SlideShare a Scribd company logo
1 of 108
Download to read offline
INFOGEST PhD Training School
“Food Digestion and Human Health”
Gdansk, Poland
23th of April 2013
Amélie Deglaire
amelie.deglaire@agrocampus-ouest.fr
Food structure
vs. nutrient bioavailability
2
Introduction
ïŹ Nutrient bioavailability
 availability for the metabolic functions of the organism
 ≀ nutrient content of a food
 The best indicator of the nutritional quality of a nutrient
ïŹ Influencing factors
 Chemical state of the nutrient
 Interactions with other food components
 Presence of antinutritional factors
 Release from the food matrix
ïŹ Recent data : influence of the matrix state of natural foods or the
microstructure of processed foods ( or )
ïŹ Increase of publications in food digestion
associating food scientists, nutritionists and
gut physiologists
0
200
400
600
800
1000
1200
1991 1995 2000 2005 2009
Numberofscientificpublications
Year
How the food matrix structure influence food digestion?
3
Outline
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
Outline
4
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
Outline
5
Food structure?
Food structure or ‘‘food matrix’’ = organisation of food constituents at multiple spatial
scales
Provided by nature or imparted during processing and preparation (food manufacturing)
 Impact on food quality in particular on sensory and nutritional aspects
 Insight in food structure and how it changes during processing operations is essential for
producing high quality food
Source: Aguilera, 2005, 2007; COST Action FA1001: insidefood
Multiple scale structural elements
Mackie and Macierzanka, 2010
Interactions proteins - lipids
and their interactions
6
Example of food structures produced by milk
processing
Source : Aguilera, 2005
7
Nutritional quality of a food
ïŹ Food  Nutrient content
Synthetic indicator : balance between the « good » and « bad » nutrients
Example: nutritional profil SAIN LIM (Darmon & Darmon, 2008)
Average % of the coverage or excess of the recommendations for
the nutrients of interest
SAIN : Score d’AdĂ©quation Individuel aux recommandations Nutritionnelles /
Adequate Score for Nutritional Recommendations
ïŹ Proteins, Fibres, Vitamine C, Calcium, Iron
LIM: score des nutriments Ă  LIMiter / Nutrients to limit
ïŹ Sodium, Saturated Fatty Acids, Added Sugars
 Recognized by the French authorities
8
Impact of a process on the nutritionnal
quality profil
Source: Achir et al., Journal of Food Engineering, 2010
5
Apple drying
9Source: Guerra et al., 2012, Trends in Biotechnology
Food digestion : regional specificity of the digestive tract
*
* No lingual lipase coded in humans.
Bacterial origin?
The physical properties of a food matrix can affect the efficiency of the
physical, enzymatic and chemical digestion processes
10
Nutritional quality of a nutrient
ïŹ Nutrient  bioavailability
Fraction of a nutrient that has been digested and absorbed
and is available for (has been used by) the metabolic functions of
the organism
IleumMouth Stomach Duodenum Jejunum
Blood
Structured
food
Raw
ingredients
Colon
Faeces
Absorption
Urine
Digestion Excretion
Metabolism
11
Adult Mini-pig Piglet
Human adult Neonate
Use and development of in vivo models
Bioavailability :
 measure in the blood plasma
 metabolic utilization : waste from digestion (faeces) + metabolism
(urine, blood)
12
Blood sampling
Bioavailability measure
Bioavailability = Area Under the Curve (quantity of nutrient absorbed) x 100
quantity of nutrient ingested
13
Bioavailability estimates
IleumMouth Stomach Duodenum Jejunum
Blood
Structured
food
Raw
ingredients
Colon
Faeces
Absorption
Urine
Digestion Excretion
Metabolism
Digestibility: (Ningested – Nfaeces )/Ningested
Net Postprandial Protein Utilisation (NPPU):
(Ningested – Nfaeces – Nurine – Nurea blood)/ Ningested
Biological value: NPPU/Digestibility
14
Nutritional quality of a nutrient / in vitro
ïŹ Nutrient  bioaccessibility
fraction of a compound that is released from its matrix in the
gastro-intestinal tract during digestion and thus becomes
available for intestinal absorption (Fernandez-Garcia et al. , Nut Res, 2009)
IleumMouth Stomach Duodenum Jejunum
Blood
Structured
food
Raw
ingredients
Colon
Faeces
Absorption
Urine
Digestion Excretion
15
le VMBB : enzymes
Digestion models for the adult and the neonate
Duodenal
Phase
Static Conditions
Gastric
Phase
Epithelial
Phase
Constant pH
No flow
Constant [Enzymes]
Dynamic Conditions
Partnership with UMR GMPA Grignon
Regulated pH
Dynamic flow
Regulated[Enzymes]
Development of in vitro digestion models
 Bioaccessibility
16
Estomac Duodénum Jéjunum Iléonestomac duodénum jéjunum iléon
Will the liquid dairy sample
coagulate when entering in
the stomach???
Prediction of the
rheological behaviour of an
IF in gastric conditions
Viscosity of the gel
Macroscopic scale
Proteins Lipids Microscopic scale
Stomach Duodenum Jejunum Ileum
0
5
10
15
20
25
30
35
0 25 50 75 100 125 150 175 200
time (min)
G'(Pa)
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
pH
Sample 1
Sample 2
pH
Multi-scale characterization of digested food
17
Mass Spectrometry
Surprol
More than 4700
peptides identified in
the human jejunum
ELISA
0%
10%
20%
30%
40%
50%
Est 30' Est 1h30 Est 3h30
ïą-lactoglobulin
ïĄ-lactalbumin
Caseins
Multi-scale characterization of digested food
Antibody arrays Molecular scale
18
Development of in vitro digestion & absorption models
Source : Prada & Aguilera, 2007
CaCo-2 cells: human epithelial colorectal adenocarcinoma cells  differentiated
enterocyte  absorption
HT29-MTX cells : goblet cell clone  mucus secretion (Walter et al., 2000)
19Source : Fernandez-Garcia et al. , Nut Res, 2009
Bioavailability & bioaccessibility
20
Outline
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
21
Carbohydrate : starch
Amylose : linear structure
( gel)
Amylopectine : branched structure
( viscosity)
Amylose content varies with the botanic species (mean : 20% / waxy wheat : 0%)
Starch digestion  hydrolysis of glycosidic bond
‱Linkage ïĄ-1,4 : salivary and pancreatic amylase
‱Linkage ïĄ-1,6 (amylopectine) : membrane isomaltase (after amylase)
Starch microstructure: granular (2-130 ”m ) / cristalline
22
Starch granule organisation
Source Jenkins et al., 1996
23
Starch granule
Native and modified starch
granules
24
Starch cooking
ïŹ Raw starch : insoluble in cold water, low digestibility
ïŹ Cooking with water and heat
– gelatinisation : destruction of the cristalline structure, starch granule
swelling increased digestibility
– retrogradation of starch (semi-cristalline structure) with cooling
 decreased digestibility
Source: B. Boursier, techniques de l’ingĂ©nieur, 2005
 Different behaviour
according to the botanical
sources (ex: potato vs. cereal)
25
Structure evolution of starch during
gelatinisation
Source: Bogracheva et al. 2006 ; Crowther, 2012
Light microscope
under polarised
light
20 ”m
Light microscope
under polarised
light
26
Starch cooking
ïŹ Cooking with dry heat (dextrinisation)
Extrusion/milling :
starch destructuration: digestibility increased
ïŹ Resistant starch (retrogradation, raw, non accessible,
high amylose content)
digestibility decreased(« fonctionnal fibers »)
27
Glycemic index : glucose release kinetics
CarbohydratesFood
Gastric
emptying
Digestion
Viscosity
Energy
Lipids
X
X
Absorption
Nature & structure
-Composition
- amylose/amylopectine
- associated nutrients
-Mecanical and thermal treatments
- water cooking (gélatinisation)
- extrusion (fusion)
-Dry cooking (dextrinisation)
-Milling
28
Glycemic index (GI)
1. 50 g of carbohydrates to test
2. Blood sampling (at regular intervals for 2-3 h)
3. Blood glucose content
4. Comparison with the reference (glucose)
5. Average on 8-10 volunteers
Source: Brand-Miller et al., AJCN, 2005
GI (%)=100 x AUC food
AUC reference
29
High
Average
Low
GI
Alone Mixed diet
Food GI
30
High
Average
Low
GI
Alone Mixed diet
Food GI
31
GI & health
Glucose as reference
Low GI (spagetthis: 50) < 55
Average GI(pain blanc: 69) 55-70
High GI (corn flakes: 80) > 70
Low GI
prolonged glucose disposal
 before exercise (toughness)
 potentially with a satiating effect
 hypoglycaemia delayed
High GI
short glucose disposal
 after exercise: stock recovery
 Diet with high GI : potential impact on weight gain, food intake,
triglyceride synthesis increased , oxydative stress
32
ïŹ GI (Amylopectine) > GI(Amylose)
branched chain of amylopectin: more area accessible to enzymes
 amylose: more rigid gel less accessible to enzymes/ more retrogradation
Starch nature & GI
(Behall et al., Am J Clin Nutr 1988)
n=26
33
 Starch gelatinisation increases its
digestibility
Source Holm et al, Am J Clin Nutr 1988Degree of hydrolysis of starch at
différent degree of gelatinisation (DG)
Correlation among degree of
gelatinisation, digestion rate, plasma
glucose and insuline in rat
DG0
DG14
DG37
DG71
DG85
Starch structure and digestibililty
In vitro digestion
Metabolic response in rats
34
Starch cooking, degree of gelatinisation (DG) and blood
glucose (GI)
Parada & Aguiliera, 2009,2012
 Gelatinisation of starch increases its glycemic index
Starch structure and GI
n=1
35
23 cereal products:
BC : breakfast cereals (5)
BP&C : bakery products and crackers (6)
Bi : Biscuits (12)
 The higher the gelatinisation
degree, the higher is the GI
 Impact of other nutrients
Source : Englyst et al. Br J Nutr 2003
Glycemic index
Degree of gelatinisation
Starch structure and GI
Biscuits baked under very-low-moisture conditions
Degree of gelatinisation reduced
Degreeofgelatinisation
n=13
36
Product
Bread (reference)
Oat flakes
Oat flakes
Oat flakes
Oat flakes
Oat flakes
Kernel
Pretreatment
Oven+Steam
Oven
Steam
Oven
Raw
Thickness
0.5 mm
0.5 mm
1 mm
1 mm
1 mm
Gelatinisation
%
24
16
16
16
0
GI
100a
114 ± 12a
99 ± 10ab
76 ± 8c
72 ± 9c
78 ± 9bc
Degree of gelatinisation, flake thickness
and glycemic index
Granfeldt et al, J Nutr 2000
n=10
 Minimal processing of oat flakes : minor effect on GI features
compared with the more extensive commercial processing
37
Dense Common Bread
Sourdough breadTradition Bread
Tradition Bread + fibres
Dense Tradition Bread
60±8a –0.24
55±9b – D: 0.24
55±8b – 0.30
53±8b – 0.32
62±13a – 0.21
Common Bread + fibres
Common Bread
GI: 75±11a – D: 0.16
Process and composition impact
53±8b – 0.29
GI and
texture
(density: D)
Source: Rizkalla, 2009
Glycemic
index
Insulinemic
index
Bread
density
38
‱ Starch nature: amylose +++
‱ RS1: native starch physically inacessible in entire crops (no grinding)
‱RS2: native starch granules that resist to digestion (no extensive
gelatinisation : moisture < 40 % ou T<Tgelatinisation)
‱ RS3 : retrograded starch
High heat treatment (> 120°C) favors the amylose cristallisation during cooling
and limits its capacity to re-gelification
‱ RS4: starch chemically modified
Resistant starch
39
Resistant starch & health
40
Source : Murakami et al., Eur J Clin Nutr 2007
 Positive association between high GI diet, low fiber intake
& BMI
Impact of a diet with high glycemic index
on health
n=3931 japanese women
41
 Cardiovascular disease risk increased by high GI diet
Mente et al., Arch Intern Med 2009
Impact of a diet with high glycemic index
on health
42
PlasmaF2-isoprostane(ng/mL)
P for trend : p=0.03
Plasmamalondialdehyde(”mol/L)
P for trend : p=0.02
 Increase of the oxidative stress in plasma
Quartiles of GI diet (Average GI: Q1,50.3; Q2, 53.6; Q3, 55.8; Q4, 59.9, n=291)
Adjusted data for age, gender, BMI, tobacco, alcool, kcal, proteins, fibres, folates and cholesterol
Source: Hu et al., Am J Clin Nutr 2006
Impact of a diet with a high glycemic
