IET Talk: TSSG Model & Future Internet and IPv6


Published on

I gave this talk to on Thu 26th Feb 2010.

It gives an overview of the TSSG (Telecommunications Software & Systems Group). The focus is on the unique model of balancing basic research, applied research and commercialisation activity (roughloy equally) in a research centre in Ireland.

The next part was a call to arms to migrate to IPv6, giving the historical context of IPv4 depletion.

Finally a note was made of the TSSG's progress towards IPv6 deployment, and of our research activity since 199 in various research themes linked to IPv6, particularly SHIM6.

Published in: Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

IET Talk: TSSG Model & Future Internet and IPv6

  1. 1. Future Internet • TSSG  Background • IPv6  -­‐  Near  Term  Future  Internet • IPv6  -­‐  TSSG  Deployment  &  Research • Future  Internet  -­‐  Clean  Slate – Was  planning  to  talk  about  this – TSSG  doing  some  work  EU  FP7  4WARD – But  I  have  removed  this  element  of  the  talk
  2. 2. TSSG Executive Management • Willie  Donnelly – Director,  TSSG • Mícheál  Ó  Foghlú – ExecuSve  Director  Research,  TSSG • Barry  Downes – ExecuSve  Director  InnovaSon  &  CommercialisaSon,  TSSG • Eamonn  de  Leastar – CTO,  TSSG
  3. 3. TSSG Balanced EcoSystem Commercial Commercial The  Entrepreneur TSSG Basic Research Basic  Research The  Science Applied Research Applied  Research The  Engineering
  4. 4. TSSG Funded Projects Total  Projects 127 projects of  which  TSSG  led 71 % AcAve  Projects  Jan  2010 28 projects Completed  Projects  Jan  2010 99 projects Average  project    =      €440k,    Total  =  €56  Million  1996-­‐2009 Staff  number  =      140  (20  PhDs,  5  Faculty,  12  Postdocs) Spin-­‐in/Spin-­‐Out  company  job  number  =    60 Partners  =    150  academic  &  industrial  partners  working  on  funded  projects Enterprise  Ireland  InnovaAon  Partnerships  =  50  from  2007-­‐2009  * *  Not  counted  as  projects  -­‐  small  scale  €5k  engagements  with  Irish  SMEs
  5. 5. TSSG Funding Mix !"#$% Balanced Portfolio &' 0(1 &2' () *+' ./) *&' (, -&' Total:  €56  M  Funding  (1996  –  2010)          Total:  127  Projects
  6. 6. TSSG Positioning • Basic  Research    (HEA,  SFI)  One  of  TOP  3  academic  centre's  in  Ireland  in telecommunicaSons:    WIT  (TSSG),  TCD  (CTVR),  DCU (RINCE) •    Applied  Research  (EU  FP7)   Irish  winner  of  EU  FP7  funding  -­‐  twice  nearest  compeStor   Ranked  Top  10  insAtute  in  Europe  in  Future  Internet research    (i.e.  on  a  par  with  Nokia,  Ericsson,  FhG  FOKUS)   Engaged  in  many  EU  Technology  Placorms  at  board  level          (eMobility,  NEM,  NESSI)
  7. 7. TSSG Positioning Contd… • CommercialisaAon  (EI)  One  of  the  top  research  groups  for  commercialisaAon   Leading  edge  innovaSon    &  technology  development  in:  IMS  Web  2.0  Mobile        Commercial  ‘Spin-­‐offs’  (Separate  from  TSSG)  Early  stage  technology  clusters  emerging  based  around  TSSG  60  jobs  created  in  14  ‘Spin-­‐Out’  and  ‘Spin-­‐In’  companies linked  to  TSSG  (since  2001)  ConSnue  to  develop  other  companies  in  the  marketplace
  8. 8. TSSG Research & Innovation Philosophy • Research  and  innovaAon  is  non-­‐linear: good  ideas  come  from  ALL  parts  of  an  ecosystem  -­‐  requiring  a balance  of  funding  to  maintain  the  flow  of  the  ecosystem • Equal  value  across  all  parts  of  ecosystem: basic  research,  applied  research,  and  commercialisaAon, build  experSse  in  VC  funding  and  following  stages • Build  research  teams: uSlise  non-­‐tradiSonal  staff  (professional  researchers)  in applied  and  commercial  research    -­‐    fight  academic norms/assumpSons
  9. 9. Stokes’ Pasteur’s Quadrant      A  detailed  Analysis  of Vannevar  Bush,  NSF,  OECD FrascaS  and  other  ways  in which  basic  and  applied research  have  been  split  by funding  mechanisms,  to  the detriment  of  technological innovaAon. Stokes, Donald E. [1997] Pasteur's Quadrant: Basic Science and Technological Innovation. Washington D.C., USA: Brookings Institution Press.
