SlideShare a Scribd company logo
1 of 62
Evolutionary studies of key components of
RNAi in yeasts and the regulation of Argonaute
proteins by the Hsp90 machinery and kinases
CELL 671/672
Yang Wang
Hobman/LaPointe Lab
January 25th, 2013
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
RNA interference (RNAi): A process triggered by double-stranded RNAs (siRNA,
miRNA, piRNA) which leads to gene silencing in a sequence-specific manner.
Ender and Meister (2010)
RNAi in mammalian cells
Q1: What is the minimum requirement for a functional RNAi system?
Q2: How are RNAi components regulated temporally and spatially?
Mello and Conte (2004)
Lee et al. (2004)
Model organisms to study RNAi
Seatle TILL project
. Gwilliam et al (2002)
RNAi
C. elegans A. thaliana
S. pombeD. melanogaster
Merry (2001)
S. cerevisiae
Do all budding yeast species lack RNAi?
Kay et al. (2002)
M. musculus
Zygomycota
Basidiomycota
Ascomycota
Saccharomycotina
Pezizomycotina
Taphrinomycotina
Drinnenberg et al. (2009)
Argonaute in some budding yeasts
H. sapiens Argonaute 2
S. pombe Argonaute 1
S. castellii Argonaute 1
Domain architecture of Argonaute proteins
Structure of Argonaute proteins is highly
conserved across evolutionary lineages
MidPAZN
Schirle and MacRae (2012)
Zygomycota
Basidiomycota
Ascomycota
Saccharomycotina
Pezizomycotina
Taphrinomycotina
Drinnenberg et al. (2009)
Non-canonical Dicer in some budding yeasts
NTD
H. sapiens
Dicer
S. pombe Dicer1
S. castellii Dicer1
Non-canonical Dicer processes small RNAs
Drinnenberg et al. (2009)
PAZ
S. castellii Ago1 and Dcr1 silence a GFP reporter
Drinnenberg et al. (2009)
GFP
Reconstitution of S. castellii RNAi in S. cerevisiae
RNAi negative
S. cerevisiae
S. castellii Ago1
S. castellii Dcr1
GFP (or URA3)
Silencing constructs
RNAi positive
S. cerevisiae
Dcr1
Ago1
GFP
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
5-FOA
(5-fluoroorotic acid)
5-FUMP
(5-fluorouridine monophosphate)
URA3
No URA3
Silencing of URA3 expression in RNAi-positive S. cerevisiae
+
+ +
URA3 hpSC
URA3
+
+ +
+
+ +
SC-URA
W303a
GFP flow cytometry of S. castellii RNAi in S. cerevisiae
+ScaAGO1
+ScaDCR1
+HA-ScaAGO1
+ScaDCR1-myc
+ induction
− induction
Q: What will happen if we introduce
human RNAi components?
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
+
+ +
URA3
hpSC
URA3
+
+ +
+
+ +
+
+ +
+hAgo2
+hDcr1
+TRBP2
+hAgo2
+ScaDCR1
+ScaAGO1
+ScaDCR1
W303a
Silencing of URA3 expression in RNAi-positive S. cerevisiae
+ induction
− induction
+ScaAGO1
+ScaDCR1
+hAgo2
+hDcr1
+TRBP2
+hAgo2
+ScaDCR1
Human Argonaute 2 and S. castellii Dicer reconstitute RNAi in S. cerevisiae
Silencing of URA3 expression in RNAi-positive S. cerevisiae
+ ScaAGO1
+ ScaDCR1
+ hAgo2
+ ScaDCR1
+ hAgo2
+ hDcr1
+ ScaAGO1
+ hDcr1
+ TRBP2
+ hAgo2
+ hDcr1
+ TRBP2
+ ScaAGO1
+ hDcr1
RNAi positive:
RNAi negative:
Engineered RNAi positive and negative strains
HA-Argonaute Dicer-myc
Colony PCR of GFP
The expression of RNAi components
1. ScaAGO1, ScaDCR1, GFP
2. ScaAGO1, hDcr1, GFP
3. hAgo2, ScaDCR1, GFP
4. hAgo2, hDcr1, GFP
5. ScaAGO1, hDcr1, TRBP2, GFP
6. hAgo2, hDcr1, TRBP2, GFP
ScaDCR1
hAgo2
RNAi
ScaAGO1
Unidentified factor(s) may be accessible to S. castellii
but not human Dicer in S. cerevisiae
hDcr1
Why doesn’t human Dicer restore RNAi in S. cerevisiae?
Weinberg et al. (2012)
At least two different mechanisms for Dicers
Weinberg et al. (2012)
At least two different mechanisms for Dicers
H. sapiens
Dicer
Weinberg et al. (2012)
At least two different mechanisms for Dicers
“Mid-term” summary
1. Introduction of S. castellii Argonaute and Dicer
restores RNAi in S. cerevisiae.
2. Human Argonaute 2 and S. castellii Dicer restores RNAi
in S. cerevisiae.
3. Argonaute proteins are highly conserved and
their functions are interchangeable in S. cerevisiae.
4. Dicer proteins are divergent across evolutionary lineages.
5. The reconstitution of RNAi in S. cerevisiae provides
a platform for further research.
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
RNAi
RNAi: a master regulator of gene expression
Defend against viruses
Heterochromatin
formation
Transposon silencing
Transcriptional (RITS)
Post-transcriptional (RISC)
regulation of gene expression
Abiotic stress responses
Contributes to proliferation,
differentiation, development,
and apoptosis
Bioinformatics analyses suggest that up to 60%
of human genes may be regulated by miRNA.
Regulation of RNAi?
Dicer Argonauteds siRNA/miRNA
siRNA/miRNA
precursors
mRNA cleavage/
translational repression
The regulation of RNAi pathway
1. The conformational change of Argonaute to accommodate
dsRNA loading?
A bi-lobed molecule with a central cleft for dsRNA binding
2. Kinases/phosphatases regulate Argonaute and/or Dicer?
?
Miyoshi et al. (2010)
Hsp90 facilitates dsRNA loading onto Argonaute
Taipale et al. (2010)
Amino-terminal domain (NTD)
Middle domain(MD)
Carboxy-terminal domain (CTD)
The ATPase cycle of Hsp90 and co-chaperones
Hsp90 is required for pre-RISC formation in D. melanogaster
S2 cell
lysates
No GA
+ GA
