SlideShare a Scribd company logo
1 of 11
Гиперзвуковой тепловой двигатель
для ударных безпилотников и крылатых ракет (модернизирован).
Передовые страны усиленно ведут разработки гиперзвуковых летательных
аппаратов военного назначения. Проанализировал все варианты
инновационного прорыва, я принял решение создать принципиально новый
авиационный двигатель, используя эксэрготрансформатор в качестве
универсального движителя.
Модернизация гиперзвукового двигателя вызвана тем, что разработан
более совершенный двухступенчатый эксэрготрансформаторных
универсальный двигатель, в котором первая ступень это
эксэрготрансформаторная камера сгорания топлива.
Возвращающиеся безпилотники, должны иметь многоразовые двигатели.
Существующие в настоящее время способы преобразования тепловой
энергии в механическую работу, открытые в 19 веке, достигли своего
максимума, поэтому дальнейшее их усовершенствование становится
экономически не обосновано. Существующие авиационные двигатели
сложные в ремонте, дорогостоящие в изготовлении и эксплуатации, а
также естественным образом морально устарели.
Рассмотрим проект - применение универсального
эксэрготрансформаторного двигателя для движения гиперзвуковых
беспилотных аппаратов.
Цель разработки – создание высокоэкономичного, простого в
изготовлении и эксплуатации гиперзвукового двигателя.
Эксэрготрансформаторный авиационный двигатель состоит из двух
ступеней: эксэрготрансформаторной камеры сгорания топлива и
эксэрготрансформатора в качестве движителя.
В камеры сгорания тепло аккумулированное в топливе преобразуется в
кинетическую энергию продуктов сгорания, обладающих высокой
температурой. Для увеличения реактивной массы и доработки
остаточного тепла первой ступени, газ направляются в
эксэрготрансформатор (вторая ступень), где он выполняет работу по
всасыванию и сжатию дополнительного наружного воздуха.
На выходе из канала эксэрготрансформатора газ поступает в
сверхзвуковое сопло, где его внутреннее давление преобразуется в
скорость, которая дополнительно к импульсу полученном в камере
сгорания, увеличивает общую реактивную тягу двигателя.
Планируемый выход на рынок.
Необходимо, не раскрывая Ноу-хау как можно дольше. Разработать и
освоить производство авиационных эксэрготрансформаторных
двигателей различных типов. Смысл в том, что эффект от внедрения
универсальных двигателей огромный, поэтому будут попытки
дальнейшего усовершенствование технологии, поэтому необходимо
быть всегда впереди.
После освоения производства авиационных двигателей, раскрывается
Ноу-хау и патентуется во всех развитых странах мира.
Финансовые вопросы.
Заключается договор с инвестором, по которому управление проектом
передается ему. Совместно участвуем в проектировании, изготовлении
и испытании рабочих образцов продукции. По результатам испытания,
образцы направляются в серийное производство.
Конкурентные преимущества.
Превосходство предлагаемых двигателей, перед существующими
типами авиационных двигателей в том, что эксэргия продуктов
сгорания топлива преобразуется в эксэрготрансформаторе в
кинетическую энергию потока атмосферного воздуха, проходящего
через него без промежуточных преобразований и со сверхвысокой
начальной температурой в цикле.
Поэтому КПД эксэрготрансформаторных двигателей превосходит
существующие двигатели в 1.5 – 2 раза.
Эксэрготрансформаторный авиационный двигатель подобен
прямоточному воздушно – реактивному двигателю, но отличается он
от него следующим:
1. Не имеет потерь скорости летательного аппарата на сжатия
воздуха в двигателе.
2. Не имеет потерь на входе в воздухозаборник.
3. Не имеет проблем с видом топлива и его сжиганием при
гиперзвуковых скоростях.
4. Не имеет проблем с тягой при нулевой скорости самолета.
Предлагается идеальный инновационный авиационный двигатель,
которому не могут представлять конкуренцию не только
турбовинтовые и турбореактивные, но и современные представления
о прямоточном воздушно – реактивном двигателе. Основой
универсального двигателя есть эксэрготрансформаторная камера
сгорания топлива, а их в настоящее время нет, поэтому конкуренции
быть не может.
Расчет эксэрготрансформаторной камеры сгорания топлива