index on health
43
Diet with high GI increases the risk of non-insulinodependant
diabetes (type II)
Source: Schulze et al., Am J Clin Nutr 2004
Relative risk and confidence interval at 95% of diabete II according to the GI diet
quintile in 91 249 women
Impact of a diet with high glycemic index
on health
44
(1) Raw material choice (+++)
Balance amylose/amylopectine
Associated nutrients (proteins and fibres)
(2) Mecanical and thermal treatment
Grinding
Extrusion
Water (gelatinisation) / Dry(dextrinisation)
Conclusion: Technology and glycemic
index
45
Outline
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
46
Kinetics of digestion influence kinetics of AA absorption
Plasma
Am J Clin Nutr, 2006
n=23
-400
-200
0
200
400
600
800
1000
1200
0 1 2 3 4 5 6 7 8 9
Temps (h)AAtotaux(”mol/L)
Prot. Sériques Caséines
0
10
20
30
40
50
60
70
80
90
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Temps de digestion (h)
Nombre de
peptides
0
0,1
0,2
0,3
0,4
0,5
0,6
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6
Time (h)
Ntot (mmol/mL)
Caseins
Whey Prot.
Surprol
Small intestine
n=14
Caseins
Whey Prot.
47
 Different theoretical models have been proposed
Walstra & Jennes
1984
The «submicellar model »
Holt 1994
The «hard-sphere model »
Milk protein microstructure : casein micelle
Marchin et
al.
2007
Dalgleish et
al.
2004
200 nm
The real organisation of individual caseins within the micelle remains unknown
48
Casein micelle reactivity
From F. Gaucheron, INRA
AcidificationAcidification
HeatHeattreatmentstreatments
>90>90°°CC
Denaturated whey proteins
Calciumphosphate
k-casein, peptides, NH3
Calciumphosphate
Casein(before precipitation)
Addition of diAddition of di
or trivalentor trivalent
cationscations
Cations
Anions
Lactose
Protons
Addition of NaClAddition of NaCl
AdditionAddition
ofof
chelatantschelatants
H2O
Caséines
Calciumphosphate
Calcium
CoolingCooling
Calcium
phosphate
ïą-casein
Caseins
AlkalinisationAlkalinisation
(micellar(micellar
Caseins
H2O
H2O
H2O
H2O
Calcium
&
phosphate
Caseins
AcidificationAcidification
HeatHeattreatmentstreatments
>90>90°°CC
Calciumphosphate
k-
Calciumphosphate
(
Addition of diAddition of di
or trivalentor trivalent
cationscations
Cations
Anions
Lactose
Protons
Addition of NaClAddition of NaCl
AdditionAddition
ofof
chelatantschelatants
H2O
Caséines
Calciumphosphate
Calcium
CoolingCooling
Calcium
phosphate
ïą-casein
Caseins
AlkalinisationAlkalinisation
(micellar(micellar destructuration
Caseins
H2O
H2O
H2O
H2O
Calcium
&
phosphate
Caseins
49
Milk protein microstructure : Whey proteins
ïĄ-lactalbumin
Lactoferrin
ïą-lactoglobulin
Serumalbumin
‱ Globular proteins
‱ Known 3D-structures
‱ Sensitive to heat-
denaturation
‱ Highly resistant to
proteolysis (digestion)
50
10
nm
Casein micelle
MW = 0.5-1 x 106 kDa
av. diam = 180 nm
ïą-lactoglobulin
MW = 18.6 kDa
2 SS bridges + 1 SH
ïĄ-lactalbumin
MW = 14.2 kDa
4 SS bridges
Schematic representation of whey proteins and casein
micelle in a raw milk
k Casein
MW = 19.0 kDa
SS bridges
Milk proteins
51
Milk macrostructure and N bioavailability
Dietary N absorption is slower for yogurt
than for milk
 Kinetics of N bioavailibility related to
physical state of dairy products
(liquid/gel)
milk
yogurt
Gastric emptying
of PEG
Intestinal fluxes
of dietary N
In pig
Gaudichon et al,
J Nutr, 94
yogurtmilk
In human. Gaudichon et al, B J Nutr, 95
time
Dietary N in plasma
Famelart et al., 2011
% N bioavailable
52
Meat macrostructure
Meat cubes
Minced meat
Catheterised mini-pigs
Kinetics of IAA bioavailibility
related to physical state of meat
(cube/minced)
Source: Boback et al., Comparative Biochemistry and Physiology, 2007
Energy needed to digest, absorb, and
assimilate meat meals in pythons
53
Meat macrostructure
Fast proteins (whey proteins)
Slow proteins (caseins)
Meat (high chewing efficiency)
Meat (low chewing efficiency)
 Fast proteins favour postprandial
anabolism in elderly
Anabolicutilisation
%ofNingested
Healthy
teeth
Prothesis
NPPU
Plasmaleucine
Young adults Elderly
Fast
protein
Slow
protein
54
Mild heat treatment (< 100°C): protein conformation impacted
no impact or increase of overall digestibility
Heat treatment & protein bioavailbility
Source: Evenpoel et al., J Nutr, 1998
55
Heat treatment of meat (<100°) and bioavailability
of amino acids
Source: Bax et al., Plos One, 2013
 Cooking temperature (<100°C) can modulate the speed of meat
protein digestion, without affecting the overall efficiency of the small
intestinal digestion
Experiment conducted in mini-pigs (n=6) True ileal digestibility of N
60°C: 94.7 ± 0.5 %
75°C: 96.3 ± 0.4 %
95°C: 95.1 ± 0.7%
56
High heat treatment (> 100°C): modification of the primary
structure of the proteins
– Formation of covalent bonds intra ou intermolecular (Lys, Arg) : 
decrease of protein digestibility and amino acid bioavailability
– Isomerisation of AA (LD): bioavailability decreased (Thr, Ile, Lys)
– Maillard /Strecker reaction (reducing sugars): lysine bioavailability
reduced
– AA destruction (Arg, Thr, Ser, Cys, Ile)
– Toxic derivates (fire grill)
ïŹ Example: formation of benzopyrene by pyrolysis of AA  mutagen properties
Heat treatment & protein bioavailbility
57
Scanning Electron
Microscope
micrographs
Transverse sections
of beef muscle raw
and cooked
Source: Palka & Daun, Meat Science, 1999
Raw 50°C
60°C 70°C
80°C 90°C
100°C 121°C
58
Meat cooking (100°C) and protein digestibility
Source: Santé-Lhoutellier et al., J. Agric. Food Chem, 2008
protein hydrophobicity (Bromophenol Blue staining) as observed by microscopy (white scale bar: 100 ÎŒm)
Addition of gastric and pancreactic digestion:
-quick cooking (100 °C/5min or 270 °C/1 min)
 no effect on protein digestibility
-Long cooking (100°C, 45 min)
 decrease of digestibility (of 75%)
Effect of 100 °C cooking on
protein aggregation (Nile Red staining)
gastric phase pancreatic phase
In vitro static model of digestion
59
Gastric digestion & oxidative modification of
myofibrillar proteins
Source: Santé-Lhoutellier et al., J. Agric. Food Chem, 2008; Bax et al, JAFC, 2012
Proposed mechanism of pepsin action on meat proteins as raw or
heated at different cooking temperatures
60Source: Petitot et al., Food Chem, 2009
Heat (&water) on in vitro digestibility of cereal protein
of pasta
Low Temperature: 55°C, High Temperature: 70°, Very HT: 90°C moisture level : 20%
VHT-LM: 90°C - low moisture level : 12%
Hydrolysis degree at 10 MIN
61Source: Petitot et al., Food Chem, 2009
Elution profile of proteins by steric exclusion chromatography
Soluble proteins
Insoluble proteins
Heat (&water) treatment impact on protein
aggregation
62
Impact of milk heat treatment on casein digestion
CNs: major allergen in neonates
Native CNs very sensitive to hydrolysis
Step 2 :
Heat
treatment
80°C/20 s 105°C/60 s
85°C / 3 min
80°C/20 s 105°C/60 s
85°C / 3 min
Concentrate 1 Concentrate 2
Step 1:
water suspension 25% Dry Matter 35% Dry Matter
Ultra low heat fat-free
milk powder
Step 3 :
Drying
control
In vitro digestion / neonate model
Sample preparation
Source : Dupont et al. Mol Nutr Food Res, 2010
63
Source : Dupont et al. Mol Nutr Food Res, 2010
Milk powder
60 min
pH 3.0
+ pepsin
+ PC
Gastric
phase
Duodenal
phase
30 min
pH 6.5
+ trypsin
+ chymotrypsin
+ bile salts
Sampling at 0, 1, 2, 5, 10, 20, 40
and 60 min
Sampling at 0, 1, 2, 5, 10, 15 and
30 min
Biochemical characterisation
SDS-PAGE, LC-MS-MS, ELISA
Impact of milk heat treatment on casein digestion
Neonate digestion : in vitro model
64
 Heat treatment (>100°C) increases casein restistance to digestion
Impact of milk heat treatment on casein digestion
SDS-PAGE gels
of the digesta
T
A C
E G
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
0 1 2 5 10 20 40 60 1 5 15 30
0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60
0 1 2 5 10 20 40 600 1 2 5 10 20 40 60
1 5 15 30 1 5 15 30
1 5 15 30 1 5 15 30
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
0 1 2 5 10 20 40 60 1 5 15 30
Gastric Duodenal
F
Gastric Duodenal
B
1 5 15 300 1 2 5 10 20 40 60
T
A C
E G
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
0 1 2 5 10 20 40 60 1 5 15 30
0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60
0 1 2 5 10 20 40 600 1 2 5 10 20 40 60
1 5 15 30 1 5 15 30
1 5 15 30 1 5 15 30
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
0 1 2 5 10 20 40 60 1 5 15 30
Gastric Duodenal
F
Gastric Duodenal
B
1 5 15 300 1 2 5 10 20 40 60
T
A C
E G
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
0 1 2 5 10 20 40 60 1 5 15 30
0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60
0 1 2 5 10 20 40 600 1 2 5 10 20 40 60
1 5 15 30 1 5 15 30
1 5 15 30 1 5 15 30
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
66.3
55.4
36.5
31.0
21.5
14.4
6.0
3.5
2.5
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
Gastric Duodenal
0 1 2 5 10 20 40 60 1 5 15 30
Gastric Duodenal
F
Gastric Duodenal
B
1 5 15 300 1 2 5 10 20 40 60
A: 25% DM, 80°C, 20s B: 25% DM, 85°C, 3 min C: 25% DM, 105°C, 60 s
E: 35% DM, 80°C, 20s F: 35% DM, 85°C, 3 min G: 35% DM, 105°C, 60 s
control
Caseins
65
Peptide identification in digesta by LC-MS-MS
Peptide Bioactivity A B C E F G T
ÎČ-CN(f108-113) Anti-hypertensif
ÎČ-CN(f114-119) OpioĂŻd agoniste
ÎČ-CN(f193-202) Anti-hypertensif
ÎČ-CN(f193-209) Immunomodulatoire
ïĄs1-CN(f1-23) Antimicrobien
ïĄs1-CN(f23-34) Anti-hypertensif
ïĄs1-CN(f91-100) Anti-stress
ïĄs1-CN(144-149) Antioxidant
ÎČ-lg(f9-14) Anti-hypertensif
 Peptide profile varies with process
66
unheated milk
(raw milk)
rehydration in
water
heated milk
heat treatment
90 C-10 min
Ultra Low Heat
powder
rennet gel
24h-20 C,
rennet
pH 6.6
rennet gel
24h-20 C,
rennet
pH 6.6
10 ”m
microstructure
macrostructure
Impact of milk structure on protein digestion and
amino acid bioavailability
Source : Barbé et al., 2013
Sample preparation
67
 caseins: susceptibility to hydrolysis with or without heat treatment
 ÎČ-lactoglobulin: heat-induced susceptibility to hydrolysis
Impact of the microstructure (heat treatment) on protein digestion
unheated milk heated milk
caseins
ÎČ-lactoglobulin
ÎČ-lactoglobulin
caseins
Impact of milk structure on protein digestion and amino acid bioavailability
68
Formation of soluble and micelle-bound aggregates
Casein micelle in heated milk,
in SEM (Harwalkar et al., 1989)
100 nm
Serum of heated milk
observed by SEM (Rodriguez
del Angel & Dalgleish, 2006)
Heat-induced protein aggregation in milk
Micelle bound aggregates From Guyomarc’h & Famelart
micelle-bound
aggregates
dissociation of
k casein
[b]
[a]
serum aggregates
10 nm
micelle-bound
aggregates
dissociation of
k casein
[b]
[a]
serum aggregates
10 nm
heat treatment (90 C, 10 min) =
Ÿ of whey protein denaturation
and association to casein
micelles
Jean et al., 2006
denatured ïą-lg
denatured ïĄ-la
k casein
ïĄs2 casein
casein
micelles
10 nm
whey
69
Impact of milk structure on amino acid
bioavailability n = 4 minipigs
Major impact of the macrostructure (liquid vs gel) on leucine bioavailibility
Smaller impact of the microstructure (heat treatment)
70Source: Lacroix et al., JAFC, 2006
Heat treatment impact on bioavailability of milk
proteins in rat
Lower metabolic utilisation of N for spray-dried milk
Unheated
Low-heat pasteurisation
High-heat p asteurisation
Utra High Temperature
Spray-dried milk
Caseins
Whey proteins
71
Heat treatment impact on bioavailability of milk
proteins in human
Source: Lacroix et al, J Nutr, 2008
Dietary N incorporation into plasma amino acids
 digestive kinetics modified
due to protein denaturation
n=25
60
64
68
72
76
80
Microfiltered Pasteurised UHT
Netpostprandialprotein
utilisation(%)
72