Densitometric analysis
of the UV cross-link
0, 10, 30, 60, 90 min
0, 10, 30, 60, 90 min
Incubate with siRNAs
end-labeled with 32P
GA: geldanamycin
Hsp90 inhibitor
Hsp90 is required for pre-RISC formation in D. melanogaster
Miyoshi et al. (2010)
Q: Is the regulation of Argonaute by
Hsp90 conserved in budding yeasts?
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
URA3 hpSC
URA3
+
+ +
+
+ +
+
+ +
Hsp90 regulates RNAi in S. cerevisiae
+hAgo2
+ScaDCR1
+ScaAGO1
+ScaDCR1
W303a
Hsp90
RNAi
Argonaute
radicicol
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
The phosphorylation sites of human Ago2
Ser387 Tyr529
Tyr529 completes a small RNA 5′-end-binding pocket with
Lys 533, Gln 545 and Lys 570 (Meister 2009)
H. sapiens Argonaute 2
Ser253 Ser798
Thr303 Thr307 Tyr393
Phosphorylation regulates Argonaute activity
RNAi positive: very low level of forward and reverse pericentromeric transcripts
RNAi negative: the forward and reverse pericentromeric transcripts accumulate rapidly
Djupedal and Ekwall (2009)
Assay for RNAi in S. pombe
1. Single copy of Ago1 and Dcr1
2. RNAi regulates heterochromatin formation
S. pombe kinase-deletion strains
1742-2 bub1
1748 ssp2
1749 ppk36
1750 ppk35
1751 gad8
1753 oca2
1754 gsk31
1755 ppk31
1756 ppk30
1757 ppk29
1758 ppk27
1759 ppk25
1760 ppk24
1761 ppk23
1762 ppk22
1763 ppk20
1764 ppk19
1765 ppk16
1766 ppk14
1767 ppk13
1768 lsk1
1769 ppk11
1770 ppk10
1771 srb10
1772 ppk9
1773 ppk8
1774 sck2
1775 hri2
1776 hri1
1777 ppk15
1778 ikh1
1779 ppk3
1780 ppk2
1781 ppk4
1782 ppk33
1783 srk1
1784 wis4
1785 spo4
1786 shk2
1787 pka1
1788 pka1
1789 mde3
1790 hhp2
1791 cmk2
1792 chk1
1793 byr2
1794 wis1
1795 pmk1
1796 pom1
1797 mph1
1798 mak3
1799 hhp1
1800 cmk1
1801 cek1
1802 byr1
1803 wee1
1804 spk1
1805 pit1
1806 mkh1
1807 mak2
1808 fin1
1809 cki3
1810 cds1
1811 sty1
1812 gsk3
1813 pck2
1814 mik1
1815 mak1
1816 dsk1
1817 cki1
1818 cdr2
1820 ssp1
1821 pek1
1822 psk1
1823 mek1
1824 kin1
1825 csk1
1826 cdr1
1827 ppk5
1828 pdk1
1829 ppk34
1830 ppk38
1831 ppk1
1832 ppk6
1835 ckb1
1836 cki2
1837 pef1
1838 rad3
1840 ppk26
1841 ppk34
1842 win1
1844 ppk32
1845 pck1
1846 ppk28
1847 ppk18
Eukaryotic Cell, Apr
2005;
799-813
1
10
100
1000
10000
WT Δago1 Δgsk3 Δwee1 Δbyr1 Δckb1 Δpka1 Δpmk1 Δlsk1
Reverse pericentromeric transcripts
1
10
100
1000
10000
100000
WT Δago1 Δgsk3 Δwee1 Δbyr1 Δckb1 Δpka1 Δpmk1 Δlsk1
Forward pericentromeric transcripts
Seven kinase deletion strains show significant
accumulation of pericentromeric transcripts
1. gsk3 has also been identified in human cells (Lopez, unpublished data)
2. wee1 phosphorylates Y24 in S. cerevisiae Hsp90 and Y38 in human
Hsp90alpha. Phosphorylation is cell-cycle associated.
S. pombe kinase-deletion strains
1742-2 bub1
1748 ssp2
1749 ppk36
1750 ppk35
1751 gad8
1753 oca2
1754 gsk31
1755 ppk31
1756 ppk30
1757 ppk29
1758 ppk27
1759 ppk25
1760 ppk24
1761 ppk23
1762 ppk22
1763 ppk20
1764 ppk19
1765 ppk16
1766 ppk14
1767 ppk13
1768 lsk1
1769 ppk11
1770 ppk10
1771 srb10
1772 ppk9
1773 ppk8
1774 sck2
1775 hri2
1776 hri1
1777 ppk15
1778 ikh1
1779 ppk3
1780 ppk2
1781 ppk4
1782 ppk33
1783 srk1
1784 wis4
1785 spo4
1786 shk2
1787 pka1
1788 pka1
1789 mde3
1790 hhp2
1791 cmk2
1792 chk1
1793 byr2
1794 wis1
1795 pmk1
1796 pom1
1797 mph1
1798 mak3
1799 hhp1
1800 cmk1
1801 cek1
1802 byr1
1803 wee1
1804 spk1
1805 pit1
1806 mkh1
1807 mak2
1808 fin1
1809 cki3
1810 cds1
1811 sty1
1812 gsk3
1813 pck2
1814 mik1
1815 mak1
1816 dsk1
1817 cki1
1818 cdr2
1820 ssp1
1821 pek1
1822 psk1
1823 mek1
1824 kin1
1825 csk1
1826 cdr1
1827 ppk5
1828 pdk1
1829 ppk34
1830 ppk38
1831 ppk1
1832 ppk6
1835 ckb1
1836 cki2
1837 pef1
1838 rad3
1840 ppk26
1841 ppk34
1842 win1
1844 ppk32
1845 pck1
1846 ppk28
1847 ppk18
Eukaryotic Cell, Apr
2005;
799-813
Three scenarios
Kinase(s) X Pericentromere
transcription
RNAi apparatus
(ago1, dcr1)
Y
1. Kinase(s) X directly regulate Ago1 or Dcr1.
2. Kinase(s) X indirectly regulate Ago1 or Dcr1 through factor Y.
3. Kinase(s) X independently regulate pericentromeic transcription.
Analysis of interaction network in S. pombe
ago1
dcr1
rdp1
atf1
pcr1
kinase
sty1
phosphatase
pyp1
wee1
byr1
pmk1
pka1
hsp90
cdc37
Cdc2
Cdc25
gsk3 lsk1Cdc14
Project 1. Evolutionary studies of RNAi in S. cerevisiae
 Background
 Reconstitution of S. castellii RNAi in S. cerevisiae
 Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae
Project 2. The regulation of Argonautes by Hsp90 and kinases
 Background
 Hsp90 regulates reconstituted RNAi in S. cerevisiae
 Kinase screening in S. pombe for regulators of RNAi
Conclusions and future work
Acknowledgements
Outline
1. S. castellii and human Argonautes both restore RNAi in
S. cerevisiae with S. castellii Dicer.
2. S. castellii and human Argonautes are subject to
S. cerevisiae Hsp90 regulation.
3. Argonaute proteins are highly conserved while Dicer
proteins are divergent across evolutionary lineages.
4. Kinases/phosphatases regulate key RNAi components.
Conclusions
Future work
1. Optimizing co-IP conditions to verify the physical interaction
