SlideShare a Scribd company logo
1 of 1
Download to read offline
GABAergic Fate
Pax3, Pax7, Lim1, Nkx2.2, SLC32A1, Gad1 [6,8,11]
Glutamatergic Fate
Tbr1, Tbr2, VGlut2 [1,7,9]
Pax2
Lbx1Ptf1a
Lmx1b
Tlx3
98.3%
71%
30%
80%
80%
B
Atoh1
90%
90%
97.8%
95%
96.4%
73.5%
79.9%
77.1%
BA
Modeling	
  Neurotransmitter	
  Specification	
  
in	
  Neural	
  Progenitor	
  Cells
William	
  Fisher1,2,	
  Tanner	
  Lakin1,3,	
  Adele	
  Doyle1,4
1Neuroscience	
  Research	
  Institute,	
  2College	
  of	
  Creative	
  Studies,	
  3Molecular	
  Cellular	
  &	
  
Developmental	
  Biology,	
  4Center	
  for	
  BioEngineering,	
  Univ.	
  of	
  California	
  Santa	
  Barbara
References
Introduction: [1]  Lindvall,  Nature,  2004  [2]  Shi,  Nature,  2012  [3]  Hori,  Neural  Plast,  2012  GABAergic/Glutamatergic  Fate  Switch:  [1]  Hori,  Neuroplast,  2012  [2]  Yamada,  The  Journ of  Neurosci,  2014  [3]  Puelles,  The  Journ of  Neurosci,  2006  [4]  Nakatani,  Dev,  2007  
2012  [5]  Roybon,  Cereb Cort,  2009  [6]  Pillai,  Dev,  2007  [7]  Xiang,  Somat and  Motor  Res,  2012  [8]  Batista,  Dev  Bio,  2008  [9]  Cheng,  Nat  Neurosci,  2005  [10]  Pozas,  Neuron,  2005  [11]  Canty,  the  Journ of  Neurosci,  2009  [12]  Kwon,  Stem  Cell  Res  [13]  Blum,  Cereb
Cort,  2011  [14]  Chen,  PLoS One,  2012  [15]  Poitras,  Dev,  2007  [16]  Hoshino,  Neuron,  2005,  [17]  Gaspard,  Nature,  2008.  [18]  Gaspard,  Nature  Protocols,  2009.
Edge Probability Reason Reference
Atoh1-Glut 79.9% Model Prediction Yamada-The Journ of Neurosci-2014
Atoh1-Ptf1a 90% Co – immunostaining Yamada-The Journ of Neurosci-2014
Ptf1a-Atoh1 90% Co – immunostaining Yamada-The Journ of Neurosci-2014
Ptf1a-Pax2 80% Ptf1a Knock out study Glasgow-Develop-2005
Ptf1a-GABA 73.5% Ptf1a Knock in study Hoshino-Neuron-2005
Ptf1a-Tlx3 30% Ptf1a Knock in study Hori-Develop-2005
Tlx3-Lbx1 71% Tlx3 and Lbx1 knock outs Cheng-Nat Neurosci-2005
Tlx3-Glut 96.4% Co-immunostaining Cheng-Nat Neurosci-2004
Lbx1-GABA 77.1% Model Prediction Cheng-Nat Neurosci-2005
Lbx1-Pax2 80% Lbx1 Knock out study Cheng-Nat Neurosci-2005
Lmx1b-Glut 95% Co-immunostaining Xiang-Somato & Motor Res-2012
Lmx1b-Pax2 98.3% Co-immunostaining Cheng-Nat Neurosci-2004
Pax2-GABA 97.8% Co-immunostaining Cheng-Nat Neurosci-2004
Figure	
  2.	
  	
  Validation	
  of	
  probabalistic
model. To	
  determine	
  the	
  accuracy	
  of	
  
the	
  rules,	
  we	
  compared	
  published	
  
experimental	
  observations	
  versus	
  the	
  
output	
  generated	
  by	
  our	
  custom	
  
probabalisticbooleanMatlab
simulation.	
  (A)	
  Specifically,	
  we	
  
compared	
  the	
  likelihood	
  of	
  Ptf1a-­‐
expressing	
  cells	
  to	
  also	
  express	
  Pax2	
  
calculated	
  from	
  experimental	
  data	
  
(Glasgow,	
  2005)	
  and	
  as	
  a	
  result	
  of	
  
network	
  simulation	
  (n=10,000	
  cells;	
  