  10. 10. Stokes’ Pasteur’s Quadrant Considerations for Use ? No Yes Yes Pure  Basic  Use-­‐Inspired Research Basic  Research Quest for        (Bohr)      (Pasteur) Fundamental understanding? No Pure  Applied Research    Taxonomies  and  Tools Researchers  are  the  users        (Edison) (Adapted from Pasteur’s Quadrant: Basic Science and Technological Innovation, Stokes 1997, p. 73).
  11. 11. IPv6  -­‐  Near  Term  Future  Internet
  12. 12. Future Internet • Near  Term – We  have  to  move  from  IPv4  to  IPv6  as  this  talk  will  explain • Longer  Term – There  is  a  lot  of  room  for  academic  research  into alternaSves  to  IP,  but  it  will  take  10  years  or  more  to  agree and  then  maybe  another  10  to  implement • Remember  IP  is  40  years  old  now,  but  only  took  off from  the  1990s  as  the  web  popularised  IP  outside  of academia  and  of  specialist  IT  companies
  13. 13. IPv4 Exhaustion - Summary • There  are  around  4.3  billion  IPv4  addresses  232  not  all of  which  can  actually  be  used • There  are  over  6  billion  people • As  countries  develop  it  is  typical  for  each  person  to have  mulSple  devices  requiring  addresses • There  are  more  and  more  other  services  linking machines  to  machines  that  also  require  addresses • Therefore  there  are  not  enough  IPv4  addresses • There  are  2128  IPv6  addresses,  this  is  definitely enough
  14. 14. Shape of IPv4 Originally,  three  classes  of  network were  "good  enough" ...but  not  for  long
  15. 15. Class B Exhaustion Workarounds  were  needed Short  term – Classless  Inter-­‐domain  RouSng  (CIDR) • finer  tuned  allocaSon – Encourage  private  addresses  (RFC1918)  and  NAT • avoid  allocaSon – RIRs  enter  conservaSon  mode • minimise  allocaSon Long  Term – New  protocol  with  bigger  address  space
  16. 16. Workarounds: CIDR CIDR  took  the reigns  off  the subnet  masks Address  space  now  "shrinks  to  fit”  each  network. Address Netmask Hosts 655342 6 14 30 62 126 254 510 1022 2046 4094 8190 16382 32766
  17. 17. Success of the Workarounds • So  IPv4  addresses  have  a  smaller  address  range than  IPv6,  but  the  life  of  IPv4  has  been  extended  by: – CIDR – NAT
  18. 18. End of the road for Workarounds • But  sSll,  there  is  huge  demand  for  more  IPv4  addresses: – many  new  wireline  connecSons  as  broadband  penetrates  new  markets – many  new  wireless  data  access  connecSons  as  mobile  broadband  picks  up – many  new  mobile  devices  on  the  Internet,  smart  phones  are  becoming  the  norm – the  promised  new  “Internet  of  things”  where  many  more  embedded  devices  have  wired and  wireless  Internet  connecSvity  (e.g.  mulSple  electrical  devices  in  houses  and  offices) – every  IPv4  SSL  web  server  needs  a  unique  IPv4  address – many  geographical  regions  of  the  world  (especially  in  Asia  with  later  uptake  of  IPv4  and huge  populaSons  –  China  and  India)  have  a  much  higher  demand  for  new  IPv4 addresses  than  we  have  in  Europe • So…  When  will  we  run  out  ?  ….