при трех звуковых скоростях полета самолета.
Расчет производится при движении летательного аппарата со
скоростью 3М (три звуковые скорости) на уровне моря, где атмосферное
давление примем Ра=0.1МПа, температура воздуха Т. = 288°К,
V=0,8352м3/кг.
Теплота сгорания условного жидкого топлива примем 44000 КДж/кг.
Для сгорания 1кг. топлива примем 14 кг. воздуха.
При сгорании 1кг воздуха в парах топлива выделяется 3142 КДж. тепла, а
температура повышается Тг = 3142: 1,015 = 3096,4°.
Удельную теплоемкость для воздуха и продуктов сгорания примем
постоянную: Ср. = 1,015КДж/кг. × град.
Скорость полета 3М - это W = 1026 м/сек., при данной скорости давление
встречного потока будет Р. = 3.68МПа или 36 кг/см2., температура
торможения встречного потока Т. = 807°К. Скорость аппарата W = 1026
м/сек. в плотных слоях атмосферы на высоте уровня моря можно назвать
предельной. Гиперзвуковых скоростей полета аппарата можно достичь
только на большой высоте в разряжённой атмосфере.
Расчет производим на один метр квадратный воздухозаборника для двух
ступеней. При скорости W = 1026 м/сек. Расход воздуха будет равен:
1026 × 1: 0,8352 = 1228.4 кг.
Компрессор нагнетает воздух в запальное устройство с давлением
10МПа. и температурой сжатия 1074°К. В расчете 14 кг. воздуха на 1 кг.
топлива. Через запальное устройство проходит все топливо,
используемое в двигателе. Конструкция камеры сгорания первой
ступени двигателя обеспечивает сгорания топлива при любых
скоростях движения летательного аппарата. Дополнительно топливо,
проходя запальное устройство, не только испаряется, но и ионизируется
при высокой температуре, поэтому любое углеводородное топливо,
распадаясь на ионы и смешиваясь за счет диффузии в слое проходящего
воздуха, гарантировано сгорает за тысячные доли секунды.
Расчет будем вести на 1кг. сгорающего топлива в первой ступени, а потом
переведем на всю массу воздуха, проходящего через воздухозаборник.
Примем, что аппарат движется с крейсерской скоростью, расходуя половину
расчетного топлива.
Камера сгорания имеет запальное устройство, в которое подается 2 кг.
топлива с температурой 288°К. и 14 килограмм воздух с давлением 100МПа
и температурой сжатия Т=1074°К.
Теоретическая температура паров топлива и продуктов сгорания на выходе
из запального устройства: (288×2 +1074 ×14 + 14× 3096,4)/ 16 = 3685°К.
Иллюстрация расчета, происходящих процессов изменения состояния газа,
показана в T-S диаграмме. Эксэргия паров топлива и продуктов его сгорания
(рабочей газ), выходящая с запального устройства складывается с эксэргией
встречного потока атмосферного воздуха в канале эксэрготрансформаторной
камеры сгорания.
Примем, что на 1 кг. рабочего газа, выходящего с запального устройства,
поступает в камеры сгорания 3кг. воздуха, т.е. примем коэффициент k =3.
Масса всасываемого атмосферного воздуха на 1кг. сгорающего топлива в
первой ступени: 2× 7 =14кг.
Общая масса на 1кг. топлива М.общ. = 14 +7 = 21кг.
Неподвижный атмосферный воздух с температурой 288°К. поглощается
воздухозаборником, летящего со скоростью 3М летательного аппарата и
направляется в канал камеры сгорания. Процесс 3-4.
Выходящий из запального устройства ионизированный рабочий газ с
температурой Тг.= 3685°К. в адиабатном процессе 1-2 расширяется до
давления Р.= 0,1МПа, поджигает пары топлива в избыточном воздухе,
поступающего из воздухозаборника и поступает в канал камеры сгорания.
Между двумя потока, безударно вошедшими в один канал, начинается
энергообмен, приводящий к выравниванию температуры и их скоростей.
В канале камеры сгорания при звуковых скоростях выполняется закон
сохранения механической энергии.
Звуковые скорости потоков газа складываются в основном за счет передачи
тепла, при V = Const в процессе 4-7 тепло поглощает, а процесс 10-7
Р.=Const отдается: 2546 – 1527 = 1019. 807 + (1019:2) = 1147°К.
Для полного сложения потоков необходима энергия, чтобы достичь точки 7.
G = 1527 – 1147 = 380. Дополнительная энергия берется за счет кинетической
энергии процесс 10-9 G = 380 × 3 = 1140. 2546 + 1140 = 3685.
Сложившиеся потоки двигаются со скоростью, W= 1532м/сек. в канале