Reverse chromatography (RP-HPLC) of milk proteins
Unheated
Low-heat pasteurisation
High-heat p asteurisation
Utra High Temperature
Spray-dried milk
Caseins
Whey proteins
Source: Lacroix et al., JAFC, 2006 72
Type of milk
73
0 10
Time (min)
OD214nm
Source: Lacroix et al., JAFC, 2006
Reverse chromatography of whey proteins
Unheated milk
Low-heat pasteurisation
High-heat p asteurisation
Utra High Temperature
Spray-dried milk
Caseins
Whey proteins
Protein aggregation
+ Lactosylation of
beta-lactoglobulines :
first products of the
Maillard reaction
74
– Alkaline treatment
ïŹ Vegetal protein extraction
ïŹ Detoxification
– Ex: destruction of aflatoxines
ïŹ Solubilisation and texturation of vegetal proteins
Destruction/modification AA :
ïŹ Isomerisation of AA (Thr, Ile, Lys) from L to D
ïŹ Neoformation of AA (cys et phosphosĂ©rine 
dehydrolalanine) / formation of covalent bond type :
lysinoalanine (heat treatment)
Reduction of protein digestibility
Reduction of lysine bioavailability
Technological treatment and protein bioavailability
75Source: Friedman et al., JAFC, 1999
Metabolic utilisation reduced for some D-amino acids
76
ïŹ Proteins - lipids
– Hydrophobic interaction
– Covalent bond with lipid oxidation derivate
 Reduction of lysine bioavailability and protein digestibility
ïŹ Proteins-polyphenols (vegetal food)
– Covalent bond between lysine and quinone (polyphenol
oxidation by enzymes or alkaline pH)
 Reduction of lysine bioavailability and protein digestibility
ïŹ Proteins - nitrites, sulfites or chlore derivates
– Minimal decrease of bioavailability
– Formation of toxic compounds (nitrosamines, dichlorovinylcystĂ©ine,
methionine sulfoximine)
Protein interaction with other nutrients
77
Outline
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
78
Technological treatment and lipid bioavailability
Partial hydrogenation (less sensitive to oxidation, liquid solid)
– Insaturated fatty acid cis  trans
Example : margarine (1-2 % for new process, 15 up to 60 % for poor quality process) (ANSES, 2005)
ïŹ Metabolised instead of other insaturated fatty acids
ïŹ Increased risk of cardiovascular diseases for a daily intake of trans-
fatty acids > 2 % of the total daily energy intake
 increase of LDL cholesterol and decrease of HDL cholesterol
– Insaturated satured (partially) fatty acids
ïŹ Increased risk of cardiovascular diseases
79
Saturated fatty acids and cardiovascular disease risk
protective
At risk
Source: deOliveira et
al., AJCN, 2012
80
– High heat treatment (frying)
– Destruction of indispensable fatty acids
– Toxic compounds
ïŹ Lung cancer in women inhaling vapor from fish frying in China & Taiwan
(Yang et al., 2000)
ïŹ Lipid peroxdation : malondialdehyde (MDA) released with prolonged
frying mutagen effect of MDA but not of the oil (Saguy & Dana, J Food
Engineer, 2003)
ïŹ Maillard reaction in meat: heterocyclic amines
(reduced release for T<200°C, spices (antioxydant), microowaves)
 risk factor for colon cancer
– Trans fatty acids (repeated frying/ exchange food-oil)
– Hydrolysis of ester bond  free fatty acids more oxidable
– Oxidation  hydroperoxide  plasma oxidative stress
Technological treatment and lipid bioavailability
81
Impact of fat droplet size on lipid bioavailability
Source: Armand et al., AJCN, 1999
Human experiment (n=8)
Emulsion : 50g olive/fish oil (+ carbohydrates + protein)
Fat droplet size : Fine emulsion : 10 ”m vs. Coarse emulsion : 0.7 ”m
Stomach lipid digestibility
7-16% vs 20-37%
Duodenal lipid digestibility
37-46% vs 57-73%
82
Impact of the emulsifying agent on lipid digestion (in vitro)
Tween 20 Lysolect. Caseinate Whey Prot
Before digestion
+ saliva 5 min
+ gastric juice 2 h
+ dudodenal juice
2 h
Source: Hur et al., Food Chem, 2009
83
Impact of the emulsifying agent on lipid bioavailability
Source: Golding et al., Soft Matter, 2011
Postprandial triglycerids in the plasma
(n=8 healthy subjets)
stearoyl-lactilate sodium
84
Impact of fat structure on bioavailability
Source: Vors et al., AJCN, 20123
n=9 n=9
Spread (non-emulsified)
Emulsion (oil-in-water/milk)
Fat structure impacts fatty
acid and chylomicron plasma
kinetics but not overall
digestibility
85Source: Vors et al., AJCN, 20123
Impact of fat structure on metabolic oritentation
Fat structure impacts fatty
acid oxidation kinetics
Fat structure impacts digestive
kinetics and subsequently metabolic
orientation
 More oxidation for rapidly
digested fat (emulsifion) than
for non-emulsified fat
 Slow vs fast fat
86
Blood triglycerides and cardiovacular
disease risk
Source: Michalski, Eur. J. Lipid Sci, 2009
87
Human milk pasteurisation : impact on protein & lipid
digestion
Pasteurisation
 Aggregation of proteins
around the native fat globule
Mild heat treatment in human milk 
Proteolysis increased for caseins and lactoferrin
No impact on whey proteins (SA and alpha-lac)
3.5
2.5
6
14
21
31
36
55
66
97
116
200
Time (min)
0 30 60 120 150
KDa
IgA
IgG
X0
Lf
SA
Bt
Cas ÎČ
Cas Îș
α-lac
Gastric digestion
88
Human milk pasteurisation : impact on protein & lipid
digestion
Free Fatty Acids
Diglycerid s(sn-1,2)
/
Cholesterol
Monoglycerid
PL/Prot
Triglycerids
Diglycerid s (sn-1,3)
Time
(min)
0 30 60 120 30 60 120 180
Gastric digestion Intestinal digestion
0 min
30 min
60 min
120 min
150 min
0
25
50
75
0 30 60 120
Greyintensity
(AU)
 Lipolysis reduced in the gastric digestion in
pasteurised milk vs. raw milk
 Due to BSSL inactivation and structure effect ?
89
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
Outline
90
Micronutrients from plant foods and location
within the tissue
Source: Parada & Aguilera, 2007
91
Plant processing and micronutrient bioavailability
Source: Parada & Aguilera, 2007
92
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
Outline
93
Carotenoids
ïŹ Carotenoids : natural pigments yellow-orange red-purple,
highly hydrophobic compounds located in specialized plant
plastids (chromoplasts) of fruits, vegetables, mushrooms, algae
ïŹ About 10 % of carotenoids (bĂȘta-, alpha-, gamma-carotĂšne,
cryptoxanthine): vitamin A precursor
– Beta-carotùne: orange fruits (carott, apricot, mango), red palm oil,
dark green vegetables (hidden by chlorophylle)
– Vitamin A: necessary for vision, epithelium tissu preservation,
bone growth, immune system
93
Liver
(storage form)
Retine
(Vision)
Bone, mucosa
94
ïŹ Absorption: requires incorporation of lipophilic
carotenoids into mixed micelles (dietary lipids, bile
salts, and other lipophilic or amphiphilic compounds)
 Liberation : fraction of the test compound released from the food matrix
into the aqueous supernatant
Bioaccessibility : fraction of the test compound released from the food
matrix into the aqueous supernatant and transferred into mixed micelles
ïŹ Bioaccessibility / Bioavailability vary according to the
botanical origin : Green vegetables < oranges vegetables <fruits < oil
ïŹ Process (thermal and/or mecanical) : increase the
bioavailability of carotens by destruction of the
vegetal matrix (Van Buggenhout et al., Trends in Food Science & Technology 2010)
Carotenoids
95
Chromoplast structure & bioaccessibility of
carotenoids
Light micrographs of carrot root and mango, papaya, and tomato fruit
mesocarp. Arrows mark chromoplasts.
Source: Schweiggert et al, Food Chem, 2012
Crystalloid
Globular-tubular
BA: 10.1%a BA: 5.3%b
BA: 3.1%cBA: 0.5%d
Beta-carotene: 652 ”g/100g
Beta-carotene: 485 ”g/100g
Beta-carotene: 13 080 ”g/100g
Beta-carotene: 680 ”g/100g
96
Chromoplast structure & bioaccessibility of
carotenoids
Source: Schweiggert et al, Food Chem, 2012
Liberation and bioaccessibility
Bioaccessibility & oil addition
Impact of
pectin and
other fibers
97
ïŹ Carotts: cooking increases bioavailability of beta-carotenes
– Plasma beta-carotene : 2-3 times higher for cooked and process
carotts (canning and heating at 121 C°)
97
Carott processing and bioavailability of carotenoids
Source: Rock et al., 1998; Livny et al., 2003
98
ïŹ Carotts: cooking increases bioavailability of beta-carotenes
– Plasma beta-carotene for commercial puree carrot > home-made
puree carrot and raw grated carrot (Edwards et al., 2002)
– Research still necessary to optimise process maximizing
carotenoid bioavailability
98
Vitamin A conversion
Commercial puree: 44 ± 11%a
Home-made puree: 59 ± 12%b
Grated carrot: 63 ± 10%ab
Carott processing and bioavailability of carotenoids
99
Effect of addition of oil on micellarisation of carotenoids from crude
and cooked carrots in respect to the carotenoid content in the corresponding
digest.
Hornero-Mendez et al., 2007
Addition of oil into carotts and bioavailability
of carotenoids
100
Plan
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
101
Iron & spinach
101
Digestion of
cellular
structures
Breakdown of
cellular
structures
Source : Crispin et al., 2002
102
Plan
1. Definition
1. Food structure
2. Bioavailability vs. bioaccessibility
2. Food structure and macronutrient bioavailability
1. Carbohydrates
2. Proteins
3. Lipids
3. Food structure and micronutrient bioavailability
1. Micronutrients from plant food
2. Carotenoids and beta-carotenes
3. Iron
4. Conclusion
Plan
A L I M E N T A T I O N
A G R I C U L T U R E
E N V I R O N N E M E N T
Improving health properties of food by
sharing our knowledge on the digestive
process
COST Action FA1005
INFOGEST
Chair: Dr. Didier DUPONT, Senior Scientist, INRA, France
104
Characterization of raw
materials and processed
food matrices for optimized
nutrient bioaccessibility
WG1
Evaluation of the health
effects
WG3
In vitro, in vivo and in
silico models of
mammalian
gastrointestinal digestion
WG2
- Food allergenicity and immunomodulatory properties
- Kinetics of digestion / regulation of appetite and satiety
- Protein metabolization on human microbiota
- Impact of ACE inhibitors on cardiovascular diseases
Beneficial food component characterization
Stability of bioactives during processing
Multi-scale characterization of food
Harmonization of in vitro digestion models
Comparison in vitro / in vivo
Characterization of the digestion products
Resistance to peptidases and absorption
Active form of food components in the organism
Dairy
Fruits & Vegetables
Egg
105
Riddet Inst
New Zealand
Canada
Laval Univ
Univ Guelph
Nofima
Ege Univ
Rothamsted Res
Centr Food Res Inst
Univ Belgrade
INRA
Wageningen UR
Inst Food Res
MTT
Univ Ghent
Univ Greifswald
Teagasc
Tech Univ Denmark
CSIC
AgroParisTech
Milan State Univ
Univ Bologna
Norwegian Univ Life Sci
Polish Academy of Sci
Leatherhead Food Res
150 scientists - 50 institutions – 26 countries
VTT
Univ Eastern Finland
Max Rubner-Institut
Ben Gurion Univ
KTU Food Inst
Cent Rech Lippmann
Univ Alto Douro
Univ Novi Sad
Agroscope Posieux
Univ LeedsUniv Reading
Univ Aarhus
Technion
ITQB
Pom Med Univ
106
The application of innovative
fundamental food-structure-property
relationships to the design of foods for
health, wellness and pleasure
COST Action FA1001
Food Structure Design
http://www.insidefood.eu
107
Food structure vs. bioavailability
Source: Parada & Aguilera, 2007
A L I M E N T A T I O N
A G R I C U L T U R E
E N V I R O N N E M E N T
Conclusion
‱ Nutritionnal quality of a food not only impacted by
nutrient content but also by its structure
‱ Key factor for processed foods
‱ Food structure impacts on digestive events (gastric
phase: key step) and subsequently on metabolic
orientation
‱ Food structure : key parameter to control or modify
nutrient bioavailability nutrition for specific
popultation (elederly, sportmen, baby..)
‱ Relationship among food structure/digestion/health
 burning topic in science
 further knowledge required