  19. 19. IPv4: How long have we got? • Tony  Hain  reckons  2010  (IANA  /8    Pool  will  run  out) – htp://­‐ 3/ipv4.html • Geoff  Huston  reckons  (*)  25  September  2011  (IANA  /8  Pool  will  run  out) – htp:// “Here  the  exhausSon  point  is  the  date  where  the  first  RIR  has  exhausted  its available  pool  of  addresses,  and  no  further  numbers  are  available  in  the IANA  unallocated  pool  to  replenish  the  RIR's  pool.  The  data  available suggests  a  best  fit  predicSve  model  where  this  will  occur  on  11-­‐Oct-­‐2010. A  related  predicSon  is  the  exhausSon  of  the  IANA  unallocated  number  pool, which  this  model  predicts  will  occur  on  25-­‐Sep-­‐2011.” (*)  Huston’s  model  dynamically  updated  -­‐  these  figures  taken  2010-­‐02-­‐24
  20. 20. Consensus on IPv4 exhaustion began to be reached in 2007 • On  May  21,  2007,  the  American  Registry  for  Internet  Numbers  (ARIN),  the  North  American  RIR,  advised the  internet  community  that  due  to  the  expected  exhausSon  in  2010  "migraSon  to  IPv6  numbering resources  is  necessary  for  any  applicaSons  which  require  ongoing  availability  from  ARIN  of  conSguous  IP numbering  resources".  It  should  be  noted  that  "applicaSons"  include  general  connecSvity  between devices  on  the  Internet,  as  some  devices  only  have  an  IPv6  address  allocated. • On  June  20,  2007,  the  LaSn  American  and  Caribbean  Internet  Addresses  Registry  (LACNIC),  the  South American  RIR,  advised  "preparing  its  regional  networks  for  IPv6"  by  January  1,  2011  for  the  exhausSon  of IPv4  addresses  "in  three  years  Sme". • On  June  26,  2007,  the  Asia-­‐Pacific  Network  InformaSon  Centre  (APNIC),  the  RIR  for  the  Pacific  and  Asia, endorsed  a  statement  by  the  Japan  Network  InformaSon  Center  (JPNIC)  that  to  conSnue  the  expansion and  development  of  the  Internet  a  move  towards  an  IPv6-­‐based  Internet  is  advised.  This  with  an  eye  on the  expected  exhausSon  around  2010  which  will  create  a  great  restricSon  on  the  Internet.
  21. 21. IPv4: How Long do we have when the /8 pool is gone? • In  reality  this  depends  on  unpredictable  factors – The  policies  will  probably  get  Sghter – There  will  probably  be  a  rush – Something  else  could  blow  it  apart – Note  that  economic  crisis  has  slowed  consumpSon  of IPv4  address  pool  slightly  giving  us  maybe  6-­‐12  months longer  than  Tony  Hain  predicted  in  2005
  22. 22. IPv4 Addresses are Running Out The  Internet  Protocol  Journal  -­‐  Volume  8,  Number  3,  September  2005 A  PragmaAc  Report  on  IPv4  Address  Space  ConsumpAon by  Tony  Hain,  Cisco  Systems • Network  Address  TranslaAon  (NAT)  and  CIDR  did  their  jobs  and  bought  the  10  years  needed  to get  IPv6  standards  and  products  developed.  Now  is  the  Ame  to  recognize  the  end  to  sustainable growth  of  the  IPv4-­‐based  Internet  has  arrived  and  that  it  is  Ame  to  move  on.  IPv6  is  ready  as the  successor,  so  the  gaAng  issue  is  aotude. • When  CIOs  make  firm  decisions  to  deploy  IPv6,  the  process  is  fairly  straighcorward.  