камеры сгорания.
Горение.
Одновременно со сложением скоростей происходит процесс горения
оставшегося 1-го килограмма топлива в канале камеры сгорания.
Повышение температуры будет равно: Т= 43350 : (21:3 +21) = 677 градуса.
Параметры движущего потока это точка 8 с температурой Т. = 370°К. и
объем V = 1,073.
Повышение температуры после сгорания топлива процесс 8-12: Тv. = 370
+677 = 1047°К.
Горение паров топлива происходит внутри движущегося со сверхзвуковой
скоростью газа по каналу камеры сгорания при V = Const, при этом
происходит рост давления, в потоке. Определим давления газа в движущемся
потоке Р.гор. = (1047× 290) : 1.073 = 0,283 МПа.
Далее газ, пройдя канал камеры сгорания, поступает в её диффузор, где
внутреннее давление потока реализуется в работу расширения процесс 12-5
до температуры Т=777°К.
Сложим общую работу потока, поступающего во вторую ступень двигателя.
Энтальпия движущего потока равна процесс 7-8: Ад = (1527 – 370) ×1,015=
1174КДж/кг. Процесс 12 – 11 сложение энтальпии горения внутри потока с
энтальпией его движения: Т = 2204°К.
Скорость потока поступающего потока во вторую ступень двигателя –
1732м/сек.
Расчет второй ступени
двигателя при скорости полета 3М.
Начальные условия.
С первой ступени двигателя поступают продукты горения топлива со
следующими параметрами: удельная масса m = 64 кг/сек,
температурой торможения Т.=2204°К. Конструкция второй ступени
двигателя не рассчитана для горения паров топлива, а предназначена
только для утилизации тепла и увеличения реактивной массы.
Иллюстрация расчета происходящих процессов изменения состояния
газа, показаны в T-S диаграмме.
Энергия продуктов сгорания (рабочей газ) выполняет во второй
ступени двигателя работу, по сжатию атмосферного воздуха.
Рабочий газ в процессе 1-2 адиабатного расширения до Р. = 0,1МПа и
Т=777°К, входит в канал эксэрготрансформатора.
Неподвижный атмосферный воздух, за счет скорости летательного
аппарата поступает в воздухозаборник двигателя и направляется также
в канал эксэрготрансформатора.
Масса всасываемого атмосферного воздуха во вторую ступень принята с
коэффициентом k=1, т.е. 64кг.
Расчетная масса газа, проходящая через двигатель.
М.об. = 64 +64 = 128кг.
До поступления в воздухозаборник, неподвижный атмосферный воздух имел
следующие параметры: Р.=0,1МПа, V=0,8352, Т=288°К, но относительно
летящего со скоростью 3М аппарата эти параметры газа, входящего в канал
эксэрготрансформатора изменяются. Параметры торможения будут
следующие: Р.= 3.6765МПа, V=0,5294м3/кг, Т= 807°К.
Т – S диаграмме это выглядит так. Рабочий газ в процессе процесс – 6 -7,
отдает тепло, а атмосферный воздух в процессе 3-7 получает его и
температура выравнивается То.=577. Далее складывается энергия
потоков. А:1, 015 = (807 -288) + (2204 – 865.5) = 1857,5.
Находим температуру торможения потока точка 5:
Т = 577 + 1857,5:2 = 1505°К.
Разность энтальпии между точкой 7 и точкой 8 есть работа газа двух
ступеней эксэрготрансформаторного гиперзвукового двигателя.
А. = (1505 – 473) × 1.015 = 1023 КДж/кг.
Скорость выходящей струи W= 1441м/сек.
Масса воздуха в расчетной струе. 128 -2 = 126 кг.
Найдем массу топлива расходованного на один квадратный метр
воздухозаборника: 1228,4 : 126 = 9.75 × 2 = 19.5кг.
Найдем тягу двигателя:
1.За счет массы воздуха 1228.4 × (1441- 1026) = 509786Н.
2 .За счет массы топлива 19.5× 1441 = 28100Н.
Полная тяга двигателя:
А.п. = 509786 + 28100 = 537886Н., 52800кг., 52.8 т.
Использовано только 50% установленной мощности двигателя.
Дальнейшая модернизация двигателя.
Как видно из расчета, что эффективность реактивная масса топлива,
возрастает с увеличением скорости аппарата, поэтому при скоростях
более 6М, гиперзвуковой двигатель нуждается в дальнейшей
модернизации.
Модернизация будет заключаться в том, что двигатель дополняется
контейнером с запасом жидкого кислорода. На больших высотах свыше
30 км. над уровнем моря и скоростях свыше 6М. в запальное устройство
подается кислород, который постепенно вытесняет воздух и двигатель
превращается в Прямоточный ракетно – воздушный гиперзвуковой
двигатель. В ПРВГД не возникает проблем ни со скоростью, ни с высотой
полета.