More Related Content

What's hot

Ammonia from cattle part 2 final
Ammonia from cattle part 2 finalAmmonia from cattle part 2 final
Ammonia from cattle part 2 finalLPE Learning Center
 
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...Molecular rearrangement of waxy and normal maize starch granulesduring in vit...
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...Annie Teng
 
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...DSM Animal Nutrition & Health
 
Exploring the potential of red kidney beans
Exploring the potential of red kidney beans   Exploring the potential of red kidney beans
Exploring the potential of red kidney beans Dr Asif Ahmad
 
Dr. Pedro Urriola - Overview Of Enzymes
Dr. Pedro Urriola - Overview Of EnzymesDr. Pedro Urriola - Overview Of Enzymes
Dr. Pedro Urriola - Overview Of EnzymesJohn Blue
 
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014DSM Animal Nutrition & Health
 
Extraction of beta glucan from oat and its lipoprotein profile
Extraction of beta glucan from oat and its lipoprotein profileExtraction of beta glucan from oat and its lipoprotein profile
Extraction of beta glucan from oat and its lipoprotein profileDr Asif Ahmad
 
We can expect more from new generation NSP enzymes
We can expect more from new generation NSP enzymes We can expect more from new generation NSP enzymes
We can expect more from new generation NSP enzymes Milling and Grain magazine
 
Handout (obesity 2011)
Handout (obesity 2011)Handout (obesity 2011)
Handout (obesity 2011)mitmartin88
 
Extraction and charcaterization of beta glucan from oat for industrial utiliz...
Extraction and charcaterization of beta glucan from oat for industrial utiliz...Extraction and charcaterization of beta glucan from oat for industrial utiliz...
Extraction and charcaterization of beta glucan from oat for industrial utiliz...Dr Asif Ahmad
 
Distillers grains & Milk fat depression
Distillers grains & Milk fat depression Distillers grains & Milk fat depression
Distillers grains & Milk fat depression Fernando Diaz
 
Nutritional importance of carbohydrates
Nutritional importance of carbohydratesNutritional importance of carbohydrates
Nutritional importance of carbohydratesrohini sane
 
Protease to enhance meat and bone meal amino acids by broilers
Protease to enhance meat and bone meal amino acids by broilersProtease to enhance meat and bone meal amino acids by broilers
Protease to enhance meat and bone meal amino acids by broilersDSM Animal Nutrition & Health
 
Physiochemical and functional properties of barley b-glucan as affected by di...
Physiochemical and functional properties of barley b-glucan as affected by di...Physiochemical and functional properties of barley b-glucan as affected by di...
Physiochemical and functional properties of barley b-glucan as affected by di...Dr Asif Ahmad
 
7. Friday Monogastric Sessions dr peter selle university of sydney - phytas...
7. Friday Monogastric Sessions dr peter selle   university of sydney - phytas...7. Friday Monogastric Sessions dr peter selle   university of sydney - phytas...
7. Friday Monogastric Sessions dr peter selle university of sydney - phytas...2damcreative
 
Diet Affects Intestinal Health Lab Animal 2016
Diet Affects Intestinal Health Lab Animal 2016Diet Affects Intestinal Health Lab Animal 2016
Diet Affects Intestinal Health Lab Animal 2016Mike Pellizzon
 
Krill yağının karaciğer ĂŒzerinde etkileri
Krill yağının karaciğer ĂŒzerinde etkileriKrill yağının karaciğer ĂŒzerinde etkileri
Krill yağının karaciğer ĂŒzerinde etkileriyekosan
 

What's hot (20)

Ammonia from cattle part 2 final
Ammonia from cattle part 2 finalAmmonia from cattle part 2 final
Ammonia from cattle part 2 final
 
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...Molecular rearrangement of waxy and normal maize starch granulesduring in vit...
Molecular rearrangement of waxy and normal maize starch granulesduring in vit...
 
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
 
Exploring the potential of red kidney beans
Exploring the potential of red kidney beans   Exploring the potential of red kidney beans
Exploring the potential of red kidney beans
 
Dr. Pedro Urriola - Overview Of Enzymes
Dr. Pedro Urriola - Overview Of EnzymesDr. Pedro Urriola - Overview Of Enzymes
Dr. Pedro Urriola - Overview Of Enzymes
 
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014
Use of proteases the Brazilian experience- Rostagno et al Amsterdam 2014
 
Not all feed enzymes are created equal
Not all feed enzymes are created equalNot all feed enzymes are created equal
Not all feed enzymes are created equal
 
Extraction of beta glucan from oat and its lipoprotein profile
Extraction of beta glucan from oat and its lipoprotein profileExtraction of beta glucan from oat and its lipoprotein profile
Extraction of beta glucan from oat and its lipoprotein profile
 
Organic acids in monogastric nutrition
Organic acids in monogastric nutritionOrganic acids in monogastric nutrition
Organic acids in monogastric nutrition
 
We can expect more from new generation NSP enzymes
We can expect more from new generation NSP enzymes We can expect more from new generation NSP enzymes
We can expect more from new generation NSP enzymes
 
Handout (obesity 2011)
Handout (obesity 2011)Handout (obesity 2011)
Handout (obesity 2011)
 
Extraction and charcaterization of beta glucan from oat for industrial utiliz...
Extraction and charcaterization of beta glucan from oat for industrial utiliz...Extraction and charcaterization of beta glucan from oat for industrial utiliz...
Extraction and charcaterization of beta glucan from oat for industrial utiliz...
 
Distillers grains & Milk fat depression
Distillers grains & Milk fat depression Distillers grains & Milk fat depression
Distillers grains & Milk fat depression
 
Nutritional importance of carbohydrates
Nutritional importance of carbohydratesNutritional importance of carbohydrates
Nutritional importance of carbohydrates
 
Protease to enhance meat and bone meal amino acids by broilers
Protease to enhance meat and bone meal amino acids by broilersProtease to enhance meat and bone meal amino acids by broilers
Protease to enhance meat and bone meal amino acids by broilers
 
AMINO ACID IMBALANCE, ANTAGONISM AND TOXICITY by Dr Sunil kumar B
AMINO ACID IMBALANCE, ANTAGONISM AND TOXICITY by Dr Sunil kumar BAMINO ACID IMBALANCE, ANTAGONISM AND TOXICITY by Dr Sunil kumar B
AMINO ACID IMBALANCE, ANTAGONISM AND TOXICITY by Dr Sunil kumar B
 
Physiochemical and functional properties of barley b-glucan as affected by di...
Physiochemical and functional properties of barley b-glucan as affected by di...Physiochemical and functional properties of barley b-glucan as affected by di...
Physiochemical and functional properties of barley b-glucan as affected by di...
 
7. Friday Monogastric Sessions dr peter selle university of sydney - phytas...
7. Friday Monogastric Sessions dr peter selle   university of sydney - phytas...7. Friday Monogastric Sessions dr peter selle   university of sydney - phytas...
7. Friday Monogastric Sessions dr peter selle university of sydney - phytas...
 
Diet Affects Intestinal Health Lab Animal 2016
Diet Affects Intestinal Health Lab Animal 2016Diet Affects Intestinal Health Lab Animal 2016
Diet Affects Intestinal Health Lab Animal 2016
 
Krill yağının karaciğer ĂŒzerinde etkileri
Krill yağının karaciğer ĂŒzerinde etkileriKrill yağının karaciğer ĂŒzerinde etkileri
Krill yağının karaciğer ĂŒzerinde etkileri
 

Similar to Food structure and bioavailability - INFOGEST, 2013

Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiology
Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiologyDr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiology
Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiologyJohn Blue
 
The Food metabolome
The Food metabolomeThe Food metabolome
The Food metabolomeClaudine Manach
 
Chapter 6Protein1Define the composition of protein
Chapter 6Protein1Define the composition of proteinChapter 6Protein1Define the composition of protein
Chapter 6Protein1Define the composition of proteinJinElias52
 
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...Impact of dietary pattern of the fecal donor on in vitro fermentation propert...
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...Sandrayee Brahma, Ph.D.
 