between yeast Hsp90 and S. castellii and human Argonautes.
2. Localization patterns of Argonaute and Dicer proteins in S. cerevisiae
3. S. pombe phosphatase screening. Complementation studies of
identified kinase/phosphatase.
4. Investigate phosphorylation sites of S. pombe Ago1. Identify
homologs in S. cerevisiae and human cells.
5. Build an interaction network including RNAi apparatus, Hsp90 and
co-chaperones, kinases, and phosphatases.
Thanks!
Supervisors Committee member
Dr. Tom Hobman Dr. Richard Rachubinski
Dr. Paul LaPointe
LaPointe Lab
Rebecca Mercier
Katie Horvat
Annemarie Wolmarans
Aleksandra Janowicz
Allen Fu
Heather Armstrong
BaoChan Mai
Hobman Lab
Zaikun Xu
Dr. Jungsook Park
Dr. Justin Pare
Joaquin Lopez
Eileen Reklow
Virus group members
Questions?
Supplementary data
SC ( 2% Glucose) SC ( 2% Galactose)
WT
+AGO1
+DCR1
ura3
(WY1)
URA3
(WY8)
URA3, hpSC
(WY9)
ura3
(WY3)
URA3
(WY4)
URA3, hpSC
(WY5)
Serial dilution assay of URA3 silencing
SC-URA ( 2% Glucose) SC-URA ( 2% Galactose)
WT
+AGO1
+DCR1
ura3
URA3
URA3,
hpSC
ura3
URA3
URA3,
hpSC
Serial dilution assay of URA3 silencing
5-FOA ( 2% Glucose) 5-FOA ( 2% Galactose)
WT
+AGO1
+DCR1
ura3
URA3
URA3,
hpSC
ura3
URA3
URA3,
hpSC
Serial dilution assay of URA3 silencing
5-FOA
(5-fluoroorotic acid)
5-FUMP
(5-fluorouridine monophosphate)
URA3
ura3
Wow, it hurts……
Incompatibility between RNAi and killer in S. cerevisae
Killer system:
(1) An endemic viral system cytoplasmatically inherited as a double-stranded RNA (dsRNA).
(2) Encodes a protein toxin that kills nearby cells while conferring immunity to cells making the toxin.
HA-Argonaute Dicer-myc
Colony PCR of GFP
w303a
pRS404-pTEF
-ScaAgo1
+ScaAgo1
pRS405-pTEF
-ScaDcr1 +ScaAgo1
+ScaDcr1
pRS406-pTEF
-GFP
+ScaAgo1
+ScaDcr1
GFP, URA3SC-Trp SC-Leu SC-Ura SC-His
pRS403-pGAL1
-SC
HA-Argonaute HA-Argonaute HA-Argonaute HA-Argonaute
+ScaAgo1
+ScaDcr1
GFP, URA3,
hpSC
Dicer-myc Dicer-myc Dicer-myc
GFP GFP
Western blots:
Colony PCR:
Dicer: The scissor of the precusors
Lau et al. (2012)
1.1.3 The non-canonical RNAi in K. polysporus
Weinberg et al. (2011)
Nakanishi et al. (2012)
1.2.1 Reconstitution of S. castellii RNAi in S. cerevisiae
w303a
pRS404-pTEF
-ScaAgo1
+ScaAgo1
pRS405-pTEF
-ScaDcr1
+ScaAgo1
+ScaDcr1
pRS406-pTEF
-GFP
+ScaAgo1
+ScaDcr1
GFP, URA3
SC-Trp SC-Leu SC-Ura
Silencing
Constructs
SC-His
+ScaAgo1
+ScaDcr1
GFP, URA3,
hpSC_URA3
+ScaAgo1
+ScaDcr1
GFP, URA3,
strongSC_GFP
+ScaAgo1
+ScaDcr1
GFP, URA3,
weakSC_GFP
Measuring silencing:
GFP ----flow cytometry
URA3 ---- Dilution assay on –Ura
+
+ +
URA3
hpSC
URA3
+
+ +
+
+ +
+
+ +
+hAgo2
+hDcr1
+TRBP2
+hAgo2
+ScaDCR1
+ScaAGO1
+ScaDCR1
W303a
Human Argonaute 2 and S. castellii Dicer reconstitute RNAi in S. cerevisiae
Silencing of URA3 expression in RNAi-positive S. cerevisiae
SC-URA(2% Galactose)
SC-URA (2 % Galactose)
+75 μM Radiciol
+ScaAGO1
+ScaDCR1
URA3
+ScaAGO1
+ScaDCR1
URA3,
hpSC-URA3
+hAgo2
+ScaDCR1
URA3
+hAgo2
+ScaDCR1
URA3,
hpSC-URA3
Suggest: Molecular chaperone Hsp90 modifies both human and S.
castellii Argonaute conformation to accommodate small RNA
duplexes.
Hsp90 regulates RNAi in S. cerevisiae
Forward pericentromeric transcripts Reverse pericentromeric transcripts
WT WT
Δ ago1
Δ dcr1
Δ rdp1
Δ ago1
Δ dcr1
Δ rdp1
In all three RNAi mutants:
Forward pericentromeric transcripts increase >2000 times
Reverse pericentromeric transcripts increase >250 times
qPCR assay to measure pericentromeric transcripts
Kinase(s) X Low pericentromeric
transcripts
RNAi apparatus
WT
Δ ago1
Δ dcr1
Δ rdp1
Δgsk3 (Also identified in human cells)The candidates
Forward
pericentromeric
transcripts
Reverse
pericentromeric
transcripts
Actin transcripts
ΔCtx-WT ≥ 4
ΔCtx-WT ≥ 2
ΔCtx-WT ≤ 0.5
WTΔago1 Δgsk3
WTΔago1 Δgsk3
WT
Δago1
Δgsk3
RIM11(YMR139W)
MRK1(YDL079C)
Interacts with cdc14 which is thought to play a role in the initiation and
completion of mitosis. Involved in the positive regulation of mis12.
wee1 Protein kinase that acts both on serines and on tyrosines. It acts as a
dosage-dependent negative regulator of entry into mitosis (G2 to M
transition). Phosphorylates and inhibits cdc2.
SWE1(YJL187C)
gsk3
byr1 Serine/threonine protein kinase involved in conjugation and sporulation. It is
thought that it is phosphorylated by the byr2 protein kinase and that it can
phosphorylate the spk1 kinase.
pka1
TPK1(YJL164C)
TPK2(YPL203W)
Activated by cAMP. Belongs to the protein kinase superfamily. AGC
Ser/Thr protein kinase family. cAMP subfamily. Contains 1 AGC-kinase C-
terminal domain. Contains 1 protein kinase domain.
SLT2(YHR030C)
Activated by tyrosine and threonine phosphorylation by skh1/pek1.
Regulates cell integrity and functions coordinately with the protein kinase C
pathway (pck1 and pck2). Involved the regulation of wall architecture, cell
shape, cytokinesis in exponential and stationary phase, and metabolism of
ions.
ckb1 Plays a complex role in regulating the basal catalytic activity of the alpha
subunit .CKB1(YGL019W)
pmk1
lsk1 P-TEFb-associated cyclin-dependent protein kinase Lsk1
CTK1(YKL139W)

