SlideShare a Scribd company logo
1 of 2
Download to read offline
FORMATION OF HIGH ANGLE BOUNDARIES AND GRAIN REFINING DURING THE
               SUBCRITICAL PROCESSING OF 0,16C STEEL

                                    Silva Neto, O.V. 1,* ; Balancin, O.
  1,2
    Department of Materials Engineering, Federal University of São Carlos - DEMa/UFSCar, Via
    Washington Luiz, Km 235, 13.565-905, São Carlos, SP, Brazil, e-mail: pvillar@iris.ufscar.br

A promising way to enhance, simultaneously, strength and toughness of steel without altering its chemical
composition is promoting the refinement of its microstructure, especially when the average size of common
steels ferritic grain can be reduced to 1 µm [1-4]. Such levels of refinement have been obtained from the
application of large levels of deformation, separately or in a combination sequence of these events [4-6]. The
preferable sites of ferrite nucleation are enhanced, according to the increase of the defects produced during
the deformation. The deformation creates complex fields of obstacles, and then a huge increase in the
activity of the dislocations emerges in the interior of the sub-grains, enhancing the density of dislocations in
order to reach the critical energy for initial nucleation [7-8]. Thus, like the heavy deformation, large strain
rates promote the increase of the defects quantities and of the deformation bands, which contribute to the
occurrence of the dynamic recrystallization and ultrafine ferrite formation [3]. The continuous dynamic
recrystallization refines the microstructure, and the presence of thin dispersed particles possesses the effect
of pinning, anchoring the grains boundaries [4-5]. In this work, we study the grain refinement in low carbon
steel, using samples with thin particles of cementite dispersed in the ferritic matrix submitted to the lukewarm
deformation process. A 0.16C 1.34Mn common steel with dispersion of globular cementite was submitted to
the heavy deformation in the ferritic domain. The initial microstructure was obtained from the formation of
globular cementite through the thermal treatments of quench and tempering. To characterize the
microstructure of deformation, tests with pre-determined interruptions in certain levels of deformation were
carried through. The samples were reheated at 900ºC, they were kept at this temperature for 10 minutes,
and then they were water-quenched. These samples were tempered at 685ºC for 1 hour. Heavy
deformations ( ε = 5 ) were applied through hot torsion tests at 685ºC at equivalent strain rates of 1.0, 0.5 e
      -1
0.1 s . They also carried through tests with interruptions after pre-defined deformation amounts – 0, 1, 2, 3,
4 and 5 – in which the samples were water cooled, allowing the study of the microstructural evolution on the
                     -1
condition of 0.1 s deformation. From these specimens, samples for electronic and optical microscopy
analysis were prepared, with which they measured the average sizes of the grains/sub-grains. The use of the
EBSD (Electron Backscattering Diffraction) technique, accomplished in a Philips microscope of high
resolution, XL30 FEG (30KV) model, enabled the attainment of data related to the misorientation amongst
grains and/or sub-grains. The final microstructure revealed itself recrystallized and composed by ultrafine
grains, with final average size of 1 µm. Three phenomena are more likely to be responsible for the presence
of the ultrafine grains: the process of ferrite dynamic softening (continuous dynamic recrystallization), the
rotation and break of the initial microstructure boundaries, and the cementite particles, which interfered with
the process of rotation of the sub-grains, and the formation and grains growth.

Acknowledgements:
        The authors acknowledge the Brazilian Research Funding Agencies CAPES, CNPq and FAPESP for
the financial support.

References:
[1] K. Nagai, Journal of Materials Processing Technology 117 (2001) 329-332.
[2] D. B. Santos et al., Materials Science Engineering A346 (2003) 189-195.
[3] Y. D. Huang et al., Journal of Materials Processing Technology 134 (2003) 19-25.
[4] O. V. Silva Neto and O. Balancin, in Proceedings CONAMET/SAM Congress, La Serena, Chile (2004)
237-242.
                                              th
[5] O. V. Silva Neto and O. Balancin, in 8 Inter American Congress of Electron Microscopy, La Habana,
Cuba (2005).
[6] J. Baczynski and J. J. Jonas, Metallurgical and Materials Transactions A 29A (1998) 447-462.
[7] A. M. Jorge Jr., W. Regone and O. Balancin, J. of Materials Processing Technology 142 (2003) 415-421.
[8] D. Chu and J. W. Moris Jr., Acta Materialia 44 (1996) 2599-2610.
300                                                                                                                                                                          2,00                                                                                                         75,0