Staff  will need  to  be  trained,  management  tools  will  need  to  be  enhanced,  routers  and  operaAng  systems will  need  to  be  updated,  and  IPv6-­‐enabled  versions  of  applicaAons  will  need  to  be  deployed.  All these  steps  will  take  Ame—in  many  cases  mulAple  years. • The  point  of  this  arAcle  has  been  to  show  that  the  recent  consumpAon  rates  of  IPv4  will  not  be sustainable  from  the  central  pool  beyond  this  decade,  so  organizaAons  would  be  wise  to  start the  process  of  planning  for  an  IPv6  deployment  now.  Those  who  delay  may  find  that  the  IANA pool  for  IPv4  has  run  dry  before  they  have  completed  their  move  to  IPv6.  Although  that  may not  be  a  problem  for  most,  organizaAons  that  need  to  acquire  addiAonal  IPv4  space  to  conAnue growing  during  the  transiAon  could  be  out  of  luck. hqp://­‐3/ipv4.html
  23. 23. Comments on IPv6 Adoption • CAIDA  (CooperaAve  AssociaAon  for  Internet  Data  Analysis) – in  UCSD/SDSC  graphs  indicate  that  IPv6  internet  in  2005  is  as  complex as  IPv4  internet  in  2000 – htp:// • So  the  topology  of  IPv6  is  already  as  complex  as  IPv4  was  at the  height  of  the  dot  com  boom • But,  admitedly,  IPv6  is  sSll  less  than  1%  of  all  IP  traffic  in  the world  today  (topology  good,  traffic  volumes  not  so  good) • More  promising,  the  allocaSon  of  IPv6  address  space  has been  picking  up  in  2009,  it  had  been  very  slow  up  unSl  then • So  we  have  missed  the  window  of  being  able  to  do  dual-­‐stack IPv4  and  IPv6  on  all  machines,  as  IPv4  will  be  in  too  short supply  -­‐-­‐  so  the  change  over  will  be  more  painful  and  later than  originally  planned  by  IETF
  24. 24. 4th March 2005 IPv6 Topology (
  25. 25. IPv4 Historical Development April 2005 April 2003 April 2002 October 2000 January 2000 July 2001
  26. 26. Example IPv6 Address • IPv6  =  128  bit  address  (3.4  x  1038  max  possible) • IPv4  =  32  bit  address  (4,294,967,296  max  possible) • 2001:0db8:0010:0300:0000:0000:0ae2:510b – Long  version. • 2001:db8:10:300:0:0:ae2:510b – Omit  leading  zeros. • 2001:db8:10:300::ae2:510b – Replace  run  of  zeros  with  :: • 2001:db8:10:300::10:226:81:11 – Can  write  end  as  IPv4  address.
  27. 27. Dual stacking & DNS IPv4  uses  A  records IPv6  uses  AAAA  records |    IN    A |    IN    AAAA 2001:770:18:aa40::c101:c140 Client  atempts  IPv6  first  (AAAA  record) and  if  that  fails,  IPv4  (A  record) AutomaSc  transiSon  to  IPv6
  28. 28. IPv4 Workaround Impacts (Private Address Space) • Benefits  of  private  addresses  have  been  exploited  for  IT security – Internal  hosts  are  not  directly  addressable, therefore  only  reachable  indirectly – Enforces  a  central  point  of  administraSon – NAT  used  as  "poor  man's  firewall" to  disallow  new  connecSons  inward
  29. 29. The Cost of Private Addressing (NAT) • NAT  also  provides  a  way  of  preserving  IPv4  Address  Space,  at  a  price – Large  number  of  private  address  spaces – Each  set  of  private  addresses  funnelled  via  a  “middle  box”  a  Network Address  TranslaSon  gateway,  to  the  real  Internet – The  NAT  box  needs  to  modify  addresses  embedded  in  every  packet  as  it traverses  the  gateway  –  inefficient/CPU  intensive – The  NAT  box  breaks  the  original  end-­‐to-­‐end  model  of  the  Internet  making  it very  difficult  for  machines  behind  a  NAT  gateway  to  offer  services  to  other machines  on  the  Internet  (hobbling  peer-­‐2-­‐peer  for  example)  -­‐  inelegant – ApplicaSons  developers  are  then  forced  to  find  workarounds  at  the  higher layers  of  the  stack  for  NAT  problems,  e.g.  the  use  of  STUN  with  VoIP  to  allow p2p  traffic  –  inefficient  to  have  to  solve  the  same  problem  repeatedly