More Related Content

What's hot

Assessment of Y chromosome degradation level using the Investigator® Quantipl...
Assessment of Y chromosome degradation level using the Investigator® Quantipl...Assessment of Y chromosome degradation level using the Investigator® Quantipl...
Assessment of Y chromosome degradation level using the Investigator® Quantipl...QIAGEN
 
October 09 talk
October 09 talkOctober 09 talk
October 09 talkSky Lar
 
Impact of fancj on heart health
Impact of fancj on heart healthImpact of fancj on heart health
Impact of fancj on heart healthKaitlinLowran
 
2016.05.19 KromTiD web powerpoint
2016.05.19 KromTiD web powerpoint2016.05.19 KromTiD web powerpoint
2016.05.19 KromTiD web powerpointGretchen Pratt
 
Cell-Based Ion Channel and Cardiac Safety Assays
Cell-Based Ion Channel and Cardiac Safety AssaysCell-Based Ion Channel and Cardiac Safety Assays
Cell-Based Ion Channel and Cardiac Safety AssaysOSUCCC - James
 
Fall 2015 Sitag Poster _120516 (1)-2
Fall 2015 Sitag Poster _120516 (1)-2Fall 2015 Sitag Poster _120516 (1)-2
Fall 2015 Sitag Poster _120516 (1)-2Adam Hildebrandt
 
Bay Scallop Genetic Resources and Applications
Bay Scallop Genetic Resources and ApplicationsBay Scallop Genetic Resources and Applications
Bay Scallop Genetic Resources and Applicationssr320
 
Studies on 16 s rrna of f. columnare
Studies on 16 s rrna of f. columnareStudies on 16 s rrna of f. columnare
Studies on 16 s rrna of f. columnareSoumya Sankar Rath
 
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...QIAGEN
 

What's hot (20)

20140710 6 c_mason_ercc2.0_workshop
20140710 6 c_mason_ercc2.0_workshop20140710 6 c_mason_ercc2.0_workshop
20140710 6 c_mason_ercc2.0_workshop
 
Assessment of Y chromosome degradation level using the Investigator® Quantipl...
Assessment of Y chromosome degradation level using the Investigator® Quantipl...Assessment of Y chromosome degradation level using the Investigator® Quantipl...
Assessment of Y chromosome degradation level using the Investigator® Quantipl...
 
Chicago stats talk
Chicago stats talkChicago stats talk
Chicago stats talk
 
01 nc rna-intro
01 nc rna-intro01 nc rna-intro
01 nc rna-intro
 
Fall project
Fall projectFall project
Fall project
 
Kira's poster Final
Kira's poster FinalKira's poster Final
Kira's poster Final
 
October 09 talk
October 09 talkOctober 09 talk
October 09 talk
 
JustinDEvans
JustinDEvansJustinDEvans
JustinDEvans
 
Impact of fancj on heart health
Impact of fancj on heart healthImpact of fancj on heart health
Impact of fancj on heart health
 
2016.05.19 KromTiD web powerpoint
2016.05.19 KromTiD web powerpoint2016.05.19 KromTiD web powerpoint
2016.05.19 KromTiD web powerpoint
 
Cell-Based Ion Channel and Cardiac Safety Assays
Cell-Based Ion Channel and Cardiac Safety AssaysCell-Based Ion Channel and Cardiac Safety Assays
Cell-Based Ion Channel and Cardiac Safety Assays
 
Presentasi h5 n1 short
Presentasi h5 n1 shortPresentasi h5 n1 short
Presentasi h5 n1 short
 
171215_IBMCP_AC
171215_IBMCP_AC171215_IBMCP_AC
171215_IBMCP_AC
 
Fall 2015 Sitag Poster _120516 (1)-2
Fall 2015 Sitag Poster _120516 (1)-2Fall 2015 Sitag Poster _120516 (1)-2
Fall 2015 Sitag Poster _120516 (1)-2
 
Bay Scallop Genetic Resources and Applications
Bay Scallop Genetic Resources and ApplicationsBay Scallop Genetic Resources and Applications
Bay Scallop Genetic Resources and Applications
 
Studies on 16 s rrna of f. columnare
Studies on 16 s rrna of f. columnareStudies on 16 s rrna of f. columnare
Studies on 16 s rrna of f. columnare
 
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...
Targeted RNAseq for Gene Expression Using Unique Molecular Indexes (UMIs): In...
 
CA Research Paper
CA Research PaperCA Research Paper
CA Research Paper
 
Phd thesis defence
Phd thesis defence Phd thesis defence
Phd thesis defence
 
RIP 24Feb2016v4
RIP 24Feb2016v4RIP 24Feb2016v4
RIP 24Feb2016v4
 

Viewers also liked

Delivering on the Promise of RNAi Therapeutics
Delivering on the Promise of RNAi TherapeuticsDelivering on the Promise of RNAi Therapeutics
Delivering on the Promise of RNAi TherapeuticsSilence Therapeutics
 
CzechPointed - Pirna
CzechPointed - PirnaCzechPointed - Pirna
CzechPointed - PirnaLukas Cibulka
 
Long non coding RNA or lncRNA
Long non coding RNA or lncRNALong non coding RNA or lncRNA
Long non coding RNA or lncRNAMOHIT GOSWAMI
 
Knockdown of lncRNAs: exploring RNAi and antisense oligo methods
Knockdown of lncRNAs: exploring RNAi and antisense oligo methodsKnockdown of lncRNAs: exploring RNAi and antisense oligo methods
Knockdown of lncRNAs: exploring RNAi and antisense oligo methodsIntegrated DNA Technologies
 
Role of Antisense and RNAi-based Gene Silencing in Crop Improvement
Role of Antisense and RNAi-based Gene Silencing in Crop ImprovementRole of Antisense and RNAi-based Gene Silencing in Crop Improvement
Role of Antisense and RNAi-based Gene Silencing in Crop ImprovementMariya Zaman
 

Viewers also liked (8)

Delivering on the Promise of RNAi Therapeutics
Delivering on the Promise of RNAi TherapeuticsDelivering on the Promise of RNAi Therapeutics
Delivering on the Promise of RNAi Therapeutics
 
Rn ai
Rn aiRn ai
Rn ai
 
CzechPointed - Pirna
CzechPointed - PirnaCzechPointed - Pirna
CzechPointed - Pirna
 
Long non coding RNA or lncRNA
Long non coding RNA or lncRNALong non coding RNA or lncRNA
Long non coding RNA or lncRNA
 
Knockdown of lncRNAs: exploring RNAi and antisense oligo methods
Knockdown of lncRNAs: exploring RNAi and antisense oligo methodsKnockdown of lncRNAs: exploring RNAi and antisense oligo methods
Knockdown of lncRNAs: exploring RNAi and antisense oligo methods
 
RNA interference in Biology and medicine
RNA interference in Biology and medicine RNA interference in Biology and medicine
RNA interference in Biology and medicine
 
RNA interference
RNA interferenceRNA interference
RNA interference
 
Role of Antisense and RNAi-based Gene Silencing in Crop Improvement
Role of Antisense and RNAi-based Gene Silencing in Crop ImprovementRole of Antisense and RNAi-based Gene Silencing in Crop Improvement
Role of Antisense and RNAi-based Gene Silencing in Crop Improvement
 

Similar to Cell 672

The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...David W. Salzman
 
Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Shreya Dasgupta
 
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...huyng
 
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein Family
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein FamilyDiscriminating Facts from Artefacts in the Secreted Ly-6 Protein Family
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein FamilyChris Southan
 
CRISPR – a novel tool for genome editing
CRISPR – a novel tool for genome editingCRISPR – a novel tool for genome editing
CRISPR – a novel tool for genome editingVigneshVikki10
 
In silico analysis of human and zebrafish α 2 adrenergic receptors
In silico analysis of human and zebrafish α 2 adrenergic receptorsIn silico analysis of human and zebrafish α 2 adrenergic receptors
In silico analysis of human and zebrafish α 2 adrenergic receptorsAlexander Decker
 
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...David W. Salzman
 
RNA and Dendritic Granules
RNA and Dendritic GranulesRNA and Dendritic Granules
RNA and Dendritic Granulestoryblackwell
 
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...OECD Environment
 
CRISPR system for COVID-19 diagnostics.pptx
CRISPR system for COVID-19 diagnostics.pptxCRISPR system for COVID-19 diagnostics.pptx
CRISPR system for COVID-19 diagnostics.pptxPeng-Wen Liu
 