t=20	
  iterations).	
  (B)	
  Likelihood	
  of	
  
Lmx1b-­‐expressing	
  cells	
  to	
  also	
  express	
  
Pax2	
  experimentally	
  (Cheng,	
  2004)	
  
versus	
  in	
  silico (n=10,000	
  cells,	
  t=20	
  
iterations).
Abstract
To	
  better	
  understand	
  the	
  origin	
  of	
  excitatory	
  and	
  inhibitory	
  neurons	
  in	
  
the	
  brain,	
  we	
  identified	
  a	
  transcription	
  factor-­‐based	
  molecular	
  switch	
  
governing	
  excitatory	
  (glutamatergic)	
  versus	
  inhibitory	
  (GABAergic)	
  
neuron	
  differentiation.	
  We	
  formalized	
  this	
  switch	
  as	
  a	
  set	
  of	
  
probabalistic rules	
  and	
  simulated	
  the	
  resulting	
  timecourse of	
  gene	
  
expression	
  during	
  differentiation	
  of	
  virtual	
  neural	
  progenitor	
  cells.	
  
These	
  gene	
  expression	
  dynamics	
  predict	
  the	
  sequence	
  and	
  co-­‐
expression	
  of	
  six	
  transcription	
  factors	
  known	
  to	
  be	
  important	
  for	
  
GABAergic and	
  glutamatergic differentation.	
  Ongoing	
  studies	
  are	
  testing	
  
the	
  predictions	
  of	
  this	
  model	
  in	
  mouse	
  pluripotent	
  stem	
  cells	
  
differentiated	
  to	
  VGlut1/2+ or	
  GAD1+ cells.	
  This	
  quantitative	
  approach	
  
to	
  understand	
  how	
  essential	
  brain	
  cell	
  types	
  arise	
  will	
  contribute	
  to	
  our	
  
understanding	
  of	
  nervous	
  system	
  development	
  and	
  design	
  of	
  neuronal	
  
therapies.	
  
Materials	
  and	
  Methods
• We	
  extracted	
  qualitative	
  and	
  quantitative	
  evidence	
  regarding	
  the	
  regulation	
  of	
  
GABAergic and	
  Glutamatergic differentiation	
  from	
  literature	
  using	
  PubMed	
  and	
  Web	
  
of	
  Science.	
  
• We	
  combined	
  these	
  data	
  into	
  a	
  consensus	
  regulatory	
  model	
  for	
  GABA	
  and	
  
glutamatergic differentiation,	
  leading	
  to	
  identification	
  of	
  a	
  Pax2-­‐related	
  putative	
  fate	
  
switch.
• We	
  translated	
  the	
  fate	
  switch	
  diagram	
  into	
  a	
  mathematical	
  description	
  using	
  
probabilities.	
  We	
  simulated	
  gene	
  expression	
  dynamics	
  in	
  different	
  sizes	
  of	
  virtual	
  cell	
  
populations	
  and	
  different	
  differentiation	
  times	
  to	
  determine	
  if	
  this	
  novel	
  inferred	
  
regulatory	
  switch	
  is	
  sufficient	
  to	
  explain	
  experimental	
  data.	
  
• To	
  test	
  predictions	
  from	
  the	
  consensus	
  model	
  experimentally,	
  we	
  are	
  differentiating	
  
mouse	
  embryonic	
  stem	
  cells	
  in	
  Defined	
  Default	
  Medium	
  for	
  28	
  days	
  to	
  yield	
  
VGlut1/2+	
  and	
  VGAT+ cells	
  [17-­‐18].
Percentage	
  of	
  Cells	
  of	
  Each	
  Subtype	
  Across	
  Multiple	
  Simulations
Glutamatergic	
  Cells
Legend
Figure	
  3. Simulation	
  of	
  glutamatergic and	
  GABAergic differentiation	
  of	
  neural	
  progenitor	
  cells.	
  (A)	
  Final	
  
predicted	
  cell	
  type	
  as	
  a	
  function	
  of	
  time	
  shown	
  for	
  virtual	
  cell	
  populations	
  of	
  varying	
  sizes	
  (102-­‐106 cells).	
  