Beta glucan, A valuable Ingredient in foods
Beta glucan, A  valuable Ingredient in foodsBeta glucan, A  valuable Ingredient in foods
Beta glucan, A valuable Ingredient in foodsDr Asif Ahmad
 
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg BASF
 
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron Coweison
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron CoweisonPoultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron Coweison
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron CoweisonPoultry India
 
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...DSM Animal Nutrition & Health
 
Intro into Nutrigenomics & molecular nutrition research
Intro into Nutrigenomics & molecular nutrition researchIntro into Nutrigenomics & molecular nutrition research
Intro into Nutrigenomics & molecular nutrition researchNorwich Research Park
 
Nanjing1 2013 Lecture "Nutrigenomics part 1"
Nanjing1 2013 Lecture "Nutrigenomics part 1"Nanjing1 2013 Lecture "Nutrigenomics part 1"
Nanjing1 2013 Lecture "Nutrigenomics part 1"Norwich Research Park
 
Applicationofinvitrobioaccessibilityandbioavailability
ApplicationofinvitrobioaccessibilityandbioavailabilityApplicationofinvitrobioaccessibilityandbioavailability
ApplicationofinvitrobioaccessibilityandbioavailabilityNguyen Vinh
 
Dieta e Microbiota intestinale: quale rapporto
Dieta e Microbiota intestinale: quale rapportoDieta e Microbiota intestinale: quale rapporto
Dieta e Microbiota intestinale: quale rapportoASMaD
 
Nutritional assessment by Dr. Rajan Bikram Rayamajhi
Nutritional assessment by Dr. Rajan Bikram RayamajhiNutritional assessment by Dr. Rajan Bikram Rayamajhi
Nutritional assessment by Dr. Rajan Bikram Rayamajhiwrigveda
 
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...Norwich Research Park
 
Kiwifruit and Digestive Comfort by Dr Carlene Starck
Kiwifruit and Digestive Comfort by Dr Carlene StarckKiwifruit and Digestive Comfort by Dr Carlene Starck
Kiwifruit and Digestive Comfort by Dr Carlene StarckKiwifruit Symposium
 
Austin publishing group - Oral kefir grains supplementation improves metaboli...
Austin publishing group - Oral kefir grains supplementation improves metaboli...Austin publishing group - Oral kefir grains supplementation improves metaboli...
Austin publishing group - Oral kefir grains supplementation improves metaboli...Austin Publishing Group
 
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...Konstantin Borisenko
 
Probioticos e CVD
Probioticos e CVDProbioticos e CVD
Probioticos e CVDRuy Pantoja
 
We are what we eat - The role of diets in the gut-microbiota-health interaction
We are what we eat - The role of diets in the gut-microbiota-health interactionWe are what we eat - The role of diets in the gut-microbiota-health interaction
We are what we eat - The role of diets in the gut-microbiota-health interactionNorwich Research Park
 
Exogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feedExogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feedEng. Mohammad Alsaleh
 

Similar to Food structure and bioavailability - INFOGEST, 2013 (20)

Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiology
Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiologyDr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiology
Dr. Tom Burkey - Host-Microbe Interactions: Effects on nutrition and physiology
 
The Food metabolome
The Food metabolomeThe Food metabolome
The Food metabolome
 
Chapter 6Protein1Define the composition of protein
Chapter 6Protein1Define the composition of proteinChapter 6Protein1Define the composition of protein
Chapter 6Protein1Define the composition of protein
 
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...Impact of dietary pattern of the fecal donor on in vitro fermentation propert...
Impact of dietary pattern of the fecal donor on in vitro fermentation propert...
 
Beta glucan, A valuable Ingredient in foods
Beta glucan, A  valuable Ingredient in foodsBeta glucan, A  valuable Ingredient in foods
Beta glucan, A valuable Ingredient in foods
 
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg
Dietary Bioactive Components: Where Do We Go From Now?": Jeffrey Blumberg
 
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron Coweison
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron CoweisonPoultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron Coweison
Poultry India - Knowledge Day 2015 Speaker Prof. Dr. Aaron Coweison
 
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...
The role of intestinal health in broiler production - e. o. oviedo at DSM Eur...
 
Intro into Nutrigenomics & molecular nutrition research
Intro into Nutrigenomics & molecular nutrition researchIntro into Nutrigenomics & molecular nutrition research
Intro into Nutrigenomics & molecular nutrition research
 
Nanjing1 2013 Lecture "Nutrigenomics part 1"
Nanjing1 2013 Lecture "Nutrigenomics part 1"Nanjing1 2013 Lecture "Nutrigenomics part 1"
Nanjing1 2013 Lecture "Nutrigenomics part 1"
 
Applicationofinvitrobioaccessibilityandbioavailability
ApplicationofinvitrobioaccessibilityandbioavailabilityApplicationofinvitrobioaccessibilityandbioavailability
Applicationofinvitrobioaccessibilityandbioavailability
 
Dieta e Microbiota intestinale: quale rapporto
Dieta e Microbiota intestinale: quale rapportoDieta e Microbiota intestinale: quale rapporto
Dieta e Microbiota intestinale: quale rapporto
 
Nutritional assessment by Dr. Rajan Bikram Rayamajhi
Nutritional assessment by Dr. Rajan Bikram RayamajhiNutritional assessment by Dr. Rajan Bikram Rayamajhi
Nutritional assessment by Dr. Rajan Bikram Rayamajhi
 
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...
From  Nutrigenomics to Systems Nutrition - The role of nutrition in metabolic...
 
Kiwifruit and Digestive Comfort by Dr Carlene Starck
Kiwifruit and Digestive Comfort by Dr Carlene StarckKiwifruit and Digestive Comfort by Dr Carlene Starck
Kiwifruit and Digestive Comfort by Dr Carlene Starck
 
Austin publishing group - Oral kefir grains supplementation improves metaboli...
Austin publishing group - Oral kefir grains supplementation improves metaboli...Austin publishing group - Oral kefir grains supplementation improves metaboli...
Austin publishing group - Oral kefir grains supplementation improves metaboli...
 
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...
Advances in understanding_enzyme_substrates_in_feed_and_available_solutions_r...
 
Probioticos e CVD
Probioticos e CVDProbioticos e CVD
Probioticos e CVD
 
We are what we eat - The role of diets in the gut-microbiota-health interaction
We are what we eat - The role of diets in the gut-microbiota-health interactionWe are what we eat - The role of diets in the gut-microbiota-health interaction
We are what we eat - The role of diets in the gut-microbiota-health interaction
 
Exogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feedExogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feed
 

More from Food Chemistry and Engineering

Food microstructure characterization by micro-CT
Food microstructure characterization by micro-CTFood microstructure characterization by micro-CT
Food microstructure characterization by micro-CTFood Chemistry and Engineering
 
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el Aprendizaje
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el AprendizajeCuestionario HĂĄbitos de Estudio y MotivaciĂłn para el Aprendizaje
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el AprendizajeFood Chemistry and Engineering
 
Biopolimeros en aguas residuales - José Torres
Biopolimeros en aguas residuales - José TorresBiopolimeros en aguas residuales - José Torres
Biopolimeros en aguas residuales - José TorresFood Chemistry and Engineering
 
Microondas en la conservación de los alimentos - José Torres
Microondas en la conservación de los alimentos - José TorresMicroondas en la conservación de los alimentos - José Torres
Microondas en la conservación de los alimentos - José TorresFood Chemistry and Engineering
 
Aplicación de la alta presión hidroståtica - José Torres
Aplicación de la alta presión hidroståtica   - José TorresAplicación de la alta presión hidroståtica   - José Torres
Aplicación de la alta presión hidroståtica - José TorresFood Chemistry and Engineering
 
Tamizado separaciones mecånicas - José Torres
Tamizado separaciones mecånicas - José TorresTamizado separaciones mecånicas - José Torres
Tamizado separaciones mecånicas - José TorresFood Chemistry and Engineering
 

More from Food Chemistry and Engineering (13)

Food microstructure characterization by micro-CT
Food microstructure characterization by micro-CTFood microstructure characterization by micro-CT
Food microstructure characterization by micro-CT
 
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el Aprendizaje
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el AprendizajeCuestionario HĂĄbitos de Estudio y MotivaciĂłn para el Aprendizaje
Cuestionario HĂĄbitos de Estudio y MotivaciĂłn para el Aprendizaje
 
Modelamiento en la fritura
Modelamiento en la frituraModelamiento en la fritura
Modelamiento en la fritura
 
Destilación solar - José Torres
Destilación solar - José TorresDestilación solar - José Torres
Destilación solar - José Torres
 
Recubrimientos comestibles - José Torres
Recubrimientos comestibles - José TorresRecubrimientos comestibles - José Torres
Recubrimientos comestibles - José Torres
 
Fritura al vacio - José Torres
Fritura al vacio - José TorresFritura al vacio - José Torres
Fritura al vacio - José Torres
 
Carne como alimento funcional - José Torres
Carne como alimento funcional - José TorresCarne como alimento funcional - José Torres
Carne como alimento funcional - José Torres
 
Envejecimiento del pan - José Torres
Envejecimiento del pan - José TorresEnvejecimiento del pan - José Torres
Envejecimiento del pan - José Torres
 
Biopolimeros en aguas residuales - José Torres
Biopolimeros en aguas residuales - José TorresBiopolimeros en aguas residuales - José Torres
Biopolimeros en aguas residuales - José Torres
 
Microondas en la conservación de los alimentos - José Torres
Microondas en la conservación de los alimentos - José TorresMicroondas en la conservación de los alimentos - José Torres
Microondas en la conservación de los alimentos - José Torres
 
Aplicación de la alta presión hidroståtica - José Torres
Aplicación de la alta presión hidroståtica   - José TorresAplicación de la alta presión hidroståtica   - José Torres
Aplicación de la alta presión hidroståtica - José Torres
 
Fritura y textura de papas - José Torres
Fritura y textura de papas - José TorresFritura y textura de papas - José Torres
Fritura y textura de papas - José Torres
 
Tamizado separaciones mecånicas - José Torres
Tamizado separaciones mecånicas - José TorresTamizado separaciones mecånicas - José Torres
Tamizado separaciones mecånicas - José Torres
 

Recently uploaded

Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Servicemakika9823
 
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...narwatsonia7
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls AvailableNehru place Escorts
 
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Deliverynehamumbai
 
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune) Girls ServiceMiss joya
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiNehru place Escorts
 
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipurparulsinha
 
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Nehru place Escorts
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 

Recently uploaded (20)

Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
 
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
Call Girls Doddaballapur Road Just Call 7001305949 Top Class Call Girl Servic...
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 âŁïžđŸ’Ż Top Class Girls Available
 
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
 
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❀ 9920874524 👈 Cash on Delivery
 
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➄9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
 
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❀8445551418 VIP Call Girls Jaipur
 
