SlideShare a Scribd company logo
1 of 40
Download to read offline
NeuroTrac™ Electrode Placement Manual
1
NeuroTrac™
Electrode Placement
Manual
Visit our website: www.VerityMedical.co.uk for
detailed application protocols
NeuroTrac™ Electrode Placement Manual
2
Contents Page
Introduction 4
Muscle profile 4
Classification of the various types of muscular fibres 5
Hows does the muscle contract 5
Red muscle fibre type 1 8
White muscle F.O.G fibre type IIa 8
White muscle F.O.G fibre type IIb 9
Type IIm fibres 9
Limitations of the present fibre classifications 9
Muscle fibre distribution 10
Muscle Profile (trained muscle) 11
Types of muscle fibres 11
Selection of parameters 12
Pulse width selection 13
Channel selection 13
Work / Rest selection 13
Selectrion of electrode sizes 14
Electrode placement 15
Abdominals 15
Bieast 16
Intestinal tension 16
Waist line shaping 17
Pectorials 17
Relaxation 18
Deltoids 18
Neck 19
Upper back 19
Shoulders 20
Latimus dorsi 20
Trapezius 21
Lower back 21
Erector spinalis 22
Elbows 22
Contents
Revised Issue Date: 06/06/2005 Document Number: VM-ECS900-OM002-1
NeuroTrac™ Electrode Placement Manual
3
Contents Page
Triceps 23
Biceps 23
Extenor of the wrist 24
Flexor of the wrist 24
Wrist 25
Hand regeneration 26
Hand stimulation 27
Back & legs 28
Gluteus 28
Adductors 29
Inner thigh 29
Outside thigh 30
Femoral biceps 30
Ham strings 31
Quadriceps 31
Fluid tension 32
Inner knee 32
Calves 33
Tibialis anterior 33
Peroneus 34
Knee 34
Anklemalaize 35
Ankles 35
Metataraus 36
Feet regeneration 37
Feet stimulation 38
Sole of foot 39
Heel 39
NeuroTrac™ Electrode Placement Manual
4
It has been shown that nerves control muscle by transmitting a neurological
code. This code or message occurs in two frequency ranges according to the
type of muscle fibre required. Postural fibres require a tonic feeding at the rate
of 10 pulses per second [Hz]. If applied for periods of approx. one hour every
day, it is possible to support the essential characteristics of the muscle.
Electrical stimulation can act as a life support until the normal function can be
resumed. This is achieved by preserving capillary bed density, muscle bulk and
the essential ability to use oxygen.
The second frequency range occurs at 30 pulses per second [Hz]. This
frequency relays information to the fast muscle fibres, which supports power
to muscle movement. This feeding of the muscle occurs naturally in a phasic
way. Electrical stimulation treatment protocols to promote these fibres are
given for much shorter periods than the slow twitch fibres.
This physiological approach to neuromuscular stimulation also requires pulses
that are shaped similar to the naturally occurring nerve signals that have very
brief pulse widths. By mimicking nature as accurately as possible, electrical
stimulation has been used for long periods when required, without causing side
effects.
Muscle profile
When the muscle receives an electrical impulse it starts to contract, whether the
pulse originates from the brain or is produced by electrical stimulation. A very
short electrical stimulation burst, however only produces a short contraction or
“single shock” after which the muscle immediately returns to its natural shape
and length when at rest. However, if the stimulation is repeated rapidly many
times in succession, we observe that the effects of the contraction are additive
due to the superimposition of the contraction stages and the inability of the
muscle to relax. This phenomenon is called incomplete tetanus. Neither “single
shock” nor incomplete tetanus is normally observed in voluntary action in
humans.
However, a state of muscular contraction caused by repeated electrical
stimulation of the motor nerves with a frequency sufficiently high to merge the
individual shocks and make them indistinguishable from each other is called
“complete tetanus” In this scenario, the muscle contracts and becomes firm due
to the voltage generated within the muscle and, exerts a measurable force at its
tendonous ends.Almost all-muscular contractions normally occurring in human
muscle have the characteristics of a “complete tetanus.
Introduction
NeuroTrac™ Electrode Placement Manual
5
Classification of the various types of muscular fibres
The skeletal muscles are composed of a collection of muscular fibres and have
various shapes according to the mechanical functions they are required to
perform; broad differences, however, may be discovered in a histological
examination of the fibres and these are strictly connected with the method by
which a particular muscle is required to perform its task. Analysis of the fibres
using a chemical colouration technique has revealed the presence of various
different anaerobic and anaerobic enzymes and the same technique has
permitted the various occurring in the activities of these enzymes to be
revealed.
How does the muscle contract
Skeletal [striated] muscle is made of numerous long thin parallel filaments
named muscular fibres running between tendons by means of which they are
connected to the bones [see Figure 1]
NeuroTrac™ Electrode Placement Manual
6
Figure 1
SARCOMERE
ACTIN ACTIN
MYOSIN
MYOFIBRIC
MUSCLE FIBRE
BUNDLE OF
MUSCLE FIBRES
MUSCLE
NeuroTrac™ Electrode Placement Manual
7
Muscular fibres contain bundles of filaments, surrounded by the
sarcoplasmatic network known as myofibril and each myofibril consists in turn
of a sequence of many microscopic cylindrical elements, the sarcomeres,
connected together longitudinally creating the contractile motor of the muscle.
The sarcomere has a structure of cylindrical form and inside it contains this
filaments of actin that are connected at is ends [line Z] interspersed with
thicker filaments of myosin {see Figure 2}
Figure 2
When an electrical impulse reaches the muscle, an activated voltage travels
along the perimeter of the cellular membrane and through the system of tubes
at T penetrates deeply into the muscle cell creating the release of CAE ions
inside the sarcomere. The release of calcium causes attachments of specific
parts of the thick filament of myosin to the thin filaments of actin and the
construction of bridges between molecules {acto-myosin bridges}
The rotation that occurs on the distal portion of the bridge–head produces a
sliding of the filaments between each other, which is the actual mechanism of
contraction.
Figure 3
ACTIN
MYOSINMYOSIN
ACTIN
MYOSIN
ACTIN
NeuroTrac™ Electrode Placement Manual
8
The rotation of the head of the myosin from position 2 to position 3 produces
reciprocal motion of the filaments of actin and myosin; this mechanism is the
basis of all muscular contraction. The mutual sliding produces the lines Z to
approach each other and shortening of the sarcomeres, which being added to
that of all the sarcomeres placed in series, generates the overall shortening of
the muscle that occurs in every muscular contraction.
The filaments do not change their length when the muscle contracts, but slide
between each other changing their mutual position
Red muscle fibre type 1
These type of fibres are also called ST fibres [slow contracting fibres] or SO
fibres [slow fibres with oxidative metabolism]
The motor neurone that innervates them is tonic and has a low speed of
conduction. Fibres of this nature are red in colour [the redness due to the
presence of the myoglobin molecule]. Inside them there is a large number of
mitochondria and oxidative enzymes that explains the reason why the majority
of the intermitochondrial oxidative phosphorilation process take place in these
fibres. A very high content of lipids and myoglobin is also associated with
these metabolic functions. These type 1 muscular fibres are highly resistant to