(B)	
  Bar	
  graph	
  of	
  relative	
  numbers	
  of	
  cell	
  fates,	
  including	
  neural	
  progenitor	
  cell	
  (NPC;	
  cyan),	
  GABAergic
(blue),	
  glutamatergic(red),	
  and	
  unknown	
  (white/grey).	
  (C-­‐H)	
  Gene	
  expression	
  of	
  fate	
  switch	
  molecules	
  as	
  a	
  
function	
  of	
  final	
  cell	
  state	
  for	
  104	
  simulated	
  cells	
  during	
  20	
  time	
  steps	
  (rule	
  iterations).	
  (C)	
  Ptf1a,	
  (D)	
  
Lmx1b,	
  (E)	
  Lbx1,	
  (F)	
  Tlx3,	
  (G)	
  Atoh1,	
  and	
  (H)	
  Pax2.
Neural	
  Progenitor	
  Cells
GABAergic	
  Cells
Unknown	
  Cells
n=106 virtual	
  cells
n=102 virtual	
  cells
n=104 virtual	
  cells
A B
C D E
F G H
Background
Stem	
  cell	
  therapies	
  have	
  the	
  potential	
  to	
  drastically	
  improve	
  the	
  
treatment	
  of	
  neurodegenerative	
  diseases	
  [1].	
  Numerous	
  protocols	
  have	
  
been	
  developed	
  which	
  allow	
  for	
  the	
  differentiation	
  of	
  neural	
  progenitor	
  
cells	
  into	
  neurons	
  [2]	
  as	
  well	
  as	
  some	
  that	
  describe	
  the	
  molecules	
  
needed	
  to	
  specify	
  individual	
  neurotransmitter	
  expressing	
  subtypes	
  [3].	
  
However,	
  the	
  regulatory	
  networks	
  governing	
  subtype	
  differentiation	
  are	
  
not	
  well	
  known.	
  	
  In	
  this	
  study,	
  we	
  have	
  integrated	
  both	
  qualitative	
  and	
  
quantitative	
  data	
  on	
  GABAergic and	
  Glutamatergic differentiation	
  from	
  
previous	
  studies	
  to	
  develop	
  an	
  integrated	
  molecular	
  fate	
  switch	
  motif	
  
which	
  revealed	
  a	
  Pax2	
  dependent	
  fate	
  switch	
  submodule.	
  We	
  also	
  
created	
  a	
  mathematical	
  model	
  that	
  simulates	
  the	
  putative	
  molecular	
  
GABA-­‐Glut	
  fate	
  switch	
  network	
  dynamics.
Results
Figure	
  1.	
  Transcription	
  factors	
  affect	
  the	
  decision	
  of	
  neural	
  progenitor	
  cells	
  to	
  choose	
  GABAergic or	
  
Glutamatergic neuron	
  identity.	
  (A)	
  Probabilities	
  of	
  molecule	
  co-­‐expression	
  extracted	
  from	
  literature	
  and	
  
used	
  for	
  Matlab simulation	
  rules.	
  (B)	
  Summary	
  diagram	
  showing	
  interactions	
  of	
  predicted	
  fate	
  switch	
  
transcription	
  factors.	
  Proteins	
  appear	
  to	
  be	
  either	
  pro-­‐glutamatergic(red)	
  or	
  pro-­‐GABAergic(blue).	
  Edge	
  
between	
  genes	
  represent	
  rules	
  encoded	
  in	
  the	
  simulation.	
  The	
  probability	
  of	
  each	
  event	
  occuring (see	
  
Table,	
  part	
  A)	
  is	
  shown	
  next	
  to	
  each	
  edge.
Discussion
Glutamatergic and	
  GABAergic neuron	
  substypes are	
  generally	
  consisidered to	
  be	
  mutually	
  
exclusive.	
  We	
  have	
  identified	
  a	
  molecular	
  network	
  that	
  may	
  enable	
  and	
  reinforce	
  this	
  switch-­‐
like	
  behavior	
  (Fig.	
  1).	
  Results	
  from	
  the	
  probabalistic formalization	
  of	
  this	
  network	
  agree	
  with	
  
experimental	
  validation	
  (Fig.	
  2).	
  Gene	
  expression	
  dynamics	
  accurately	
  predict	
  the	
  convergence	
  
of	
  molecules	
  Pax2	
  and	
  Lmx1b	
  with	
  their	
  associated	
  fate	
  choice.	
  They	
  also	
  reveal	
  potential	
  high	
  
variability	
  in	
  expression	
  levels	
  of	
  some	
  genes	
  in	
  particular	
  cell	
  states	
  (e.g.,	
  Atoh1	
  in	
  unknown	
  
and	
  Glut.	
  cells,	
  but	
  not	
  GABA	
  cells)	
  and	
  the	
  theoretical	
  possibility	
  of	
  steady	
  state	
  oscillating	
  
states	
  (Fig.	
  3).	
  Ongoing	
  cell	
  culture	
  studies	
  (Fig.	
  4)	
  will	
  enable	
  us	
  to	
  test	
  these	
  predictions	
  in	
  a	
  
single	
  system	
  simultaneously	
  and	
  refine	
  our	
  understanding	
  of	
  essential	
  neuron	
  subtype	
  origins.	
  	