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 

Food structure and bioavailability - INFOGEST, 2013

  • 1. INFOGEST PhD Training School “Food Digestion and Human Health” Gdansk, Poland 23th of April 2013 AmĂ©lie Deglaire amelie.deglaire@agrocampus-ouest.fr Food structure vs. nutrient bioavailability
  • 2. 2 Introduction ïŹ Nutrient bioavailability  availability for the metabolic functions of the organism  ≀ nutrient content of a food  The best indicator of the nutritional quality of a nutrient ïŹ Influencing factors  Chemical state of the nutrient  Interactions with other food components  Presence of antinutritional factors  Release from the food matrix ïŹ Recent data : influence of the matrix state of natural foods or the microstructure of processed foods ( or ) ïŹ Increase of publications in food digestion associating food scientists, nutritionists and gut physiologists 0 200 400 600 800 1000 1200 1991 1995 2000 2005 2009 Numberofscientificpublications Year How the food matrix structure influence food digestion?
  • 3. 3 Outline 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion Outline
  • 4. 4 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion Outline
  • 5. 5 Food structure? Food structure or ‘‘food matrix’’ = organisation of food constituents at multiple spatial scales Provided by nature or imparted during processing and preparation (food manufacturing)  Impact on food quality in particular on sensory and nutritional aspects  Insight in food structure and how it changes during processing operations is essential for producing high quality food Source: Aguilera, 2005, 2007; COST Action FA1001: insidefood Multiple scale structural elements Mackie and Macierzanka, 2010 Interactions proteins - lipids and their interactions
  • 6. 6 Example of food structures produced by milk processing Source : Aguilera, 2005
  • 7. 7 Nutritional quality of a food ïŹ Food  Nutrient content Synthetic indicator : balance between the « good » and « bad » nutrients Example: nutritional profil SAIN LIM (Darmon & Darmon, 2008) Average % of the coverage or excess of the recommendations for the nutrients of interest SAIN : Score d’AdĂ©quation Individuel aux recommandations Nutritionnelles / Adequate Score for Nutritional Recommendations ïŹ Proteins, Fibres, Vitamine C, Calcium, Iron LIM: score des nutriments Ă  LIMiter / Nutrients to limit ïŹ Sodium, Saturated Fatty Acids, Added Sugars  Recognized by the French authorities
  • 8. 8 Impact of a process on the nutritionnal quality profil Source: Achir et al., Journal of Food Engineering, 2010 5 Apple drying
  • 9. 9Source: Guerra et al., 2012, Trends in Biotechnology Food digestion : regional specificity of the digestive tract * * No lingual lipase coded in humans. Bacterial origin? The physical properties of a food matrix can affect the efficiency of the physical, enzymatic and chemical digestion processes
  • 10. 10 Nutritional quality of a nutrient ïŹ Nutrient  bioavailability Fraction of a nutrient that has been digested and absorbed and is available for (has been used by) the metabolic functions of the organism IleumMouth Stomach Duodenum Jejunum Blood Structured food Raw ingredients Colon Faeces Absorption Urine Digestion Excretion Metabolism
  • 11. 11 Adult Mini-pig Piglet Human adult Neonate Use and development of in vivo models Bioavailability :  measure in the blood plasma  metabolic utilization : waste from digestion (faeces) + metabolism (urine, blood)
  • 12. 12 Blood sampling Bioavailability measure Bioavailability = Area Under the Curve (quantity of nutrient absorbed) x 100 quantity of nutrient ingested
  • 13. 13 Bioavailability estimates IleumMouth Stomach Duodenum Jejunum Blood Structured food Raw ingredients Colon Faeces Absorption Urine Digestion Excretion Metabolism Digestibility: (Ningested – Nfaeces )/Ningested Net Postprandial Protein Utilisation (NPPU): (Ningested – Nfaeces – Nurine – Nurea blood)/ Ningested Biological value: NPPU/Digestibility
  • 14. 14 Nutritional quality of a nutrient / in vitro ïŹ Nutrient  bioaccessibility fraction of a compound that is released from its matrix in the gastro-intestinal tract during digestion and thus becomes available for intestinal absorption (Fernandez-Garcia et al. , Nut Res, 2009) IleumMouth Stomach Duodenum Jejunum Blood Structured food Raw ingredients Colon Faeces Absorption Urine Digestion Excretion
  • 15. 15 le VMBB : enzymes Digestion models for the adult and the neonate Duodenal Phase Static Conditions Gastric Phase Epithelial Phase Constant pH No flow Constant [Enzymes] Dynamic Conditions Partnership with UMR GMPA Grignon Regulated pH Dynamic flow Regulated[Enzymes] Development of in vitro digestion models  Bioaccessibility
  • 16. 16 Estomac DuodĂ©num JĂ©junum IlĂ©onestomac duodĂ©num jĂ©junum ilĂ©on Will the liquid dairy sample coagulate when entering in the stomach??? Prediction of the rheological behaviour of an IF in gastric conditions Viscosity of the gel Macroscopic scale Proteins Lipids Microscopic scale Stomach Duodenum Jejunum Ileum 0 5 10 15 20 25 30 35 0 25 50 75 100 125 150 175 200 time (min) G'(Pa) 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 pH Sample 1 Sample 2 pH Multi-scale characterization of digested food
  • 17. 17 Mass Spectrometry Surprol More than 4700 peptides identified in the human jejunum ELISA 0% 10% 20% 30% 40% 50% Est 30' Est 1h30 Est 3h30 ïą-lactoglobulin ïĄ-lactalbumin Caseins Multi-scale characterization of digested food Antibody arrays Molecular scale
  • 18. 18 Development of in vitro digestion & absorption models Source : Prada & Aguilera, 2007 CaCo-2 cells: human epithelial colorectal adenocarcinoma cells  differentiated enterocyte  absorption HT29-MTX cells : goblet cell clone  mucus secretion (Walter et al., 2000)
  • 19. 19Source : Fernandez-Garcia et al. , Nut Res, 2009 Bioavailability & bioaccessibility
  • 20. 20 Outline 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion
  • 21. 21 Carbohydrate : starch Amylose : linear structure ( gel) Amylopectine : branched structure ( viscosity) Amylose content varies with the botanic species (mean : 20% / waxy wheat : 0%) Starch digestion  hydrolysis of glycosidic bond ‱Linkage ïĄ-1,4 : salivary and pancreatic amylase ‱Linkage ïĄ-1,6 (amylopectine) : membrane isomaltase (after amylase) Starch microstructure: granular (2-130 ”m ) / cristalline
  • 23. 23 Starch granule Native and modified starch granules
  • 24. 24 Starch cooking ïŹ Raw starch : insoluble in cold water, low digestibility ïŹ Cooking with water and heat – gelatinisation : destruction of the cristalline structure, starch granule swelling increased digestibility – retrogradation of starch (semi-cristalline structure) with cooling  decreased digestibility Source: B. Boursier, techniques de l’ingĂ©nieur, 2005  Different behaviour according to the botanical sources (ex: potato vs. cereal)
  • 25. 25 Structure evolution of starch during gelatinisation Source: Bogracheva et al. 2006 ; Crowther, 2012 Light microscope under polarised light 20 ”m Light microscope under polarised light
  • 26. 26 Starch cooking ïŹ Cooking with dry heat (dextrinisation) Extrusion/milling : starch destructuration: digestibility increased ïŹ Resistant starch (retrogradation, raw, non accessible, high amylose content) digestibility decreased(« fonctionnal fibers »)
  • 27. 27 Glycemic index : glucose release kinetics CarbohydratesFood Gastric emptying Digestion Viscosity Energy Lipids X X Absorption Nature & structure -Composition - amylose/amylopectine - associated nutrients -Mecanical and thermal treatments - water cooking (gĂ©latinisation) - extrusion (fusion) -Dry cooking (dextrinisation) -Milling
  • 28. 28 Glycemic index (GI) 1. 50 g of carbohydrates to test 2. Blood sampling (at regular intervals for 2-3 h) 3. Blood glucose content 4. Comparison with the reference (glucose) 5. Average on 8-10 volunteers Source: Brand-Miller et al., AJCN, 2005 GI (%)=100 x AUC food AUC reference
  • 31. 31 GI & health Glucose as reference Low GI (spagetthis: 50) < 55 Average GI(pain blanc: 69) 55-70 High GI (corn flakes: 80) > 70 Low GI prolonged glucose disposal  before exercise (toughness)  potentially with a satiating effect  hypoglycaemia delayed High GI short glucose disposal  after exercise: stock recovery  Diet with high GI : potential impact on weight gain, food intake, triglyceride synthesis increased , oxydative stress
  • 32. 32 ïŹ GI (Amylopectine) > GI(Amylose) branched chain of amylopectin: more area accessible to enzymes  amylose: more rigid gel less accessible to enzymes/ more retrogradation Starch nature & GI (Behall et al., Am J Clin Nutr 1988) n=26
  • 33. 33  Starch gelatinisation increases its digestibility Source Holm et al, Am J Clin Nutr 1988Degree of hydrolysis of starch at diffĂ©rent degree of gelatinisation (DG) Correlation among degree of gelatinisation, digestion rate, plasma glucose and insuline in rat DG0 DG14 DG37 DG71 DG85 Starch structure and digestibililty In vitro digestion Metabolic response in rats
  • 34. 34 Starch cooking, degree of gelatinisation (DG) and blood glucose (GI) Parada & Aguiliera, 2009,2012  Gelatinisation of starch increases its glycemic index Starch structure and GI n=1
  • 35. 35 23 cereal products: BC : breakfast cereals (5) BP&C : bakery products and crackers (6) Bi : Biscuits (12)  The higher the gelatinisation degree, the higher is the GI  Impact of other nutrients Source : Englyst et al. Br J Nutr 2003 Glycemic index Degree of gelatinisation Starch structure and GI Biscuits baked under very-low-moisture conditions Degree of gelatinisation reduced Degreeofgelatinisation n=13
  • 36. 36 Product Bread (reference) Oat flakes Oat flakes Oat flakes Oat flakes Oat flakes Kernel Pretreatment Oven+Steam Oven Steam Oven Raw Thickness 0.5 mm 0.5 mm 1 mm 1 mm 1 mm Gelatinisation % 24 16 16 16 0 GI 100a 114 ± 12a 99 ± 10ab 76 ± 8c 72 ± 9c 78 ± 9bc Degree of gelatinisation, flake thickness and glycemic index Granfeldt et al, J Nutr 2000 n=10  Minimal processing of oat flakes : minor effect on GI features compared with the more extensive commercial processing
  • 37. 37 Dense Common Bread Sourdough breadTradition Bread Tradition Bread + fibres Dense Tradition Bread 60±8a –0.24 55±9b – D: 0.24 55±8b – 0.30 53±8b – 0.32 62±13a – 0.21 Common Bread + fibres Common Bread GI: 75±11a – D: 0.16 Process and composition impact 53±8b – 0.29 GI and texture (density: D) Source: Rizkalla, 2009 Glycemic index Insulinemic index Bread density
  • 38. 38 ‱ Starch nature: amylose +++ ‱ RS1: native starch physically inacessible in entire crops (no grinding) ‱RS2: native starch granules that resist to digestion (no extensive gelatinisation : moisture < 40 % ou T<Tgelatinisation) ‱ RS3 : retrograded starch High heat treatment (> 120°C) favors the amylose cristallisation during cooling and limits its capacity to re-gelification ‱ RS4: starch chemically modified Resistant starch
  • 40. 40 Source : Murakami et al., Eur J Clin Nutr 2007  Positive association between high GI diet, low fiber intake & BMI Impact of a diet with high glycemic index on health n=3931 japanese women
  • 41. 41  Cardiovascular disease risk increased by high GI diet Mente et al., Arch Intern Med 2009 Impact of a diet with high glycemic index on health
  • 42. 42 PlasmaF2-isoprostane(ng/mL) P for trend : p=0.03 Plasmamalondialdehyde(”mol/L) P for trend : p=0.02  Increase of the oxidative stress in plasma Quartiles of GI diet (Average GI: Q1,50.3; Q2, 53.6; Q3, 55.8; Q4, 59.9, n=291) Adjusted data for age, gender, BMI, tobacco, alcool, kcal, proteins, fibres, folates and cholesterol Source: Hu et al., Am J Clin Nutr 2006 Impact of a diet with a high glycemic index on health