fatigue since they are responsible for all types of activities of a tonic nature,
slow acting and associated with maintaining posture. These slow fibres are
surrounded by a dense network of capillaries that permit optimum
performance of the aerobic metabolism in a prolonged activity associated with
the modest exertion of force. These red muscle fibres give the strength to the
muscle and support the joint. They are fibres that are very important in all
endurance sports, such as cycling, running, swimming, tennis etc.
White muscle F.O.G fibre type IIa
These are called FTa [rapid contracting fibres] fibres of FOG [rapid fibres with
oxidative-glycolytic metabolism] fibres. These fibres are innervated by a phasic
type motor neurone, characterised by higher speed of conduction of the tonic
motor neurone. They are white in colour, due to absence of myoglobin and, are
characterised by a mixed metabolic activity. These fibres are rich in glycogen
and glycolytic enzymes, but also contain mitochondria enzymes; the overall
metabolism is more anaerobic than the aerobic oxidative.
NeuroTrac™ Electrode Placement Manual
9
These fibres are also provided with a network of capillaries that carry the
oxygen required for the aerobic process. Type IIa fibres are therefore, able to
perform rapid contractions characterised by a significant exertion of force,
which is also sustained over time giving a relative resistance [endurance] to
fatigue.
White muscle fibre type IIb
These fibres are called FTb [rapid contracting fibres] fibres or FG [rapid fibres
with glycolytic metabolism] fibres. This type of fibre is innervated by a phasic
motor neurone with a cellular body and a very large axon that transmits pulses
to the muscle at very high speed. These fibres are white to look at and have
very high glycogen and glycolytic enzyme content in order to produce a very
high-energy output of the anaerobic type. Contraction is fairy rapid and creates
a high level of force; the almost complete absence of mitochondria renders these
fibres incapable of sustaining protracted activity and therefore, easily fatigued
particularly in the untrained muscle. Type IIb fibres play a very significant
part in all human activities requiring the exertion of explosive force and,
naturally, in all powers and explosive sports such as sprinting, weight lifting,
swimming, jumping etc.
Type IIm fibres
A type of fibre that has been described with characteristics similar to those of
the IIb type, but with a response to stimulation shifted to higher frequencies
[approx. 100 –110 Hz]
a} Synchronous recruitment
b} Disinhibitis approx. 30% of maximum effort
c} The constant glycogen demands produces a more efficient replacement
system.
Limitations of the present fibre classifications
The current classifications of the muscle fibres is determined more by the
necessity of establishing a set of characteristics to be used for practical
purposes rather than by the biological-functional reality of the human muscular
system. It is assured that the fibres from part of a continuous range of various
levels of metabolic organisation that are produced by the functional
requirements of the various forms of human activity in general and sporting
activity in particular.
NeuroTrac™ Electrode Placement Manual
10
Muscle fibre distribution
The fibre types as has been detailed above can be found in various percentages
in muscles and the ratio between type I and type II fibres can vary
considerably. Some muscle groups consist of typically type I fibres i.e. the
soleus and muscles that have only type II such as the orbicular, but in the
majority of cases various types of fibre are found together.
Figure 4
In figure 4 one can see the phasic and tonic fibres mixed together side by side,
but the various fibres do respond to their respective motor neurones. There
have been clinical studies conducted on the distribution of fibres in the muscle
that have demonstrated the relationship between the motor neurone–tonic and
phasic, and the functional characteristics of the fibres innervated by it and
shown how a specific motor activity, in particular sporting activities can and
do cause a functional adaptation of the fibres and a modification of their
metabolic characteristics.
TONIC
PHASIC
NeuroTrac™ Electrode Placement Manual
11
[Trained Muscle]
Slow Oxidative: Increase in size of existing fibres
[SO] Increase in number of red fibres
Increase in size of mitochondria.
Increase in oxidative enzymes
Fast Oxidative Glycolytic Posses glycolytic and oxidative
[FOG] metabolic pathways. Early onset of
fatigue is prevented by the development
of F.O.G fibres which work long periods
without fatigue.
Fast Glycolytic Local muscle glycogen stores are depleted
[FG] with 10-15 rhythmical contractions.
[Hirch ET AL 1970]
Types of muscle fibres
Muscle profile
tinurotoM enoruenrotoM foepyT
msilobatem
foepyT
elcsum
noitcartnoc
elcsuM
sepyterugif
ycneuqerF
foegnar
noitalumits
cinoT fodeepswoL
noitcudnoc
OS
wolS
evitadixO
TS
wolS
noitcartnoC
aI zH04-01
cisahP deepsmuideM
noitcudnocfo
GOF
tsaF
evitadixO
citylocylG
aTF
dipaR
noitcartnoC
aII zH07-05
cisahP fodeepshgiH
noitcudnoc
GF
tsaF
citylocylG
bTF
dipaR
noitcartnoC
bII zH001-07
cisahP fodeepshgiH
noitcudnoc
GF
tsaF
citylocylG
mTF
dipaR
noitcartnoC
mII zH021-001
NeuroTrac™ Electrode Placement Manual
12
Frequency selection
5 pps or below: - To introduce the stimulus to a nerve muscle situation that
may not respond immediately or may not have function for a period of months
or even years.
For example: 3pps is used as an introductory frequency for the electrical
stimulation of spasticity. This frequency is a gentle introduction to treatment
unlikely to cause spasms. 3pps is within the frequency range for the
production of endorphins for pain relief and general relaxation and it is the
natural firing frequency of the fusimotor pathways, which control the muscle
spindles and initiate the movement sequence.
5 - 15pps This frequency range is selected to improve muscle tone, improve
joint support and stability. 10pps are the natural frequency of the slow
oxidative muscle fibres. Electrical stimulation will improve the muscle fatigue
resistance by improving its capillary bed density and improve the muscle to
handle oxygen breakdown. This frequency range may be used for extended
periods of several hours per day for sports and related treatment and shorter
periods for areas such as Continence.
15 - 20pps These frequencies may be used to promote endurance in the
muscle. This frequency range is the natural band for the fast oxidative
glycolytic muscle fibres. Treatment in this frequency band may be used up to 1
hour per day.
30 - 50 pps These frequencies are selected for strengthening a muscle and
recruiting the fast glycolytic muscle fibres. Treatment using this frequency
band would be for short periods only as fatiguing a muscle takes only a few
minutes with electrical stimulation.
50 - 120pps These frequencies are usually selected where great power/speed
and strengthening of the muscle is required. When stimulating at these high
frequencies it is important that it is only for very short periods.
pps = pulses per second
Selection of parameters
NeuroTrac™ Electrode Placement Manual
13
Pulse width selection
The selection of pulse width is made according to the depth of penetration
required for the treatment. The shorter the pulse width the more comfortable
and superficial the treatment received.
Pulse width examples: Superficial muscles of the face - 70 - 80 µS
[No higher] use low frequencies below 20Hz
Superficial muscles of the hand - 70 - 90 µS
Muscles of the leg - 200 - 350 µS
Muscle of the arm - 150 - 300 µS
Pelvic orAnal muscles – 75 - 250 µS