  
Figure	
  4	
  (below).	
  Phase	
  images	
  of	
  
neuronal	
  differentiation.	
  In	
  vitro	
  cell	
  
culture	
  of	
  mouse	
  embryonic	
  stem	
  cells	
  
differentiating	
  towards	
  glutamatergicand	
  
GABAergicneurons,	
  based	
  on	
  [17-­‐18].	
  The	
  
Sonic	
  Hedgehog	
  antagonist,	
  cyclopamine,	
  
enhances	
  glutamatergicdifferentiation	
  
(B),	
  instead	
  of	
  equal	
  amounts	
  GABAergic
(VGAT+)	
  and	
  Glutamatergic(VGlut1/2+)	
  
neurons	
  (Tuj1+)	
  in	
  DDM	
  media	
  only	
  (A).	
  Experiment Simulation
Percent	
  of	
  Cells	
  Co-­‐expressing	
  Pax2
Lmx1b+
Ptf1a+
A
B
A
B
100  microns
Day  0 Day  8 Day  14
Day  19 Day  28
Day  0 Day  8 Day  14
Day  19 Day  28
100  microns

More Related Content

What's hot

NYMC_STAR_2014_Paper_Lipscomb_SingleSpace
NYMC_STAR_2014_Paper_Lipscomb_SingleSpaceNYMC_STAR_2014_Paper_Lipscomb_SingleSpace
NYMC_STAR_2014_Paper_Lipscomb_SingleSpaceThomas H Lipscomb
 
Stem cellge arrayposter
Stem cellge arrayposterStem cellge arrayposter
Stem cellge arrayposterElsa von Licy
 
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...iosrjce
 
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...Karthik Raman
 
FGFBP1 pathways control after induction of a conditional transgene in a mouse...
FGFBP1 pathways control after induction of a conditional transgene in a mouse...FGFBP1 pathways control after induction of a conditional transgene in a mouse...
FGFBP1 pathways control after induction of a conditional transgene in a mouse...Anne Deslattes Mays
 
Micronuclei in 24 mev
Micronuclei in 24 mevMicronuclei in 24 mev
Micronuclei in 24 mevshokoohyf
 
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosusExpression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosusIJERDJOURNAL
 
Does RNA avoidance dictate protein expression level?
Does RNA avoidance dictate protein expression level?Does RNA avoidance dictate protein expression level?
Does RNA avoidance dictate protein expression level?Paul Gardner
 
Johanna_Edlund-Thesis-final
Johanna_Edlund-Thesis-finalJohanna_Edlund-Thesis-final
Johanna_Edlund-Thesis-finalJohanna Edlund
 
Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Merck Life Sciences
 
MCB 432 Final Table PP 01.06.16
MCB 432 Final Table PP 01.06.16MCB 432 Final Table PP 01.06.16
MCB 432 Final Table PP 01.06.16Keegan McAuliffe
 
Isolation of microsatellites Channa
Isolation of microsatellites ChannaIsolation of microsatellites Channa
Isolation of microsatellites ChannaMin Pau Tan
 

What's hot (20)

URCA Poster
URCA PosterURCA Poster
URCA Poster
 
Reference 1
Reference 1Reference 1
Reference 1
 
NYMC_STAR_2014_Paper_Lipscomb_SingleSpace
NYMC_STAR_2014_Paper_Lipscomb_SingleSpaceNYMC_STAR_2014_Paper_Lipscomb_SingleSpace
NYMC_STAR_2014_Paper_Lipscomb_SingleSpace
 
Stem cellge arrayposter
Stem cellge arrayposterStem cellge arrayposter
Stem cellge arrayposter
 
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...
Purification of G-Protein Coupled Receptor from Membrane Cell of Local Strain...
 
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...
Fast-SL: An efficient algorithm to identify synthetic lethals in metabolic ne...
 
CRISPR:CAS9
CRISPR:CAS9CRISPR:CAS9
CRISPR:CAS9
 
Fulltext
FulltextFulltext
Fulltext
 
RNAP_paper
RNAP_paperRNAP_paper
RNAP_paper
 
FGFBP1 pathways control after induction of a conditional transgene in a mouse...
FGFBP1 pathways control after induction of a conditional transgene in a mouse...FGFBP1 pathways control after induction of a conditional transgene in a mouse...
FGFBP1 pathways control after induction of a conditional transgene in a mouse...
 