  30. 30. The Cost of Private Addressing (NAT) • AddiSonal  problems  with  the  use  of  NAT – It  hurts  security  (yes,  really!)  e.g.  your  whole company/campus  is  blacklisted  due  to  one  user misbehaving – It's  extra  hassle  to  avoid  leaks – It's  bad  news  if  networks  merge  (and  they  use  the  same private  IP  space)
  31. 31. The side benefit of large address space – IPv6  uses  264  addresses  on  a  link  instead  of  usually  less  than  28  for IPv4 – Aqacks  based  on  simply  scanning  a  whole  network – would  need  years  for  performing  it – would  thereby  consume  a  massive  bandwidth  on  the  scanned  link – are  therefore  no  longer  appropriate – However one  needs  to  take  care  about  the  addressing  of  server  (use  of  arbitrary idenSfiers) one  needs  to  secure  neighbour  discovery  messages
  32. 32. Cryptographically Generated Addresses – IPv6  addresses,  which  carry  hashed  informaAon  about  public  key  in the  idenAfier  part – Benefits CerSficate  funcSonality  without  requiring  a  key  management infrastructure SoluSon  for  securing  IPv6  Neighbour  Discovery  (resolve  chicken-­‐egg problem  of  IPsec) Cryptographically Generated Address Subnet prefix (64 bit) CGA specific ID (64 bit) Hash of sender public key
  33. 33. Traceability of (mobile) users In  stateless  IPv6  address  autoconfiguraAon  idenAfiers  can  be  derived from  HW  (staAc  part  in  address) Does  this  mean  that  I‘m  traceable  (locaAon,  sites  visited,  …)? • IPv6  supports  also  random  idenSfiers  for  privacy  reasons • These  random  idenSfiers  are  default  se~ng  in  some  operaSng  systems Random or static Subnet prefix (64 bit) identifier (64 bit)
  34. 34. Disappearance of NATs Without  NAT  boxes  my  home  /  company  devices will  have  public  addresses Does  this  mean  that  I’m  easily  reachable  from  outside  and  therefore  also  more affected  by  aqacks? – NO,  as  NAT  boxes  do  not  give  any  security  or  privacy. – A  (host)  firewall  can  effecSvely  shield  parts  which  should  not  be  reachable from  outside. – Even  more,  a  firewall  can  provide  applicaSon  layer  security,  a  NAT  box  can not – BUT  NAT  by  default  denys  access  -­‐-­‐  a  good  thing  in  general FW FW Internet Company A Company B Global Addresses Public Address A Public Address B
  35. 35. Privacy • IPv6  has  a  real  privacy  protocol • IPv4  has  no  real  privacy  protocol • Network  elements  based  on  IPv4  need  to  be protected  by  firewalls,  cable  modems  are  a  classic example,  whereas  IPv6  equivalents  can  be  much more  secure
  36. 36. IPv6 Services • Technically  there’s  no  huge  advantage  for  any  IP-­‐ based  services  to  use  IPv6  over  IPv4. • The  benefits  come  from  the  broader  infrastructural argument  relaSng  to  the  end-­‐to-­‐end  architecture.