Channel selection
Most muscle stimulators have alternating or synchronous modes, which allows
for the reproduction of agonist / antagonist activity around the joint. The
alternating option should always be considered, as it will prevent the problems
associated with muscle imbalance. Also inputting a delay time between the
change over from one channel to another may assist voluntary movement.
The synchronous channel mode allows for the reproduction of synergic muscle
activity. This is useful for functional activities accompanying specific
physiotherapy programmes.
Work / Rest Selection
The rest cycle should under most circumstance be as long as the work cycle to
allow the reactive hyperaemia to disperse.
If the frequency and current is raised to a level to induce a tetanic contraction it
may be more appropriate to enlist a longer rest cycle to allow a movement to
occur. One would expect the patient to produce voluntary movement
[contraction] during the rest cycle.
Example 4 secs on 4 secs off - increase rest time to between 6 –8 seconds or
more.
NeuroTrac™ Electrode Placement Manual
14
Selection of electrode sizes
The size of electrode to be used depends largely on the pulse width to be used
and, which part of the body the electrode is to be place upon. Generally the
wider the pulse width and the higher the m A current to be used the larger the
electrode needs to be.
For the face, fingers and hands where the muscle is superficial the pulse width
should be kept down to below 90 µS, allowing a smaller surface area electrode
to be used normally 26 to 30mm diameter.
For the arm, lower parts of the leg and ankle the pulse width selection ideally
should be below 300 µS allowing the surface area electrode to be more than
when used on superficial muscles of approx. 40 to 50mm square.
For the quads, upper arm, lower, upper back and gluteus maximus the pulse
width ideally should be 350 µS or below. The muscle mass is larger in these
areas that allows larger surface area of electrode to be used. 50 x 50 or 50 x 100
being the most common sizes, although larger surface area electrodes can be
used.
NeuroTrac™ Electrode Placement Manual
15
Abdominals 1
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 µS
Abdominals 2
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 µS
Electrode placement
Ch.A
Ch.B
Ch.A
Ch.B
Ch.C
Ch.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
16
Bieast
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Ch.C
Ch.D
Intestinal tension
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Ch.C
Ch.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
17
Pectorials
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 275 µS
Ch.A
Ch.B
Ch.C
Ch.D
Waist line shaping
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
18
Relaxation
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Deltoids
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
19
Neck
Suggested Settings
Electrode Size: 50 x 50 mm
(Max size) or 30 mm dia
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Upper back
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Ch.C
Ch.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
20
Latimus Dorsi
Suggested Settings
Electrode Size: 50 x 50 mm
or 50 x 100 mm
Pulse Width: 250 - 275 µS
Ch.A
Ch.B
Ch.C
Ch.D
Shoulders
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B Ch.C Ch.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
21
Trapezius
Suggested Settings
Electrode Size:
Shoulders 50 x 50 mm
Back 50 x 50 mm
or 50 x 100 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Lower back
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
22
Elbows
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Erector spinalis
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.CCh.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
23
Biceps
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Triceps
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
24
Extensor of the wrist
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Flexor of the wrist
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Ch.B
Ch.A
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
25
Wrist
Suggested Settings
Electrode Size: 50 x 50 mm
or 30 mm dia
Pulse Width: 220 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
26
Hand regeneration
Suggested Settings
Electrode Size: 50 x 50 mm
or 30 mm dia
Pulse Width: 200 µS
Ch.A
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
27
Hand stimulation
Suggested Settings
Electrode Size: 50 x 50 mm
or 30 mm dia
Pulse Width: 200 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
28
Back & legs
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 300 µS
Ch.A
Ch.B
Ch.C
Ch.D
Gluteus
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 - 300 µS
Ch.A
Ch.B
Ch.C
Ch.D
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
29
Adductors
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 - 300 µS
Ch.A
Ch.B
Inner thigh
Suggested Settings
Electrode Size: 50 x 50 mm
or 50 x 100 mm
Pulse Width: 250 - 300 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
30
Femoral biceps
Suggested Settings
Electrode Size: 50 x 50 mm
or 50 x 100 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Outside thigh
Suggested Settings
Electrode Size: 50 x 50 mm
or 50 x 100 mm
Pulse Width: 250 - 300 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
31
Ham strings
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 - 300 µS
Ch.A
Ch.B Ch.C
Ch.D
Quadriceps
Suggested Settings
Electrode Size: 50 x 50 mm
or 50 x 100 mm
Pulse Width: 250 -300 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
32
Fluid tension
Suggested Settings
Electrode Size:
Upper Leg 50 x 50 mm
or 50 x 100 mm
Ankle 50 x 50 mm
Pulse Width: 220 - 275 µS
Please Note:
Ch.C & Ch.D positions on the left leg
are identical to the Ch.A & Ch.B
positions on the right leg.
The - electrode for Ch.D is not visible
on this picture
Ch.A
Ch.B
Ch.C Ch.D
Inner knee
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 250 - 300 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
33
Calves
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 275 µS
Ch.A Ch.B
Tibialis anterior
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
34
Knee
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Peroneus
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 275 µS
Ch.A
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
35
Ankles
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Ch.A Ch.B
Ankle malaize
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
36
+ = Red
- = Black
Metataraus
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 - 250 µS
Ch.B
Ch.A
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
37
Feet regeneration
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
38
Feet stimulation
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Please note: Ch.A + & - electrodes are
placed on the left foot. Ch.B + & -
electrodes are placed on the right foot.
+ = Red
- = Black
Ch.A
Ch.B
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
39
Sole of foot
Suggested Settings
Electrode Size: 50 x 50 mm
Pulse Width: 220 µS
Ch.A Ch.B
Heel
Suggested Settings
Electrode Size: 50 x 50 mm
or 30 mm dia
Pulse Width: 220 µS
Ch.A
Ch.B
Revised Issue Date: 06/06/2005 Document Number: VM-ECS900-OM002-1
Positive Red must be placed on the motor point of the muscle. Find the best
position by slightly moving the positive electrode around.
NeuroTrac™ Electrode Placement Manual
40
Not for sale or use in the USA
Uplands Place
Drove Road
Chilbolton
Nr Stockbridge
Hampshire SO20 6AD
England
Tele: +44 (0)1264 860354
Fax: +44 (0)1264 860825
Email: Sales@VerityMedical.co.uk
Web: www.VerityMedical.co.uk