More Related Content

What's hot

презентация камеры сгорания. (1)
презентация камеры сгорания. (1)презентация камеры сгорания. (1)
презентация камеры сгорания. (1)mkril
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.kriloveckiyy
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.mkril
 
призентация эксэрготрансформаторного двигателя. (1)
призентация эксэрготрансформаторного двигателя. (1)призентация эксэрготрансформаторного двигателя. (1)
призентация эксэрготрансформаторного двигателя. (1)mkril
 
презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копияkriloveckiyy
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.mkril
 
презентация авиационного двигателя сверхвысоких пораметров газа.
презентация  авиационного двигателя сверхвысоких пораметров газа.презентация  авиационного двигателя сверхвысоких пораметров газа.
презентация авиационного двигателя сверхвысоких пораметров газа.kriloveckiyy
 
презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копияmkril
 
Петрив 10 а
Петрив 10 аПетрив 10 а
Петрив 10 аAlexapetriv
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
лекция №8
лекция №8лекция №8
лекция №8student_kai
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.mkril
 
презентация суперэжектора. новый.
презентация суперэжектора. новый.презентация суперэжектора. новый.
презентация суперэжектора. новый.kriloveckiyy
 

What's hot (13)

презентация камеры сгорания. (1)
презентация камеры сгорания. (1)презентация камеры сгорания. (1)
презентация камеры сгорания. (1)
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
призентация эксэрготрансформаторного двигателя. (1)
призентация эксэрготрансформаторного двигателя. (1)призентация эксэрготрансформаторного двигателя. (1)
призентация эксэрготрансформаторного двигателя. (1)
 
презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копия
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
презентация авиационного двигателя сверхвысоких пораметров газа.
презентация  авиационного двигателя сверхвысоких пораметров газа.презентация  авиационного двигателя сверхвысоких пораметров газа.
презентация авиационного двигателя сверхвысоких пораметров газа.
 
презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копия
 
Петрив 10 а
Петрив 10 аПетрив 10 а
Петрив 10 а
 
призентация.
призентация.призентация.
призентация.
 
лекция №8
лекция №8лекция №8
лекция №8
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.
 
презентация суперэжектора. новый.
презентация суперэжектора. новый.презентация суперэжектора. новый.
презентация суперэжектора. новый.
 

Viewers also liked

ชื่อ นายบัณฑิต จิตรดล
ชื่อ นายบัณฑิต จิตรดลชื่อ นายบัณฑิต จิตรดล
ชื่อ นายบัณฑิต จิตรดลjitdon16944
 
Together we can improve
Together we can improveTogether we can improve
Together we can improveDiana Alzate
 
Boston Symphony Orchestra Marketing Case
Boston Symphony Orchestra Marketing CaseBoston Symphony Orchestra Marketing Case
Boston Symphony Orchestra Marketing Caseraquelangelica12
 
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28Teresa Clotilde Ojeda Sánchez
 
