SlideShare a Scribd company logo
1 of 22
Download to read offline
A Robust Adaptive Controller for a Seed
Refilling System on a Moving Platform
Yang Li, Kim-Doang Nguyen, Harry Dankowicz,
University of Illinois at Urbana-Champaign
Seeding Application Motivation
โ€ข Seeding
๏ƒ˜Time-consuming,
๏ƒ˜Sensitive to environmental conditions and crop properties,
๏ƒ˜Labor intensive.
โ€ข Seeding mechanism
๏ƒ˜A tractor pulling a frame to which individual seeding row units are
attached.
๏ƒ˜Central tank is situated on the frame for large scale seeding.
โ€ข Seed refill and transfer
๏ƒ˜Seeding is interrupted as seeding tractors return to seed storage
building for refill.
In-flight seed refilling mechanism: A manipulator mounted on a moving vehicle
1
Iizumi, T. and Ramankutty, N. (2015). How do weather and climate influence cropping area and intensity? Global Food Security, 4,
46โ€“50.
1
Design Challenges
โ€ข Great variability in seeding tractors
geometry
๏ƒ˜ Planter size (15ft - 120ft widths)
๏ƒ˜ Seed delivery method (direct or via
centralized tank)
๏ƒ˜ Position of centralized tank
โ€ข Challenging control design
๏ƒ˜ Unknown uncertainties and
disturbances on rough terrain
๏ƒ˜ Unmodeled dynamics in the
manipulator on moving platform
Seeding tractors with centralized tanks mounted
in front of (left) and behind (right) the toolbar
T.T.Georgiou, M.C.Smith, โ€œRobustness analysis of nonlinear feedback systems: An input-output approach,โ€ IEEE Trans. Automatic
Control, vol. 42, no. 9, pp. 1200โ€“1221, 1997.
2
Unmodeled dynamics can be equivalently
represented by delay in the plant input2
System Modeling
โ€ข The dynamics of a manipulator that operates on a dynamic platform is
๐‘€ ๐‘Ž๐‘Ž ๐‘ž ๐‘€ ๐‘Ž๐‘ ๐‘ž
๐‘€ ๐‘Ž๐‘
๐‘‡
๐‘ž ๐‘€ ๐‘๐‘ ๐‘ž
แˆท๐‘ž +
๐‘๐‘Ž๐‘Ž ๐‘ก
๐‘๐‘๐‘ ๐‘ก
=
๐‘ข
0
+
๐ท ๐‘Ž๐‘Ž ๐‘ก
๐ท ๐‘๐‘ ๐‘ก
,
where ๐‘ž ๐‘‡
= ๐‘ž ๐‘Ž
๐‘‡
, ๐‘ž ๐‘
๐‘‡
, and ๐‘ž ๐‘ describes the dynamics of the platform.
โ€ข Equivalently,
๐‘€ ๐‘ก, ๐‘ž แˆท๐‘ž ๐‘Ž + ๐‘ ๐‘ก, ๐‘ž, แˆถ๐‘ž = ๐‘ข + ๐น ๐‘ž, ๐‘ก ,
where
๐‘€ ๐‘ก, ๐‘ž = ๐‘€ ๐‘Ž๐‘Ž ๐‘ž โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘
โˆ’1
๐‘ž ๐‘€ ๐‘Ž๐‘
๐‘‡
๐‘ž ,
๐‘ ๐‘ก, ๐‘ž, แˆถ๐‘ž = ๐‘๐‘Ž๐‘Ž ๐‘ก โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘
โˆ’1
๐‘ž ๐‘๐‘๐‘ ๐‘ก ,
๐น ๐‘ž, ๐‘ก = ๐ท ๐‘Ž๐‘Ž ๐‘ก โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘
โˆ’1
๐‘ž ๐ท ๐‘๐‘ ๐‘ก .
โ€ข Control objective: design input ๐‘ข to make ๐‘ž ๐‘Ž ๐‘ก track a desired trajectory
๐‘ž ๐‘‘ ๐‘ก .
Nguyen, K.D. and Dankowicz, H. (2016b). End-effector stabilization in crop and orchard drive-by inspection and treatment.
unpublished, under review.
3
3
System Modeling
โ€ข Introduce a tracking error vector,
๐‘ฅ = แˆถ๐‘ž ๐‘Ž โˆ’ แˆถ๐‘ž ๐‘‘ + ๐œ† ๐‘ž ๐‘Ž โˆ’ ๐‘ž ๐‘‘ ,
where ๐‘ž ๐‘‘ is the desired trajectory, ๐œ† is a feedback gain.
โ€ข System dynamics
แˆถ๐‘ฅ = ๐ด ๐‘š ๐‘ฅ + ๐ต ๐›บ ๐‘ก, ๐‘ฅ ๐‘ข ๐‘ก โˆ’ ๐œ– + ๐œ‚ ๐‘ก, ๐‘ฅ ,
โ„Ž = ๐ท๐‘ฅ,
where ๐œ– is the input delay, and ๐œ‚ ๐‘ก, ๐‘ฅ lumps the remaining
unknown nonlinearity.