More Related Content

What's hot

Electrical stimulation
Electrical stimulationElectrical stimulation
Electrical stimulationApatel99094
 
Brachial Plexus Injury, anatomy and surgical options
Brachial Plexus Injury, anatomy and surgical optionsBrachial Plexus Injury, anatomy and surgical options
Brachial Plexus Injury, anatomy and surgical optionsHari Poudel
 
Galvanic-Current.pptx
Galvanic-Current.pptxGalvanic-Current.pptx
Galvanic-Current.pptxahmed302089
 
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...Dr Gandhi Kota
 
Anatomy of small joints of the foot
Anatomy of small joints of the footAnatomy of small joints of the foot
Anatomy of small joints of the footMohamed Ahmed Eladl
 
Peripheral joint mobilization
Peripheral joint mobilizationPeripheral joint mobilization
Peripheral joint mobilizationRachita Hada
 
Anatomy and biomechanics of hip joint
Anatomy and biomechanics of hip joint Anatomy and biomechanics of hip joint
Anatomy and biomechanics of hip joint BipulBorthakur
 
Biomechanics of hip and knee joint
Biomechanics of hip and knee jointBiomechanics of hip and knee joint
Biomechanics of hip and knee jointdarshann77
 
Seminar rotator cuff
Seminar  rotator cuffSeminar  rotator cuff
Seminar rotator cuffChapma9
 
Interrupted Direct Current
Interrupted Direct CurrentInterrupted Direct Current
Interrupted Direct Currentxynabnoor
 
Short wave diathermy by sunil
Short wave diathermy by sunilShort wave diathermy by sunil
Short wave diathermy by sunilsunil JMI
 
Interrupted direct current
Interrupted direct current Interrupted direct current
Interrupted direct current hamza2026
 

What's hot (20)

Electrical stimulation
Electrical stimulationElectrical stimulation
Electrical stimulation
 
The distal radioulnar joint and tfcc
The distal radioulnar joint and tfccThe distal radioulnar joint and tfcc
The distal radioulnar joint and tfcc
 
Brachial Plexus Injury, anatomy and surgical options
Brachial Plexus Injury, anatomy and surgical optionsBrachial Plexus Injury, anatomy and surgical options
Brachial Plexus Injury, anatomy and surgical options
 
Cryotherapy
CryotherapyCryotherapy
Cryotherapy
 
DRUJ ISSUES
DRUJ ISSUESDRUJ ISSUES
DRUJ ISSUES
 
Galvanic-Current.pptx
Galvanic-Current.pptxGalvanic-Current.pptx
Galvanic-Current.pptx
 
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...
Lumbar intervertebral disc anatomy, biomechanics and pathogenesis of nerve ro...
 
Anatomy of small joints of the foot
Anatomy of small joints of the footAnatomy of small joints of the foot
Anatomy of small joints of the foot
 
Peripheral joint mobilization
Peripheral joint mobilizationPeripheral joint mobilization
Peripheral joint mobilization
 
Functional re education
Functional re educationFunctional re education
Functional re education
 
Anatomy and biomechanics of hip joint
Anatomy and biomechanics of hip joint Anatomy and biomechanics of hip joint
Anatomy and biomechanics of hip joint
 
Biomechanics of hip and knee joint
Biomechanics of hip and knee jointBiomechanics of hip and knee joint
Biomechanics of hip and knee joint
 
Seminar rotator cuff
Seminar  rotator cuffSeminar  rotator cuff
Seminar rotator cuff
 
Ultrasound therapy
Ultrasound therapyUltrasound therapy
Ultrasound therapy
 
Low Frequency Therapeutic Currents
Low Frequency Therapeutic CurrentsLow Frequency Therapeutic Currents
Low Frequency Therapeutic Currents
 
Interrupted Direct Current
Interrupted Direct CurrentInterrupted Direct Current
Interrupted Direct Current
 
Wrist & hand complex
Wrist & hand complexWrist & hand complex
Wrist & hand complex
 
Short wave diathermy by sunil
Short wave diathermy by sunilShort wave diathermy by sunil
Short wave diathermy by sunil
 
Infrared Therapy
Infrared Therapy Infrared Therapy
Infrared Therapy
 
Interrupted direct current
Interrupted direct current Interrupted direct current
Interrupted direct current
 

Viewers also liked (14)

SLIDESHARE
SLIDESHARESLIDESHARE
SLIDESHARE
 
Residuossolidos
Residuossolidos Residuossolidos
Residuossolidos
 
Presentación pizza
Presentación pizzaPresentación pizza
Presentación pizza
 
No al maltrato animal
No al maltrato animalNo al maltrato animal
No al maltrato animal
 
Presentacion ppt
Presentacion pptPresentacion ppt
Presentacion ppt
 
Humildad
HumildadHumildad
Humildad
 
Revista
RevistaRevista
Revista
 
Pizza King - Deliciosas pizzas
Pizza King -  Deliciosas pizzasPizza King -  Deliciosas pizzas
Pizza King - Deliciosas pizzas
 
Presentación pizza
Presentación pizzaPresentación pizza
Presentación pizza
 
Proving Triangles Congruent.pdf
Proving Triangles Congruent.pdfProving Triangles Congruent.pdf
Proving Triangles Congruent.pdf
 
Componentes1
Componentes1Componentes1
Componentes1
 
Historia del internet
Historia del internetHistoria del internet
Historia del internet
 
Shop front awning aberdeen 9300
Shop front awning aberdeen 9300Shop front awning aberdeen 9300
Shop front awning aberdeen 9300
 
Intercambio (1) (2)
Intercambio (1) (2)Intercambio (1) (2)
Intercambio (1) (2)
 

Similar to NeuroTrac Sports XL electrode placement manual (English)

Physiology of the Muscular System
Physiology of the Muscular SystemPhysiology of the Muscular System
Physiology of the Muscular SystemGarry D. Lasaga
 
The_Motor_Unit_and_Muscle_Action.pdf
The_Motor_Unit_and_Muscle_Action.pdfThe_Motor_Unit_and_Muscle_Action.pdf
The_Motor_Unit_and_Muscle_Action.pdfVaishnaviElumalai
 
muscle7-smoothmuscle-180414110808.pptx
muscle7-smoothmuscle-180414110808.pptxmuscle7-smoothmuscle-180414110808.pptx
muscle7-smoothmuscle-180414110808.pptxLaviBharti1
 
Muscular physiology artifact
Muscular physiology artifactMuscular physiology artifact
Muscular physiology artifactzs4033bn
 
Muscle funccellularlevel animal systems
Muscle funccellularlevel animal systemsMuscle funccellularlevel animal systems
Muscle funccellularlevel animal systemsYukti Sharma
 
Muscular Physiology
Muscular PhysiologyMuscular Physiology
Muscular Physiologyag1430bn
 
Chapter 01 Power Points
Chapter 01 Power PointsChapter 01 Power Points
Chapter 01 Power PointsChris Hesson
 
skeletal muscle.pdf
skeletal muscle.pdfskeletal muscle.pdf
skeletal muscle.pdfqahtanali2
 