BIOL335: Functional genomics
BIOL335: Functional genomicsBIOL335: Functional genomics
BIOL335: Functional genomicsPaul Gardner
 
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...Jonathan Eisen
 
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDCRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDSophien Kamoun
 
BIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsBIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsPaul Gardner
 
Genome Editing CRISPR-Cas9
Genome Editing CRISPR-Cas9 Genome Editing CRISPR-Cas9
Genome Editing CRISPR-Cas9 Ek Han Tan
 

Similar to Cell 672 (20)

1-s2.0-S0167488913002401-main
1-s2.0-S0167488913002401-main1-s2.0-S0167488913002401-main
1-s2.0-S0167488913002401-main
 
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
 
Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014
 
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
 
Wang_Yang_201609_PhD
Wang_Yang_201609_PhDWang_Yang_201609_PhD
Wang_Yang_201609_PhD
 
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein Family
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein FamilyDiscriminating Facts from Artefacts in the Secreted Ly-6 Protein Family
Discriminating Facts from Artefacts in the Secreted Ly-6 Protein Family
 
CRISPR – a novel tool for genome editing
CRISPR – a novel tool for genome editingCRISPR – a novel tool for genome editing
CRISPR – a novel tool for genome editing
 
In silico analysis of human and zebrafish α 2 adrenergic receptors
In silico analysis of human and zebrafish α 2 adrenergic receptorsIn silico analysis of human and zebrafish α 2 adrenergic receptors
In silico analysis of human and zebrafish α 2 adrenergic receptors
 
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...
P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is req...
 
RNA and Dendritic Granules
RNA and Dendritic GranulesRNA and Dendritic Granules
RNA and Dendritic Granules
 
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...
An introduction to RNAi technology - Petr Svoboda - Institute of Molecular Ge...
 
NCSU Poster
NCSU PosterNCSU Poster
NCSU Poster
 
CRISPR system for COVID-19 diagnostics.pptx
CRISPR system for COVID-19 diagnostics.pptxCRISPR system for COVID-19 diagnostics.pptx
CRISPR system for COVID-19 diagnostics.pptx
 
17
1717
17
 
BIOL335: Functional genomics
BIOL335: Functional genomicsBIOL335: Functional genomics
BIOL335: Functional genomics
 
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...
Evolution of the RecA Protein: from Systematics to Structure 1995 talk for CA...
 
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDCRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
 
BIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsBIOL335: RNA bioinformatics
BIOL335: RNA bioinformatics
 
Genome Editing CRISPR-Cas9
Genome Editing CRISPR-Cas9 Genome Editing CRISPR-Cas9
Genome Editing CRISPR-Cas9
 
