SlideShare a Scribd company logo
1 of 54
Download to read offline
Final	
  Project	
  Report	
   1	
  
	
  
Jesture	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
MyGlass	
  
	
  
Created	
  by:	
  
	
  Collin	
  Kraczkowsky,	
  Angela	
  Hu,	
  Tanusree	
  Munshi,	
  	
  
Anthony	
  Siao,	
  and	
  Jason	
  Sher	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   2	
  
Table	
  of	
  Contents	
  
	
  
Executive	
  Summary	
  	
  	
  …………………………………………………………………………………………...Page	
  3	
  	
  
Contents	
  of	
  Report	
  	
  	
  	
  ……………………………………………………………………………………Pages	
  4	
  -­‐	
  54	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
  
A. Introduction	
  	
  ………………………………………………………………………………………Pages	
  4	
  -­‐	
  8	
  
	
  
1) Project	
  Overview	
  	
  	
  ………………………………………………………………………………	
  	
  	
  	
  	
  4	
  
2) Description	
  of	
  Project	
  	
  ………………………………………………………………………..	
  	
  	
  	
  	
  4	
  
3) Project	
  Plan	
  	
  ………………………………………………………………………………………..	
  	
  	
  	
  	
  5	
  
4) Corporate	
  Benchmarking	
  	
  …………………………………………………………………..	
  	
  	
  	
  	
  6	
  
5) Roles	
  &	
  Responsibilities	
  	
  …………………………………………………………………….	
  	
  	
  	
  	
  7	
  
	
   	
   	
   	
   	
   	
   	
   	
  
B. Developing	
  a	
  Supply	
  Chain	
  Strategy	
  	
  ……………………………………………….Pages	
  8	
  -­‐	
  13	
  
	
  
1) Competitive	
  Strategy	
  	
  ………………………………………………………………………….	
  	
  	
  	
  	
  8	
  
2) Product	
  Development	
  Strategy	
  	
  ………………………………………………………….	
  	
  	
  	
  	
  9	
  
3) Software	
  Development	
  Strategy	
  	
  ………………………………………………………..	
  	
  	
  	
  	
  9	
  
4) Supply	
  Chain	
  Network	
  Strategy	
  	
  …………………………………………………………	
  	
  	
  11	
  
	
  
C. Demand	
  Forecasting	
  	
  ……………………………………………………………………..Pages	
  13	
  -­‐	
  19	
  
	
  
D. Inventory	
  Management	
  	
  …………………………………………………………………Pages	
  19	
  -­‐	
  21	
  
	
  
1) Fixed	
  Costs	
  	
  ………………………………………………………………………………………….	
  	
  19	
  
2) Cost	
  per	
  Unit	
  	
  ……………………………………………………………………………………….	
  	
  19	
  
3) Inventory	
  Holding	
  Cost	
  	
  ………………………………………………………………………	
  	
  20	
  
4) Cycle	
  Inventory	
  	
  …………………………………………………………………………………..	
  	
  20	
  
5) Aggregation	
  Strategy	
  	
  ………………………………………………………………………….	
  	
  20	
  
6) Economic	
  Order	
  Quantity	
  	
  …………………………………………………………………..	
  	
  21	
  
	
  
E. Distribution	
  Network	
  	
  ……………………………………………………………………Pages	
  21	
  -­‐	
  35	
  
	
  
1) Designing	
  the	
  Facilities	
  Network	
  	
  ……………………………………………………….	
  	
  21	
  
2) Designing	
  the	
  Transportation	
  Network	
  	
  …………………………………………….	
  	
  	
  31	
  
	
  
F. Supply	
  Chain	
  Driver	
  Alignment	
  	
  …………………………………………………….Pages	
  36	
  -­‐	
  40	
  
	
  
G. SCM	
  Software	
  Implementation	
  	
  ……………………………………………………..Pages	
  40	
  -­‐	
  46	
  
	
  
1) Software	
  Implementation	
  	
  …………………………………………………………………..	
  	