Muscular System (Our Muscle)
Muscular System (Our Muscle)Muscular System (Our Muscle)
Muscular System (Our Muscle)Aini Anuar
 
Presented by yasmeen zartash
Presented by yasmeen zartashPresented by yasmeen zartash
Presented by yasmeen zartashAyannoor1
 
muscle tissue 2.pdffufygugyytyfyytygygygyf
muscle tissue 2.pdffufygugyytyfyytygygygyfmuscle tissue 2.pdffufygugyytyfyytygygygyf
muscle tissue 2.pdffufygugyytyfyytygygygyfIbrahimAbdela1
 
Skeletal Muscle Tissue And Organization
Skeletal  Muscle  Tissue And  OrganizationSkeletal  Muscle  Tissue And  Organization
Skeletal Muscle Tissue And Organizationraj kumar
 
Smooth muscle bgt-2019
Smooth muscle bgt-2019Smooth muscle bgt-2019
Smooth muscle bgt-2019Ersin Tukenmez
 
Lecture 1 muscle tissue
Lecture 1   muscle tissueLecture 1   muscle tissue
Lecture 1 muscle tissuemissazyaziz
 

Similar to NeuroTrac Sports XL electrode placement manual (English) (20)

Physiology of the Muscular System
Physiology of the Muscular SystemPhysiology of the Muscular System
Physiology of the Muscular System
 
The_Motor_Unit_and_Muscle_Action.pdf
The_Motor_Unit_and_Muscle_Action.pdfThe_Motor_Unit_and_Muscle_Action.pdf
The_Motor_Unit_and_Muscle_Action.pdf
 
muscle7-smoothmuscle-180414110808.pptx
muscle7-smoothmuscle-180414110808.pptxmuscle7-smoothmuscle-180414110808.pptx
muscle7-smoothmuscle-180414110808.pptx
 
Muscular physiology artifact
Muscular physiology artifactMuscular physiology artifact
Muscular physiology artifact
 
Muscle
MuscleMuscle
Muscle
 
Muscle funccellularlevel animal systems
Muscle funccellularlevel animal systemsMuscle funccellularlevel animal systems
Muscle funccellularlevel animal systems
 
Muscular Physiology
Muscular PhysiologyMuscular Physiology
Muscular Physiology
 
Chapter 01 Power Points
Chapter 01 Power PointsChapter 01 Power Points
Chapter 01 Power Points
 
skeletal muscle.pdf
skeletal muscle.pdfskeletal muscle.pdf
skeletal muscle.pdf
 
Muscular System (Our Muscle)
Muscular System (Our Muscle)Muscular System (Our Muscle)
Muscular System (Our Muscle)
 
Actin and myosin YB
Actin and myosin YBActin and myosin YB
Actin and myosin YB
 
Clase 1 FEJ
Clase 1 FEJClase 1 FEJ
Clase 1 FEJ
 
Presented by yasmeen zartash
Presented by yasmeen zartashPresented by yasmeen zartash
Presented by yasmeen zartash
 
muscle tissue 2.pdffufygugyytyfyytygygygyf
muscle tissue 2.pdffufygugyytyfyytygygygyfmuscle tissue 2.pdffufygugyytyfyytygygygyf
muscle tissue 2.pdffufygugyytyfyytygygygyf
 
Anatomy
AnatomyAnatomy
Anatomy
 
part 7a
part 7apart 7a
part 7a
 
part 7 A1
part 7 A1part 7 A1
part 7 A1
 
Skeletal Muscle Tissue And Organization
Skeletal  Muscle  Tissue And  OrganizationSkeletal  Muscle  Tissue And  Organization
Skeletal Muscle Tissue And Organization
 
Smooth muscle bgt-2019
Smooth muscle bgt-2019Smooth muscle bgt-2019
Smooth muscle bgt-2019
 
Lecture 1 muscle tissue
Lecture 1   muscle tissueLecture 1   muscle tissue
Lecture 1 muscle tissue
 

Recently uploaded

Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docx
Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docxAlbania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docx
Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docxWorld Wide Tickets And Hospitality
 
08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking MenDelhi Call girls
 
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Liluah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Roomdivyansh0kumar0
 
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Eticketing.co
 
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service 🧣
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service  🧣CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service  🧣
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service 🧣anilsa9823
 
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts servicevipmodelshub1
 
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改atducpo
 
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfJORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfArturo Pacheco Alvarez
 
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺anilsa9823
 
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...gurkirankumar98700
 
Plan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininPlan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininThibaut TATRY
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my InterestNagaissenValaydum
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebonyhf8803863
 
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改atducpo
 
08448380779 Call Girls In Lajpat Nagar Women Seeking Men
08448380779 Call Girls In Lajpat Nagar Women Seeking Men08448380779 Call Girls In Lajpat Nagar Women Seeking Men
08448380779 Call Girls In Lajpat Nagar Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In International Airport Women Seeking Men
08448380779 Call Girls In International Airport Women Seeking Men08448380779 Call Girls In International Airport Women Seeking Men
08448380779 Call Girls In International Airport Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docx
Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docxAlbania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docx
Albania Vs Spain Albania is Loaded with Defensive Talent on their Roster.docx
 
08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men
 
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Liluah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
 
Call Girls Service Noida Extension @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
Call Girls Service Noida Extension @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...Call Girls Service Noida Extension @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...
Call Girls Service Noida Extension @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
 
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
 
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service 🧣
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service  🧣CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service  🧣
CALL ON ➥8923113531 🔝Call Girls Telibagh Lucknow best Night Fun service 🧣
 
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
 
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
 
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfJORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
 
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
 
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...
Jankipuram / Call Girls Lucknow | Whatsapp No 🫗 8923113531 🎳 VIP Escorts Serv...
 
Plan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininPlan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby féminin
 
Call Girls In Vasundhara 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Vasundhara 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICECall Girls In Vasundhara 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Vasundhara 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interest
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
 
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
 
Call Girls 🫤 Paharganj ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
Call Girls 🫤 Paharganj ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOYCall Girls 🫤 Paharganj ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOY
Call Girls 🫤 Paharganj ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
 
08448380779 Call Girls In Lajpat Nagar Women Seeking Men
08448380779 Call Girls In Lajpat Nagar Women Seeking Men08448380779 Call Girls In Lajpat Nagar Women Seeking Men
08448380779 Call Girls In Lajpat Nagar Women Seeking Men
 
08448380779 Call Girls In International Airport Women Seeking Men
08448380779 Call Girls In International Airport Women Seeking Men08448380779 Call Girls In International Airport Women Seeking Men
08448380779 Call Girls In International Airport Women Seeking Men
 
Call Girls 🫤 Malviya Nagar ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
Call Girls 🫤 Malviya Nagar ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOYCall Girls 🫤 Malviya Nagar ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOY
Call Girls 🫤 Malviya Nagar ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
 

NeuroTrac Sports XL electrode placement manual (English)