  • 43. 43 Diet with high GI increases the risk of non-insulinodependant diabetes (type II) Source: Schulze et al., Am J Clin Nutr 2004 Relative risk and confidence interval at 95% of diabete II according to the GI diet quintile in 91 249 women Impact of a diet with high glycemic index on health
  • 44. 44 (1) Raw material choice (+++) Balance amylose/amylopectine Associated nutrients (proteins and fibres) (2) Mecanical and thermal treatment Grinding Extrusion Water (gelatinisation) / Dry(dextrinisation) Conclusion: Technology and glycemic index
  • 45. 45 Outline 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion
  • 46. 46 Kinetics of digestion influence kinetics of AA absorption Plasma Am J Clin Nutr, 2006 n=23 -400 -200 0 200 400 600 800 1000 1200 0 1 2 3 4 5 6 7 8 9 Temps (h)AAtotaux(”mol/L) Prot. SĂ©riques CasĂ©ines 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Temps de digestion (h) Nombre de peptides 0 0,1 0,2 0,3 0,4 0,5 0,6 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 Time (h) Ntot (mmol/mL) Caseins Whey Prot. Surprol Small intestine n=14 Caseins Whey Prot.
  • 47. 47  Different theoretical models have been proposed Walstra & Jennes 1984 The «submicellar model » Holt 1994 The «hard-sphere model » Milk protein microstructure : casein micelle Marchin et al. 2007 Dalgleish et al. 2004 200 nm The real organisation of individual caseins within the micelle remains unknown
  • 48. 48 Casein micelle reactivity From F. Gaucheron, INRA AcidificationAcidification HeatHeattreatmentstreatments >90>90°°CC Denaturated whey proteins Calciumphosphate k-casein, peptides, NH3 Calciumphosphate Casein(before precipitation) Addition of diAddition of di or trivalentor trivalent cationscations Cations Anions Lactose Protons Addition of NaClAddition of NaCl AdditionAddition ofof chelatantschelatants H2O CasĂ©ines Calciumphosphate Calcium CoolingCooling Calcium phosphate ïą-casein Caseins AlkalinisationAlkalinisation (micellar(micellar Caseins H2O H2O H2O H2O Calcium & phosphate Caseins AcidificationAcidification HeatHeattreatmentstreatments >90>90°°CC Calciumphosphate k- Calciumphosphate ( Addition of diAddition of di or trivalentor trivalent cationscations Cations Anions Lactose Protons Addition of NaClAddition of NaCl AdditionAddition ofof chelatantschelatants H2O CasĂ©ines Calciumphosphate Calcium CoolingCooling Calcium phosphate ïą-casein Caseins AlkalinisationAlkalinisation (micellar(micellar destructuration Caseins H2O H2O H2O H2O Calcium & phosphate Caseins
  • 49. 49 Milk protein microstructure : Whey proteins ïĄ-lactalbumin Lactoferrin ïą-lactoglobulin Serumalbumin ‱ Globular proteins ‱ Known 3D-structures ‱ Sensitive to heat- denaturation ‱ Highly resistant to proteolysis (digestion)
  • 50. 50 10 nm Casein micelle MW = 0.5-1 x 106 kDa av. diam = 180 nm ïą-lactoglobulin MW = 18.6 kDa 2 SS bridges + 1 SH ïĄ-lactalbumin MW = 14.2 kDa 4 SS bridges Schematic representation of whey proteins and casein micelle in a raw milk k Casein MW = 19.0 kDa SS bridges Milk proteins
  • 51. 51 Milk macrostructure and N bioavailability Dietary N absorption is slower for yogurt than for milk  Kinetics of N bioavailibility related to physical state of dairy products (liquid/gel) milk yogurt Gastric emptying of PEG Intestinal fluxes of dietary N In pig Gaudichon et al, J Nutr, 94 yogurtmilk In human. Gaudichon et al, B J Nutr, 95 time Dietary N in plasma Famelart et al., 2011 % N bioavailable
  • 52. 52 Meat macrostructure Meat cubes Minced meat Catheterised mini-pigs Kinetics of IAA bioavailibility related to physical state of meat (cube/minced) Source: Boback et al., Comparative Biochemistry and Physiology, 2007 Energy needed to digest, absorb, and assimilate meat meals in pythons
  • 53. 53 Meat macrostructure Fast proteins (whey proteins) Slow proteins (caseins) Meat (high chewing efficiency) Meat (low chewing efficiency)  Fast proteins favour postprandial anabolism in elderly Anabolicutilisation %ofNingested Healthy teeth Prothesis NPPU Plasmaleucine Young adults Elderly Fast protein Slow protein
  • 54. 54 Mild heat treatment (< 100°C): protein conformation impacted no impact or increase of overall digestibility Heat treatment & protein bioavailbility Source: Evenpoel et al., J Nutr, 1998
  • 55. 55 Heat treatment of meat (<100°) and bioavailability of amino acids Source: Bax et al., Plos One, 2013  Cooking temperature (<100°C) can modulate the speed of meat protein digestion, without affecting the overall efficiency of the small intestinal digestion Experiment conducted in mini-pigs (n=6) True ileal digestibility of N 60°C: 94.7 ± 0.5 % 75°C: 96.3 ± 0.4 % 95°C: 95.1 ± 0.7%
  • 56. 56 High heat treatment (> 100°C): modification of the primary structure of the proteins – Formation of covalent bonds intra ou intermolecular (Lys, Arg) :  decrease of protein digestibility and amino acid bioavailability – Isomerisation of AA (LD): bioavailability decreased (Thr, Ile, Lys) – Maillard /Strecker reaction (reducing sugars): lysine bioavailability reduced – AA destruction (Arg, Thr, Ser, Cys, Ile) – Toxic derivates (fire grill) ïŹ Example: formation of benzopyrene by pyrolysis of AA  mutagen properties Heat treatment & protein bioavailbility
  • 57. 57 Scanning Electron Microscope micrographs Transverse sections of beef muscle raw and cooked Source: Palka & Daun, Meat Science, 1999 Raw 50°C 60°C 70°C 80°C 90°C 100°C 121°C
  • 58. 58 Meat cooking (100°C) and protein digestibility Source: SantĂ©-Lhoutellier et al., J. Agric. Food Chem, 2008 protein hydrophobicity (Bromophenol Blue staining) as observed by microscopy (white scale bar: 100 ÎŒm) Addition of gastric and pancreactic digestion: -quick cooking (100 °C/5min or 270 °C/1 min)  no effect on protein digestibility -Long cooking (100°C, 45 min)  decrease of digestibility (of 75%) Effect of 100 °C cooking on protein aggregation (Nile Red staining) gastric phase pancreatic phase In vitro static model of digestion
  • 59. 59 Gastric digestion & oxidative modification of myofibrillar proteins Source: SantĂ©-Lhoutellier et al., J. Agric. Food Chem, 2008; Bax et al, JAFC, 2012 Proposed mechanism of pepsin action on meat proteins as raw or heated at different cooking temperatures
  • 60. 60Source: Petitot et al., Food Chem, 2009 Heat (&water) on in vitro digestibility of cereal protein of pasta Low Temperature: 55°C, High Temperature: 70°, Very HT: 90°C moisture level : 20% VHT-LM: 90°C - low moisture level : 12% Hydrolysis degree at 10 MIN
  • 61. 61Source: Petitot et al., Food Chem, 2009 Elution profile of proteins by steric exclusion chromatography Soluble proteins Insoluble proteins Heat (&water) treatment impact on protein aggregation
  • 62. 62 Impact of milk heat treatment on casein digestion CNs: major allergen in neonates Native CNs very sensitive to hydrolysis Step 2 : Heat treatment 80°C/20 s 105°C/60 s 85°C / 3 min 80°C/20 s 105°C/60 s 85°C / 3 min Concentrate 1 Concentrate 2 Step 1: water suspension 25% Dry Matter 35% Dry Matter Ultra low heat fat-free milk powder Step 3 : Drying control In vitro digestion / neonate model Sample preparation Source : Dupont et al. Mol Nutr Food Res, 2010
  • 63. 63 Source : Dupont et al. Mol Nutr Food Res, 2010 Milk powder 60 min pH 3.0 + pepsin + PC Gastric phase Duodenal phase 30 min pH 6.5 + trypsin + chymotrypsin + bile salts Sampling at 0, 1, 2, 5, 10, 20, 40 and 60 min Sampling at 0, 1, 2, 5, 10, 15 and 30 min Biochemical characterisation SDS-PAGE, LC-MS-MS, ELISA Impact of milk heat treatment on casein digestion Neonate digestion : in vitro model
  • 64. 64  Heat treatment (>100°C) increases casein restistance to digestion Impact of milk heat treatment on casein digestion SDS-PAGE gels of the digesta T A C E G 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 0 1 2 5 10 20 40 60 1 5 15 30 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 600 1 2 5 10 20 40 60 1 5 15 30 1 5 15 30 1 5 15 30 1 5 15 30 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal 0 1 2 5 10 20 40 60 1 5 15 30 Gastric Duodenal F Gastric Duodenal B 1 5 15 300 1 2 5 10 20 40 60 T A C E G 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 0 1 2 5 10 20 40 60 1 5 15 30 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 600 1 2 5 10 20 40 60 1 5 15 30 1 5 15 30 1 5 15 30 1 5 15 30 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal 0 1 2 5 10 20 40 60 1 5 15 30 Gastric Duodenal F Gastric Duodenal B 1 5 15 300 1 2 5 10 20 40 60 T A C E G 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 0 1 2 5 10 20 40 60 1 5 15 30 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 60 0 1 2 5 10 20 40 600 1 2 5 10 20 40 60 1 5 15 30 1 5 15 30 1 5 15 30 1 5 15 30 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 66.3 55.4 36.5 31.0 21.5 14.4 6.0 3.5 2.5 Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal Gastric Duodenal 0 1 2 5 10 20 40 60 1 5 15 30 Gastric Duodenal F Gastric Duodenal B 1 5 15 300 1 2 5 10 20 40 60 A: 25% DM, 80°C, 20s B: 25% DM, 85°C, 3 min C: 25% DM, 105°C, 60 s E: 35% DM, 80°C, 20s F: 35% DM, 85°C, 3 min G: 35% DM, 105°C, 60 s control Caseins
  • 65. 65 Peptide identification in digesta by LC-MS-MS Peptide Bioactivity A B C E F G T ÎČ-CN(f108-113) Anti-hypertensif ÎČ-CN(f114-119) OpioĂŻd agoniste ÎČ-CN(f193-202) Anti-hypertensif ÎČ-CN(f193-209) Immunomodulatoire ïĄs1-CN(f1-23) Antimicrobien ïĄs1-CN(f23-34) Anti-hypertensif ïĄs1-CN(f91-100) Anti-stress ïĄs1-CN(144-149) Antioxidant ÎČ-lg(f9-14) Anti-hypertensif  Peptide profile varies with process
  • 66. 66 unheated milk (raw milk) rehydration in water heated milk heat treatment 90 C-10 min Ultra Low Heat powder rennet gel 24h-20 C, rennet pH 6.6 rennet gel 24h-20 C, rennet pH 6.6 10 ”m microstructure macrostructure Impact of milk structure on protein digestion and amino acid bioavailability Source : BarbĂ© et al., 2013 Sample preparation
  • 67. 67  caseins: susceptibility to hydrolysis with or without heat treatment  ÎČ-lactoglobulin: heat-induced susceptibility to hydrolysis Impact of the microstructure (heat treatment) on protein digestion unheated milk heated milk caseins ÎČ-lactoglobulin ÎČ-lactoglobulin caseins Impact of milk structure on protein digestion and amino acid bioavailability
  • 68. 68 Formation of soluble and micelle-bound aggregates Casein micelle in heated milk, in SEM (Harwalkar et al., 1989) 100 nm Serum of heated milk observed by SEM (Rodriguez del Angel & Dalgleish, 2006) Heat-induced protein aggregation in milk Micelle bound aggregates From Guyomarc’h & Famelart micelle-bound aggregates dissociation of k casein [b] [a] serum aggregates 10 nm micelle-bound aggregates dissociation of k casein [b] [a] serum aggregates 10 nm heat treatment (90 C, 10 min) = Ÿ of whey protein denaturation and association to casein micelles Jean et al., 2006 denatured ïą-lg denatured ïĄ-la k casein ïĄs2 casein casein micelles 10 nm whey
  • 69. 69 Impact of milk structure on amino acid bioavailability n = 4 minipigs Major impact of the macrostructure (liquid vs gel) on leucine bioavailibility Smaller impact of the microstructure (heat treatment)
  • 70. 70Source: Lacroix et al., JAFC, 2006 Heat treatment impact on bioavailability of milk proteins in rat Lower metabolic utilisation of N for spray-dried milk Unheated Low-heat pasteurisation High-heat p asteurisation Utra High Temperature Spray-dried milk Caseins Whey proteins
  • 71. 71 Heat treatment impact on bioavailability of milk proteins in human Source: Lacroix et al, J Nutr, 2008 Dietary N incorporation into plasma amino acids  digestive kinetics modified due to protein denaturation n=25 60 64 68 72 76 80 Microfiltered Pasteurised UHT Netpostprandialprotein utilisation(%)
