of them violate the Watson-Crick cor-
respondence. We feel the hypothetical relationship between posi-
tion 570 and 866 in 16S-like rRNAs has now been reliably
demonstrated.
Positions 570 and 866 would seem to be involved in rather
complicated interactions. The structures involved and the com-
parative evidence for them are as follows. Position 866 is the
final nucleotide in a loop of four bases defined by a double-
stranded stalk of two canonical pairs. Evidence for the existence
of these pairs (861 -2/867-8) is convincing. They are GY/RC
in the eubacteria and in the plant and ciliate mitochondria, AU/RU
in fungal mitochondria, UU/AA in the mouse mitochondrion,
GG/CC in archaebacteria, and GA/UC or GC/GC in eucaryotes
(Gutell et al., 1985; unpublished data). The eubacterial
oligonucleotide catalogs show a number of phylogenetically in-
dependent occurrences of U/A pairs at 862/867 replacing C/G
pairs (Woese et al., 1983). No proven counter-examples to these
canonical pairing co-variations exist.
The possibility for base pairing also exists between positions
571 and 865 (immediately adjacent to 570/866), but in all cases
the pair has the invariant composition U/A (Gutell et al., 1985;
unpublished data).
Another structure that could further constrain geometry in this
general area of the 16S rRNA is a helix 567-569/881-883.
Comparative evidence exists for the 569/881 pair. In most
eubacteria, all archaebacteria and most mitochondria its com-
position is C/G, in eucaryotes G/C, but in one eubacterial group
(the bacteroides) and in the fungal mitochondrial examples it is
U/A (Gutell et al., 1985; Weisburg et al., 1985). Some com-
parative evidence exists for the 567/883 pair as well. In
eubacteria, most mitochondria and archaebacteria it is G/C; the
ciliate mitochondrion has A/U; and eucaryotes C/G (Gutell et
al., 1985; unpublished data). There is insufficient comparative
evidence to claim the intervening pair, 568/882, as proven
phylogenetically.
The structures involved in and surrounding the potential higher
order interactions are shown in Figure 1. If one assumes that
all these helices exist simultaneously and are maximally stack-
ed, contradiction occurs. It is sterically impossible for a pair
between positions 570 and 866 to stack on top of both the
861-2/867-8 helix and the 567-9/881-3 helix simultaneous-
ly. The fact that each of these three possible helical structures
seems to involve only 2-3 bp strongly suggests each has to be
supported by surrounding structure. The possible steric interac-
tions are too many and too complex to sort out on the basis of
present information.
While the existence of an interaction between positions 570
and 866 seems certain and will serve to constrain significantly
the overall geometry in one particular locale of the molecule,
the stereochemistry of this higher order structure remains
uncertain.
1112
U -A
G-760 G - C 810
GU
770-C G/,GUAG C UG AAG CC A
,A /c A A
580 CG ' G c 830AG
CGA uAG GGUu
A GG-C GA C , U5A AC U GA
G G- UG U -CC855
A G -
C 1A1A
AC GG
u
Fig. 1. Secondary structural elements bearing upon the 570/886 interaction. See
text for details.
It is important to emphasize that any projected higher order
structural interactions must be accompanied by substantial sup-
porting evidence. If strict criteria are not used, the large number
of incorrect interactions proposed under more relaxed conditions
would serve to obscure or discredit the true ones suggested. This
point, valid enough for the smaller tRNAs and 5S rRNA, is
doubly so for the larger and much more complex ribosomal
RNAs.
A number of higher order interactions have already been pro-
posed that do not withstand rigorous comparative test. Thompson
and Hearst (1983) have suggested three of them for the 16S
rRNA, while Spitnik-Elson et al. (1985) have proposed 17. Com-
paring the first group of proposed structures in a set of 22
eubacterial sequences that has been properly aligned shows the
vast majority of the nucleotide replacements to result in mispairs.
For example, each of the seven positions in the putative
620-626/1520-1426 helix (Thompson and Hearst, 1983) shows
two or more mismatches. The few properly compensated bp
replacements that do result are within chance expectation. Similar-
ly seven or more ofthe tertiary interactions proposed by Spitnik-
Elson et al. (1985) show a relatively high level of mispairs when
tested on a properly aligned and extensive set of eubacterial se-
quences (unpublished data).
Acknowledgements
This work is supported by grants from the National Aeronautics and Space Ad-
ministration, NSG-7044 (to C.R.W.), and from the National Institutes of Health,
GM-17129 (to H.F.N.).
References
Gutell,R.R., Weiser,B., Woese,C.R. and Noller,H.F. (1985) In Cohn,W.E. and
Moldave,K. (eds), Prog. Nucleic Acid Res. Mol. Biol., 32, 155-216.
Kim,S.-H. (1979) In Schimmel,P., Soll,D. and Abelson,J. (eds), Transfer RNA:
Structure, Properties, and Recognition. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY, pp. 83-100.
Leinfelder,W., Jarsch,M. and B6ck,A. (1985) Syst. Appl. Microbiol., 6, 164-170.
Moazed,D., Stern,S. and Noller,H.F. (1985) J. Mol. Biol.,187, 399-416.
Olsen,G.J., Pace,N.R., Nuell,M., Kaine,B.P., Gupta,R. and Woese,C.R. (1985)
J. Mol. Evol., 22, 301-307.
Paster,B.J., Ludwig,W., Weisburg,W.G., Stackebrandt,E., Hespell,R.B.,
Hahn,C.M., Reichenbach,H., Stetter,K.O. and Woese,C.R. (1985) Syst. Appl.
Microbiol., 6, 34-42.
Thompson,J.F. and Hearst,J.E. (1983) Cell, 32, 1355-1365.
Spitnik-Elson,P., Elson,D., Avital,S. and Abramowitz,H. (1985) Nucleic Acids
Res., 13, 4719-4738.
Higher order structure in ribosomal RNA
Weisburg,W., Oyaizu,Y., Oyaizu,H. and Woese,C.R. (1985) J. Bacteriol., 164,
230-236.
Woese,C.R., Magrum,L.J., Gupta,R., Siegel,R.B., Stahl,D.A., Kop,J.,
Crawford,N., Brosius,J., Gutell,R., Hogan,J.J. and Noller,H.F. (1980) Nucleic
Acids Res., 8, 2275-2293.
Woese,C.R., Gutell,R., Gupta,R. and Noller,H.F. (1983) Microbiol. Rev., 47,
621-669.
Woese,C.R., Gupta,R., Hahn,C.M., Zillig,W. and Tu,J. (1984) Syst. Appl.
Microbiol., 5, 97-105.
Woese,C.R., Stackebrandt,E., Macke,T.J. and Fox,G.E. (1985) Syst. Appl.
Microbiol., 6, 143-151.
Yang,D., Kaine,B.P. and Woese,C.R. (1985) Syst. Appl. Microbiol., 6, 251-256.
Received on 14 January 1986
1113