Micronuclei in 24 mev
Micronuclei in 24 mevMicronuclei in 24 mev
Micronuclei in 24 mev
 
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosusExpression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
 
finalposterapril13
finalposterapril13finalposterapril13
finalposterapril13
 
Does RNA avoidance dictate protein expression level?
Does RNA avoidance dictate protein expression level?Does RNA avoidance dictate protein expression level?
Does RNA avoidance dictate protein expression level?
 
Bassam's ETD
Bassam's ETDBassam's ETD
Bassam's ETD
 
Johanna_Edlund-Thesis-final
Johanna_Edlund-Thesis-finalJohanna_Edlund-Thesis-final
Johanna_Edlund-Thesis-final
 
Molecular 50 questions
Molecular 50 questionsMolecular 50 questions
Molecular 50 questions
 
Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...
 
MCB 432 Final Table PP 01.06.16
MCB 432 Final Table PP 01.06.16MCB 432 Final Table PP 01.06.16
MCB 432 Final Table PP 01.06.16
 
Isolation of microsatellites Channa
Isolation of microsatellites ChannaIsolation of microsatellites Channa
Isolation of microsatellites Channa
 

Viewers also liked

Viewers also liked (8)

Test 2
Test 2Test 2
Test 2
 
Tkbi presentasi turunan2
Tkbi presentasi turunan2Tkbi presentasi turunan2
Tkbi presentasi turunan2
 
Decàleg nens malcriats
Decàleg nens malcriatsDecàleg nens malcriats
Decàleg nens malcriats
 
Another gospel by Helle Tidemann
Another gospel by Helle TidemannAnother gospel by Helle Tidemann
Another gospel by Helle Tidemann
 
Fisher_URS 2015 poster
Fisher_URS 2015 posterFisher_URS 2015 poster
Fisher_URS 2015 poster
 
Twitteren In Werktijd
Twitteren In WerktijdTwitteren In Werktijd
Twitteren In Werktijd
 
Resume - Suraphon
Resume - SuraphonResume - Suraphon
Resume - Suraphon
 
CV Ricardo Naranjo Santaella 2016
CV Ricardo Naranjo Santaella 2016CV Ricardo Naranjo Santaella 2016
CV Ricardo Naranjo Santaella 2016
 

Similar to WF_URS 2016 poster-ad

Poster Presentation
Poster PresentationPoster Presentation
Poster PresentationChunghee Kim
 
Akhtar et al. Stem Cell Reports (2015)
Akhtar et al. Stem Cell Reports (2015)Akhtar et al. Stem Cell Reports (2015)
Akhtar et al. Stem Cell Reports (2015)Aslam Akhtar, MS
 
BrandeisBiologyREUResearchPoster_final_final
BrandeisBiologyREUResearchPoster_final_finalBrandeisBiologyREUResearchPoster_final_final
BrandeisBiologyREUResearchPoster_final_finalVictor Suarez
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsYousefLayyous
 
Pells et al [2015] PLoS ONE 10[7] e0131102
Pells et al [2015] PLoS ONE 10[7] e0131102Pells et al [2015] PLoS ONE 10[7] e0131102
Pells et al [2015] PLoS ONE 10[7] e0131102Steve Pells
 
Discovery of Novel Shp2 inhibitors
Discovery of Novel Shp2 inhibitorsDiscovery of Novel Shp2 inhibitors
Discovery of Novel Shp2 inhibitorsLiwei Chen
 
NJ Stem Cell Symposium 2011 Abstract
NJ Stem Cell Symposium 2011 AbstractNJ Stem Cell Symposium 2011 Abstract
NJ Stem Cell Symposium 2011 AbstractChristopher S Park
 
Gray et al. 1999 Science copy
Gray et al. 1999 Science copyGray et al. 1999 Science copy
Gray et al. 1999 Science copyPaul Gray
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...IJERD Editor
 
Chen_et_al-2008-Genes_to_Cells
Chen_et_al-2008-Genes_to_CellsChen_et_al-2008-Genes_to_Cells
Chen_et_al-2008-Genes_to_CellsDa-Wei Lin
 
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...Ryohei Suzuki
 
Critical Reading Biomedical Research Papers-2022.pptx
Critical Reading Biomedical Research Papers-2022.pptxCritical Reading Biomedical Research Papers-2022.pptx
Critical Reading Biomedical Research Papers-2022.pptxMingdergLai
 