Triptico del racismo
Triptico del racismoTriptico del racismo
Triptico del racismomelany4
 
Tesis Problemas en la lectoescritura
Tesis Problemas en la lectoescrituraTesis Problemas en la lectoescritura
Tesis Problemas en la lectoescrituradanytics
 

Viewers also liked (9)

ชื่อ นายบัณฑิต จิตรดล
ชื่อ นายบัณฑิต จิตรดลชื่อ นายบัณฑิต จิตรดล
ชื่อ นายบัณฑิต จิตรดล
 
Together we can improve
Together we can improveTogether we can improve
Together we can improve
 
Nationalities 150519065741-lva1-app6892
Nationalities 150519065741-lva1-app6892Nationalities 150519065741-lva1-app6892
Nationalities 150519065741-lva1-app6892
 
Mapa mental diana
Mapa mental dianaMapa mental diana
Mapa mental diana
 
IT NEWS
IT NEWSIT NEWS
IT NEWS
 
Boston Symphony Orchestra Marketing Case
Boston Symphony Orchestra Marketing CaseBoston Symphony Orchestra Marketing Case
Boston Symphony Orchestra Marketing Case
 
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28
Documentos primaria-sesiones-unidad06-quinto grado-integrados-5g-u6-sesion28
 
Triptico del racismo
Triptico del racismoTriptico del racismo
Triptico del racismo
 
Tesis Problemas en la lectoescritura
Tesis Problemas en la lectoescrituraTesis Problemas en la lectoescritura
Tesis Problemas en la lectoescritura
 

Similar to гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.

призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.mkril
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.kriloveckiyy
 
презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.kriloveckiyy
 
презентация супурэжектора.
презентация супурэжектора.презентация супурэжектора.
презентация супурэжектора.kriloveckiyy
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.mkril
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.kriloveckiyy
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.mkril
 
презентация универсального двигателя.
презентация универсального двигателя.презентация универсального двигателя.
презентация универсального двигателя.kriloveckiyy
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация универсального двигателя. (дополнена)
призентация универсального двигателя. (дополнена)призентация универсального двигателя. (дополнена)
призентация универсального двигателя. (дополнена)mkril
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.mkril
 
Перспективы создания мощных ЖРД _Каторгин 2004
Перспективы создания мощных ЖРД _Каторгин 2004Перспективы создания мощных ЖРД _Каторгин 2004
Перспективы создания мощных ЖРД _Каторгин 2004Dmitry Tseitlin
 
презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...kriloveckiyy
 

Similar to гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. (18)

призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
 
презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.
 
презентация супурэжектора.
презентация супурэжектора.презентация супурэжектора.
презентация супурэжектора.
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
презентация универсального двигателя.
презентация универсального двигателя.презентация универсального двигателя.
презентация универсального двигателя.
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация универсального двигателя. (дополнена)
призентация универсального двигателя. (дополнена)призентация универсального двигателя. (дополнена)
призентация универсального двигателя. (дополнена)
 
презентация камеры сгорания.
презентация камеры сгорания.презентация камеры сгорания.
презентация камеры сгорания.
 
Перспективы создания мощных ЖРД _Каторгин 2004
Перспективы создания мощных ЖРД _Каторгин 2004Перспективы создания мощных ЖРД _Каторгин 2004
Перспективы создания мощных ЖРД _Каторгин 2004
 
презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...
 

гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.