  40	
  
2) User	
  Manual	
  	
  ………………………………………………………………………………………..	
  	
  46	
  
	
  
Conclusion	
  	
  …………………………………………………………………………………....................Pages	
  47	
  -­‐	
  54	
  
	
  
Final	
  Project	
  Report	
   3	
  
Executive	
  Summary	
  
	
  
Creating MyGlass our consumers will be able to look up recipes, watch the news, follow
tutorials, and much more on surfaces they would normally overlook. MyGlass utilizes a central
receiver system and a high-tech display system to allow consumers to interact with a glass
surface that can be put on top of a mirror, counter top, or even a television.
Drawing inspiration primarily from tablets, we hope to create a design that allows
consumers to still perform all of their daily tasks with the surface while still being able to utilize
the basic functions of a computer. As a result, our team has been working on a product that we
hope homeowners will see as a tool to bridge the gap between almost every appliance in their
home and their computer.
	
  
Our	
  product	
  myGlass	
  has	
  developed	
  to	
  the	
  point	
  where	
  consumers	
  are	
  able	
  to	
  
perform	
  all	
  of	
  their	
  daily	
  tasks	
  with	
  the	
  surface.	
  We	
  integrated	
  as	
  much	
  technical	
  features	
  
make	
  our	
  customer’s	
  lives	
  easier.	
  Now	
  the	
  goal	
  of	
  this	
  project	
  is	
  to	
  implement	
  an	
  applicable	
  
SCM	
  software	
  information	
  system	
  to	
  simulate	
  our	
  integrated	
  enterprise	
  supply	
  chain.	
  
	
  
We	
  want	
  to	
  provide	
  all	
  the	
  technology	
  that	
  a	
  standard	
  home	
  needs.	
  We	
  want	
  to	
  
develop	
  our	
  products	
  step	
  by	
  step	
  since	
  we	
  are	
  pushing	
  at	
  a	
  wider	
  market	
  at	
  a	
  low	
  cost.	
  In	
  
order	
  for	
  our	
  company	
  to	
  be	
  successful,	
  we	
  must	
  develop	
  as	
  much	
  as	
  we	
  can.	
  We	
  want	
  to	
  
provide	
  as	
  much	
  technological	
  features	
  to	
  our	
  products	
  so	
  it	
  can	
  be	
  very	
  beneficial	
  to	
  
homeowners.	
  
	
  
Throughout	
  this	
  quarter,	
  we	
  have	
  improved	
  and	
  developed	
  our	
  business	
  plan	
  from	
  
the	
  previous	
  quarter	
  by	
  performing	
  a	
  full-­‐scale	
  design	
  process	
  to	
  create	
  the	
  supply	
  chain	
  
network	
  for	
  our	
  company’s	
  flagship	
  product,	
  myGlass.	
  This	
  process	
  began	
  with	
  high-­‐level	
  
strategy	
  conception,	
  	
  then	
  moved	
  into	
  detailed	
  planning	
  out	
  the	
  scope	
  of	
  our	
  supply	
  chain,	
  
before	
  ending	
  with	
  the	
  daily	
  operations	
  of	
  each	
  component.	
  This	
  intensive	
  framework	
  
ensured	
  that	
  each	
  decision	
  aligned	
  with	
  the	
  decisions	
  made	
  during	
  the	
  preceding	
  phase	
  
and	
  ultimately	
  created	
  harmony	
  between	
  our	
  strategy	
  and	
  our	
  execution.	
  At	
  the	
  planning	
  
level,	
  we	
  utilized	
  tools	
  such	
  as	
  network	
  optimization	
  models	
  and	
  Microsoft	
  Excel	
  to	
  
perform	
  forecasting/time-­‐series	
  analysis	
  as	
  well	
  as	
  uncertainty	
  analysis.	
  At	
  the	
  operational	
  
phase	
  we	
  defined	
  our	
  needs	
  at	
  each	
  stage	
  along	
  the	
  supply	
  chain	
  such	
  as	
  inventory,	
  
transportation,	
  and	
  facilities	
  developing	
  an	
  integrated	
  software	
  in	
  Visual	
  Basic	
  to	
  simulate	
  
the	
  impact	
  of	
  various	
  scenarios	
  to	
  test	
  the	
  robustness	
  of	
  our	
  design.	
  