                        275                                                                                                                                                                                                                                                                                       74,5
                                                                                                                                                                                                     1,75                                                                    Grain size average
                        250                                                                                                                                                                                                                                                  High angle boundary
                                                                                                                                                                                                                                                                                                                  74,0
                        225                                                                                                                                                                          1,50




                                                                                                                                                                                                                                                                                                                         High Angle Boundary [%]
                                                                                                                                                                           Grain Average Size [µm]
                                                                                                                                                                                                                                                                                                                  73,5
                        200
                                                                                                                                                                                                     1,25
                                                                                                                                                                                                                                                                                                                  73,0
         Stress [MPa]




                        175

                        150                                                                                                                                                                          1,00                                                                                                         72,5

                        125                                                                                                                                                                                                                                                                                       72,0
                                                                                 o                                                                                                                   0,75
                                                           ttemp =1H; Ttemp=685 C
                        100                                           -1
                                                                 0,1s                                                                                                                                                                                                                                             71,5
                                                                     -1
                          75                                     0,5s                                                                                                                                0,50
                                                                      -1
                                                                 1,0s                                                                                                                                                                                                                                             71,0
                          50
                                                                                                                                                                                                     0,25
                                                                                                                                                                                                                                                                                                                  70,5
                          25
                                                                                                                                                                                                     0,00                                                                                                         70,0
                                 0
                                       0,0     0,5     1,0        1,5        2,0       2,5             3,0     3,5         4,0         4,5         5,0                                                                         0,0       0,1   0,2       0,3   0,4    0,5   0,6    0,7    0,8   0,9   1,0   1,1
                                                                                                                                                                                                                                                                                  -1
                                                                                     Strain                                                                                                                                                                      Strain Rate [s ]

                                                                                                                                                               (a)                                                                                                                                                                                       (b)
                                                                                                                                                                     o
  Figure 1 – (a) Flow stress curve - tempering (685 C); (b) Average grain size and high angle boundary.




                                                                                      (a)                                                                                                            (b)                                                                                        (c)                                                            (d)
                                                                                                                                                                                                                               −1                              −1                        −1
Figure 2 – EBSD maps: (a-c) Inverse polo figure – (a) 1.0 s                                                                                                                                                                          ; (b). 0.5 s                    ; (c) 0.1 s              ; (d) colors code - [001].

                                       250                                                                                                                                                                                     100

                                       225                                                                                                                                                                                      90

                                       200                                                                                                                                                                                      80
                                                                                                                                                                                                     High Angle Boundary [%]




                                       175                                                                                                                                                                                      70
                        Stress [MPa]




                                       150                                                                                                                                                                                      60

                                       125                                                                                                                                                                                      50
                                                                                           -1
                                                                                 0.1 s
                                       100                                                                                                                                                                                      40

                                        75
                                                                                       ε=1                                                                                                                                      30
                                                                                       ε=2
                                        50                                             ε=3                                                                                                                                      20
                                                                                       ε=4
                                        25                                             ε=5                                                                                                                                      10

                                         0                                                                                                                                                                                       0
                                             0,0     0,5       1,0         1,5       2,0         2,5         3,0     3,5         4,0         4,5         5,0                                                                         0               1           2           3            4           5             6

                                                                                                Strain                                                                                                                                                                 Total Strain

                                                                                                                                                                     (a)                                                                                                                                                                           (b)
       Figure 3 - (a) Flow curve – microstructural evolution; (b) % high angle boundary x total strain.




                                                                                                                                                                     (a)                                                                                                                                                             (b)

                        Figure 4 - Ultrafine ferrite grains - strained specimens to 0.1 s − 1 : (a) ε = 1. 0 ; (b) ε = 5.0 .