โ€ข Control objective:
Drive ๐‘ฅ to a neighborhood of 0, so that ๐‘ž ๐‘Ž converges to a ๐’ž1
neighborhood of ๐‘ž ๐‘‘.
4
4
Nguyen, K.D. and Dankowicz, H. (2015). Adaptive control of underactuated robots with unmodeled dynamics. Robotics and
Autonomous Systems, 64, 84โ€“99.
4
J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3) (1987) 49-59.5
5
Adaptive Control Scheme
Tracking error
variable
Control law with
a low pass filter
Manipulator
dynamics
Platform
dynamics
State
predictor
Adaptive law
๐‘ฅ๐‘ž ๐‘‘
Manipulator state
๐‘ข ๐‘ฅ
เทœ๐‘ฅ
เทค๐‘ฅ
โˆ’
โ€ข A low-pass filter is used to allow for fast adaptation while maintaining a smooth
control input.
โ€ข The control scheme decouples the adaptation rate and robustness.
๐‘ž
แˆ˜๐œƒ, เทœ๐œŽ
Adaptive Control Law
โ€ข The control input ๐‘ข ๐‘ก
แˆถ๐‘ข ๐‘ก = โˆ’๐‘˜ ๐‘ข ๐‘ก + เท ๐œƒ ๐‘ก ๐‘ฅ๐‘ก โ„’โˆž
+ เทœ๐œŽ ๐‘ก + ๐พ ๐‘‘โ„Ž ๐‘‘ ,
where ๐พ ๐‘‘ โ‰œ ๐ท๐ด ๐‘š
โˆ’1
๐ต โˆ’1
.
โ€ข Adaptive law:
แˆถเท ๐œƒ = ฮ“ โ‹… ๐๐ซ๐จ๐ฃ เท ๐œƒ, โˆ’๐ต ๐‘‡
๐‘ƒเทค๐‘ฅ ๐‘ฅ๐‘ก โ„’โˆž
; ๐œƒ ๐‘, ๐œˆ , เท ๐œƒ 0 = เท ๐œƒ0,
แˆถเทœ๐œŽ = ฮ“ โ‹… ๐๐ซ๐จ๐ฃ เทœ๐œŽ, โˆ’๐ต ๐‘‡ ๐‘ƒ เทค๐‘ฅ; ๐œŽ ๐‘, ๐œˆ , เทœ๐œŽ 0 = เทœ๐œŽ0,
where ๐‘ƒ is a positive definite matrix.
โ€ข State predictor,
แˆถเทœ๐‘ฅ = ๐ด ๐‘š ๐‘ฅ + ๐ด ๐‘ ๐‘ เทค๐‘ฅ + ๐ต ๐‘ข + เท ๐œƒ ๐‘ก ๐‘ฅ๐‘ก โ„’โˆž
+ เทœ๐œŽ ๐‘ก ,
where ๐ด ๐‘ ๐‘ is given by
๐ด ๐‘ ๐‘
๐‘‡ ๐‘ƒ + ๐‘ƒ๐ด ๐‘ ๐‘ = โˆ’๐‘„ < 0.
Lavretsky, E., Gibson, T.E., and Annaswamy, A.M. (2011). Projection operator in adaptive systems. arXiv preprint arXiv:1112.4232.6
6
Non-adaptive Reference System
โ€ข Reference system
แˆถ๐‘ฅ ๐‘Ÿ = ๐ด ๐‘š ๐‘ฅ ๐‘Ÿ + ๐ต ๐›บ ๐‘Ÿ ๐‘ก ๐‘ข ๐‘Ÿ ๐‘ก โˆ’ ๐œ– + ๐œ‚ ๐‘ก, ๐‘ฅ ๐‘Ÿ ,
แˆถ๐‘ข ๐‘Ÿ = โˆ’๐‘˜ ๐›บ ๐‘Ÿ ๐‘ก ๐‘ข ๐‘Ÿ ๐‘ก โˆ’ ๐œ– โˆ’ ๐œ‚ ๐‘ก, ๐‘ฅ ๐‘Ÿ โˆ’ ๐พ ๐‘‘โ„Ž ๐‘‘ ๐‘ก ,
where ๐‘ฅ ๐‘Ÿ ๐‘ก = ๐‘ฅ0 and ๐‘ข ๐‘Ÿ ๐‘ก = 0, โˆ€๐‘ก โˆˆ โˆ’๐œ–, 0 .
Theorem 1 (Robustness of Reference System)
Given ๐‘ ๐‘‘, ๐‘๐‘–๐‘ > 0, and ๐œŒ ๐‘Ÿ greater than some positive function of ๐‘ ๐‘‘ and
๐‘๐‘–๐‘, there exists a ๐พ > 0, such that
โ„Ž ๐‘‘ โ„’โˆž
โ‰ค ๐‘ ๐‘‘ and ๐‘ฅ0 โˆž โ‰ค ๐‘๐‘–๐‘
implies that
๐‘ฅ ๐‘Ÿ โ„’โˆž
โ‰ค ๐œŒ ๐‘Ÿ and ๐‘ข ๐‘Ÿ โ„’โˆž
โ‰ค โˆž
for any ๐‘˜ > ๐พ and ๐œ– less than some function of ๐‘˜.