More Related Content

Similar to Gutell 014.emboj.1986.05.1111

Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175Robin Gutell
 
Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Robin Gutell
 
Gutell 069.mpe.2000.15.0083
Gutell 069.mpe.2000.15.0083Gutell 069.mpe.2000.15.0083
Gutell 069.mpe.2000.15.0083Robin Gutell
 
Science Article by Murakawa
Science Article by MurakawaScience Article by Murakawa
Science Article by MurakawaAdonai Cruz
 
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrGutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrRobin Gutell
 
photo of moss by Angie Jane Gray (1).pdf
photo of moss by Angie Jane Gray (1).pdfphoto of moss by Angie Jane Gray (1).pdf
photo of moss by Angie Jane Gray (1).pdfFamilyGray1
 
Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Robin Gutell
 
Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383Robin Gutell
 
Gutell 075.jmb.2001.310.0735
Gutell 075.jmb.2001.310.0735Gutell 075.jmb.2001.310.0735
Gutell 075.jmb.2001.310.0735Robin Gutell
 
Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082Robin Gutell
 
Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Robin Gutell
 
Gutell 082.jphy.2002.38.0807
Gutell 082.jphy.2002.38.0807Gutell 082.jphy.2002.38.0807
Gutell 082.jphy.2002.38.0807Robin Gutell
 