More Related Content

Viewers also liked

Ii დონის ტრენინგი
Ii დონის ტრენინგიIi დონის ტრენინგი
Ii დონის ტრენინგიMaia Siradze
 
호텔패키지 방콕파타야여행
호텔패키지 방콕파타야여행호텔패키지 방콕파타야여행
호텔패키지 방콕파타야여행bwetdf
 
골프채잡는법
골프채잡는법골프채잡는법
골프채잡는법bwetdf
 
대천한화콘도 평창코업레지던스
대천한화콘도 평창코업레지던스대천한화콘도 평창코업레지던스
대천한화콘도 평창코업레지던스bwetdf
 
Viccardo Brown Creative Resume
Viccardo Brown Creative ResumeViccardo Brown Creative Resume
Viccardo Brown Creative ResumeViccardo Brown
 
하이마트
하이마트하이마트
하이마트bwetdf
 
Questões sobre combinaçao simples
Questões sobre combinaçao simplesQuestões sobre combinaçao simples
Questões sobre combinaçao simplesRicardo Phelix
 
University of Bath
University of BathUniversity of Bath
University of BathJohnJones808
 
Primera guerra mundia lmapa conceptual
Primera guerra mundia lmapa conceptualPrimera guerra mundia lmapa conceptual
Primera guerra mundia lmapa conceptualArantxa Revuelta Bayod
 
IHI Certificate - 1 IHI Open School Basic Certific
IHI Certificate - 1 IHI Open School Basic CertificIHI Certificate - 1 IHI Open School Basic Certific
IHI Certificate - 1 IHI Open School Basic CertificAlyssa Luongo
 
Tema 9 esquema lengua
Tema 9 esquema lenguaTema 9 esquema lengua
Tema 9 esquema lengua2003judo
 

Viewers also liked (15)

Ii დონის ტრენინგი
Ii დონის ტრენინგიIi დონის ტრენინგი
Ii დონის ტრენინგი
 
Ejercicios veloCidad
Ejercicios veloCidadEjercicios veloCidad
Ejercicios veloCidad
 
호텔패키지 방콕파타야여행
호텔패키지 방콕파타야여행호텔패키지 방콕파타야여행
호텔패키지 방콕파타야여행
 
골프채잡는법
골프채잡는법골프채잡는법
골프채잡는법
 
대천한화콘도 평창코업레지던스
대천한화콘도 평창코업레지던스대천한화콘도 평창코업레지던스
대천한화콘도 평창코업레지던스
 
Slidecast
SlidecastSlidecast
Slidecast
 
Viccardo Brown Creative Resume
Viccardo Brown Creative ResumeViccardo Brown Creative Resume
Viccardo Brown Creative Resume
 
하이마트
하이마트하이마트
하이마트
 
Poster
PosterPoster
Poster
 
Questões sobre combinaçao simples
Questões sobre combinaçao simplesQuestões sobre combinaçao simples
Questões sobre combinaçao simples
 
University of Bath
University of BathUniversity of Bath
University of Bath
 
Brandon Garcia Resume
Brandon Garcia ResumeBrandon Garcia Resume
Brandon Garcia Resume
 
Primera guerra mundia lmapa conceptual
Primera guerra mundia lmapa conceptualPrimera guerra mundia lmapa conceptual
Primera guerra mundia lmapa conceptual
 
IHI Certificate - 1 IHI Open School Basic Certific
IHI Certificate - 1 IHI Open School Basic CertificIHI Certificate - 1 IHI Open School Basic Certific
IHI Certificate - 1 IHI Open School Basic Certific
 
Tema 9 esquema lengua
Tema 9 esquema lenguaTema 9 esquema lengua
Tema 9 esquema lengua
 

More from Karina Mello

Trb0807 cobem 2001_villar
Trb0807 cobem 2001_villarTrb0807 cobem 2001_villar
Trb0807 cobem 2001_villarKarina Mello
 
Silva neto ov conamet_2007
Silva neto ov conamet_2007Silva neto ov conamet_2007
Silva neto ov conamet_2007Karina Mello
 
Paineis materiais csbmm_2005
Paineis materiais csbmm_2005Paineis materiais csbmm_2005
Paineis materiais csbmm_2005Karina Mello
 
P083 villar ciasem 2007
P083 villar ciasem 2007P083 villar ciasem 2007
P083 villar ciasem 2007Karina Mello
 
Micromat 2004 villar
Micromat 2004 villarMicromat 2004 villar
Micromat 2004 villarKarina Mello
 
Micromat 2004 simposio_i
Micromat 2004 simposio_iMicromat 2004 simposio_i
Micromat 2004 simposio_iKarina Mello
 
Conamet 2004 villar
Conamet 2004 villarConamet 2004 villar
Conamet 2004 villarKarina Mello
 
Conamet 2003 04-421
Conamet 2003 04-421Conamet 2003 04-421
Conamet 2003 04-421Karina Mello
 
Ciasem 2005 villar
Ciasem 2005 villarCiasem 2005 villar
Ciasem 2005 villarKarina Mello
 