Proof idea: Use continuity analysis in time delay, to get stability exists for 0 delay. By
continuity in delay, reference system must stay stable for a sufficient small time delay.
Nguyen, K.D. and Dankowicz, H. (2016). Delay margin of adaptive controllers for underactuated Lagrangian systems. unpublised, in
preparation.
7
7
Closed-loop Adaptive System
Proof idea: Use standard Lyapunov analysis and apply the property of the projection operator,
an upper bound for เทค๐‘ฅ โ„’โˆž
can be achieved, which is inversely proportional to ฮ“. Similar
analysis can be used to prove the upper boundedness of ๐‘ฅ ๐‘Ÿ โˆ’ ๐‘ฅ โ„’โˆž
and ๐‘ข ๐‘Ÿ โˆ’ ๐‘ข โ„’โˆž
.
Theorem 2 (Robustness of Real Adaptive System)
Given ๐‘ ๐‘‘, ๐‘๐‘–๐‘ > 0, and ๐œŒ ๐‘Ÿ as in Theorem 1, and suppose โ„Ž ๐‘‘ โ„’โˆž
โ‰ค ๐‘ ๐‘‘
and ๐‘ฅ0 โˆž โ‰ค ๐‘๐‘–๐‘. Choose ๐‘˜ and ๐œ– so that ๐‘ฅ ๐‘Ÿ โ„’โˆž
โ‰ค ๐œŒ ๐‘Ÿ and ๐‘ข ๐‘Ÿ โ„’โˆž
โ‰ค โˆž.
Then there exists a ๐ถ > 0 and values for ๐œƒ ๐‘, ๐œŽ ๐‘, and ๐œˆ, such that, for ๐œ“
sufficiently small,
เทค๐‘ฅ โ„’โˆž
โ‰ค ๐œ“,
and ๐‘ฅ ๐‘Ÿ โˆ’ ๐‘ฅ โ„’โˆž
and ๐‘ข ๐‘Ÿ โˆ’ ๐‘ข โ„’โˆž
are both ๐’ช ๐œ“ , provided that ฮ“๐œ“2
โ‰ฅ ๐ถ.
Nguyen, K.D. and Dankowicz, H. (2016). Delay margin of adaptive controllers for underactuated Lagrangian systems. unpublised, in
preparation.
8
8
Manipulator and IMU
โ€ข CataLyst-5 Articulated Robot
๏ƒ˜ 5 DOF
๏ƒ˜ 1kg payload (2.2lb)
๏ƒ˜ 660mm reach (25.98in.)
๏ƒ˜ 19kg weight
๏ƒ˜ +/- 0.05mm repeatability
The dynamics of the manipulator
is significantly complicated to
model.
โ€ข Sparkfun SEN-10736 9DOF
Razor Inertial Measurement
Units (IMU)
๏ƒ˜ A triple-axis accelerometer
๏ƒ˜ A triple-axis gyroscope
๏ƒ˜ A triple-axis magnetometer
Experiment Setup
CataLyst-5 Robot
Control board
Collected data
Batteries
Encoder signal
Control signal
Kill switch
IMU
Scaled Experiment
โ€ข Objectives
๏ƒ˜ Maintain constant orientation of
end-effector relative to an
absolute reference frame.
๏ƒ˜ Maintain the projection of end-
effector onto a vertical plane
perpendicular to the original
direction of travel constant.
โ€ข Experiment setup
๏ƒ˜ CataLyst-5 mounted on a
moving platform
๏ƒ˜ In lab and in field
1. End-effector control for inspection and treatment
Scaled Experiment
โ€ข The proposed control scheme
is able to compensate for the
platform rotation efficiently.
1. End-effector control for inspection and treatment
A typical comparison between rotation
angles of the platform and the end- effector
Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, ๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 5, ๐ด ๐‘š = โˆ’5๐•€.
Video
Scaled Experiment
โ€ข Tracking error decreases when
the adaptive gain ฮ“ is
increased.
โ€ข Tracking error decreases when
the filter bandwidth ๐‘˜ is
increased.
1. End-effector control for inspection and treatment
Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20,
๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€.
The experiment results are consistent with
the bound ๐‘ฅ โ„’โˆž
= ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“ .
Nguyen, K.D. and Dankowicz, H. (2016b). End-effector stabilization in crop and orchard drive-by inspection and treatment.
unpublished, under review.
9
9
Scaled Experiment
1. End-effector control for inspection and treatment
Initial match:๐‘Ÿ0 = ฦธ๐‘Ÿ0 = 0 Initial dismatch: ๐‘Ÿ0 = 0, ฦธ๐‘Ÿ0 = 0.3, 0.3, 0.3
๐‘ก โˆˆ 30, 50
The effect of initialization mismatch ว๐‘Ÿ0 has died off after a while.
Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, ๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€.
Scaled Experiment
1. End-effector control for inspection and treatment
โ€ข Tracking errors in both cases
decay as ๐‘˜ increases.
๐‘ฅ โ„’โˆž
= ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“
โ€ข Results in field has larger
tracking error, as more severe
unknown dynamics in rough
terrain.
Experiment in lab
Experiment in field
Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20,
P = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€, ฮ“ =
105
, ๐‘ž ๐‘‘1 = 0.5 1 โˆ’ cos ๐‘ก , ๐‘ž ๐‘‘2 = 0.5 1 โˆ’ cos 0.5๐‘ก ,
๐‘ž ๐‘‘3 = 0.3 1 โˆ’ cos 0.75๐‘ก .
Scaled Experiment
1. End-effector control for inspection and treatment
โ€œConcave shapeโ€
โ€ข Tracking error first decreases as
๐‘˜ increases from a small value.
๐‘ฅ โ„’โˆž
= ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“
โ€ข Tracking error increases after ๐‘˜
reaches some value (around 10 to
15). Large ๐‘˜ reduces system
stability.
โ€ข The value of ๐‘˜ needs to choose
carefully.
Scaled Experiment
โ€ข Objectives
๏ƒ˜ The orthogonal projection of the
end-effector onto a nominally
flat ground follows a
predetermined path.
๏ƒ˜ The end-effector needs to be
controlled to face down to the
ground.
โ€ข Experiment setup
๏ƒ˜ A 5-DOF manipulator mounted
on a mobile platform.
๏ƒ˜ A camera attached on the end-
effector to capture images.
2. Path following (ongoing)
The first three joints behave differently from the other two joints.
โ€ข Objectives
๏ƒ˜ Control cooperatively two
manipulators on their moving
platforms to pass and catch an
object.
โ€ข Experiment setup
๏ƒ˜ Two manipulators mounted on
two moving platform in a rough
terrain.
๏ƒ˜ Camera and vision process
techniques
Scaled Experiment
3. Coordination of two moving-base manipulators (future work)
Conclusion
โ€ข Variety of seeding planters brings challenges to seeding system
design for automation.
โ€ข The proposed adaptive control algorithm is shown to be robust and
efficient for manipulator working on moving platform with
uncertainties and unknown disturbances.
โ€ข Experiments on control of end-effector shows the efficiency of the
proposed control algorithm.
Acknowledgement
โ€ข National Institute of Food and Agriculture, U.S. Department of
Agriculture, grant number 2014-67021-22109.
โ€ข John Deere Robotics Systems group.
Questions?
Yang Li
yangli12@illinois.edu

More Related Content

Similar to Presentation1

Predictive feedback control
Predictive feedback controlPredictive feedback control
Predictive feedback control
ISA Interchange
ย 
Robust Presentation on h ifiinity based full state feedback controller design...
Robust Presentation on h ifiinity based full state feedback controller design...Robust Presentation on h ifiinity based full state feedback controller design...
Robust Presentation on h ifiinity based full state feedback controller design...
VivekKumar265461
ย 
Ballingham_Severance_Lab4
Ballingham_Severance_Lab4Ballingham_Severance_Lab4
Ballingham_Severance_Lab4
Ryland Ballingham
ย 
Kalman_filtering
Kalman_filteringKalman_filtering
Kalman_filtering
mahsa rezaei
ย 
Alternative architecture and control strategy july 2010 - joe beno
Alternative architecture and control strategy   july 2010 - joe benoAlternative architecture and control strategy   july 2010 - joe beno
Alternative architecture and control strategy july 2010 - joe beno
cahouser
ย 
Kalman filter - Applications in Image processing
Kalman filter - Applications in Image processingKalman filter - Applications in Image processing
Kalman filter - Applications in Image processing
Ravi Teja
ย 

Similar to Presentation1 (20)

ddpg seminar
ddpg seminarddpg seminar
ddpg seminar
ย 
Chapter 1 basic components of control system
Chapter  1  basic components of control systemChapter  1  basic components of control system
Chapter 1 basic components of control system
ย 
Confirmatory Bayesian Online Change Point Detection in the Covariance Structu...
Confirmatory Bayesian Online Change Point Detection in the Covariance Structu...Confirmatory Bayesian Online Change Point Detection in the Covariance Structu...
Confirmatory Bayesian Online Change Point Detection in the Covariance Structu...
ย 
Predictive feedback control
Predictive feedback controlPredictive feedback control
Predictive feedback control
ย 
Control System Modeling case study with complete explanation
Control System Modeling case study with complete explanationControl System Modeling case study with complete explanation
Control System Modeling case study with complete explanation
ย 
Strategic Oscillation for Exploitation and Exploration of ACS Algorithm for J...
Strategic Oscillation for Exploitation and Exploration of ACS Algorithm for J...Strategic Oscillation for Exploitation and Exploration of ACS Algorithm for J...