  37. 37. IPv6 Services • This  is  most  important  when  looking  at potenSal  peer-­‐2-­‐peer  services  such  as  VoIP – In  an  IPv4  world  you  need  a  SIP  gateway  and  a  media  gateway  to setup  a  VoIP  call  using  SIP  –  the  media  gateway  allows  connecSvity through  NAT  gateways,  and  transfers  signalling  between  different types  (e.g.  SS7  to  IP);  SIP  gateway  more  like  a  firewall  than  NAT – In  an  IPv6  world  the  SIP  signalling  negoSates  a  media  stream  that then  can  flow  directly  between  the  two  clients – This  the  IMS  architecture  itself  is  simplified  for  many  services  using IPv6 • As  developers  there  is  no  major  overhead  in  developing  dual  stack applicaSons • Thus  those  developing  services  for  the  next  generaSon  internet  should develop  dual  stack  applicaSons  that  support  IPv4  and  IPv6
  38. 38. IPv6 - TSSG Deployment & Research IPv6  -­‐  TSSG  Deployment  &  Research
  39. 39. TSSG/WIT IPv6 allocations Currently running: 2 /48s 2001:770:20::/48 and 2001:770:**::/48 (darknet) 1 /48 used entirely as a darknet 1 /48 subnetted into 4 /50s 3 /50s in use 1 /50 initial darknet - now re-routed to external research network 6 /64s in use (research, Internet routed) 1 /50 production n/w + routed links (WIT) 2 /64s in use 1 /50 production n/w (TSSG) 11 /64s in use (production) 16 /64s in use (research, Internet routed) 1 additional /64 on our co-location LAN extension
  40. 40. IPv6 Networking • In  the  TSSG  all  our  networks  are  dual-­‐stacked,  unless  there  is  a specific  reason  not  to. • Routed  uplinks  and  producSon  servers  are  assigned  staSc  IPv6 addresses.  All  other  devices  obtain  auto-­‐generated  IPv6  addresses. • We  use  ACLs  to  strictly  limit  inbound  traffic  to  all  our  networks, except  the  Darknet  of  course. • All  outbound  traffic  is  allowed  and  a  reflexive  rule  is  associated  with each  outbound  session  so  the  return  traffic  is  allowed  back  in. • We  originally  use  a  combinaSon  of  staSc  IPv6  routes  and  OSPFv3  for our  IPv6  rouSng;  now  we  use  IS-­‐IS  as  our  primary  rouSng  protocol. • We  have  found  that  running  IPv6  does  not  add  any  more  complexity to  network  design  or  layout.  It  does  however  introduce  more  security issues  and  can  make  troubleshooSng  more  difficult.  Hence  the  need for  monitoring  and  tracking. • The  restoraSon  of  the  End-­‐to-­‐End  model,  whilst  welcome,  eliminates the  “auto-­‐secure”  or  unreachable  by  default  protecSon  of  NAT/PAT.
  41. 41. Network & Host Monitoring • Open  source  tools  like  Nagios  and  Smokeping  can  be  used  to monitor  network  and  host  availability  and  reliability  over IPv6. • Ntop  provides  detailed  network  traffic  analysis  (if  an  uplink port  is  tap’d  /  span’d). • However  these  tools  only  provide  rudimentary  informaSon and  can’t  really  tell  you  what  is  happening  on  your  network. • We  now  use  Ne€low  (v9)  from  Cisco  devices  to  capture  and log  all  IPv4  and  IPv6  headers
  42. 42. Security and traffic monitoring • IniSally  no  commercial  security  or  monitoring  products.  Some open  source  products  but  implementaSons  were  poor  and badly  maintained.  No  real  demand. • US  Department  of  Defense  decree  of  full  IPv6  support  by  July 2008  in  July  2005  has  improved  this  situaSon. • Commercial  products  are  now  becoming  available  with  full IPv6  support  for  monitoring  and  security  reporSng.
  43. 43. Static Vs Dynamic addresses • In  the  TSSG  we  use  staSc  addresses  for  all  our  servers  and routed  uplink  interfaces. • We  use  dynamic  address  on  most  networks  for  client  devices and  on  internal  vlan  interfaces. • We  use  the  router  to  allocate  the  dynamic  addresses • We  do  not  use  dynamic  DNS.