Balancin senafor 2006_villar
Balancin senafor 2006_villarBalancin senafor 2006_villar
Balancin senafor 2006_villarKarina Mello
 
Acta microscopica 2007_silva netoov
Acta microscopica 2007_silva netoovActa microscopica 2007_silva netoov
Acta microscopica 2007_silva netoovKarina Mello
 
Abm 2000 hc9494_villar
Abm 2000 hc9494_villarAbm 2000 hc9494_villar
Abm 2000 hc9494_villarKarina Mello
 
17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villarKarina Mello
 

More from Karina Mello (20)

Villar cim2011 es
Villar cim2011 esVillar cim2011 es
Villar cim2011 es
 
Trb0807 cobem 2001_villar
Trb0807 cobem 2001_villarTrb0807 cobem 2001_villar
Trb0807 cobem 2001_villar
 
Silva neto ov conamet_2007
Silva neto ov conamet_2007Silva neto ov conamet_2007
Silva neto ov conamet_2007
 
Paineis materiais csbmm_2005
Paineis materiais csbmm_2005Paineis materiais csbmm_2005
Paineis materiais csbmm_2005
 
P083 villar ciasem 2007
P083 villar ciasem 2007P083 villar ciasem 2007
P083 villar ciasem 2007
 
Micromat 2004 villar
Micromat 2004 villarMicromat 2004 villar
Micromat 2004 villar
 
Micromat 2004 simposio_i
Micromat 2004 simposio_iMicromat 2004 simposio_i
Micromat 2004 simposio_i
 
Imc17 2010 i4519
Imc17 2010 i4519Imc17 2010 i4519
Imc17 2010 i4519
 
Csbmm 2003 villar
Csbmm 2003 villarCsbmm 2003 villar
Csbmm 2003 villar
 
Csbmm 2002 otavio
Csbmm 2002 otavioCsbmm 2002 otavio
Csbmm 2002 otavio
 
Csbmm 2001 villar
Csbmm 2001 villarCsbmm 2001 villar
Csbmm 2001 villar
 
Conem 2004 villar
Conem 2004 villarConem 2004 villar
Conem 2004 villar
 
Conamet 2004 villar
Conamet 2004 villarConamet 2004 villar
Conamet 2004 villar
 
Conamet 2003 04-421
Conamet 2003 04-421Conamet 2003 04-421
Conamet 2003 04-421
 
Ciasem 2005 villar
Ciasem 2005 villarCiasem 2005 villar
Ciasem 2005 villar
 
Balancin senafor 2006_villar
Balancin senafor 2006_villarBalancin senafor 2006_villar
Balancin senafor 2006_villar
 
Acta microscopica 2007_silva netoov
Acta microscopica 2007_silva netoovActa microscopica 2007_silva netoov
Acta microscopica 2007_silva netoov
 
Abm 2000 hc9494_villar
Abm 2000 hc9494_villarAbm 2000 hc9494_villar
Abm 2000 hc9494_villar
 