Gutell 086.bmc.evol.biol.2003.03.07
Gutell 086.bmc.evol.biol.2003.03.07Gutell 086.bmc.evol.biol.2003.03.07
Gutell 086.bmc.evol.biol.2003.03.07Robin Gutell
 
Parabasalia (Excavata, Metamonada)
Parabasalia (Excavata, Metamonada)Parabasalia (Excavata, Metamonada)
Parabasalia (Excavata, Metamonada)EukRef
 
Gutell 056.mpe.1996.05.0391
Gutell 056.mpe.1996.05.0391Gutell 056.mpe.1996.05.0391
Gutell 056.mpe.1996.05.0391Robin Gutell
 
Canonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsCanonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsNational Institute of Biologics
 

Similar to Gutell 014.emboj.1986.05.1111 (20)

Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175
 
Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167
 
Gutell 069.mpe.2000.15.0083
Gutell 069.mpe.2000.15.0083Gutell 069.mpe.2000.15.0083
Gutell 069.mpe.2000.15.0083
 
Science Article by Murakawa
Science Article by MurakawaScience Article by Murakawa
Science Article by Murakawa
 
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrGutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
 
photo of moss by Angie Jane Gray (1).pdf
photo of moss by Angie Jane Gray (1).pdfphoto of moss by Angie Jane Gray (1).pdf
photo of moss by Angie Jane Gray (1).pdf
 
Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502
 
Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383
 
Gutell 075.jmb.2001.310.0735
Gutell 075.jmb.2001.310.0735Gutell 075.jmb.2001.310.0735
Gutell 075.jmb.2001.310.0735
 
Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082
 
Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701
 
Gutell 082.jphy.2002.38.0807
Gutell 082.jphy.2002.38.0807Gutell 082.jphy.2002.38.0807
Gutell 082.jphy.2002.38.0807
 
Gutell 086.bmc.evol.biol.2003.03.07
Gutell 086.bmc.evol.biol.2003.03.07Gutell 086.bmc.evol.biol.2003.03.07
Gutell 086.bmc.evol.biol.2003.03.07
 
Distant dwarfs
Distant dwarfsDistant dwarfs
Distant dwarfs
 
Protein Science 2004
Protein Science 2004Protein Science 2004
Protein Science 2004
 
Parabasalia (Excavata, Metamonada)
Parabasalia (Excavata, Metamonada)Parabasalia (Excavata, Metamonada)
Parabasalia (Excavata, Metamonada)
 
Gutell 056.mpe.1996.05.0391
Gutell 056.mpe.1996.05.0391Gutell 056.mpe.1996.05.0391
Gutell 056.mpe.1996.05.0391
 
Halobatidea
HalobatideaHalobatidea
Halobatidea
 
Mundo viral
Mundo viralMundo viral
Mundo viral
 
Canonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsCanonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulins
 

More from Robin Gutell

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiRobin Gutell
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Robin Gutell
 
Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013Robin Gutell
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Robin Gutell
 
Gutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_dataGutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_dataRobin Gutell
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Robin Gutell
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Robin Gutell
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Robin Gutell
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Robin Gutell
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Robin Gutell
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Robin Gutell
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Robin Gutell
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Robin Gutell
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Robin Gutell
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Robin Gutell
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Robin Gutell
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Robin Gutell
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Robin Gutell
 
Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Robin Gutell
 
Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Robin Gutell
 

More from Robin Gutell (20)

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xi
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803
 
Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676
 
Gutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_dataGutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_data
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043
 
Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016
 
Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535
 

Recently uploaded

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 

Recently uploaded (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 

Gutell 014.emboj.1986.05.1111

  • 1. The EMBO Journal vol.5 no.5 pp.I 1 1- 1 1 3, 1986 Higher order structure in ribosomal RNA R.R.Gutell, H.F.Noller1 and C.R.Woese Department of Genetics and Development, University of Illinois, Urbana, IL 61801, and 1Thimann Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA Communicated by R.A.Garrett The only reliable general method currently available for deter- mining precise higher order structure in the large ribosomal RNAs is comparative sequence analysis. The method is here applied to reveal 'tertiary' structure in the 16S-like rRNAs, i.e. structure more complex than simple double-helical, secon- dary structure. From a list of computer-generated potential higher order interactions within 16S rRNA one such interac- tion considered likely was selected for experimental test. The putative interaction involves a Watson-Crick one to one cor- respondence between positions 570 and 866 in the molecule (E. coli numbering). Using existing oligonucleotide catalog in- formation several organisms were selected whose 16S rRNA sequences might test the proposed co-variation. In all of the (phylogenetically independent) cases selected, full sequence evidence confirms the predicted one to one (Watson-Crick) correspondence. An interaction between positions 570 and 866 is, therefore, considered proven phylogenetically. Key words: ribosomal RNA/comparative sequence analysis Introduction The secondary structural elements in the 16S-like ribosomal RNAs proposed on the basis of sequence comparisons (Woese et al., 1980; Woese et al., 1983; Gutell et al., 1985) are now for the most part supported by an overwhelming amount of evidence. One or more base pair replacements have been noted for every (or most) position(s) in many of the proposed struc- tures (Gutell et al., 1985; unpublished results). The results of recent detailed chemical probing experiments are also con- sistent with the proposed helices (Moazed et al., 1986). Higher order structure for the large rRNAs other than that in helices is another matter, however. Experience with tRNA suggests that relatively little variation in composition will be seen for most 'tertiary structural' elements (Kim, 1979) and given that such elements are generally single pairs (or triples), finding sufficient comparative evidence to demonstrate convincingly their existence should be difficult. Results and Discussion An alignment ofthe existing published 16S-like rRNA sequences (as of mid 1984) was screened by computer for co-varying posi- tions (Gutell et al., 1985). One of those for which fairly exten- sive evidence existed involved positions 570 and 866. The interaction in question is one of a few that can be traced in part in the large number of oligonucleotide catalogs (about 400) ex- isting for 16S-like rRNAs. By this means other rRNAs whose sequences might serve to test the hypothetical interaction could be selected. Table IA shows the original information suggesting the co-variation between positions 570 and 866 (Gutell et al., 1985). For those cases in which it is a C (i.e. the eubacteria and most mitochondria), position 866 tends to be represented in catalogs by oligonucleotides of the form (G)YUAACR (Woese et al., 1983; Y = pyrimidine, R = purine). A majority of the oligonucleotide catalogs in all the major eubacterial groups con- tain an oligonucleotide of the YUAACR type, except for the Bacteroides and relatives and the Planctomyces - in which cases such a sequence has never been found (Woese et al., 1985). Similarly, cases in which position 570 is a pyrimidine tend to be represented by oligonucleotides of the form (G)YYUAAAG (Woese et al., 1983, 1985). All archaebacterial sequences and catalogs contain an oligonucleotide of the form CYUAAAG. These are rarely found in eubacterial catalogs, however, with the exception again ofthe Bacteroides and relatives and the Pkznc- tomyces - wherein all catalogs do contain such a sequence. Fur- thermore, in the archaebacterial catalogs a mutually exclusive relationship exists between CCUAAAG and