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...Diversity and distribution of nicotinic acetylcholine receptors in the locus ...
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...Georgi Daskalov
 

Similar to WF_URS 2016 poster-ad (20)

review
reviewreview
review
 
Poster Presentation
Poster PresentationPoster Presentation
Poster Presentation
 
Akhtar et al. Stem Cell Reports (2015)
Akhtar et al. Stem Cell Reports (2015)Akhtar et al. Stem Cell Reports (2015)
Akhtar et al. Stem Cell Reports (2015)
 
publication 3
publication 3publication 3
publication 3
 
BrandeisBiologyREUResearchPoster_final_final
BrandeisBiologyREUResearchPoster_final_finalBrandeisBiologyREUResearchPoster_final_final
BrandeisBiologyREUResearchPoster_final_final
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cells
 
Pells et al [2015] PLoS ONE 10[7] e0131102
Pells et al [2015] PLoS ONE 10[7] e0131102Pells et al [2015] PLoS ONE 10[7] e0131102
Pells et al [2015] PLoS ONE 10[7] e0131102
 
Anxiety paper 2014
Anxiety paper 2014Anxiety paper 2014
Anxiety paper 2014
 
Discovery of Novel Shp2 inhibitors
Discovery of Novel Shp2 inhibitorsDiscovery of Novel Shp2 inhibitors
Discovery of Novel Shp2 inhibitors
 
NJ Stem Cell Symposium 2011 Abstract
NJ Stem Cell Symposium 2011 AbstractNJ Stem Cell Symposium 2011 Abstract
NJ Stem Cell Symposium 2011 Abstract
 
Gray et al. 1999 Science copy
Gray et al. 1999 Science copyGray et al. 1999 Science copy
Gray et al. 1999 Science copy
 
emm201548a
emm201548aemm201548a
emm201548a
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Chen_et_al-2008-Genes_to_Cells
Chen_et_al-2008-Genes_to_CellsChen_et_al-2008-Genes_to_Cells
Chen_et_al-2008-Genes_to_Cells
 
publication 4
publication 4publication 4
publication 4
 
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...
Paper memo: Optimal-Transport Analysis of Single-Cell Gene Expression Identif...
 
Critical Reading Biomedical Research Papers-2022.pptx
Critical Reading Biomedical Research Papers-2022.pptxCritical Reading Biomedical Research Papers-2022.pptx
Critical Reading Biomedical Research Papers-2022.pptx
 
2015 GPR126
2015 GPR1262015 GPR126
2015 GPR126
 
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...Diversity and distribution of nicotinic acetylcholine receptors in the locus ...
Diversity and distribution of nicotinic acetylcholine receptors in the locus ...
 