17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar
 
1 cof11-0274
1   cof11-02741   cof11-0274
1 cof11-0274
 

Csbmm 2007 silva_neto_ebsd_metals and alloys

  • 1. FORMATION OF HIGH ANGLE BOUNDARIES AND GRAIN REFINING DURING THE SUBCRITICAL PROCESSING OF 0,16C STEEL Silva Neto, O.V. 1,* ; Balancin, O. 1,2 Department of Materials Engineering, Federal University of São Carlos - DEMa/UFSCar, Via Washington Luiz, Km 235, 13.565-905, São Carlos, SP, Brazil, e-mail: pvillar@iris.ufscar.br A promising way to enhance, simultaneously, strength and toughness of steel without altering its chemical composition is promoting the refinement of its microstructure, especially when the average size of common steels ferritic grain can be reduced to 1 µm [1-4]. Such levels of refinement have been obtained from the application of large levels of deformation, separately or in a combination sequence of these events [4-6]. The preferable sites of ferrite nucleation are enhanced, according to the increase of the defects produced during the deformation. The deformation creates complex fields of obstacles, and then a huge increase in the activity of the dislocations emerges in the interior of the sub-grains, enhancing the density of dislocations in order to reach the critical energy for initial nucleation [7-8]. Thus, like the heavy deformation, large strain rates promote the increase of the defects quantities and of the deformation bands, which contribute to the occurrence of the dynamic recrystallization and ultrafine ferrite formation [3]. The continuous dynamic recrystallization refines the microstructure, and the presence of thin dispersed particles possesses the effect of pinning, anchoring the grains boundaries [4-5]. In this work, we study the grain refinement in low carbon steel, using samples with thin particles of cementite dispersed in the ferritic matrix submitted to the lukewarm deformation process. A 0.16C 1.34Mn common steel with dispersion of globular cementite was submitted to the heavy deformation in the ferritic domain. The initial microstructure was obtained from the formation of globular cementite through the thermal treatments of quench and tempering. To characterize the microstructure of deformation, tests with pre-determined interruptions in certain levels of deformation were carried through. The samples were reheated at 900ºC, they were kept at this temperature for 10 minutes, and then they were water-quenched. These samples were tempered at 685ºC for 1 hour. Heavy deformations ( ε = 5 ) were applied through hot torsion tests at 685ºC at equivalent strain rates of 1.0, 0.5 e -1 0.1 s . They also carried through tests with interruptions after pre-defined deformation amounts – 0, 1, 2, 3, 4 and 5 – in which the samples were water cooled, allowing the study of the microstructural evolution on the -1 condition of 0.1 s deformation. From these specimens, samples for electronic and optical microscopy analysis were prepared, with which they measured the average sizes of the grains/sub-grains. The use of the EBSD (Electron Backscattering Diffraction) technique, accomplished in a Philips microscope of high resolution, XL30 FEG (30KV) model, enabled the attainment of data related to the misorientation amongst grains and/or sub-grains. The final microstructure revealed itself recrystallized and composed by ultrafine grains, with final average size of 1 µm. Three phenomena are more likely to be responsible for the presence of the ultrafine grains: the process of ferrite dynamic softening (continuous dynamic recrystallization), the rotation and break of the initial microstructure boundaries, and the cementite particles, which interfered with the process of rotation of the sub-grains, and the formation and grains growth. Acknowledgements: The authors acknowledge the Brazilian Research Funding Agencies CAPES, CNPq and FAPESP for the financial support. References: [1] K. Nagai, Journal of Materials Processing Technology 117 (2001) 329-332. [2] D. B. Santos et al., Materials Science Engineering A346 (2003) 189-195. [3] Y. D. Huang et al., Journal of Materials Processing Technology 134 (2003) 19-25. [4] O. V. Silva Neto and O. Balancin, in Proceedings CONAMET/SAM Congress, La Serena, Chile (2004) 237-242. th [5] O. V. Silva Neto and O. Balancin, in 8 Inter American Congress of Electron Microscopy, La Habana, Cuba (2005). [6] J. Baczynski and J. J. Jonas, Metallurgical and Materials Transactions A 29A (1998) 447-462. [7] A. M. Jorge Jr., W. Regone and O. Balancin, J. of Materials Processing Technology 142 (2003) 415-421. [8] D. Chu and J. W. Moris Jr., Acta Materialia 44 (1996) 2599-2610.
  • 2. 300 2,00 75,0 275 74,5 1,75 Grain size average 250 High angle boundary 74,0 225 1,50 High Angle Boundary [%] Grain Average Size [µm] 73,5 200 1,25 73,0 Stress [MPa] 175 150 1,00 72,5 125 72,0 o 0,75 ttemp =1H; Ttemp=685 C 100 -1 0,1s 71,5 -1 75 0,5s 0,50 -1 1,0s 71,0 50 0,25 70,5 25 0,00 70,0 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 -1 Strain Strain Rate [s ] (a) (b) o Figure 1 – (a) Flow stress curve - tempering (685 C); (b) Average grain size and high angle boundary. (a) (b) (c) (d) −1 −1 −1 Figure 2 – EBSD maps: (a-c) Inverse polo figure – (a) 1.0 s ; (b). 0.5 s ; (c) 0.1 s ; (d) colors code - [001]. 250 100 225 90 200 80 High Angle Boundary [%] 175 70 Stress [MPa] 150 60 125 50 -1 0.1 s 100 40 75 ε=1 30 ε=2 50 ε=3 20 ε=4 25 ε=5 10 0 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 0 1 2 3 4 5 6 Strain Total Strain (a) (b) Figure 3 - (a) Flow curve – microstructural evolution; (b) % high angle boundary x total strain. (a) (b) Figure 4 - Ultrafine ferrite grains - strained specimens to 0.1 s − 1 : (a) ε = 1. 0 ; (b) ε = 5.0 .