Strategic Oscillation for Exploitation and Exploration of ACS Algorithm for J...
ย 
Smart Systems for Structural Response Control by Dr. Naveed Anwar
Smart Systems for Structural Response Control by Dr. Naveed AnwarSmart Systems for Structural Response Control by Dr. Naveed Anwar
Smart Systems for Structural Response Control by Dr. Naveed Anwar
ย 
SPICE-MATEX @ DAC15
SPICE-MATEX @ DAC15SPICE-MATEX @ DAC15
SPICE-MATEX @ DAC15
ย 
DAC15 Hao Zhuang poster
DAC15 Hao Zhuang poster DAC15 Hao Zhuang poster
DAC15 Hao Zhuang poster
ย 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
ย 
Vibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plateVibration Isolation of a LEGOยฎ plate
Vibration Isolation of a LEGOยฎ plate
ย 
The Joy of SLAM
The Joy of SLAMThe Joy of SLAM
The Joy of SLAM
ย 
Robust Presentation on h ifiinity based full state feedback controller design...
Robust Presentation on h ifiinity based full state feedback controller design...Robust Presentation on h ifiinity based full state feedback controller design...
Robust Presentation on h ifiinity based full state feedback controller design...
ย 
Ballingham_Severance_Lab4
Ballingham_Severance_Lab4Ballingham_Severance_Lab4
Ballingham_Severance_Lab4
ย 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
ย 
Kalman_filtering
Kalman_filteringKalman_filtering
Kalman_filtering
ย 
Alternative architecture and control strategy july 2010 - joe beno
Alternative architecture and control strategy   july 2010 - joe benoAlternative architecture and control strategy   july 2010 - joe beno
Alternative architecture and control strategy july 2010 - joe beno
ย 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
ย 
Smart Systems for Structural Response Control
Smart Systems for Structural Response ControlSmart Systems for Structural Response Control
Smart Systems for Structural Response Control
ย 
Kalman filter - Applications in Image processing
Kalman filter - Applications in Image processingKalman filter - Applications in Image processing
Kalman filter - Applications in Image processing
ย 

Presentation1

  • 1. A Robust Adaptive Controller for a Seed Refilling System on a Moving Platform Yang Li, Kim-Doang Nguyen, Harry Dankowicz, University of Illinois at Urbana-Champaign
  • 2. Seeding Application Motivation โ€ข Seeding ๏ƒ˜Time-consuming, ๏ƒ˜Sensitive to environmental conditions and crop properties, ๏ƒ˜Labor intensive. โ€ข Seeding mechanism ๏ƒ˜A tractor pulling a frame to which individual seeding row units are attached. ๏ƒ˜Central tank is situated on the frame for large scale seeding. โ€ข Seed refill and transfer ๏ƒ˜Seeding is interrupted as seeding tractors return to seed storage building for refill. In-flight seed refilling mechanism: A manipulator mounted on a moving vehicle 1 Iizumi, T. and Ramankutty, N. (2015). How do weather and climate influence cropping area and intensity? Global Food Security, 4, 46โ€“50. 1
