SlideShare a Scribd company logo
1 of 17
Download to read offline
ALLOWABLE FORMULA, CHART, FIGURES
For SOIL MECHANIC EXAMS
Academic year 2014-2015
Third year Student
Lecturer: M. Chener S. Qadr
Soil Classification
Table 1: U.S Standard Sieve Sizes
Sieve No Opening (mm) Sieve No Opening (mm)
4 4.75 35 0.500
5 4 40 0.425
6 3.35 50 0.355
7 2.8 60 0.250
8 2.36 70 0.212
10 2.00 80 0.180
12 1.70 100 0.150
14 1.40 120 0.125
16 1.18 140 0.106
18 1.00 170 0.090
20 0.850 200 0.075
25 0.710 270 0.053
30 0.600
Figure 1
AASHTO Soil Classification
Table 2
General
Classification
Granular materials
(35 or less of total sample passing No.200)
Group classification
A-1
A3
A-2
A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7
Sieve analysis
(percentage passing)
No.10 50 max.
No.40 30 max. 50 max. 51 min.
No.200 15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.
Characteristics of fraction
passing No.40
Liquid Limit 40 max. 41 min. 40 max. 41 min.
Plastic Index 6 max. NP 10 max. 10 max. 11 min. 11 min.
Usual types of significant
constituent materials
Stone fragments,
gravel, and sand
Fine sand Silty or Clayey gravel and sand
General subgrade rating Excellent to good
Table 3
General classification Silt-Clay materials
(More than 35% of total sample sassing No.200)
Group classification A-7
A-7-5
a
A-4 A-5 A-6 A-7-6
b
Sieve analysis (percentage passing
No.10
No.40
No.200 36 min. 36 min. 36 min. 36 min.
Characteristics of fraction passing No.40
Liquid Limit 40 max. 41 min. 40 max 41 min.
Plastic Index 10 max. 10 max. 11 min. 11 min.
Usual types of significant constituent materials Silty Soils Clayey Soils
General subgrade rating Fair too Poor
a
For A-7-5, PI ≤ LL-30
b
For A-7-6, PI > LL-30
 200 200( 35) 0.2 0.005(LL 40) 0.01( 15)(PI 10)GI F F      
USCS Soil Classification
Figure 2
Figure 3
Figure 4
IN Situ Stress
Vertical Stress Due to POINT LOAD
5/22
2
12
3 1
2 ( ) 1
(1)
P
z
z r
z
P
or z I Equation
z
Table 4 Variation of I1 for various values of r/z ( I1 for Equation 1)
r/Z I1 r/Z I1 r/Z I1 r/Z I1
0 0.4775 0.28 0.3954 0.80 0.1386 3.00 0.0015
0.02 0.4770 0.30 0.3849 0.85 0.1226 3.20 0.0011
0.04 0.4765 0.32 0.3742 0.9 0.1083 3.40 0.00085
0.06 0.4723 0.34 0.3632 0.95 0.0956 3.60 0.00066
0.08 0.4699 0.36 0.3521 1.00 0.0844 3.80 0.00051
0.1 0.4657 0.38 0.3408 1.20 0.0513 4.00 0.00040
0.12 0.4607 0.40 0.3294 1.40 0.0317 4.20 0.00032
0.14 0.4548 0.45 0.3011 1.60 0.0200 4.40 0.00026
0.16 0.4482 0.50 0.2733 1.80 0.0129 4.60 0.00021
0.18 0.4409 0.55 0.2466 2.00 0.0085 4.80 0.00017
0.20 0.4329 0.6 0.2214 2.20 0.0058 5.00 0.00014
0.22 0.4242 0.65 0.1978 2.40 0.0040
0.24 0.4151 0.7 0.1762 2.60 0.0029
0.26 0.4045 0.75 0.1565 2.80 0.0021
Vertical Stress due to Vertical Line-Load
32
2 2 2( )
qz
z
x z
(2)
2
z
or Iv equation
q
z
where Iv from table
Table 5 Variation of /( / )z q z with x/z ( Iv for Equation 2)
x/z /( / )z q z x/z /( / )z q z x/z /( / )z q z
0 0.637 0.8 0.237 1.7 0.042
0.1 0.624 0.9 0.194 1.8 0.035
0.2 0.589 1.0 0.159 1.9 0.030
0.3 0.536 1.1 0.130 2.0 0.025
0.4 0.473 1.2 0.107 2.2 0.019
0.5 0.407 1.3 0.088 2.4 0.014
0.6 0.344 1.4 0.073 2.6 0.011
0.7 0.287 1.5 0.060 2.8 0.008
1.6 0.050 3.0 0.006
Vertical Stress Caused by a Horizontal Line-Load
2
2 2 2
2
( )
q xz
z
x z
Or (3)Hq
Z
z
I equation
Table 6:Variation of /( / )z q z with x/z ( IH for Equation 3)
x/z /( / )z q z x/z /( / )z q z x/z /( / )z q z
0 0 0.4 0.189 0.9 0.175
0.1 0.062 0.5 0.204 1.0 0.159
0.2 0.118 0.6 0.207 1.5 0.090
0.3 0.161 0.7 0.201 2.0 0.051
0.8 0.189 3.0 0.019
Vertical Stress Due to Strip Load (Finite Width and Infinite Length)
22 2
222 2 2 2
4
tan tan
/2 /2
4
BBz x z
z zq
z
x B x B Bx z B z
10.4
,s
scan be found from table
z
I
q
I
Vertical Stress Caused by a Rectangular Loaded Area
3z qI
Where I3 Can be found either using Table 10.8 or Using figure 1
FIGURE 1
Stress increase caused by uniformly loaded area
z netq Ic
Where Ic can be calculated from X/R and Z/R
Vertical Stress Due to Embankment Loading
Or
2
where I2 is function of B1/z and B2/z.
2 10.15
,
can be found from Figure
z
I
q
I
Chapter 10 Shear Strength of Soil
1 3 1 3
1 3
cos(2 )
2 2
Sin (2 )
2
n
f
   