bio-intro
bio-introbio-intro
bio-intro
 

WF_URS 2016 poster-ad

  • 1. GABAergic Fate Pax3, Pax7, Lim1, Nkx2.2, SLC32A1, Gad1 [6,8,11] Glutamatergic Fate Tbr1, Tbr2, VGlut2 [1,7,9] Pax2 Lbx1Ptf1a Lmx1b Tlx3 98.3% 71% 30% 80% 80% B Atoh1 90% 90% 97.8% 95% 96.4% 73.5% 79.9% 77.1% BA Modeling  Neurotransmitter  Specification   in  Neural  Progenitor  Cells William  Fisher1,2,  Tanner  Lakin1,3,  Adele  Doyle1,4 1Neuroscience  Research  Institute,  2College  of  Creative  Studies,  3Molecular  Cellular  &   Developmental  Biology,  4Center  for  BioEngineering,  Univ.  of  California  Santa  Barbara References Introduction: [1]  Lindvall,  Nature,  2004  [2]  Shi,  Nature,  2012  [3]  Hori,  Neural  Plast,  2012  GABAergic/Glutamatergic  Fate  Switch:  [1]  Hori,  Neuroplast,  2012  [2]  Yamada,  The  Journ of  Neurosci,  2014  [3]  Puelles,  The  Journ of  Neurosci,  2006  [4]  Nakatani,  Dev,  2007   2012  [5]  Roybon,  Cereb Cort,  2009  [6]  Pillai,  Dev,  2007  [7]  Xiang,  Somat and  Motor  Res,  2012  [8]  Batista,  Dev  Bio,  2008  [9]  Cheng,  Nat  Neurosci,  2005  [10]  Pozas,  Neuron,  2005  [11]  Canty,  the  Journ of  Neurosci,  2009  [12]  Kwon,  Stem  Cell  Res  [13]  Blum,  Cereb Cort,  2011  [14]  Chen,  PLoS One,  2012  [15]  Poitras,  Dev,  2007  [16]  Hoshino,  Neuron,  2005,  [17]  Gaspard,  Nature,  2008.  [18]  Gaspard,  Nature  Protocols,  2009. Edge Probability Reason Reference Atoh1-Glut 79.9% Model Prediction Yamada-The Journ of Neurosci-2014 Atoh1-Ptf1a 90% Co – immunostaining Yamada-The Journ of Neurosci-2014 Ptf1a-Atoh1 90% Co – immunostaining Yamada-The Journ of Neurosci-2014 Ptf1a-Pax2 80% Ptf1a Knock out study Glasgow-Develop-2005 Ptf1a-GABA 73.5% Ptf1a Knock in study Hoshino-Neuron-2005 Ptf1a-Tlx3 30% Ptf1a Knock in study Hori-Develop-2005 Tlx3-Lbx1 71% Tlx3 and Lbx1 knock outs Cheng-Nat Neurosci-2005 Tlx3-Glut 96.4% Co-immunostaining Cheng-Nat Neurosci-2004 Lbx1-GABA 77.1% Model Prediction Cheng-Nat Neurosci-2005 Lbx1-Pax2 80% Lbx1 Knock out study Cheng-Nat Neurosci-2005 Lmx1b-Glut 95% Co-immunostaining Xiang-Somato & Motor Res-2012 Lmx1b-Pax2 98.3% Co-immunostaining Cheng-Nat Neurosci-2004 Pax2-GABA 97.8% Co-immunostaining Cheng-Nat Neurosci-2004 Figure  2.    Validation  of  probabalistic model. To  determine  the  accuracy  of   the  rules,  we  compared  published   experimental  observations  versus  the   output  generated  by  our  custom   probabalisticbooleanMatlab simulation.  (A)  Specifically,  we   compared  the  likelihood  of  Ptf1a-­‐ expressing  cells  to  also  express  Pax2   calculated  from  experimental  data   (Glasgow,  2005)  and  as  a  result  of   network  simulation  (n=10,000  cells;   t=20  iterations).  (B)  Likelihood  of   Lmx1b-­‐expressing  cells  to  also  express   Pax2  experimentally  (Cheng,  2004)   versus  in  silico (n=10,000  cells,  t=20   iterations). Abstract To  better  understand  the  origin  of  excitatory  and  inhibitory  neurons  in   the  brain,  we  identified  a  transcription  factor-­‐based  molecular  switch   governing  excitatory  (glutamatergic)  versus  inhibitory  (GABAergic)   neuron  differentiation.  We  formalized  this  switch  as  a  set  of   probabalistic rules  and  simulated  the  resulting  timecourse of  gene   expression  during  differentiation  of  virtual  neural  progenitor  cells.   These  gene  expression  dynamics  predict  the  sequence  and  co-­‐ expression  of  six  transcription  factors  known  to  be  important  for   GABAergic and  glutamatergic differentation.  Ongoing  studies  are  testing   the  predictions  of  this  model  in  mouse  pluripotent  stem  cells   differentiated  to  VGlut1/2+ or  GAD1+ cells.  This  quantitative  approach   to  understand  how  essential  brain  cell  types  arise  will  contribute  to  our   understanding  of  nervous  system  development  and  design  of  neuronal   therapies.   Materials  and  Methods • We  extracted  qualitative  and  quantitative  evidence  regarding  the  regulation  of   GABAergic and  Glutamatergic differentiation  from  literature  using  PubMed  and  Web   of  Science.   • We  combined  these  data  into  a  consensus  regulatory  model  for  GABA  and   glutamatergic differentiation,  leading  to  identification  of  a  Pax2-­‐related  putative  fate   switch. • We  translated  the  fate  switch  diagram  into  a  mathematical  description  using   probabilities.  