  44. 44. Services: DNS • DNS Primary and Secondary hot-swap – DNS External 1st (bind9 on Linux ubuntu, HEAnet) – DNS External 2nd (bind9 on Solaris 10 zone, TSSG) • round robins over – - Waterford (Solaris 10 zone, TSSG) • IPv6 enabled – - Frankfurt (BSD Virtual Private Server, NTT Verio) • Not IPv6, yet – - Virginia (BSD Virtual Private Server, NTT Verio) • Not IPv6, yet – - Tokyo (BSD Virtual Private Server, NTT Verio) • IPv6 enabled
  45. 45. Services: Mail, Web • Mail – Software: postfix 2.2.8 – OS: Sun Solaris – Location: internally hosted in TSSG • Web – Software: Apache 2.2.0 – OS: Linux ubuntu – Location: externally hosted in HEAnet – Note: Acts as host for many virtual domains (from to )
  46. 46. Research Older: EU FP5 and earlier • Converge  (TSR  Strand  III) – Security,  Quality  of  Service  and  AccounSng  for  next  generaSon  IPv6  services • Torrent  (EU  FP5  IST) – Use  of  IPv6  for  Secure  Provision  of  ISP  Services • Intermon  (EU  FP5  IST) – Inter-­‐domain  Quality  of  Service  for  IPv4  and  IPv6  networks  and  services • SEINIT  (EU  FP6  IST) – Security  for  next  generaSon  IPv6  networks  and  services • IPv6  Cluster  (EU  FP5  IST) – EU-­‐sponsored  coordinaSon  acSvity  bring  together  all  EU  IST  FP5  projects promoSng  or  using  IPv6
  47. 47. Research Recent: EU FP6, HEA, SFI – Daidalos  I  &  Daidalos  II  (EU  FP6  IST) • Scenario-­‐based  next  generaSon  pervasive  services  based  on  IPv6 – M-­‐Zones  (HEA  PRTLI  Cycle  3) • Managed  Zones  of  Smart  Spaces  –  managing  next  generaSon  pervasive services – FoundaAons  of  Autonomics  (SFI  PI  Cluster) • Modelling  communicaSons  networks  and  services  to  enable  autonomic network  &  service  management – ENABLE  (EU  FP6  IST) • Enabling  efficient  and  operaSonal  mobility  in  large  heterogeneous  IP networks  (built  on  mobile  IPv6)
  48. 48. Research Current: EU FP7 • Autonomic  CommunicaSons – 4WARD   [IP  FP7  ICT  Call  1] – EFIPSANS   [IP  FP7  ICT  Call  1] – AutoI   [STREP  FP7  ICT  Call  1] • Services – PERSIST   [STREP  FP7  ICT  Call  1] • Security – Inco-­‐Trust   [CA  FP7  ICT  Call  1] – Think-­‐Trust   [CA  FP7  ICT  Call  1] • Testbeds – PII   [IP  FP7  ICT  Call  2] – Perimeter   [STREP  FP7  ICT  Call  2] – VITAL++   [STREP  FP7  ICT  Call  2]
  49. 49. Research Current: HEA & Other – HEA  FutureComm  (PRTLI  Cycle  4) • Partnered  with  NUI  Maynooth  and  University  of  Limerick – SFI  SRC  FAME • Partnered  with  TCD,  UCD,  NUIM  and  UCC – NaAonal  IPv6  Centre  (DCMNR) • Partnered  with  NUI  Maynooth,  HEAnet  and  BT  Ireland – Irish  NaAonal  IPv6  Task  Force  (DCMNR/DCENR) • Promote  IPv6  in  Ireland • htp://
  50. 50. Irish IPv6 Summit: Event Plug • NaSonal  IPv6  Summit • Wed  19th  May  2010 • Dublin  Castle,  Dublin,  Ireland • Keynote  speakers:  Brian  Carpenter  (University  of Auckland)  and  Geoff  Huston  (APNIC) • Panelists/Speakers:  Dennis  Jennings  (ICANN),  Daniel Karrenberg  (ISOC  and  RIPE),  Mat  Ford  (ISOC) • RegistraSons  opening  in  March – htp://  (website  launch  soon) – htp://  (view  last  year’s)
  51. 51. Questions? • Happy  to  answer  any  quesSons
  52. 52. Contact Details Mícheál  Ó  Foghlú TSSG  Offices: ExecuAve  Director  Research TSSG    (Waterford,  Ireland)  Headquarters TSSG,  WIT ArcLabs  Research  &  InnovaSon  Building WIT  West  Campus,  Carriganore +353  51  302963  (w) Co.  Waterford,      Ireland +353  86  8044640  (m) TSSG    (California,  USA)  Investment/VC  Network 101  California  Street Barry  Downes Suite  2450 ExecuAve  Director  3CS San  Francisco TSSG,  WIT CA  94111  ,  USA +353  51  302932  (w) TSSG    (Dublin,  Ireland)  Customer  MeeAngs +353  87  9075535  (m) Digital  Depot,  Roe  Lane The  Digital  Hub Dublin  8,    Ireland