 
 
 
 
 


Chapter 11: Consolidation
1 2 1 2
2 2 2
1
log log
log
c
e e e e
C
  

  

 
 
  
 
 
0.009 (LL 10)CC   0.007 (LL 10)CC  
3 4 3 4
4 3 4
3
log log
log
S
e e e e
C
  

  

 
 
  
 
 
Calculation of Consolidation Settlement.
For normally Consolidated Clay NCC
0 C    
  
0
0
0
0
1
log
log( )
1
e
S H
c e
o
e C
c
HC
cS
c e
o
 

 

 

 





 



For over consolidate Clay ( O.C.C )
0 C    
  
0
0
log( )
1
o
H C
sS
c e
 

 

 


0 0c
      
   
0
0
log( ) log( )
1 1
c
co o
H C H C
s cS
c e e
  
 
  
 
  
 
 
For Under Consolidated Clay
0 C  

0log( )
1 co
H C
cS
c e
 

 

 


2
1
log
1
s
p
C H t
S
e t

 
  
  
( )Sc t
U
Sc

1 1
1
v
v
o
a
m
e
in KPa or MPa 


. .c vS m H z 
v
w v
K
C
m

 2
1
log
e
C
t
t



 
 
 
2
v
v
dr
C
T t
H
  4
6
t m b
av
  

  
    
 

More Related Content

Similar to Allowable charts

App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfpingu111
 
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...Julio Banks
 
Chapter 20 solutions
Chapter 20 solutionsChapter 20 solutions
Chapter 20 solutionsLK Education
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutionsLK Education
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 
Gravity Model Calibration.ppt
Gravity Model Calibration.pptGravity Model Calibration.ppt
Gravity Model Calibration.pptemohamedkishk
 
Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2jitin_22
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jcjhcapelo
 
Amendment to ssr 2010 part II
Amendment to ssr 2010 part IIAmendment to ssr 2010 part II
Amendment to ssr 2010 part IIswaparnika
 
Aci design handbook_aci318-95_01_flexure1
Aci design handbook_aci318-95_01_flexure1Aci design handbook_aci318-95_01_flexure1
Aci design handbook_aci318-95_01_flexure1University of Narotama
 
Chapter 2 solutions
Chapter 2 solutionsChapter 2 solutions
Chapter 2 solutionsLK Education
 
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...Dmitry Novikov
 
6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdf6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdfAristotleMedina
 
Doe with response surface model
Doe with response surface modelDoe with response surface model
Doe with response surface modelMark Reich
 