Li's lab research
Li's lab researchLi's lab research
Li's lab research
 

Cell 672

  • 1. Evolutionary studies of key components of RNAi in yeasts and the regulation of Argonaute proteins by the Hsp90 machinery and kinases CELL 671/672 Yang Wang Hobman/LaPointe Lab January 25th, 2013
  • 2. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 3. RNA interference (RNAi): A process triggered by double-stranded RNAs (siRNA, miRNA, piRNA) which leads to gene silencing in a sequence-specific manner. Ender and Meister (2010) RNAi in mammalian cells Q1: What is the minimum requirement for a functional RNAi system? Q2: How are RNAi components regulated temporally and spatially?
  • 4. Mello and Conte (2004) Lee et al. (2004) Model organisms to study RNAi Seatle TILL project . Gwilliam et al (2002) RNAi C. elegans A. thaliana S. pombeD. melanogaster Merry (2001) S. cerevisiae Do all budding yeast species lack RNAi? Kay et al. (2002) M. musculus
  • 6. H. sapiens Argonaute 2 S. pombe Argonaute 1 S. castellii Argonaute 1 Domain architecture of Argonaute proteins Structure of Argonaute proteins is highly conserved across evolutionary lineages MidPAZN Schirle and MacRae (2012)
  • 8. NTD H. sapiens Dicer S. pombe Dicer1 S. castellii Dicer1 Non-canonical Dicer processes small RNAs Drinnenberg et al. (2009) PAZ
  • 9. S. castellii Ago1 and Dcr1 silence a GFP reporter Drinnenberg et al. (2009) GFP
  • 10. Reconstitution of S. castellii RNAi in S. cerevisiae RNAi negative S. cerevisiae S. castellii Ago1 S. castellii Dcr1 GFP (or URA3) Silencing constructs RNAi positive S. cerevisiae Dcr1 Ago1 GFP
  • 11. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 12. 5-FOA (5-fluoroorotic acid) 5-FUMP (5-fluorouridine monophosphate) URA3 No URA3 Silencing of URA3 expression in RNAi-positive S. cerevisiae + + + URA3 hpSC URA3 + + + + + + SC-URA W303a
  • 13. GFP flow cytometry of S. castellii RNAi in S. cerevisiae +ScaAGO1 +ScaDCR1 +HA-ScaAGO1 +ScaDCR1-myc + induction − induction Q: What will happen if we introduce human RNAi components?
  • 14. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 15. + + + URA3 hpSC URA3 + + + + + + + + + +hAgo2 +hDcr1 +TRBP2 +hAgo2 +ScaDCR1 +ScaAGO1 +ScaDCR1 W303a Silencing of URA3 expression in RNAi-positive S. cerevisiae
  • 16. + induction − induction +ScaAGO1 +ScaDCR1 +hAgo2 +hDcr1 +TRBP2 +hAgo2 +ScaDCR1 Human Argonaute 2 and S. castellii Dicer reconstitute RNAi in S. cerevisiae Silencing of URA3 expression in RNAi-positive S. cerevisiae
  • 17. + ScaAGO1 + ScaDCR1 + hAgo2 + ScaDCR1 + hAgo2 + hDcr1 + ScaAGO1 + hDcr1 + TRBP2 + hAgo2 + hDcr1 + TRBP2 + ScaAGO1 + hDcr1 RNAi positive: RNAi negative: Engineered RNAi positive and negative strains
  • 18. HA-Argonaute Dicer-myc Colony PCR of GFP The expression of RNAi components 1. ScaAGO1, ScaDCR1, GFP 2. ScaAGO1, hDcr1, GFP 3. hAgo2, ScaDCR1, GFP 4. hAgo2, hDcr1, GFP 5. ScaAGO1, hDcr1, TRBP2, GFP 6. hAgo2, hDcr1, TRBP2, GFP
  • 19. ScaDCR1 hAgo2 RNAi ScaAGO1 Unidentified factor(s) may be accessible to S. castellii but not human Dicer in S. cerevisiae hDcr1 Why doesn’t human Dicer restore RNAi in S. cerevisiae?
  • 20. Weinberg et al. (2012) At least two different mechanisms for Dicers
  • 21. Weinberg et al. (2012) At least two different mechanisms for Dicers H. sapiens Dicer
  • 22. Weinberg et al. (2012) At least two different mechanisms for Dicers
  • 23. “Mid-term” summary 1. Introduction of S. castellii Argonaute and Dicer restores RNAi in S. cerevisiae. 2. Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae. 3. Argonaute proteins are highly conserved and their functions are interchangeable in S. cerevisiae. 4. Dicer proteins are divergent across evolutionary lineages. 5. The reconstitution of RNAi in S. cerevisiae provides a platform for further research.
  • 24. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S. castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 25. RNAi RNAi: a master regulator of gene expression Defend against viruses Heterochromatin formation Transposon silencing Transcriptional (RITS) Post-transcriptional (RISC) regulation of gene expression Abiotic stress responses Contributes to proliferation, differentiation, development, and apoptosis Bioinformatics analyses suggest that up to 60% of human genes may be regulated by miRNA. Regulation of RNAi?
  • 26. Dicer Argonauteds siRNA/miRNA siRNA/miRNA precursors mRNA cleavage/ translational repression The regulation of RNAi pathway 1. The conformational change of Argonaute to accommodate dsRNA loading? A bi-lobed molecule with a central cleft for dsRNA binding 2. Kinases/phosphatases regulate Argonaute and/or Dicer? ?
  • 27. Miyoshi et al. (2010) Hsp90 facilitates dsRNA loading onto Argonaute
  • 28. Taipale et al. (2010) Amino-terminal domain (NTD) Middle domain(MD) Carboxy-terminal domain (CTD) The ATPase cycle of Hsp90 and co-chaperones
  • 29. Hsp90 is required for pre-RISC formation in D. melanogaster S2 cell lysates No GA + GA Densitometric analysis of the UV cross-link 0, 10, 30, 60, 90 min 0, 10, 30, 60, 90 min Incubate with siRNAs end-labeled with 32P GA: geldanamycin Hsp90 inhibitor
  • 30. Hsp90 is required for pre-RISC formation in D. melanogaster Miyoshi et al. (2010) Q: Is the regulation of Argonaute by Hsp90 conserved in budding yeasts?
  • 31. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 32. URA3 hpSC URA3 + + + + + + + + + Hsp90 regulates RNAi in S. cerevisiae +hAgo2 +ScaDCR1 +ScaAGO1 +ScaDCR1 W303a Hsp90 RNAi Argonaute radicicol
  • 33. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 34. The phosphorylation sites of human Ago2 Ser387 Tyr529 Tyr529 completes a small RNA 5′-end-binding pocket with Lys 533, Gln 545 and Lys 570 (Meister 2009) H. sapiens Argonaute 2 Ser253 Ser798 Thr303 Thr307 Tyr393 Phosphorylation regulates Argonaute activity
  • 35. RNAi positive: very low level of forward and reverse pericentromeric transcripts RNAi negative: the forward and reverse pericentromeric transcripts accumulate rapidly Djupedal and Ekwall (2009) Assay for RNAi in S. pombe 1. Single copy of Ago1 and Dcr1 2. RNAi regulates heterochromatin formation
  • 36. S. pombe kinase-deletion strains 1742-2 bub1 1748 ssp2 1749 ppk36 1750 ppk35 1751 gad8 1753 oca2 1754 gsk31 1755 ppk31 1756 ppk30 1757 ppk29 1758 ppk27 1759 ppk25 1760 ppk24 1761 ppk23 1762 ppk22 1763 ppk20 1764 ppk19 1765 ppk16 1766 ppk14 1767 ppk13 1768 lsk1 1769 ppk11 1770 ppk10 1771 srb10 1772 ppk9 1773 ppk8 1774 sck2 1775 hri2 1776 hri1 1777 ppk15 1778 ikh1 1779 ppk3 1780 ppk2 1781 ppk4 1782 ppk33 1783 srk1 1784 wis4 1785 spo4 1786 shk2 1787 pka1 1788 pka1 1789 mde3 1790 hhp2 1791 cmk2 1792 chk1 1793 byr2 1794 wis1 1795 pmk1 1796 pom1 1797 mph1 1798 mak3 1799 hhp1 1800 cmk1 1801 cek1 1802 byr1 1803 wee1 1804 spk1 1805 pit1 1806 mkh1 1807 mak2 1808 fin1 1809 cki3 1810 cds1 1811 sty1 1812 gsk3 1813 pck2 1814 mik1 1815 mak1 1816 dsk1 1817 cki1 1818 cdr2 1820 ssp1 1821 pek1 1822 psk1 1823 mek1 1824 kin1 1825 csk1 1826 cdr1 1827 ppk5 1828 pdk1 1829 ppk34 1830 ppk38 1831 ppk1 1832 ppk6 1835 ckb1 1836 cki2 1837 pef1 1838 rad3 1840 ppk26 1841 ppk34 1842 win1 1844 ppk32 1845 pck1 1846 ppk28 1847 ppk18 Eukaryotic Cell, Apr 2005; 799-813
  • 37. 1 10 100 1000 10000 WT Δago1 Δgsk3 Δwee1 Δbyr1 Δckb1 Δpka1 Δpmk1 Δlsk1 Reverse pericentromeric transcripts 1 10 100 1000 10000 100000 WT Δago1 Δgsk3 Δwee1 Δbyr1 Δckb1 Δpka1 Δpmk1 Δlsk1 Forward pericentromeric transcripts Seven kinase deletion strains show significant accumulation of pericentromeric transcripts 1. gsk3 has also been identified in human cells (Lopez, unpublished data) 2. wee1 phosphorylates Y24 in S. cerevisiae Hsp90 and Y38 in human Hsp90alpha. Phosphorylation is cell-cycle associated.