  • 1. NeuroTrac™ Electrode Placement Manual 1 NeuroTrac™ Electrode Placement Manual Visit our website: www.VerityMedical.co.uk for detailed application protocols
  • 2. NeuroTrac™ Electrode Placement Manual 2 Contents Page Introduction 4 Muscle profile 4 Classification of the various types of muscular fibres 5 Hows does the muscle contract 5 Red muscle fibre type 1 8 White muscle F.O.G fibre type IIa 8 White muscle F.O.G fibre type IIb 9 Type IIm fibres 9 Limitations of the present fibre classifications 9 Muscle fibre distribution 10 Muscle Profile (trained muscle) 11 Types of muscle fibres 11 Selection of parameters 12 Pulse width selection 13 Channel selection 13 Work / Rest selection 13 Selectrion of electrode sizes 14 Electrode placement 15 Abdominals 15 Bieast 16 Intestinal tension 16 Waist line shaping 17 Pectorials 17 Relaxation 18 Deltoids 18 Neck 19 Upper back 19 Shoulders 20 Latimus dorsi 20 Trapezius 21 Lower back 21 Erector spinalis 22 Elbows 22 Contents Revised Issue Date: 06/06/2005 Document Number: VM-ECS900-OM002-1
  • 3. NeuroTrac™ Electrode Placement Manual 3 Contents Page Triceps 23 Biceps 23 Extenor of the wrist 24 Flexor of the wrist 24 Wrist 25 Hand regeneration 26 Hand stimulation 27 Back & legs 28 Gluteus 28 Adductors 29 Inner thigh 29 Outside thigh 30 Femoral biceps 30 Ham strings 31 Quadriceps 31 Fluid tension 32 Inner knee 32 Calves 33 Tibialis anterior 33 Peroneus 34 Knee 34 Anklemalaize 35 Ankles 35 Metataraus 36 Feet regeneration 37 Feet stimulation 38 Sole of foot 39 Heel 39
  • 4. NeuroTrac™ Electrode Placement Manual 4 It has been shown that nerves control muscle by transmitting a neurological code. This code or message occurs in two frequency ranges according to the type of muscle fibre required. Postural fibres require a tonic feeding at the rate of 10 pulses per second [Hz]. If applied for periods of approx. one hour every day, it is possible to support the essential characteristics of the muscle. Electrical stimulation can act as a life support until the normal function can be resumed. This is achieved by preserving capillary bed density, muscle bulk and the essential ability to use oxygen. The second frequency range occurs at 30 pulses per second [Hz]. This frequency relays information to the fast muscle fibres, which supports power to muscle movement. This feeding of the muscle occurs naturally in a phasic way. Electrical stimulation treatment protocols to promote these fibres are given for much shorter periods than the slow twitch fibres. This physiological approach to neuromuscular stimulation also requires pulses that are shaped similar to the naturally occurring nerve signals that have very brief pulse widths. By mimicking nature as accurately as possible, electrical stimulation has been used for long periods when required, without causing side effects. Muscle profile When the muscle receives an electrical impulse it starts to contract, whether the pulse originates from the brain or is produced by electrical stimulation. A very short electrical stimulation burst, however only produces a short contraction or “single shock” after which the muscle immediately returns to its natural shape and length when at rest. However, if the stimulation is repeated rapidly many times in succession, we observe that the effects of the contraction are additive due to the superimposition of the contraction stages and the inability of the muscle to relax. This phenomenon is called incomplete tetanus. Neither “single shock” nor incomplete tetanus is normally observed in voluntary action in humans. However, a state of muscular contraction caused by repeated electrical stimulation of the motor nerves with a frequency sufficiently high to merge the individual shocks and make them indistinguishable from each other is called “complete tetanus” In this scenario, the muscle contracts and becomes firm due to the voltage generated within the muscle and, exerts a measurable force at its tendonous ends.Almost all-muscular contractions normally occurring in human muscle have the characteristics of a “complete tetanus. Introduction
  • 5. NeuroTrac™ Electrode Placement Manual 5 Classification of the various types of muscular fibres The skeletal muscles are composed of a collection of muscular fibres and have various shapes according to the mechanical functions they are required to perform; broad differences, however, may be discovered in a histological examination of the fibres and these are strictly connected with the method by which a particular muscle is required to perform its task. Analysis of the fibres using a chemical colouration technique has revealed the presence of various different anaerobic and anaerobic enzymes and the same technique has permitted the various occurring in the activities of these enzymes to be revealed. How does the muscle contract Skeletal [striated] muscle is made of numerous long thin parallel filaments named muscular fibres running between tendons by means of which they are connected to the bones [see Figure 1]
  • 6. NeuroTrac™ Electrode Placement Manual 6 Figure 1 SARCOMERE ACTIN ACTIN MYOSIN MYOFIBRIC MUSCLE FIBRE BUNDLE OF MUSCLE FIBRES MUSCLE
  • 7. NeuroTrac™ Electrode Placement Manual 7 Muscular fibres contain bundles of filaments, surrounded by the sarcoplasmatic network known as myofibril and each myofibril consists in turn of a sequence of many microscopic cylindrical elements, the sarcomeres, connected together longitudinally creating the contractile motor of the muscle. The sarcomere has a structure of cylindrical form and inside it contains this filaments of actin that are connected at is ends [line Z] interspersed with thicker filaments of myosin {see Figure 2} Figure 2 When an electrical impulse reaches the muscle, an activated voltage travels along the perimeter of the cellular membrane and through the system of tubes at T penetrates deeply into the muscle cell creating the release of CAE ions inside the sarcomere. The release of calcium causes attachments of specific parts of the thick filament of myosin to the thin filaments of actin and the construction of bridges between molecules {acto-myosin bridges} The rotation that occurs on the distal portion of the bridge–head produces a sliding of the filaments between each other, which is the actual mechanism of contraction. Figure 3 ACTIN MYOSINMYOSIN ACTIN MYOSIN ACTIN
  • 8. NeuroTrac™ Electrode Placement Manual 8 The rotation of the head of the myosin from position 2 to position 3 produces reciprocal motion of the filaments of actin and myosin; this mechanism is the basis of all muscular contraction. The mutual sliding produces the lines Z to approach each other and shortening of the sarcomeres, which being added to that of all the sarcomeres placed in series, generates the overall shortening of the muscle that occurs in every muscular contraction. The filaments do not change their length when the muscle contracts, but slide between each other changing their mutual position Red muscle fibre type 1 These type of fibres are also called ST fibres [slow contracting fibres] or SO fibres [slow fibres with oxidative metabolism] The motor neurone that innervates them is tonic and has a low speed of conduction. Fibres of this nature are red in colour [the redness due to the presence of the myoglobin molecule]. Inside them there is a large number of mitochondria and oxidative enzymes that explains the reason why the majority of the intermitochondrial oxidative phosphorilation process take place in these fibres. A very high content of lipids and myoglobin is also associated with these metabolic functions. These type 1 muscular fibres are highly resistant to fatigue since they are responsible for all types of activities of a tonic nature, slow acting and associated with maintaining posture. These slow fibres are surrounded by a dense network of capillaries that permit optimum performance of the aerobic metabolism in a prolonged activity associated with the modest exertion of force. These red muscle fibres give the strength to the muscle and support the joint. They are fibres that are very important in all endurance sports, such as cycling, running, swimming, tennis etc. White muscle F.O.G fibre type IIa These are called FTa [rapid contracting fibres] fibres of FOG [rapid fibres with oxidative-glycolytic metabolism] fibres. These fibres are innervated by a phasic type motor neurone, characterised by higher speed of conduction of the tonic motor neurone. They are white in colour, due to absence of myoglobin and, are characterised by a mixed metabolic activity. These fibres are rich in glycogen and glycolytic enzymes, but also contain mitochondria enzymes; the overall metabolism is more anaerobic than the aerobic oxidative.