  • 1. Гиперзвуковой тепловой двигатель для ударных безпилотников и крылатых ракет (модернизирован). Передовые страны усиленно ведут разработки гиперзвуковых летательных аппаратов военного назначения. Проанализировал все варианты инновационного прорыва, я принял решение создать принципиально новый авиационный двигатель, используя эксэрготрансформатор в качестве универсального движителя. Модернизация гиперзвукового двигателя вызвана тем, что разработан более совершенный двухступенчатый эксэрготрансформаторных универсальный двигатель, в котором первая ступень это эксэрготрансформаторная камера сгорания топлива. Возвращающиеся безпилотники, должны иметь многоразовые двигатели.
  • 2. Существующие в настоящее время способы преобразования тепловой энергии в механическую работу, открытые в 19 веке, достигли своего максимума, поэтому дальнейшее их усовершенствование становится экономически не обосновано. Существующие авиационные двигатели сложные в ремонте, дорогостоящие в изготовлении и эксплуатации, а также естественным образом морально устарели. Рассмотрим проект - применение универсального эксэрготрансформаторного двигателя для движения гиперзвуковых беспилотных аппаратов. Цель разработки – создание высокоэкономичного, простого в изготовлении и эксплуатации гиперзвукового двигателя. Эксэрготрансформаторный авиационный двигатель состоит из двух ступеней: эксэрготрансформаторной камеры сгорания топлива и эксэрготрансформатора в качестве движителя. В камеры сгорания тепло аккумулированное в топливе преобразуется в кинетическую энергию продуктов сгорания, обладающих высокой температурой. Для увеличения реактивной массы и доработки остаточного тепла первой ступени, газ направляются в эксэрготрансформатор (вторая ступень), где он выполняет работу по всасыванию и сжатию дополнительного наружного воздуха. На выходе из канала эксэрготрансформатора газ поступает в сверхзвуковое сопло, где его внутреннее давление преобразуется в скорость, которая дополнительно к импульсу полученном в камере сгорания, увеличивает общую реактивную тягу двигателя.
  • 3. Планируемый выход на рынок. Необходимо, не раскрывая Ноу-хау как можно дольше. Разработать и освоить производство авиационных эксэрготрансформаторных двигателей различных типов. Смысл в том, что эффект от внедрения универсальных двигателей огромный, поэтому будут попытки дальнейшего усовершенствование технологии, поэтому необходимо быть всегда впереди. После освоения производства авиационных двигателей, раскрывается Ноу-хау и патентуется во всех развитых странах мира. Финансовые вопросы. Заключается договор с инвестором, по которому управление проектом передается ему. Совместно участвуем в проектировании, изготовлении и испытании рабочих образцов продукции. По результатам испытания, образцы направляются в серийное производство.
  • 4. Конкурентные преимущества. Превосходство предлагаемых двигателей, перед существующими типами авиационных двигателей в том, что эксэргия продуктов сгорания топлива преобразуется в эксэрготрансформаторе в кинетическую энергию потока атмосферного воздуха, проходящего через него без промежуточных преобразований и со сверхвысокой начальной температурой в цикле. Поэтому КПД эксэрготрансформаторных двигателей превосходит существующие двигатели в 1.5 – 2 раза. Эксэрготрансформаторный авиационный двигатель подобен прямоточному воздушно – реактивному двигателю, но отличается он от него следующим: 1. Не имеет потерь скорости летательного аппарата на сжатия воздуха в двигателе. 2. Не имеет потерь на входе в воздухозаборник. 3. Не имеет проблем с видом топлива и его сжиганием при гиперзвуковых скоростях. 4. Не имеет проблем с тягой при нулевой скорости самолета. Предлагается идеальный инновационный авиационный двигатель, которому не могут представлять конкуренцию не только турбовинтовые и турбореактивные, но и современные представления о прямоточном воздушно – реактивном двигателе. Основой универсального двигателя есть эксэрготрансформаторная камера сгорания топлива, а их в настоящее время нет, поэтому конкуренции быть не может.
  • 5.