  • 38. S. pombe kinase-deletion strains 1742-2 bub1 1748 ssp2 1749 ppk36 1750 ppk35 1751 gad8 1753 oca2 1754 gsk31 1755 ppk31 1756 ppk30 1757 ppk29 1758 ppk27 1759 ppk25 1760 ppk24 1761 ppk23 1762 ppk22 1763 ppk20 1764 ppk19 1765 ppk16 1766 ppk14 1767 ppk13 1768 lsk1 1769 ppk11 1770 ppk10 1771 srb10 1772 ppk9 1773 ppk8 1774 sck2 1775 hri2 1776 hri1 1777 ppk15 1778 ikh1 1779 ppk3 1780 ppk2 1781 ppk4 1782 ppk33 1783 srk1 1784 wis4 1785 spo4 1786 shk2 1787 pka1 1788 pka1 1789 mde3 1790 hhp2 1791 cmk2 1792 chk1 1793 byr2 1794 wis1 1795 pmk1 1796 pom1 1797 mph1 1798 mak3 1799 hhp1 1800 cmk1 1801 cek1 1802 byr1 1803 wee1 1804 spk1 1805 pit1 1806 mkh1 1807 mak2 1808 fin1 1809 cki3 1810 cds1 1811 sty1 1812 gsk3 1813 pck2 1814 mik1 1815 mak1 1816 dsk1 1817 cki1 1818 cdr2 1820 ssp1 1821 pek1 1822 psk1 1823 mek1 1824 kin1 1825 csk1 1826 cdr1 1827 ppk5 1828 pdk1 1829 ppk34 1830 ppk38 1831 ppk1 1832 ppk6 1835 ckb1 1836 cki2 1837 pef1 1838 rad3 1840 ppk26 1841 ppk34 1842 win1 1844 ppk32 1845 pck1 1846 ppk28 1847 ppk18 Eukaryotic Cell, Apr 2005; 799-813
  • 39. Three scenarios Kinase(s) X Pericentromere transcription RNAi apparatus (ago1, dcr1) Y 1. Kinase(s) X directly regulate Ago1 or Dcr1. 2. Kinase(s) X indirectly regulate Ago1 or Dcr1 through factor Y. 3. Kinase(s) X independently regulate pericentromeic transcription.
  • 40. Analysis of interaction network in S. pombe ago1 dcr1 rdp1 atf1 pcr1 kinase sty1 phosphatase pyp1 wee1 byr1 pmk1 pka1 hsp90 cdc37 Cdc2 Cdc25 gsk3 lsk1Cdc14
  • 41. Project 1. Evolutionary studies of RNAi in S. cerevisiae  Background  Reconstitution of S. castellii RNAi in S. cerevisiae  Human Argonaute 2 and S.castellii Dicer restores RNAi in S. cerevisiae Project 2. The regulation of Argonautes by Hsp90 and kinases  Background  Hsp90 regulates reconstituted RNAi in S. cerevisiae  Kinase screening in S. pombe for regulators of RNAi Conclusions and future work Acknowledgements Outline
  • 42. 1. S. castellii and human Argonautes both restore RNAi in S. cerevisiae with S. castellii Dicer. 2. S. castellii and human Argonautes are subject to S. cerevisiae Hsp90 regulation. 3. Argonaute proteins are highly conserved while Dicer proteins are divergent across evolutionary lineages. 4. Kinases/phosphatases regulate key RNAi components. Conclusions
  • 43. Future work 1. Optimizing co-IP conditions to verify the physical interaction between yeast Hsp90 and S. castellii and human Argonautes. 2. Localization patterns of Argonaute and Dicer proteins in S. cerevisiae 3. S. pombe phosphatase screening. Complementation studies of identified kinase/phosphatase. 4. Investigate phosphorylation sites of S. pombe Ago1. Identify homologs in S. cerevisiae and human cells. 5. Build an interaction network including RNAi apparatus, Hsp90 and co-chaperones, kinases, and phosphatases.
  • 44. Thanks! Supervisors Committee member Dr. Tom Hobman Dr. Richard Rachubinski Dr. Paul LaPointe LaPointe Lab Rebecca Mercier Katie Horvat Annemarie Wolmarans Aleksandra Janowicz Allen Fu Heather Armstrong BaoChan Mai Hobman Lab Zaikun Xu Dr. Jungsook Park Dr. Justin Pare Joaquin Lopez Eileen Reklow Virus group members
  • 47. SC ( 2% Glucose) SC ( 2% Galactose) WT +AGO1 +DCR1 ura3 (WY1) URA3 (WY8) URA3, hpSC (WY9) ura3 (WY3) URA3 (WY4) URA3, hpSC (WY5) Serial dilution assay of URA3 silencing
  • 48. SC-URA ( 2% Glucose) SC-URA ( 2% Galactose) WT +AGO1 +DCR1 ura3 URA3 URA3, hpSC ura3 URA3 URA3, hpSC Serial dilution assay of URA3 silencing
  • 49. 5-FOA ( 2% Glucose) 5-FOA ( 2% Galactose) WT +AGO1 +DCR1 ura3 URA3 URA3, hpSC ura3 URA3 URA3, hpSC Serial dilution assay of URA3 silencing 5-FOA (5-fluoroorotic acid) 5-FUMP (5-fluorouridine monophosphate) URA3 ura3
  • 50. Wow, it hurts…… Incompatibility between RNAi and killer in S. cerevisae Killer system: (1) An endemic viral system cytoplasmatically inherited as a double-stranded RNA (dsRNA). (2) Encodes a protein toxin that kills nearby cells while conferring immunity to cells making the toxin.
  • 51. HA-Argonaute Dicer-myc Colony PCR of GFP w303a pRS404-pTEF -ScaAgo1 +ScaAgo1 pRS405-pTEF -ScaDcr1 +ScaAgo1 +ScaDcr1 pRS406-pTEF -GFP +ScaAgo1 +ScaDcr1 GFP, URA3SC-Trp SC-Leu SC-Ura SC-His pRS403-pGAL1 -SC HA-Argonaute HA-Argonaute HA-Argonaute HA-Argonaute +ScaAgo1 +ScaDcr1 GFP, URA3, hpSC Dicer-myc Dicer-myc Dicer-myc GFP GFP Western blots: Colony PCR:
  • 52. Dicer: The scissor of the precusors Lau et al. (2012)
  • 53. 1.1.3 The non-canonical RNAi in K. polysporus Weinberg et al. (2011)
  • 55. 1.2.1 Reconstitution of S. castellii RNAi in S. cerevisiae w303a pRS404-pTEF -ScaAgo1 +ScaAgo1 pRS405-pTEF -ScaDcr1 +ScaAgo1 +ScaDcr1 pRS406-pTEF -GFP +ScaAgo1 +ScaDcr1 GFP, URA3 SC-Trp SC-Leu SC-Ura Silencing Constructs SC-His +ScaAgo1 +ScaDcr1 GFP, URA3, hpSC_URA3 +ScaAgo1 +ScaDcr1 GFP, URA3, strongSC_GFP +ScaAgo1 +ScaDcr1 GFP, URA3, weakSC_GFP Measuring silencing: GFP ----flow cytometry URA3 ---- Dilution assay on –Ura
  • 56. + + + URA3 hpSC URA3 + + + + + + + + + +hAgo2 +hDcr1 +TRBP2 +hAgo2 +ScaDCR1 +ScaAGO1 +ScaDCR1 W303a Human Argonaute 2 and S. castellii Dicer reconstitute RNAi in S. cerevisiae Silencing of URA3 expression in RNAi-positive S. cerevisiae
  • 57.
  • 58. SC-URA(2% Galactose) SC-URA (2 % Galactose) +75 μM Radiciol +ScaAGO1 +ScaDCR1 URA3 +ScaAGO1 +ScaDCR1 URA3, hpSC-URA3 +hAgo2 +ScaDCR1 URA3 +hAgo2 +ScaDCR1 URA3, hpSC-URA3 Suggest: Molecular chaperone Hsp90 modifies both human and S. castellii Argonaute conformation to accommodate small RNA duplexes. Hsp90 regulates RNAi in S. cerevisiae
  • 59. Forward pericentromeric transcripts Reverse pericentromeric transcripts WT WT Δ ago1 Δ dcr1 Δ rdp1 Δ ago1 Δ dcr1 Δ rdp1 In all three RNAi mutants: Forward pericentromeric transcripts increase >2000 times Reverse pericentromeric transcripts increase >250 times qPCR assay to measure pericentromeric transcripts Kinase(s) X Low pericentromeric transcripts RNAi apparatus WT Δ ago1 Δ dcr1 Δ rdp1
  • 60. Δgsk3 (Also identified in human cells)The candidates Forward pericentromeric transcripts Reverse pericentromeric transcripts Actin transcripts ΔCtx-WT ≥ 4 ΔCtx-WT ≥ 2 ΔCtx-WT ≤ 0.5 WTΔago1 Δgsk3 WTΔago1 Δgsk3 WT Δago1 Δgsk3
  • 61. RIM11(YMR139W) MRK1(YDL079C) Interacts with cdc14 which is thought to play a role in the initiation and completion of mitosis. Involved in the positive regulation of mis12. wee1 Protein kinase that acts both on serines and on tyrosines. It acts as a dosage-dependent negative regulator of entry into mitosis (G2 to M transition). Phosphorylates and inhibits cdc2. SWE1(YJL187C) gsk3 byr1 Serine/threonine protein kinase involved in conjugation and sporulation. It is thought that it is phosphorylated by the byr2 protein kinase and that it can phosphorylate the spk1 kinase. pka1 TPK1(YJL164C) TPK2(YPL203W) Activated by cAMP. Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. cAMP subfamily. Contains 1 AGC-kinase C- terminal domain. Contains 1 protein kinase domain.
  • 62. SLT2(YHR030C) Activated by tyrosine and threonine phosphorylation by skh1/pek1. Regulates cell integrity and functions coordinately with the protein kinase C pathway (pck1 and pck2). Involved the regulation of wall architecture, cell shape, cytokinesis in exponential and stationary phase, and metabolism of ions. ckb1 Plays a complex role in regulating the basal catalytic activity of the alpha subunit .CKB1(YGL019W) pmk1 lsk1 P-TEFb-associated cyclin-dependent protein kinase Lsk1 CTK1(YKL139W)