Similar to Allowable charts (20)

App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdf
 
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
 
Chapter 20 solutions
Chapter 20 solutionsChapter 20 solutions
Chapter 20 solutions
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Ch02
Ch02Ch02
Ch02
 
om
omom
om
 
8th Semester Civil Engineering Question Papers June/july 2018
8th Semester Civil Engineering Question Papers June/july 20188th Semester Civil Engineering Question Papers June/july 2018
8th Semester Civil Engineering Question Papers June/july 2018
 
Gravity Model Calibration.ppt
Gravity Model Calibration.pptGravity Model Calibration.ppt
Gravity Model Calibration.ppt
 
Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jc
 
Metodo directo
Metodo directoMetodo directo
Metodo directo
 
Amendment to ssr 2010 part II
Amendment to ssr 2010 part IIAmendment to ssr 2010 part II
Amendment to ssr 2010 part II
 
Aci design handbook_aci318-95_01_flexure1
Aci design handbook_aci318-95_01_flexure1Aci design handbook_aci318-95_01_flexure1
Aci design handbook_aci318-95_01_flexure1
 
Chapter 2 solutions
Chapter 2 solutionsChapter 2 solutions
Chapter 2 solutions
 
PORTIQUE CMU
PORTIQUE CMUPORTIQUE CMU
PORTIQUE CMU
 
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...
Interparticle Interactions and Dynamics in Solutions of Zinc Perchlorate in A...
 
Progress 1st sem
Progress 1st semProgress 1st sem
Progress 1st sem
 
6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdf6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdf
 
Doe with response surface model
Doe with response surface modelDoe with response surface model
Doe with response surface model
 