  • 72. 72 Reverse chromatography (RP-HPLC) of milk proteins Unheated Low-heat pasteurisation High-heat p asteurisation Utra High Temperature Spray-dried milk Caseins Whey proteins Source: Lacroix et al., JAFC, 2006 72 Type of milk
  • 73. 73 0 10 Time (min) OD214nm Source: Lacroix et al., JAFC, 2006 Reverse chromatography of whey proteins Unheated milk Low-heat pasteurisation High-heat p asteurisation Utra High Temperature Spray-dried milk Caseins Whey proteins Protein aggregation + Lactosylation of beta-lactoglobulines : first products of the Maillard reaction
  • 74. 74 – Alkaline treatment ïŹ Vegetal protein extraction ïŹ Detoxification – Ex: destruction of aflatoxines ïŹ Solubilisation and texturation of vegetal proteins Destruction/modification AA : ïŹ Isomerisation of AA (Thr, Ile, Lys) from L to D ïŹ Neoformation of AA (cys et phosphosĂ©rine  dehydrolalanine) / formation of covalent bond type : lysinoalanine (heat treatment) Reduction of protein digestibility Reduction of lysine bioavailability Technological treatment and protein bioavailability
  • 75. 75Source: Friedman et al., JAFC, 1999 Metabolic utilisation reduced for some D-amino acids
  • 76. 76 ïŹ Proteins - lipids – Hydrophobic interaction – Covalent bond with lipid oxidation derivate  Reduction of lysine bioavailability and protein digestibility ïŹ Proteins-polyphenols (vegetal food) – Covalent bond between lysine and quinone (polyphenol oxidation by enzymes or alkaline pH)  Reduction of lysine bioavailability and protein digestibility ïŹ Proteins - nitrites, sulfites or chlore derivates – Minimal decrease of bioavailability – Formation of toxic compounds (nitrosamines, dichlorovinylcystĂ©ine, methionine sulfoximine) Protein interaction with other nutrients
  • 77. 77 Outline 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion
  • 78. 78 Technological treatment and lipid bioavailability Partial hydrogenation (less sensitive to oxidation, liquid solid) – Insaturated fatty acid cis  trans Example : margarine (1-2 % for new process, 15 up to 60 % for poor quality process) (ANSES, 2005) ïŹ Metabolised instead of other insaturated fatty acids ïŹ Increased risk of cardiovascular diseases for a daily intake of trans- fatty acids > 2 % of the total daily energy intake  increase of LDL cholesterol and decrease of HDL cholesterol – Insaturated satured (partially) fatty acids ïŹ Increased risk of cardiovascular diseases
  • 79. 79 Saturated fatty acids and cardiovascular disease risk protective At risk Source: deOliveira et al., AJCN, 2012
  • 80. 80 – High heat treatment (frying) – Destruction of indispensable fatty acids – Toxic compounds ïŹ Lung cancer in women inhaling vapor from fish frying in China & Taiwan (Yang et al., 2000) ïŹ Lipid peroxdation : malondialdehyde (MDA) released with prolonged frying mutagen effect of MDA but not of the oil (Saguy & Dana, J Food Engineer, 2003) ïŹ Maillard reaction in meat: heterocyclic amines (reduced release for T<200°C, spices (antioxydant), microowaves)  risk factor for colon cancer – Trans fatty acids (repeated frying/ exchange food-oil) – Hydrolysis of ester bond  free fatty acids more oxidable – Oxidation  hydroperoxide  plasma oxidative stress Technological treatment and lipid bioavailability
  • 81. 81 Impact of fat droplet size on lipid bioavailability Source: Armand et al., AJCN, 1999 Human experiment (n=8) Emulsion : 50g olive/fish oil (+ carbohydrates + protein) Fat droplet size : Fine emulsion : 10 ”m vs. Coarse emulsion : 0.7 ”m Stomach lipid digestibility 7-16% vs 20-37% Duodenal lipid digestibility 37-46% vs 57-73%
  • 82. 82 Impact of the emulsifying agent on lipid digestion (in vitro) Tween 20 Lysolect. Caseinate Whey Prot Before digestion + saliva 5 min + gastric juice 2 h + dudodenal juice 2 h Source: Hur et al., Food Chem, 2009
  • 83. 83 Impact of the emulsifying agent on lipid bioavailability Source: Golding et al., Soft Matter, 2011 Postprandial triglycerids in the plasma (n=8 healthy subjets) stearoyl-lactilate sodium
  • 84. 84 Impact of fat structure on bioavailability Source: Vors et al., AJCN, 20123 n=9 n=9 Spread (non-emulsified) Emulsion (oil-in-water/milk) Fat structure impacts fatty acid and chylomicron plasma kinetics but not overall digestibility
  • 85. 85Source: Vors et al., AJCN, 20123 Impact of fat structure on metabolic oritentation Fat structure impacts fatty acid oxidation kinetics Fat structure impacts digestive kinetics and subsequently metabolic orientation  More oxidation for rapidly digested fat (emulsifion) than for non-emulsified fat  Slow vs fast fat
  • 86. 86 Blood triglycerides and cardiovacular disease risk Source: Michalski, Eur. J. Lipid Sci, 2009
  • 87. 87 Human milk pasteurisation : impact on protein & lipid digestion Pasteurisation  Aggregation of proteins around the native fat globule Mild heat treatment in human milk  Proteolysis increased for caseins and lactoferrin No impact on whey proteins (SA and alpha-lac) 3.5 2.5 6 14 21 31 36 55 66 97 116 200 Time (min) 0 30 60 120 150 KDa IgA IgG X0 Lf SA Bt Cas ÎČ Cas Îș α-lac Gastric digestion
  • 88. 88 Human milk pasteurisation : impact on protein & lipid digestion Free Fatty Acids Diglycerid s(sn-1,2) / Cholesterol Monoglycerid PL/Prot Triglycerids Diglycerid s (sn-1,3) Time (min) 0 30 60 120 30 60 120 180 Gastric digestion Intestinal digestion 0 min 30 min 60 min 120 min 150 min 0 25 50 75 0 30 60 120 Greyintensity (AU)  Lipolysis reduced in the gastric digestion in pasteurised milk vs. raw milk  Due to BSSL inactivation and structure effect ?
  • 89. 89 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion Outline
  • 90. 90 Micronutrients from plant foods and location within the tissue Source: Parada & Aguilera, 2007
  • 91. 91 Plant processing and micronutrient bioavailability Source: Parada & Aguilera, 2007
  • 92. 92 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion Outline
  • 93. 93 Carotenoids ïŹ Carotenoids : natural pigments yellow-orange red-purple, highly hydrophobic compounds located in specialized plant plastids (chromoplasts) of fruits, vegetables, mushrooms, algae ïŹ About 10 % of carotenoids (bĂȘta-, alpha-, gamma-carotĂšne, cryptoxanthine): vitamin A precursor – Beta-carotĂšne: orange fruits (carott, apricot, mango), red palm oil, dark green vegetables (hidden by chlorophylle) – Vitamin A: necessary for vision, epithelium tissu preservation, bone growth, immune system 93 Liver (storage form) Retine (Vision) Bone, mucosa
  • 94. 94 ïŹ Absorption: requires incorporation of lipophilic carotenoids into mixed micelles (dietary lipids, bile salts, and other lipophilic or amphiphilic compounds)  Liberation : fraction of the test compound released from the food matrix into the aqueous supernatant Bioaccessibility : fraction of the test compound released from the food matrix into the aqueous supernatant and transferred into mixed micelles ïŹ Bioaccessibility / Bioavailability vary according to the botanical origin : Green vegetables < oranges vegetables <fruits < oil ïŹ Process (thermal and/or mecanical) : increase the bioavailability of carotens by destruction of the vegetal matrix (Van Buggenhout et al., Trends in Food Science & Technology 2010) Carotenoids
  • 95. 95 Chromoplast structure & bioaccessibility of carotenoids Light micrographs of carrot root and mango, papaya, and tomato fruit mesocarp. Arrows mark chromoplasts. Source: Schweiggert et al, Food Chem, 2012 Crystalloid Globular-tubular BA: 10.1%a BA: 5.3%b BA: 3.1%cBA: 0.5%d Beta-carotene: 652 ”g/100g Beta-carotene: 485 ”g/100g Beta-carotene: 13 080 ”g/100g Beta-carotene: 680 ”g/100g
  • 96. 96 Chromoplast structure & bioaccessibility of carotenoids Source: Schweiggert et al, Food Chem, 2012 Liberation and bioaccessibility Bioaccessibility & oil addition Impact of pectin and other fibers
  • 97. 97 ïŹ Carotts: cooking increases bioavailability of beta-carotenes – Plasma beta-carotene : 2-3 times higher for cooked and process carotts (canning and heating at 121 C°) 97 Carott processing and bioavailability of carotenoids Source: Rock et al., 1998; Livny et al., 2003
  • 98. 98 ïŹ Carotts: cooking increases bioavailability of beta-carotenes – Plasma beta-carotene for commercial puree carrot > home-made puree carrot and raw grated carrot (Edwards et al., 2002) – Research still necessary to optimise process maximizing carotenoid bioavailability 98 Vitamin A conversion Commercial puree: 44 ± 11%a Home-made puree: 59 ± 12%b Grated carrot: 63 ± 10%ab Carott processing and bioavailability of carotenoids
  • 99. 99 Effect of addition of oil on micellarisation of carotenoids from crude and cooked carrots in respect to the carotenoid content in the corresponding digest. Hornero-Mendez et al., 2007 Addition of oil into carotts and bioavailability of carotenoids
  • 100. 100 Plan 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion
  • 101. 101 Iron & spinach 101 Digestion of cellular structures Breakdown of cellular structures Source : Crispin et al., 2002
  • 102. 102 Plan 1. Definition 1. Food structure 2. Bioavailability vs. bioaccessibility 2. Food structure and macronutrient bioavailability 1. Carbohydrates 2. Proteins 3. Lipids 3. Food structure and micronutrient bioavailability 1. Micronutrients from plant food 2. Carotenoids and beta-carotenes 3. Iron 4. Conclusion Plan
  • 103. A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Improving health properties of food by sharing our knowledge on the digestive process COST Action FA1005 INFOGEST Chair: Dr. Didier DUPONT, Senior Scientist, INRA, France
  • 104. 104 Characterization of raw materials and processed food matrices for optimized nutrient bioaccessibility WG1 Evaluation of the health effects WG3 In vitro, in vivo and in silico models of mammalian gastrointestinal digestion WG2 - Food allergenicity and immunomodulatory properties - Kinetics of digestion / regulation of appetite and satiety - Protein metabolization on human microbiota - Impact of ACE inhibitors on cardiovascular diseases Beneficial food component characterization Stability of bioactives during processing Multi-scale characterization of food Harmonization of in vitro digestion models Comparison in vitro / in vivo Characterization of the digestion products Resistance to peptidases and absorption Active form of food components in the organism Dairy Fruits & Vegetables Egg
  • 105. 105 Riddet Inst New Zealand Canada Laval Univ Univ Guelph Nofima Ege Univ Rothamsted Res Centr Food Res Inst Univ Belgrade INRA Wageningen UR Inst Food Res MTT Univ Ghent Univ Greifswald Teagasc Tech Univ Denmark CSIC AgroParisTech Milan State Univ Univ Bologna Norwegian Univ Life Sci Polish Academy of Sci Leatherhead Food Res 150 scientists - 50 institutions – 26 countries VTT Univ Eastern Finland Max Rubner-Institut Ben Gurion Univ KTU Food Inst Cent Rech Lippmann Univ Alto Douro Univ Novi Sad Agroscope Posieux Univ LeedsUniv Reading Univ Aarhus Technion ITQB Pom Med Univ
  • 106. 106 The application of innovative fundamental food-structure-property relationships to the design of foods for health, wellness and pleasure COST Action FA1001 Food Structure Design http://www.insidefood.eu
  • 107. 107 Food structure vs. bioavailability Source: Parada & Aguilera, 2007
  • 108. A L I M E N T A T I O N A G R I C U L T U R E E N V I R O N N E M E N T Conclusion ‱ Nutritionnal quality of a food not only impacted by nutrient content but also by its structure ‱ Key factor for processed foods ‱ Food structure impacts on digestive events (gastric phase: key step) and subsequently on metabolic orientation ‱ Food structure : key parameter to control or modify nutrient bioavailability nutrition for specific popultation (elederly, sportmen, baby..) ‱ Relationship among food structure/digestion/health  burning topic in science  further knowledge required