CUUAAAG (Woese et al., 1984; unpublished data). On this information 16S rRNAs of eubacteria from the bacteroides group (e.g. Bacteroidesfragilis) or the planctomyces group (e.g. Planctomyces stayleyi) and certain archaebacteria (e.g. Methanospirillum hungatei, Sulfolobus solfataricus and Thermoproteus tenax) were selected to test the predicted co- variation. The composition of positions 570 and 866 in these sequences is shown in Table LB. In all cases tested (Weisburg Table I. Sequence of various 16S rRNA in the vacinity of the 570/866 co- variation. Positions 570 and 886 are in capitals, the remaining positions in lower case; y = pyrimidine, r = purine, n = any base A. Original sequences suggesting co-variation (Gutell et al., 1985) 570 866 gc G uaaag gcyaa C gcg eubacteria (four), chloroplasts (three), plant mitochondria gc G uauag gcuaa C gca Mycoplasma capricolum gc G uaaag guuaa C acg chloroplast Euglena gc G uacag guuaa C aca ciliate mitochondrion gc C uaaag nnnaa C aa. mammalian mitochondria (four) gu U uaaag augaa A rug fungal mitochondria (two) gc C uaaag gggaa G ccg archaebacteria (three) ag U uaaaa grgaa A yca eucaryotes (six) B. Additional sequences testing co-variation 570 866 gu U uaaag gcgaa A gca Bacteroides fragilis (Weisberg et al., 1985) gc U uaaag gcgaa A gug Planctomyces staleyi (Oyaizu and Woese, in preparation) gc U uaaag gggaa A ccg Methanospirillum hungatei (Yang et al., 1985) gc C uaaag gggaa G cyg Sulfolobus solfataricus (Olsen et al., 1985) gc U uaaag gggaa A ccg 7hermoproteus tenax (Leinfelder et al., 1985) © IRL Press Limited, Oxford, England 1111
  • 2. R.R.Gutell, H.F.Noller and C.R.Woese et al., 1985; Yang et al., 1985; Leinfelder et al., 1985; Olsen et al., 1985; Oyaizu and Woese, in preparation) the predicted co-variation between positions 570 and 866 holds. Thus, within the eubacteria and mitochondria two versions of the cor- respondence (G/C and U/A) exist, and their phylogenetic distribu- tion demands that one of them (probably U/A) has arisen at least twice, if not three times. The archaebacteria show the two ver- sions C/G and U/A, and their phylogenetic distribution again re- quires at least two independent occurrences for one of the versions. Eucaryotes seem to exhibit only the U/A version of the correspondence. Many new 16S-like rRNA sequences have been deduced since 1984 (when the initial computer screen was carried out), and none of them violate the Watson-Crick cor- respondence. We feel the hypothetical relationship between posi- tion 570 and 866 in 16S-like rRNAs has now been reliably demonstrated. Positions 570 and 866 would seem to be involved in rather complicated interactions. The structures involved and the com- parative evidence for them are as follows. Position 866 is the final nucleotide in a loop of four bases defined by a double- stranded stalk of two canonical pairs. Evidence for the existence of these pairs (861 -2/867-8) is convincing. They are GY/RC in the eubacteria and in the plant and ciliate mitochondria, AU/RU in fungal mitochondria, UU/AA in the mouse mitochondrion, GG/CC in archaebacteria, and GA/UC or GC/GC in eucaryotes (Gutell et al., 1985; unpublished data). The eubacterial oligonucleotide catalogs show a number of phylogenetically in- dependent occurrences of U/A pairs at 862/867 replacing C/G pairs (Woese et al., 1983). No proven counter-examples to these canonical pairing co-variations exist. The possibility for base pairing also exists between positions 571 and 865 (immediately adjacent to 570/866), but in all cases the pair has the invariant composition U/A (Gutell et al., 1985; unpublished data). Another structure that could further constrain geometry in this general area of the 16S rRNA is a helix 567-569/881-883. Comparative evidence exists for the 569/881 pair. In most eubacteria, all archaebacteria and most mitochondria its com- position is C/G, in eucaryotes G/C, but in one eubacterial group (the bacteroides) and in the fungal mitochondrial examples it is U/A (Gutell et al., 1985; Weisburg et al., 1985). Some com- parative evidence exists for the 567/883 pair as well. In eubacteria, most mitochondria and archaebacteria it is G/C; the ciliate mitochondrion has A/U; and eucaryotes C/G (Gutell et al., 1985; unpublished data). There is insufficient comparative evidence to claim the intervening