Allowable charts

  • 1. ALLOWABLE FORMULA, CHART, FIGURES For SOIL MECHANIC EXAMS Academic year 2014-2015 Third year Student Lecturer: M. Chener S. Qadr
  • 2. Soil Classification Table 1: U.S Standard Sieve Sizes Sieve No Opening (mm) Sieve No Opening (mm) 4 4.75 35 0.500 5 4 40 0.425 6 3.35 50 0.355 7 2.8 60 0.250 8 2.36 70 0.212 10 2.00 80 0.180 12 1.70 100 0.150 14 1.40 120 0.125 16 1.18 140 0.106 18 1.00 170 0.090 20 0.850 200 0.075 25 0.710 270 0.053 30 0.600 Figure 1
  • 3. AASHTO Soil Classification Table 2 General Classification Granular materials (35 or less of total sample passing No.200) Group classification A-1 A3 A-2 A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 Sieve analysis (percentage passing) No.10 50 max. No.40 30 max. 50 max. 51 min. No.200 15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max. Characteristics of fraction passing No.40 Liquid Limit 40 max. 41 min. 40 max. 41 min. Plastic Index 6 max. NP 10 max. 10 max. 11 min. 11 min. Usual types of significant constituent materials Stone fragments, gravel, and sand Fine sand Silty or Clayey gravel and sand General subgrade rating Excellent to good Table 3 General classification Silt-Clay materials (More than 35% of total sample sassing No.200) Group classification A-7 A-7-5 a A-4 A-5 A-6 A-7-6 b Sieve analysis (percentage passing No.10 No.40 No.200 36 min. 36 min. 36 min. 36 min. Characteristics of fraction passing No.40 Liquid Limit 40 max. 41 min. 40 max 41 min. Plastic Index 10 max. 10 max. 11 min. 11 min. Usual types of significant constituent materials Silty Soils Clayey Soils General subgrade rating Fair too Poor a For A-7-5, PI ≤ LL-30 b For A-7-6, PI > LL-30  200 200( 35) 0.2 0.005(LL 40) 0.01( 15)(PI 10)GI F F      
  • 7. IN Situ Stress Vertical Stress Due to POINT LOAD 5/22 2 12 3 1 2 ( ) 1 (1) P z z r z P or z I Equation z Table 4 Variation of I1 for various values of r/z ( I1 for Equation 1) r/Z I1 r/Z I1 r/Z I1 r/Z I1 0 0.4775 0.28 0.3954 0.80 0.1386 3.00 0.0015 0.02 0.4770 0.30 0.3849 0.85 0.1226 3.20 0.0011 0.04 0.4765 0.32 0.3742 0.9 0.1083 3.40 0.00085 0.06 0.4723 0.34 0.3632 0.95 0.0956 3.60 0.00066 0.08 0.4699 0.36 0.3521 1.00 0.0844 3.80 0.00051 0.1 0.4657 0.38 0.3408 1.20 0.0513 4.00 0.00040 0.12 0.4607 0.40 0.3294 1.40 0.0317 4.20 0.00032 0.14 0.4548 0.45 0.3011 1.60 0.0200 4.40 0.00026 0.16 0.4482 0.50 0.2733 1.80 0.0129 4.60 0.00021 0.18 0.4409 0.55 0.2466 2.00 0.0085 4.80 0.00017 0.20 0.4329 0.6 0.2214 2.20 0.0058 5.00 0.00014 0.22 0.4242 0.65 0.1978 2.40 0.0040 0.24 0.4151 0.7 0.1762 2.60 0.0029 0.26 0.4045 0.75 0.1565 2.80 0.0021 Vertical Stress due to Vertical Line-Load 32 2 2 2( ) qz z x z (2) 2 z or Iv equation q z where Iv from table
  • 8. Table 5 Variation of /( / )z q z with x/z ( Iv for Equation 2) x/z /( / )z q z x/z /( / )z q z x/z /( / )z q z 0 0.637 0.8 0.237 1.7 0.042 0.1 0.624 0.9 0.194 1.8 0.035 0.2 0.589 1.0 0.159 1.9 0.030 0.3 0.536 1.1 0.130 2.0 0.025 0.4 0.473 1.2 0.107 2.2 0.019 0.5 0.407 1.3 0.088 2.4 0.014 0.6 0.344 1.4 0.073 2.6 0.011 0.7 0.287 1.5 0.060 2.8 0.008 1.6 0.050 3.0 0.006 Vertical Stress Caused by a Horizontal Line-Load 2 2 2 2 2 ( ) q xz z x z Or (3)Hq Z z I equation Table 6:Variation of /( / )z q z with x/z ( IH for Equation 3) x/z /( / )z q z x/z /( / )z q z x/z /( / )z q z 0 0 0.4 0.189 0.9 0.175 0.1 0.062 0.5 0.204 1.0 0.159 0.2 0.118 0.6 0.207 1.5 0.090 0.3 0.161 0.7 0.201 2.0 0.051 0.8 0.189 3.0 0.019 Vertical Stress Due to Strip Load (Finite Width and Infinite Length) 22 2 222 2 2 2 4 tan tan /2 /2 4 BBz x z z zq z x B x B Bx z B z 10.4 ,s scan be found from table z I q I
  • 9.
  • 10.
  • 11. Vertical Stress Caused by a Rectangular Loaded Area 3z qI Where I3 Can be found either using Table 10.8 or Using figure 1
  • 13. Stress increase caused by uniformly loaded area z netq Ic Where Ic can be calculated from X/R and Z/R
  • 14. Vertical Stress Due to Embankment Loading Or 2 where I2 is function of B1/z and B2/z. 2 10.15 , can be found from Figure z I q I
  • 15.
  • 16. Chapter 10 Shear Strength of Soil 1 3 1 3 1 3 cos(2 ) 2 2 Sin (2 ) 2 n f                 Chapter 11: Consolidation 1 2 1 2 2 2 2 1 log log log c e e e e C                    0.009 (LL 10)CC   0.007 (LL 10)CC   3 4 3 4 4 3 4 3 log log log S e e e e C                    Calculation of Consolidation Settlement. For normally Consolidated Clay NCC 0 C        0 0 0 0 1 log log( ) 1 e S H c e o e C c HC cS c e o                     
  • 17. For over consolidate Clay ( O.C.C ) 0 C        0 0 log( ) 1 o H C sS c e           0 0c            0 0 log( ) log( ) 1 1 c co o H C H C s cS c e e                  For Under Consolidated Clay 0 C    0log( ) 1 co H C cS c e           2 1 log 1 s p C H t S e t          ( )Sc t U Sc  1 1 1 v v o a m e in KPa or MPa    . .c vS m H z  v w v K C m   2 1 log e C t t          2 v v dr C T t H   4 6 t m b av              