  • 9. NeuroTrac™ Electrode Placement Manual 9 These fibres are also provided with a network of capillaries that carry the oxygen required for the aerobic process. Type IIa fibres are therefore, able to perform rapid contractions characterised by a significant exertion of force, which is also sustained over time giving a relative resistance [endurance] to fatigue. White muscle fibre type IIb These fibres are called FTb [rapid contracting fibres] fibres or FG [rapid fibres with glycolytic metabolism] fibres. This type of fibre is innervated by a phasic motor neurone with a cellular body and a very large axon that transmits pulses to the muscle at very high speed. These fibres are white to look at and have very high glycogen and glycolytic enzyme content in order to produce a very high-energy output of the anaerobic type. Contraction is fairy rapid and creates a high level of force; the almost complete absence of mitochondria renders these fibres incapable of sustaining protracted activity and therefore, easily fatigued particularly in the untrained muscle. Type IIb fibres play a very significant part in all human activities requiring the exertion of explosive force and, naturally, in all powers and explosive sports such as sprinting, weight lifting, swimming, jumping etc. Type IIm fibres A type of fibre that has been described with characteristics similar to those of the IIb type, but with a response to stimulation shifted to higher frequencies [approx. 100 –110 Hz] a} Synchronous recruitment b} Disinhibitis approx. 30% of maximum effort c} The constant glycogen demands produces a more efficient replacement system. Limitations of the present fibre classifications The current classifications of the muscle fibres is determined more by the necessity of establishing a set of characteristics to be used for practical purposes rather than by the biological-functional reality of the human muscular system. It is assured that the fibres from part of a continuous range of various levels of metabolic organisation that are produced by the functional requirements of the various forms of human activity in general and sporting activity in particular.
  • 10. NeuroTrac™ Electrode Placement Manual 10 Muscle fibre distribution The fibre types as has been detailed above can be found in various percentages in muscles and the ratio between type I and type II fibres can vary considerably. Some muscle groups consist of typically type I fibres i.e. the soleus and muscles that have only type II such as the orbicular, but in the majority of cases various types of fibre are found together. Figure 4 In figure 4 one can see the phasic and tonic fibres mixed together side by side, but the various fibres do respond to their respective motor neurones. There have been clinical studies conducted on the distribution of fibres in the muscle that have demonstrated the relationship between the motor neurone–tonic and phasic, and the functional characteristics of the fibres innervated by it and shown how a specific motor activity, in particular sporting activities can and do cause a functional adaptation of the fibres and a modification of their metabolic characteristics. TONIC PHASIC
  • 11. NeuroTrac™ Electrode Placement Manual 11 [Trained Muscle] Slow Oxidative: Increase in size of existing fibres [SO] Increase in number of red fibres Increase in size of mitochondria. Increase in oxidative enzymes Fast Oxidative Glycolytic Posses glycolytic and oxidative [FOG] metabolic pathways. Early onset of fatigue is prevented by the development of F.O.G fibres which work long periods without fatigue. Fast Glycolytic Local muscle glycogen stores are depleted [FG] with 10-15 rhythmical contractions. [Hirch ET AL 1970] Types of muscle fibres Muscle profile tinurotoM enoruenrotoM foepyT msilobatem foepyT elcsum noitcartnoc elcsuM sepyterugif ycneuqerF foegnar noitalumits cinoT fodeepswoL noitcudnoc OS wolS evitadixO TS wolS noitcartnoC aI zH04-01 cisahP deepsmuideM noitcudnocfo GOF tsaF evitadixO citylocylG aTF dipaR noitcartnoC aII zH07-05 cisahP fodeepshgiH noitcudnoc GF tsaF citylocylG bTF dipaR noitcartnoC bII zH001-07 cisahP fodeepshgiH noitcudnoc GF tsaF citylocylG mTF dipaR noitcartnoC mII zH021-001
  • 12. NeuroTrac™ Electrode Placement Manual 12 Frequency selection 5 pps or below: - To introduce the stimulus to a nerve muscle situation that may not respond immediately or may not have function for a period of months or even years. For example: 3pps is used as an introductory frequency for the electrical stimulation of spasticity. This frequency is a gentle introduction to treatment unlikely to cause spasms. 3pps is within the frequency range for the production of endorphins for pain relief and general relaxation and it is the natural firing frequency of the fusimotor pathways, which control the muscle spindles and initiate the movement sequence. 5 - 15pps This frequency range is selected to improve muscle tone, improve joint support and stability. 10pps are the natural frequency of the slow oxidative muscle fibres. Electrical stimulation will improve the muscle fatigue resistance by improving its capillary bed density and improve the muscle to handle oxygen breakdown. This frequency range may be used for extended periods of several hours per day for sports and related treatment and shorter periods for areas such as Continence. 15 - 20pps These frequencies may be used to promote endurance in the muscle. This frequency range is the natural band for the fast oxidative glycolytic muscle fibres. Treatment in this frequency band may be used up to 1 hour per day. 30 - 50 pps These frequencies are selected for strengthening a muscle and recruiting the fast glycolytic muscle fibres. Treatment using this frequency band would be for short periods only as fatiguing a muscle takes only a few minutes with electrical stimulation. 50 - 120pps These frequencies are usually selected where great power/speed and strengthening of the muscle is required. When stimulating at these high frequencies it is important that it is only for very short periods. pps = pulses per second Selection of parameters
  • 13. NeuroTrac™ Electrode Placement Manual 13 Pulse width selection The selection of pulse width is made according to the depth of penetration required for the treatment. The shorter the pulse width the more comfortable and superficial the treatment received. Pulse width examples: Superficial muscles of the face - 70 - 80 µS [No higher] use low frequencies below 20Hz Superficial muscles of the hand - 70 - 90 µS Muscles of the leg - 200 - 350 µS Muscle of the arm - 150 - 300 µS Pelvic orAnal muscles – 75 - 250 µS Channel selection Most muscle stimulators have alternating or synchronous modes, which allows for the reproduction of agonist / antagonist activity around the joint. The alternating option should always be considered, as it will prevent the problems associated with muscle imbalance. Also inputting a delay time between the change over from one channel to another may assist voluntary movement. The synchronous channel mode allows for the reproduction of synergic muscle activity. This is useful for functional activities accompanying specific physiotherapy programmes. Work / Rest Selection The rest cycle should under most circumstance be as long as the work cycle to allow the reactive hyperaemia to disperse. If the frequency and current is raised to a level to induce a tetanic contraction it may be more appropriate to enlist a longer rest cycle to allow a movement to occur. One would expect the patient to produce voluntary movement [contraction] during the rest cycle. Example 4 secs on 4 secs off - increase rest time to between 6 –8 seconds or more.
