The
Semantics of
Partial Model
Transforma-
tions
M.Famelis,
R.Salay,
M.Chechik,
The Semantics of Partial Model
Introduction
Partial Models
Transformations
Transforming
Partial Models
Lifted Michalis Famelis, Rick Salay, and Marsha Chechik
Transform
Semantics
University of Toronto
Checking
Lifted Rules
Conclusion June 3rd, 2012,
Models in Software Engineering Workshop at ICSE
1 / 27
The
Semantics of
Partial Model
Transforma-
Introduction: Uncertainty
tions
M.Famelis,
R.Salay,
M.Chechik, Uncertainty: pervasive in SE
Introduction
Partial Models Models with uncertainty:
Transforming
Partial Models
– Represent choice among many possibilities
Lifted – Can be refined to many different classical models
Transform
Semantics
Checking
Lifted Rules
Our goal:
Conclusion Handle models with uncertainty in MDE
without having to remove uncertainty.
In this talk: Transformations of models with uncertainty
2 / 27
The
Semantics of
Partial Model
Transforma-
Introduction: Transformations
tions
M.Famelis,
R.Salay,
M.Chechik,
Existing model (graph) transformations:
Introduction
Partial Models
– Unambiguous model is assumed as input.
Transforming
Partial Models
Lifted
– When model contains uncertainty:
Transform
Semantics
• either first remove uncertainty
Checking
Lifted Rules – Premature commitment.
Conclusion – Reduced quality.
• or transform all alternatives.
– Hard to maintain.
3 / 27
The
Semantics of
Partial Model
Transforma-
Motivating Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
4 / 27
The
Semantics of
Partial Model
Transforma-
Motivating Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
4 / 27
The
Semantics of
Partial Model
Transforma-
Motivating Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
4 / 27
The
Semantics of
Partial Model
Transforma-
Motivating Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
4 / 27
The
Semantics of
Partial Model
Transforma-
Motivating Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
4 / 27
The
Semantics of
Partial Model
Transforma-
Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
6 / 27
The
Semantics of
Partial Model
Transforma-
Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
6 / 27
The
Semantics of
Partial Model
Transforma-
Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
6 / 27
The
Semantics of
Partial Model
Transforma-
Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
6 / 27
The
Semantics of
Partial Model
Transforma-
Semantics of Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
7 / 27
The
Semantics of
Partial Model
Transforma-
Semantics of Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
7 / 27
The
Semantics of
Partial Model
Transforma-
Semantics of Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
7 / 27
The
Semantics of
Partial Model
Transforma-
Semantics of Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
7 / 27
The
Semantics of
Partial Model
Transforma-
Goal of This Work
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
8 / 27
The
Semantics of
Partial Model
Transforma-
Intuition
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
10 / 27
The
Semantics of
Partial Model
Transforma-
Intuition
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
10 / 27
The
Semantics of
Partial Model
Transforma-
Intuition
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
10 / 27
The
Semantics of
Partial Model
Transforma-
Intuition
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
10 / 27
The
Semantics of
Partial Model
Transforma-
Intuition
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
10 / 27
The
Semantics of
Partial Model
Transforma-
Our approach
tions
Summarizing the intuition:
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Applying a transformation to a partial model M
11 / 27
The
Semantics of
Partial Model
Transforma-
Our approach
tions
Summarizing the intuition:
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Applying a transformation to a partial model M
should be the same as if
we had created all its concretizations,
11 / 27
The
Semantics of
Partial Model
Transforma-
Our approach
tions
Summarizing the intuition:
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Applying a transformation to a partial model M
should be the same as if
we had created all its concretizations,
applied the transformation to each separately,
11 / 27
The
Semantics of
Partial Model
Transforma-
Our approach
tions
Summarizing the intuition:
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Applying a transformation to a partial model M
should be the same as if
we had created all its concretizations,
applied the transformation to each separately,
and encoded the result as a partial model.
11 / 27
The
Semantics of
Partial Model
Transforma-
Our approach
tions
Summarizing the intuition:
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking Correctness Criterion
Lifted Rules
Conclusion
Applying a transformation to a partial model M
should be the same as if
we had created all its concretizations,
applied the transformation to each separately,
and encoded the result as a partial model.
11 / 27
The
Semantics of
Partial Model
Transforma-
Lifting Transformations
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Q1: How do we transform M directly to N?
Q2: Are the concretizations of N exactly the models n1 . . . nk ?
12 / 27
The
Semantics of
Partial Model
Transforma-
Applying Rules to Partial Models
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Q1: How do we transform M directly to N?
– Lifted semantics of transformations, using logic.
Q2: Are the concretizations of N exactly the models n1 . . . nk ?
14 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Transfer Predicates
tions
M.Famelis,
R.Salay,
M.Chechik, R ∗
Represent M =⇒ N as:
Introduction
Partial Models ΦN = R(R, M, N) ∧ ΦM
Transforming
Partial Models
Lifted
Transform
Semantics
R is a conjunction φ1 ∧ φ2 ∧ ...