  • 3. Design Challenges โ€ข Great variability in seeding tractors geometry ๏ƒ˜ Planter size (15ft - 120ft widths) ๏ƒ˜ Seed delivery method (direct or via centralized tank) ๏ƒ˜ Position of centralized tank โ€ข Challenging control design ๏ƒ˜ Unknown uncertainties and disturbances on rough terrain ๏ƒ˜ Unmodeled dynamics in the manipulator on moving platform Seeding tractors with centralized tanks mounted in front of (left) and behind (right) the toolbar T.T.Georgiou, M.C.Smith, โ€œRobustness analysis of nonlinear feedback systems: An input-output approach,โ€ IEEE Trans. Automatic Control, vol. 42, no. 9, pp. 1200โ€“1221, 1997. 2 Unmodeled dynamics can be equivalently represented by delay in the plant input2
  • 4. System Modeling โ€ข The dynamics of a manipulator that operates on a dynamic platform is ๐‘€ ๐‘Ž๐‘Ž ๐‘ž ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘Ž๐‘ ๐‘‡ ๐‘ž ๐‘€ ๐‘๐‘ ๐‘ž แˆท๐‘ž + ๐‘๐‘Ž๐‘Ž ๐‘ก ๐‘๐‘๐‘ ๐‘ก = ๐‘ข 0 + ๐ท ๐‘Ž๐‘Ž ๐‘ก ๐ท ๐‘๐‘ ๐‘ก , where ๐‘ž ๐‘‡ = ๐‘ž ๐‘Ž ๐‘‡ , ๐‘ž ๐‘ ๐‘‡ , and ๐‘ž ๐‘ describes the dynamics of the platform. โ€ข Equivalently, ๐‘€ ๐‘ก, ๐‘ž แˆท๐‘ž ๐‘Ž + ๐‘ ๐‘ก, ๐‘ž, แˆถ๐‘ž = ๐‘ข + ๐น ๐‘ž, ๐‘ก , where ๐‘€ ๐‘ก, ๐‘ž = ๐‘€ ๐‘Ž๐‘Ž ๐‘ž โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘ โˆ’1 ๐‘ž ๐‘€ ๐‘Ž๐‘ ๐‘‡ ๐‘ž , ๐‘ ๐‘ก, ๐‘ž, แˆถ๐‘ž = ๐‘๐‘Ž๐‘Ž ๐‘ก โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘ โˆ’1 ๐‘ž ๐‘๐‘๐‘ ๐‘ก , ๐น ๐‘ž, ๐‘ก = ๐ท ๐‘Ž๐‘Ž ๐‘ก โˆ’ ๐‘€ ๐‘Ž๐‘ ๐‘ž ๐‘€ ๐‘๐‘ โˆ’1 ๐‘ž ๐ท ๐‘๐‘ ๐‘ก . โ€ข Control objective: design input ๐‘ข to make ๐‘ž ๐‘Ž ๐‘ก track a desired trajectory ๐‘ž ๐‘‘ ๐‘ก . Nguyen, K.D. and Dankowicz, H. (2016b). End-effector stabilization in crop and orchard drive-by inspection and treatment. unpublished, under review. 3 3
  • 5. System Modeling โ€ข Introduce a tracking error vector, ๐‘ฅ = แˆถ๐‘ž ๐‘Ž โˆ’ แˆถ๐‘ž ๐‘‘ + ๐œ† ๐‘ž ๐‘Ž โˆ’ ๐‘ž ๐‘‘ , where ๐‘ž ๐‘‘ is the desired trajectory, ๐œ† is a feedback gain. โ€ข System dynamics แˆถ๐‘ฅ = ๐ด ๐‘š ๐‘ฅ + ๐ต ๐›บ ๐‘ก, ๐‘ฅ ๐‘ข ๐‘ก โˆ’ ๐œ– + ๐œ‚ ๐‘ก, ๐‘ฅ , โ„Ž = ๐ท๐‘ฅ, where ๐œ– is the input delay, and ๐œ‚ ๐‘ก, ๐‘ฅ lumps the remaining unknown nonlinearity. โ€ข Control objective: Drive ๐‘ฅ to a neighborhood of 0, so that ๐‘ž ๐‘Ž converges to a ๐’ž1 neighborhood of ๐‘ž ๐‘‘. 4 4 Nguyen, K.D. and Dankowicz, H. (2015). Adaptive control of underactuated robots with unmodeled dynamics. Robotics and Autonomous Systems, 64, 84โ€“99. 4 J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3) (1987) 49-59.5 5
  • 6. Adaptive Control Scheme Tracking error variable Control law with a low pass filter Manipulator dynamics Platform dynamics State predictor Adaptive law ๐‘ฅ๐‘ž ๐‘‘ Manipulator state ๐‘ข ๐‘ฅ เทœ๐‘ฅ เทค๐‘ฅ โˆ’ โ€ข A low-pass filter is used to allow for fast adaptation while maintaining a smooth control input. โ€ข The control scheme decouples the adaptation rate and robustness. ๐‘ž แˆ˜๐œƒ, เทœ๐œŽ
  • 7. Adaptive Control Law โ€ข The control input ๐‘ข ๐‘ก แˆถ๐‘ข ๐‘ก = โˆ’๐‘˜ ๐‘ข ๐‘ก + เท ๐œƒ ๐‘ก ๐‘ฅ๐‘ก โ„’โˆž + เทœ๐œŽ ๐‘ก + ๐พ ๐‘‘โ„Ž ๐‘‘ , where ๐พ ๐‘‘ โ‰œ ๐ท๐ด ๐‘š โˆ’1 ๐ต โˆ’1 . โ€ข Adaptive law: แˆถเท ๐œƒ = ฮ“ โ‹… ๐๐ซ๐จ๐ฃ เท ๐œƒ, โˆ’๐ต ๐‘‡ ๐‘ƒเทค๐‘ฅ ๐‘ฅ๐‘ก โ„’โˆž ; ๐œƒ ๐‘, ๐œˆ , เท ๐œƒ 0 = เท ๐œƒ0, แˆถเทœ๐œŽ = ฮ“ โ‹… ๐๐ซ๐จ๐ฃ เทœ๐œŽ, โˆ’๐ต ๐‘‡ ๐‘ƒ เทค๐‘ฅ; ๐œŽ ๐‘, ๐œˆ , เทœ๐œŽ 0 = เทœ๐œŽ0, where ๐‘ƒ is a positive definite matrix. โ€ข State predictor, แˆถเทœ๐‘ฅ = ๐ด ๐‘š ๐‘ฅ + ๐ด ๐‘ ๐‘ เทค๐‘ฅ + ๐ต ๐‘ข + เท ๐œƒ ๐‘ก ๐‘ฅ๐‘ก โ„’โˆž + เทœ๐œŽ ๐‘ก , where ๐ด ๐‘ ๐‘ is given by ๐ด ๐‘ ๐‘ ๐‘‡ ๐‘ƒ + ๐‘ƒ๐ด ๐‘ ๐‘ = โˆ’๐‘„ < 0. Lavretsky, E., Gibson, T.E., and Annaswamy, A.M. (2011). Projection operator in adaptive systems. arXiv preprint arXiv:1112.4232.6 6