Editor's Notes

  1. Quickly go through the canonical RNAi pathways in eukaryotes Foucus (Focus) on Dicer and Argonaute RNAi: Fast response to stress Importance: (At least 30% of human genes are subject to regulation by RNAi) Mechanism ---- Tool ------ Therapy Arabidopsis thaliana, express multiple dicer homologs which specifically act against different viruses. In some cases, plant genomes also express endogenous siRNAs in response to bacterial infection. Among animals, Drosophila, shows antiviral innate immunity against pathogens such as Drosophila X virus, through RNAi mechanism.    RNAi mechanism blocks the action of transposons (mobile elements in the genome) and maintains the genome stability. Facilitating Gene-knockdown, Application in functional genomics, Medical application, Biotechnological application
  2. Lower the bar to screen RNaseIII proteins. Found non-canonical Dicer
  3. Isolating 18- to 30-nucleotide(nt) RNAs from S. castellii, K. polysporus, and C. albicans and preparing sequencing libraries representing the subset of small RNAs with 5′-monophosphates and 3-hydroxyls (10), which are the chemical features of Dicer products. The small RNAs of S. castellii and K. polysporus were most enriched in 23-RNAs beginning with U, and those of C. albicans were most enriched in 22-nt beginning with A(adenine) or U (uracil) (Fig. 1B). These biases were reminiscent of those observed for Argonaute-bound guide RNAs of animals, plants, and other fungi (11–13).
  4. Rnase III domains work in pairs to nick both strands of an small RNA duplex S.castellii Dcr1 may act as a homodimer The restored RNAi pathway silences both introduced marker genes and endogenous transposons.
  5. I really don’t like the numbers here. Bullets or just the words would be better. I agree with Tom about the font; Calibri or Arial would be better. It is future work, not future works.
  6. Your heading doesn’t make any sense. Why is SC+2%Galactose inside the box in the top right but nowhere else? I also would suggest making the figure this way – seeing the following duplicate.
  7. Rule out the possibility that RNAi negative pairs are due to the lost or non-expression of key components
  8. A pair of Dcr1DC dimers (green and yellow) modeled with dsRNA (sphere model). The anticipated 23 nt siRNA product is highlighted (cyan). The dsRBD is not shown for clarity.
  9. A pair of Dcr1DC dimers (green and yellow) modeled with dsRNA (sphere model). The anticipated 23 nt siRNA product is highlighted (cyan). The dsRBD is not shown for clarity.
  10. A pair of Dcr1DC dimers (green and yellow) modeled with dsRNA (sphere model). The anticipated 23 nt siRNA product is highlighted (cyan). The dsRBD is not shown for clarity.
  11. Processing bodies(PBs) and stress granules(SGs) are the two main type of ribonucleoprotein complexes with Argonautes are associated. Processing bodies(PBs) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation.
  12. amino‑terminal domain (NTD), middle domain(MD) and carboxy‑terminal domain (CTD) Schematic of the maturation of the progesterone receptor mediated by the cooperation between heat shock protein 90 (HSP90), HSP70 and co‑chaperones. The progesterone receptor binds HSP40 and HSP70, which then binds the HSP90–HOP (HSC70 and HSP90‑organizing protein; also known as p60 and STI1) complex, leading to delivery of the client. Finally, the co‑chaperone p23 (also known as PTGES3 and as Sba1 in yeast) and ATP bind the complex, promoting client maturation and complex dissociation. The role of cyclophilin 40 (CYP40; also known as PPID) is not well understood but it regulates the activity of client proteins in the final stages of the chaperone cycle.
  13. Make sure you says something about Hsp90 and what GA is and what it does…this kind of comes out of nowhere. Hsp90 is required for pre-RISC formation. siRNA, were individually incubated with S2 cell lysates in the presence or absence of geldanamycin (geld). Ago2 association with the siRNA duplexes was severely affected by Hsp90 inhibition, although Dicer2 association with the duplexes was barely affected. Dicer2 association with the duplexes was slightly affected. siRNAs end-labeled with 32P for visualization. Densitometric analysis of the cross-link is shown by percentages. The numbers indicated on the gel image represent siRNA incubation time in lysates before 10 min UV cross-link.
  14. Hsp90 is required for pre-RISC formation. siRNA, were individually incubated with S2 cell lysates in the presence or absence of geldanamycin (geld). Ago2 association with the siRNA duplexes was severely affected by Hsp90 inhibition, although Dicer2 association with the duplexes was barely affected. Dicer2 association with the duplexes was slightly affected. siRNAs end-labeled with 32P for visualization. Densitometric analysis of the cross-link is shown by percentages. The numbers indicated on the gel image represent siRNA incubation time in lysates before 10 min UV cross-link.
  15. Since RNAi modulates gene expression on a global level, it is critical to understand how this process is regulated
  16. Wee1 modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases.
  17. Atf1 and pcr1 are transcriptional factors
  18. 5-fluoro-orotic acid medium 5-FOA can be used to select for mutant cells that fails to utilize orotic acid as the source of pyrimidine ring, Wild type cells convert 5-FOA to 5-FUMP(5-fluoro-uridine monophosphate), which is quite toxic to the cell. The reaction is catalyzed by the products of the yeast genes URA5 and URA3.
  19. Phylogenetic tree of representative fungal species, indicating the presence of dsRNA killer viruses (blue shading), the presence of RNAi (green shading), and inferred loss of RNAi (red x).
  20. Schematic of the 2D domain structure of human Dicer with crystal structures homologous to each module. Segmented map of human Dicer with crystal structures of homologous domains docked. (b)Model for pre-miRNA recognition. A pre-miRNA hairpin is modeled into the proposed binding channel of Dicer, with the stem-loop fit in the RNA-binding cleft of the helicase.
  21. Domain architectures of representative RNase III proteins. The N-terminal domain (NTD) unique to budding-yeast RNase III enzymes is indicated. Crystal structure of a Dcr1DC dimer at 2.3A ° resolution, showing a pair of NTDs (red and pink), a pair of RNase III domains (blue and silver), and a single dsRBD1 (green). The other dsRBD1 had poor density and is not shown. Disordered loops are shown as dotted lines, and VL-1 and VL-2 are labeled.
  22. I really don’t like the numbers here. Bullets or just the words would be better. I agree with Tom about the font; Calibri or Arial would be better. It is future work, not future works.
  23. Heading is awkward.
  24. Schematic doesn’t make sense.
  25. Really emphasize that the hit is the same as Joachin’s...very strong evidence.