We  simulated  gene  expression  dynamics  in  different  sizes  of  virtual  cell   populations  and  different  differentiation  times  to  determine  if  this  novel  inferred   regulatory  switch  is  sufficient  to  explain  experimental  data.   • To  test  predictions  from  the  consensus  model  experimentally,  we  are  differentiating   mouse  embryonic  stem  cells  in  Defined  Default  Medium  for  28  days  to  yield   VGlut1/2+  and  VGAT+ cells  [17-­‐18]. Percentage  of  Cells  of  Each  Subtype  Across  Multiple  Simulations Glutamatergic  Cells Legend Figure  3. Simulation  of  glutamatergic and  GABAergic differentiation  of  neural  progenitor  cells.  (A)  Final   predicted  cell  type  as  a  function  of  time  shown  for  virtual  cell  populations  of  varying  sizes  (102-­‐106 cells).   (B)  Bar  graph  of  relative  numbers  of  cell  fates,  including  neural  progenitor  cell  (NPC;  cyan),  GABAergic (blue),  glutamatergic(red),  and  unknown  (white/grey).  (C-­‐H)  Gene  expression  of  fate  switch  molecules  as  a   function  of  final  cell  state  for  104  simulated  cells  during  20  time  steps  (rule  iterations).  (C)  Ptf1a,  (D)   Lmx1b,  (E)  Lbx1,  (F)  Tlx3,  (G)  Atoh1,  and  (H)  Pax2. Neural  Progenitor  Cells GABAergic  Cells Unknown  Cells n=106 virtual  cells n=102 virtual  cells n=104 virtual  cells A B C D E F G H Background Stem  cell  therapies  have  the  potential  to  drastically  improve  the   treatment  of  neurodegenerative  diseases  [1].  Numerous  protocols  have   been  developed  which  allow  for  the  differentiation  of  neural  progenitor   cells  into  neurons  [2]  as  well  as  some  that  describe  the  molecules   needed  to  specify  individual  neurotransmitter  expressing  subtypes  [3].   However,  the  regulatory  networks  governing  subtype  differentiation  are   not  well  known.    In  this  study,  we  have  integrated  both  qualitative  and   quantitative  data  on  GABAergic and  Glutamatergic differentiation  from   previous  studies  to  develop  an  integrated  molecular  fate  switch  motif   which  revealed  a  Pax2  dependent  fate  switch  submodule.  We  also   created  a  mathematical  model  that  simulates  the  putative  molecular   GABA-­‐Glut  fate  switch  network  dynamics. Results Figure  1.  Transcription  factors  affect  the  decision  of  neural  progenitor  cells  to  choose  GABAergic or   Glutamatergic neuron  identity.  (A)  Probabilities  of  molecule  co-­‐expression  extracted  from  literature  and   used  for  Matlab simulation  rules.  (B)  Summary  diagram  showing  interactions  of  predicted  fate  switch   transcription  factors.  Proteins  appear  to  be  either  pro-­‐glutamatergic(red)  or  pro-­‐GABAergic(blue).  Edge   between  genes  represent  rules  encoded  in  the  simulation.  The  probability  of  each  event  occuring (see   Table,  part  A)  is  shown  next  to  each  edge. Discussion Glutamatergic and  GABAergic neuron  substypes are  generally  consisidered to  be  mutually   exclusive.  We  have  identified  a  molecular  network  that  may  enable  and  reinforce  this  switch-­‐ like  behavior  (Fig.  1).  Results  from  the  probabalistic formalization  of  this  network  agree  with   experimental  validation  (Fig.  2).  Gene  expression  dynamics  accurately  predict  the  convergence   of  molecules  Pax2  and  Lmx1b  with  their  associated  fate  choice.  They  also  reveal  potential  high   variability  in  expression  levels  of  some  genes  in  particular  cell  states  (e.g.,  Atoh1  in  unknown   and  Glut.  cells,  but  not  GABA  cells)  and  the  theoretical  possibility  of  steady  state  oscillating   states  (Fig.  3).  Ongoing  cell  culture  studies  (Fig.  4)  will  enable  us  to  test  these  predictions  in  a   single  system  simultaneously  and  refine  our  understanding  of  essential  neuron  subtype  origins.     Figure  4  (below).  Phase  images  of   neuronal  differentiation.  In  vitro  cell   culture  of  mouse  embryonic  stem  cells   differentiating  towards  glutamatergicand   GABAergicneurons,  based  on  [17-­‐18].  The   Sonic  Hedgehog  antagonist,  cyclopamine,   enhances  glutamatergicdifferentiation   (B),  instead  of  equal  amounts  GABAergic (VGAT+)  and  Glutamatergic(VGlut1/2+)   neurons  (Tuj1+)  in  DDM  media  only  (A).  Experiment Simulation Percent  of  Cells  Co-­‐expressing  Pax2 Lmx1b+ Ptf1a+ A B A B 100  microns Day  0 Day  8 Day  14 Day  19 Day  28 Day  0 Day  8 Day  14 Day  19 Day  28 100  microns