  • 8. Non-adaptive Reference System โ€ข Reference system แˆถ๐‘ฅ ๐‘Ÿ = ๐ด ๐‘š ๐‘ฅ ๐‘Ÿ + ๐ต ๐›บ ๐‘Ÿ ๐‘ก ๐‘ข ๐‘Ÿ ๐‘ก โˆ’ ๐œ– + ๐œ‚ ๐‘ก, ๐‘ฅ ๐‘Ÿ , แˆถ๐‘ข ๐‘Ÿ = โˆ’๐‘˜ ๐›บ ๐‘Ÿ ๐‘ก ๐‘ข ๐‘Ÿ ๐‘ก โˆ’ ๐œ– โˆ’ ๐œ‚ ๐‘ก, ๐‘ฅ ๐‘Ÿ โˆ’ ๐พ ๐‘‘โ„Ž ๐‘‘ ๐‘ก , where ๐‘ฅ ๐‘Ÿ ๐‘ก = ๐‘ฅ0 and ๐‘ข ๐‘Ÿ ๐‘ก = 0, โˆ€๐‘ก โˆˆ โˆ’๐œ–, 0 . Theorem 1 (Robustness of Reference System) Given ๐‘ ๐‘‘, ๐‘๐‘–๐‘ > 0, and ๐œŒ ๐‘Ÿ greater than some positive function of ๐‘ ๐‘‘ and ๐‘๐‘–๐‘, there exists a ๐พ > 0, such that โ„Ž ๐‘‘ โ„’โˆž โ‰ค ๐‘ ๐‘‘ and ๐‘ฅ0 โˆž โ‰ค ๐‘๐‘–๐‘ implies that ๐‘ฅ ๐‘Ÿ โ„’โˆž โ‰ค ๐œŒ ๐‘Ÿ and ๐‘ข ๐‘Ÿ โ„’โˆž โ‰ค โˆž for any ๐‘˜ > ๐พ and ๐œ– less than some function of ๐‘˜. Proof idea: Use continuity analysis in time delay, to get stability exists for 0 delay. By continuity in delay, reference system must stay stable for a sufficient small time delay. Nguyen, K.D. and Dankowicz, H. (2016). Delay margin of adaptive controllers for underactuated Lagrangian systems. unpublised, in preparation. 7 7
  • 9. Closed-loop Adaptive System Proof idea: Use standard Lyapunov analysis and apply the property of the projection operator, an upper bound for เทค๐‘ฅ โ„’โˆž can be achieved, which is inversely proportional to ฮ“. Similar analysis can be used to prove the upper boundedness of ๐‘ฅ ๐‘Ÿ โˆ’ ๐‘ฅ โ„’โˆž and ๐‘ข ๐‘Ÿ โˆ’ ๐‘ข โ„’โˆž . Theorem 2 (Robustness of Real Adaptive System) Given ๐‘ ๐‘‘, ๐‘๐‘–๐‘ > 0, and ๐œŒ ๐‘Ÿ as in Theorem 1, and suppose โ„Ž ๐‘‘ โ„’โˆž โ‰ค ๐‘ ๐‘‘ and ๐‘ฅ0 โˆž โ‰ค ๐‘๐‘–๐‘. Choose ๐‘˜ and ๐œ– so that ๐‘ฅ ๐‘Ÿ โ„’โˆž โ‰ค ๐œŒ ๐‘Ÿ and ๐‘ข ๐‘Ÿ โ„’โˆž โ‰ค โˆž. Then there exists a ๐ถ > 0 and values for ๐œƒ ๐‘, ๐œŽ ๐‘, and ๐œˆ, such that, for ๐œ“ sufficiently small, เทค๐‘ฅ โ„’โˆž โ‰ค ๐œ“, and ๐‘ฅ ๐‘Ÿ โˆ’ ๐‘ฅ โ„’โˆž and ๐‘ข ๐‘Ÿ โˆ’ ๐‘ข โ„’โˆž are both ๐’ช ๐œ“ , provided that ฮ“๐œ“2 โ‰ฅ ๐ถ. Nguyen, K.D. and Dankowicz, H. (2016). Delay margin of adaptive controllers for underactuated Lagrangian systems. unpublised, in preparation. 8 8
  • 10. Manipulator and IMU โ€ข CataLyst-5 Articulated Robot ๏ƒ˜ 5 DOF ๏ƒ˜ 1kg payload (2.2lb) ๏ƒ˜ 660mm reach (25.98in.) ๏ƒ˜ 19kg weight ๏ƒ˜ +/- 0.05mm repeatability The dynamics of the manipulator is significantly complicated to model. โ€ข Sparkfun SEN-10736 9DOF Razor Inertial Measurement Units (IMU) ๏ƒ˜ A triple-axis accelerometer ๏ƒ˜ A triple-axis gyroscope ๏ƒ˜ A triple-axis magnetometer
  • 11. Experiment Setup CataLyst-5 Robot Control board Collected data Batteries Encoder signal Control signal Kill switch IMU
  • 12. Scaled Experiment โ€ข Objectives ๏ƒ˜ Maintain constant orientation of end-effector relative to an absolute reference frame. ๏ƒ˜ Maintain the projection of end- effector onto a vertical plane perpendicular to the original direction of travel constant. โ€ข Experiment setup ๏ƒ˜ CataLyst-5 mounted on a moving platform ๏ƒ˜ In lab and in field 1. End-effector control for inspection and treatment
  • 13. Scaled Experiment โ€ข The proposed control scheme is able to compensate for the platform rotation efficiently. 1. End-effector control for inspection and treatment A typical comparison between rotation angles of the platform and the end- effector Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, ๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 5, ๐ด ๐‘š = โˆ’5๐•€. Video