pair, 568/882, as proven phylogenetically. The structures involved in and surrounding the potential higher order interactions are shown in Figure 1. If one assumes that all these helices exist simultaneously and are maximally stack- ed, contradiction occurs. It is sterically impossible for a pair between positions 570 and 866 to stack on top of both the 861-2/867-8 helix and the 567-9/881-3 helix simultaneous- ly. The fact that each of these three possible helical structures seems to involve only 2-3 bp strongly suggests each has to be supported by surrounding structure. The possible steric interac- tions are too many and too complex to sort out on the basis of present information. While the existence of an interaction between positions 570 and 866 seems certain and will serve to constrain significantly the overall geometry in one particular locale of the molecule, the stereochemistry of this higher order structure remains uncertain. 1112 U -A G-760 G - C 810 GU 770-C G/,GUAG C UG AAG CC A ,A /c A A 580 CG ' G c 830AG CGA uAG GGUu A GG-C GA C , U5A AC U GA G G- UG U -CC855 A G - C 1A1A AC GG u Fig. 1. Secondary structural elements bearing upon the 570/886 interaction. See text for details. It is important to emphasize that any projected higher order structural interactions must be accompanied by substantial sup- porting evidence. If strict criteria are not used, the large number of incorrect interactions proposed under more relaxed conditions would serve to obscure or discredit the true ones suggested. This point, valid enough for the smaller tRNAs and 5S rRNA, is doubly so for the larger and much more complex ribosomal RNAs. A number of higher order interactions have already been pro- posed that do not withstand rigorous comparative test. Thompson and Hearst (1983) have suggested three of them for the 16S rRNA, while Spitnik-Elson et al. (1985) have proposed 17. Com- paring the first group of proposed structures in a set of 22 eubacterial sequences that has been properly aligned shows the vast majority of the nucleotide replacements to result in mispairs. For example, each of the seven positions in the putative 620-626/1520-1426 helix (Thompson and Hearst, 1983) shows two or more mismatches. The few properly compensated bp replacements that do result are within chance expectation. Similar- ly seven or more ofthe tertiary interactions proposed by Spitnik- Elson et al. (1985) show a relatively high level of mispairs when tested on a properly aligned and extensive set of eubacterial se- quences (unpublished data). Acknowledgements This work is supported by grants from the National Aeronautics and Space Ad- ministration, NSG-7044 (to C.R.W.), and from the National Institutes of Health, GM-17129 (to H.F.N.). References Gutell,R.R., Weiser,B., Woese,C.R. and Noller,H.F. (1985) In Cohn,W.E. and Moldave,K. (eds), Prog. Nucleic Acid Res. Mol. Biol., 32, 155-216. Kim,S.-H. (1979) In Schimmel,P., Soll,D. and Abelson,J. (eds), Transfer RNA: Structure, Properties, and Recognition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 83-100. Leinfelder,W., Jarsch,M. and B6ck,A. (1985) Syst. Appl. Microbiol., 6, 164-170. Moazed,D., Stern,S. and Noller,H.F. (1985) J. Mol. Biol.,187, 399-416. Olsen,G.J., Pace,N.R., Nuell,M., Kaine,B.P., Gupta,R. and Woese,C.R. (1985) J. Mol. Evol., 22, 301-307. Paster,B.J., Ludwig,W., Weisburg,W.G., Stackebrandt,E., Hespell,R.B., Hahn,C.M., Reichenbach,H., Stetter,K.O. and Woese,C.R. (1985) Syst. Appl. Microbiol., 6, 34-42. Thompson,J.F. and Hearst,J.E. (1983) Cell, 32, 1355-1365. Spitnik-Elson,P., Elson,D., Avital,S. and Abramowitz,H. (1985) Nucleic Acids Res., 13, 4719-4738.
  • 3. Higher order structure in ribosomal RNA Weisburg,W., Oyaizu,Y., Oyaizu,H. and Woese,C.R. (1985) J. Bacteriol., 164, 230-236. Woese,C.R., Magrum,L.J., Gupta,R., Siegel,R.B., Stahl,D.A., Kop,J., Crawford,N., Brosius,J., Gutell,R., Hogan,J.J. and Noller,H.F. (1980) Nucleic Acids Res., 8, 2275-2293. Woese,C.R., Gutell,R., Gupta,R. and Noller,H.F. (1983) Microbiol. Rev., 47, 621-669. Woese,C.R., Gupta,R., Hahn,C.M., Zillig,W. and Tu,J. (1984) Syst. Appl. Microbiol., 5, 97-105. Woese,C.R., Stackebrandt,E., Macke,T.J. and Fox,G.E. (1985) Syst. Appl. Microbiol., 6, 143-151. Yang,D., Kaine,B.P. and Woese,C.R. (1985) Syst. Appl. Microbiol., 6, 251-256. Received on 14 January 1986 1113