Checking - One subformula at each application point:
Lifted Rules
Conclusion
15 / 27
The
Semantics of
Partial Model
Transforma-
Example 1/2
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics (ΦLHS → ΦRHS ) ∧ (¬ΦLHS → ΦNE )
Checking
Lifted Rules
Conclusion • ΦLHS = c ∧ a ∧ ¬g ∧ ¬s
• ΦRHS = (c ↔ c) ∧ (a ↔ a) ∧ (g ↔ a) ∧ (s ↔ a)
• ΦNE = (x ↔ x)
16 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Example 2/2
tions
M.Famelis,
R.Salay,
After matching, grounding and simplifying:
M.Chechik,
R(R, M, N) = (Product ↔ Product) ∧ (Milk ↔ Milk)∧
Introduction (A ↔ A) ∧ (B ↔ B) ∧ (C ↔ C )∧
Partial Models (D ↔ D) ∧ (E ↔ A) ∧ (F ↔ A)∧
Transforming (G ↔ B) ∧ (H ↔ B) ∧ (I ↔ C )∧
Partial Models (J ↔ C ) ∧ (K ↔ D) ∧ (L ↔ D)∧
Lifted (gen Milk Product ↔ gen Milk Product)
Transform
Semantics
Checking
Lifted Rules
Conclusion
17 / 27
The
Semantics of
Partial Model
Transforma-
Testing Rule Application
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Q1: How do we transform M directly to N?
Q2: Are the concretizations of N exactly the models n1 . . . nk ?
– Check equivalence of encodings using SAT.
19 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Using a SAT Solver
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
20 / 27
The
Semantics of
Partial Model
Transforma-
Checking Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
21 / 27
The
Semantics of
Partial Model
Transforma-
Checking Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
21 / 27
The
Semantics of
Partial Model
Transforma-
Checking Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
21 / 27
The
Semantics of
Partial Model
Transforma-
Checking Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
21 / 27
The
Semantics of
Partial Model
Transforma-
Checking Example
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
21 / 27
The
Semantics of
Partial Model
Transforma-
Summary
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
Partial Models
Transforming
Partial Models
Lifted
Transform
Semantics
Checking
Lifted Rules
Conclusion
Q1: How do we transform M directly to N?
– Lifted semantics of transformations, using logic.
Q2: Are the concretizations of N exactly the models n1 . . . nk ?
– Check equivalence of encodings using SAT.
23 / 27
The
Semantics of
Partial Model
Transforma-
Conclusion
tions
M.Famelis,
R.Salay,
M.Chechik,
Transforming models that contain uncertainty.
Introduction • Represent uncertainty using Partial Models.
Partial Models
• Lift transformation rules from classical to Partial Models.
Transforming
Partial Models • Check Correctness Criterion for the lifted transformation .
Lifted
Transform
Semantics
Next steps:
Checking
Lifted Rules
• Compositionally test Correctness Criterion.
Conclusion
• Systematically create Transfer Predicates using FOL.
• Handle expanding/contracting model vocabularies.
• Partial Models as an Adhesive HLR Category?
24 / 27
The
Semantics of
Partial Model
Transforma-
Overall Picture
tions
M.Famelis,
R.Salay,
M.Chechik,
Overall research goal [MoDeVVa’11]:
Introduction
Partial Models • Handling uncertainty...
Transforming • Partial models: sets of possibilities.
Partial Models
• Syntactic “partiality” annotations.
Lifted
Transform • Other kinds of partiality (“MAVO”) [FASE’12].
Semantics
Checking
Lifted Rules
• ...throughout the software lifecycle.
Conclusion
• Partial models as first-class artifacts.
(1) Reasoning [ICSE’12]
(2) Refinement [VOLT’12]
(3) Transformation
25 / 27
The
Semantics of
Partial Model
Transforma-
Bibliography I
tions
M.Famelis,
R.Salay,
M.Chechik,
Introduction
M. Famelis, Shoham Ben-David, Marsha Chechik, and Rick Salay.
Partial Models “Partial Models: A Position Paper”.
In Proceedings of MoDeVVa’11, pages 1–6, 2011.
Transforming
Partial Models Michalis Famelis, Marsha Chechik, and Rick Salay.
“Partial Models: Towards Modeling and Reasoning with Uncertainty”.
Lifted
In Proceedings of ICSE’12, 2012.
Transform
Semantics R. Salay, M. Chechik, and J. Gorzny.
Checking “Towards a Methodology for Verifying Partial Model Refinements”.
Lifted Rules In Proceedings of VOLT’12, 2012.
Conclusion R. Salay, M. Famelis, and M. Chechik.
“Language Independent Refinement using Partial Modeling”.
In Proceedings of FASE’12, 2012.
27 / 27