  • 14. Scaled Experiment โ€ข Tracking error decreases when the adaptive gain ฮ“ is increased. โ€ข Tracking error decreases when the filter bandwidth ๐‘˜ is increased. 1. End-effector control for inspection and treatment Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, ๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€. The experiment results are consistent with the bound ๐‘ฅ โ„’โˆž = ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“ . Nguyen, K.D. and Dankowicz, H. (2016b). End-effector stabilization in crop and orchard drive-by inspection and treatment. unpublished, under review. 9 9
  • 15. Scaled Experiment 1. End-effector control for inspection and treatment Initial match:๐‘Ÿ0 = ฦธ๐‘Ÿ0 = 0 Initial dismatch: ๐‘Ÿ0 = 0, ฦธ๐‘Ÿ0 = 0.3, 0.3, 0.3 ๐‘ก โˆˆ 30, 50 The effect of initialization mismatch ว๐‘Ÿ0 has died off after a while. Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, ๐œ– = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€.
  • 16. Scaled Experiment 1. End-effector control for inspection and treatment โ€ข Tracking errors in both cases decay as ๐‘˜ increases. ๐‘ฅ โ„’โˆž = ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“ โ€ข Results in field has larger tracking error, as more severe unknown dynamics in rough terrain. Experiment in lab Experiment in field Experiment parameter: ๐‘‡ = 0.001s, ๐œƒ ๐‘ = 20, ๐œŽ๐‘ = 20, P = 0.1, ๐ด ๐‘ ๐‘ = 700๐•€, ๐‘„ = 140๐•€, ๐œ† = 1, ๐ด ๐‘š = โˆ’๐•€, ฮ“ = 105 , ๐‘ž ๐‘‘1 = 0.5 1 โˆ’ cos ๐‘ก , ๐‘ž ๐‘‘2 = 0.5 1 โˆ’ cos 0.5๐‘ก , ๐‘ž ๐‘‘3 = 0.3 1 โˆ’ cos 0.75๐‘ก .
  • 17. Scaled Experiment 1. End-effector control for inspection and treatment โ€œConcave shapeโ€ โ€ข Tracking error first decreases as ๐‘˜ increases from a small value. ๐‘ฅ โ„’โˆž = ๐’ช 1/๐‘˜ + ๐’ช 1/ฮ“ โ€ข Tracking error increases after ๐‘˜ reaches some value (around 10 to 15). Large ๐‘˜ reduces system stability. โ€ข The value of ๐‘˜ needs to choose carefully.
  • 18. Scaled Experiment โ€ข Objectives ๏ƒ˜ The orthogonal projection of the end-effector onto a nominally flat ground follows a predetermined path. ๏ƒ˜ The end-effector needs to be controlled to face down to the ground. โ€ข Experiment setup ๏ƒ˜ A 5-DOF manipulator mounted on a mobile platform. ๏ƒ˜ A camera attached on the end- effector to capture images. 2. Path following (ongoing) The first three joints behave differently from the other two joints.
  • 19. โ€ข Objectives ๏ƒ˜ Control cooperatively two manipulators on their moving platforms to pass and catch an object. โ€ข Experiment setup ๏ƒ˜ Two manipulators mounted on two moving platform in a rough terrain. ๏ƒ˜ Camera and vision process techniques Scaled Experiment 3. Coordination of two moving-base manipulators (future work)
  • 20. Conclusion โ€ข Variety of seeding planters brings challenges to seeding system design for automation. โ€ข The proposed adaptive control algorithm is shown to be robust and efficient for manipulator working on moving platform with uncertainties and unknown disturbances. โ€ข Experiments on control of end-effector shows the efficiency of the proposed control algorithm.
  • 21. Acknowledgement โ€ข National Institute of Food and Agriculture, U.S. Department of Agriculture, grant number 2014-67021-22109. โ€ข John Deere Robotics Systems group.