  • 14. NeuroTrac™ Electrode Placement Manual 14 Selection of electrode sizes The size of electrode to be used depends largely on the pulse width to be used and, which part of the body the electrode is to be place upon. Generally the wider the pulse width and the higher the m A current to be used the larger the electrode needs to be. For the face, fingers and hands where the muscle is superficial the pulse width should be kept down to below 90 µS, allowing a smaller surface area electrode to be used normally 26 to 30mm diameter. For the arm, lower parts of the leg and ankle the pulse width selection ideally should be below 300 µS allowing the surface area electrode to be more than when used on superficial muscles of approx. 40 to 50mm square. For the quads, upper arm, lower, upper back and gluteus maximus the pulse width ideally should be 350 µS or below. The muscle mass is larger in these areas that allows larger surface area of electrode to be used. 50 x 50 or 50 x 100 being the most common sizes, although larger surface area electrodes can be used.
  • 15. NeuroTrac™ Electrode Placement Manual 15 Abdominals 1 Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 µS Abdominals 2 Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 µS Electrode placement Ch.A Ch.B Ch.A Ch.B Ch.C Ch.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 16. NeuroTrac™ Electrode Placement Manual 16 Bieast Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Ch.C Ch.D Intestinal tension Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Ch.C Ch.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 17. NeuroTrac™ Electrode Placement Manual 17 Pectorials Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 275 µS Ch.A Ch.B Ch.C Ch.D Waist line shaping Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 18. NeuroTrac™ Electrode Placement Manual 18 Relaxation Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Deltoids Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 19. NeuroTrac™ Electrode Placement Manual 19 Neck Suggested Settings Electrode Size: 50 x 50 mm (Max size) or 30 mm dia Pulse Width: 220 - 250 µS Ch.A Ch.B Upper back Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Ch.C Ch.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 20. NeuroTrac™ Electrode Placement Manual 20 Latimus Dorsi Suggested Settings Electrode Size: 50 x 50 mm or 50 x 100 mm Pulse Width: 250 - 275 µS Ch.A Ch.B Ch.C Ch.D Shoulders Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Ch.C Ch.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 21. NeuroTrac™ Electrode Placement Manual 21 Trapezius Suggested Settings Electrode Size: Shoulders 50 x 50 mm Back 50 x 50 mm or 50 x 100 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Lower back Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 22. NeuroTrac™ Electrode Placement Manual 22 Elbows Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Erector spinalis Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.CCh.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 23. NeuroTrac™ Electrode Placement Manual 23 Biceps Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Triceps Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 24. NeuroTrac™ Electrode Placement Manual 24 Extensor of the wrist Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Flexor of the wrist Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Ch.B Ch.A Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 25. NeuroTrac™ Electrode Placement Manual 25 Wrist Suggested Settings Electrode Size: 50 x 50 mm or 30 mm dia Pulse Width: 220 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 26. NeuroTrac™ Electrode Placement Manual 26 Hand regeneration Suggested Settings Electrode Size: 50 x 50 mm or 30 mm dia Pulse Width: 200 µS Ch.A Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 27. NeuroTrac™ Electrode Placement Manual 27 Hand stimulation Suggested Settings Electrode Size: 50 x 50 mm or 30 mm dia Pulse Width: 200 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 28. NeuroTrac™ Electrode Placement Manual 28 Back & legs Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 300 µS Ch.A Ch.B Ch.C Ch.D Gluteus Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Ch.C Ch.D Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 29. NeuroTrac™ Electrode Placement Manual 29 Adductors Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Inner thigh Suggested Settings Electrode Size: 50 x 50 mm or 50 x 100 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 30. NeuroTrac™ Electrode Placement Manual 30 Femoral biceps Suggested Settings Electrode Size: 50 x 50 mm or 50 x 100 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Outside thigh Suggested Settings Electrode Size: 50 x 50 mm or 50 x 100 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 31. NeuroTrac™ Electrode Placement Manual 31 Ham strings Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Ch.C Ch.D Quadriceps Suggested Settings Electrode Size: 50 x 50 mm or 50 x 100 mm Pulse Width: 250 -300 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 32. NeuroTrac™ Electrode Placement Manual 32 Fluid tension Suggested Settings Electrode Size: Upper Leg 50 x 50 mm or 50 x 100 mm Ankle 50 x 50 mm Pulse Width: 220 - 275 µS Please Note: Ch.C & Ch.D positions on the left leg are identical to the Ch.A & Ch.B positions on the right leg. The - electrode for Ch.D is not visible on this picture Ch.A Ch.B Ch.C Ch.D Inner knee Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 250 - 300 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 33. NeuroTrac™ Electrode Placement Manual 33 Calves Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 275 µS Ch.A Ch.B Tibialis anterior Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 34. NeuroTrac™ Electrode Placement Manual 34 Knee Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Peroneus Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 275 µS Ch.A Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 35. NeuroTrac™ Electrode Placement Manual 35 Ankles Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Ch.A Ch.B Ankle malaize Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 36. NeuroTrac™ Electrode Placement Manual 36 + = Red - = Black Metataraus Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 - 250 µS Ch.B Ch.A Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 37. NeuroTrac™ Electrode Placement Manual 37 Feet regeneration Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 38. NeuroTrac™ Electrode Placement Manual 38 Feet stimulation Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Please note: Ch.A + & - electrodes are placed on the left foot. Ch.B + & - electrodes are placed on the right foot. + = Red - = Black Ch.A Ch.B Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 39. NeuroTrac™ Electrode Placement Manual 39 Sole of foot Suggested Settings Electrode Size: 50 x 50 mm Pulse Width: 220 µS Ch.A Ch.B Heel Suggested Settings Electrode Size: 50 x 50 mm or 30 mm dia Pulse Width: 220 µS Ch.A Ch.B Revised Issue Date: 06/06/2005 Document Number: VM-ECS900-OM002-1 Positive Red must be placed on the motor point of the muscle. Find the best position by slightly moving the positive electrode around.
  • 40. NeuroTrac™ Electrode Placement Manual 40 Not for sale or use in the USA Uplands Place Drove Road Chilbolton Nr Stockbridge Hampshire SO20 6AD England Tele: +44 (0)1264 860354 Fax: +44 (0)1264 860825 Email: Sales@VerityMedical.co.uk Web: www.VerityMedical.co.uk