  • 6. Расчет эксэрготрансформаторной камеры сгорания топлива при трех звуковых скоростях полета самолета. Расчет производится при движении летательного аппарата со скоростью 3М (три звуковые скорости) на уровне моря, где атмосферное давление примем Ра=0.1МПа, температура воздуха Т. = 288°К, V=0,8352м3/кг. Теплота сгорания условного жидкого топлива примем 44000 КДж/кг. Для сгорания 1кг. топлива примем 14 кг. воздуха. При сгорании 1кг воздуха в парах топлива выделяется 3142 КДж. тепла, а температура повышается Тг = 3142: 1,015 = 3096,4°. Удельную теплоемкость для воздуха и продуктов сгорания примем постоянную: Ср. = 1,015КДж/кг. × град. Скорость полета 3М - это W = 1026 м/сек., при данной скорости давление встречного потока будет Р. = 3.68МПа или 36 кг/см2., температура торможения встречного потока Т. = 807°К. Скорость аппарата W = 1026 м/сек. в плотных слоях атмосферы на высоте уровня моря можно назвать предельной. Гиперзвуковых скоростей полета аппарата можно достичь только на большой высоте в разряжённой атмосфере. Расчет производим на один метр квадратный воздухозаборника для двух ступеней. При скорости W = 1026 м/сек. Расход воздуха будет равен: 1026 × 1: 0,8352 = 1228.4 кг. Компрессор нагнетает воздух в запальное устройство с давлением 10МПа. и температурой сжатия 1074°К. В расчете 14 кг. воздуха на 1 кг. топлива. Через запальное устройство проходит все топливо, используемое в двигателе. Конструкция камеры сгорания первой ступени двигателя обеспечивает сгорания топлива при любых скоростях движения летательного аппарата. Дополнительно топливо, проходя запальное устройство, не только испаряется, но и ионизируется при высокой температуре, поэтому любое углеводородное топливо, распадаясь на ионы и смешиваясь за счет диффузии в слое проходящего воздуха, гарантировано сгорает за тысячные доли секунды. Расчет будем вести на 1кг. сгорающего топлива в первой ступени, а потом переведем на всю массу воздуха, проходящего через воздухозаборник. Примем, что аппарат движется с крейсерской скоростью, расходуя половину расчетного топлива. Камера сгорания имеет запальное устройство, в которое подается 2 кг. топлива с температурой 288°К. и 14 килограмм воздух с давлением 100МПа и температурой сжатия Т=1074°К. Теоретическая температура паров топлива и продуктов сгорания на выходе из запального устройства: (288×2 +1074 ×14 + 14× 3096,4)/ 16 = 3685°К.
  • 7. Иллюстрация расчета, происходящих процессов изменения состояния газа, показана в T-S диаграмме. Эксэргия паров топлива и продуктов его сгорания (рабочей газ), выходящая с запального устройства складывается с эксэргией встречного потока атмосферного воздуха в канале эксэрготрансформаторной камеры сгорания. Примем, что на 1 кг. рабочего газа, выходящего с запального устройства, поступает в камеры сгорания 3кг. воздуха, т.е. примем коэффициент k =3. Масса всасываемого атмосферного воздуха на 1кг. сгорающего топлива в первой ступени: 2× 7 =14кг. Общая масса на 1кг. топлива М.общ. = 14 +7 = 21кг. Неподвижный атмосферный воздух с температурой 288°К. поглощается воздухозаборником, летящего со скоростью 3М летательного аппарата и направляется в канал камеры сгорания. Процесс 3-4. Выходящий из запального устройства ионизированный рабочий газ с температурой Тг.= 3685°К. в адиабатном процессе 1-2 расширяется до давления Р.= 0,1МПа, поджигает пары топлива в избыточном воздухе, поступающего из воздухозаборника и поступает в канал камеры сгорания. Между двумя потока, безударно вошедшими в один канал, начинается энергообмен, приводящий к выравниванию температуры и их скоростей. В канале камеры сгорания при звуковых скоростях выполняется закон сохранения механической энергии. Звуковые скорости потоков газа складываются в основном за счет передачи тепла, при V = Const в процессе 4-7 тепло поглощает, а процесс 10-7 Р.=Const отдается: 2546 – 1527 = 1019. 807 + (1019:2) = 1147°К. Для полного сложения потоков необходима энергия, чтобы достичь точки 7. G = 1527 – 1147 = 380. Дополнительная энергия берется за счет кинетической энергии процесс 10-9 G = 380 × 3 = 1140. 2546 + 1140 = 3685. Сложившиеся потоки двигаются со скоростью, W= 1532м/сек. в канале камеры сгорания.
  • 8. Горение. Одновременно со сложением скоростей происходит процесс горения оставшегося 1-го килограмма топлива в канале камеры сгорания. Повышение температуры будет равно: Т= 43350 : (21:3 +21) = 677 градуса. Параметры движущего потока это точка 8 с температурой Т. = 370°К. и объем V = 1,073. Повышение температуры после сгорания топлива процесс 8-12: Тv. = 370 +677 = 1047°К. Горение паров топлива происходит внутри движущегося со сверхзвуковой скоростью газа по каналу камеры сгорания при V = Const, при этом происходит рост давления, в потоке. Определим давления газа в движущемся потоке Р.гор. = (1047× 290) : 1.073 = 0,283 МПа. Далее газ, пройдя канал камеры сгорания, поступает в её диффузор, где внутреннее давление потока реализуется в работу расширения процесс 12-5 до температуры Т=777°К. Сложим общую работу потока, поступающего во вторую ступень двигателя. Энтальпия движущего потока равна процесс 7-8: Ад = (1527 – 370) ×1,015= 1174КДж/кг. Процесс 12 – 11 сложение энтальпии горения внутри потока с энтальпией его движения: Т = 2204°К. Скорость потока поступающего потока во вторую ступень двигателя – 1732м/сек.
  • 9.
  • 10. Расчет второй ступени двигателя при скорости полета 3М. Начальные условия. С первой ступени двигателя поступают продукты горения топлива со следующими параметрами: удельная масса m = 64 кг/сек, температурой торможения Т.=2204°К. Конструкция второй ступени двигателя не рассчитана для горения паров топлива, а предназначена только для утилизации тепла и увеличения реактивной массы. Иллюстрация расчета происходящих процессов изменения состояния газа, показаны в T-S диаграмме. Энергия продуктов сгорания (рабочей газ) выполняет во второй ступени двигателя работу, по сжатию атмосферного воздуха. Рабочий газ в процессе 1-2 адиабатного расширения до Р. = 0,1МПа и Т=777°К, входит в канал эксэрготрансформатора. Неподвижный атмосферный воздух, за счет скорости летательного аппарата поступает в воздухозаборник двигателя и направляется также в канал эксэрготрансформатора. Масса всасываемого атмосферного воздуха во вторую ступень принята с коэффициентом k=1, т.е. 64кг. Расчетная масса газа, проходящая через двигатель. М.об. = 64 +64 = 128кг. До поступления в воздухозаборник, неподвижный атмосферный воздух имел следующие параметры: Р.=0,1МПа, V=0,8352, Т=288°К, но относительно летящего со скоростью 3М аппарата эти параметры газа, входящего в канал эксэрготрансформатора изменяются. Параметры торможения будут следующие: Р.= 3.6765МПа, V=0,5294м3/кг, Т= 807°К.
  • 11. Т – S диаграмме это выглядит так. Рабочий газ в процессе процесс – 6 -7, отдает тепло, а атмосферный воздух в процессе 3-7 получает его и температура выравнивается То.=577. Далее складывается энергия потоков. А:1, 015 = (807 -288) + (2204 – 865.5) = 1857,5. Находим температуру торможения потока точка 5: Т = 577 + 1857,5:2 = 1505°К. Разность энтальпии между точкой 7 и точкой 8 есть работа газа двух ступеней эксэрготрансформаторного гиперзвукового двигателя. А. = (1505 – 473) × 1.015 = 1023 КДж/кг. Скорость выходящей струи W= 1441м/сек. Масса воздуха в расчетной струе. 128 -2 = 126 кг. Найдем массу топлива расходованного на один квадратный метр воздухозаборника: 1228,4 : 126 = 9.75 × 2 = 19.5кг. Найдем тягу двигателя: 1.За счет массы воздуха 1228.4 × (1441- 1026) = 509786Н. 2 .За счет массы топлива 19.5× 1441 = 28100Н. Полная тяга двигателя: А.п. = 509786 + 28100 = 537886Н., 52800кг., 52.8 т. Использовано только 50% установленной мощности двигателя. Дальнейшая модернизация двигателя. Как видно из расчета, что эффективность реактивная масса топлива, возрастает с увеличением скорости аппарата, поэтому при скоростях более 6М, гиперзвуковой двигатель нуждается в дальнейшей модернизации. Модернизация будет заключаться в том, что двигатель дополняется контейнером с запасом жидкого кислорода. На больших высотах свыше 30 км. над уровнем моря и скоростях свыше 6М. в запальное устройство подается кислород, который постепенно вытесняет воздух и двигатель превращается в Прямоточный ракетно – воздушный гиперзвуковой двигатель. В ПРВГД не возникает проблем ни со скоростью, ни с высотой полета.