	
  
Our	
   distribution	
   strategy	
   is	
   to	
   ship	
   out	
   as	
   many	
   orders	
   as	
   possible	
   on	
   the	
   same	
  
shipment.	
  If	
  the	
  customers	
  are	
  within	
  the	
  same	
  area,	
  their	
  orders	
  would	
  be	
  shipped	
  at	
  the	
  
same	
  time	
  to	
  reduce	
  costs	
  for	
  our	
  company.	
  Since	
  we	
  do	
  not	
  have	
  any	
  retailers	
  that	
  our	
  
distributors	
  would	
  ship	
  to,	
  we	
  do	
  not	
  have	
  to	
  have	
  an	
  advanced	
  aggregation	
  strategy,	
  but	
  
rather,	
  we	
  have	
  to	
  strategically	
  ship	
  orders	
  at	
  the	
  same	
  time	
  that	
  would	
  be	
  going	
  to	
  the	
  
same	
  place.	
  
	
  
Final	
  Project	
  Report	
   4	
  
The	
  strength	
  of	
  our	
  distribution	
  network	
  strategy	
  is	
  also	
  in	
  the	
  financial	
  benefits	
  we	
  
exploit	
  from	
  centralizing	
  inventory,	
  aggregating	
  demand,	
  and	
  simplifying	
  product	
  handling.	
  
This	
  report	
  will	
  go	
  into	
  much	
  more	
  detail	
  about	
  the	
  strategies	
  just	
  discussed,	
  and	
  we	
  hope	
  
to	
  have	
  your	
  continued	
  support	
  as	
  we	
  begin	
  to	
  work	
  on	
  prototyping	
  and	
  our	
  product	
  
release	
  strategy	
  execution.	
  
	
  
	
  
	
  
	
  
	
  
	
  
Contents	
  of	
  Report	
  
	
  
A. Introduction	
  
	
  
1) Project	
  Overview	
  
	
  
In	
  Fall	
  Quarter	
  2014,	
  our	
  technology	
  firm,	
  Jesture,	
  developed	
  a	
  Business	
  Plan	
  for	
  our	
  
product	
  -­‐	
  myGlass.	
  myGlass	
  is	
  a	
  large,	
  all-­‐purpose	
  surface	
  tablet	
  that	
  can	
  be	
  overlaid	
  on	
  to	
  
any	
  plane	
  (i.e.	
  kitchen	
  counters,	
  shower	
  ledges,	
  car	
  hoods,	
  etc.)	
  to	
  become	
  a	
  computing	
  
element	
  for	
  that	
  surface.	
  Given	
  the	
  portability	
  and	
  flexible	
  user	
  interface,	
  Jesture	
  initially	
  
plans	
  to	
  target	
  the	
  homeowner	
  market	
  with	
  myGlass	
  before	
  eventually	
  expanding	
  into	
  
enterprises	
  through	
  additional	
  professional	
  features.	
  
	
  
During	
  Winter	
  Quarter	
  2015,	
  our	
  team	
  will	
  build	
  on	
  our	
  work	
  from	
  the	
  previous	
  quarter	
  by	
  
designing	
  and	
  developing	
  the	
  value	
  and	
  supply	
  chain	
  network	
  for	
  myGlass.	
  Our	
  
development	
  plan	
  is	
  3-­‐tier	
  beginning	
  with	
  the	
  high-­‐level	
  strategy	
  for	
  myGlass’	
  supply	
  chain	
  
network,	
  moving	
  then	
  into	
  the	
  planning	
  phase	
  where	
  we	
  will	
  leverage	
  Excel	
  to	
  perform	
  
forecasting/time-­‐series	
  analysis	
  as	
  well	
  as	
  uncertainty	
  analysis,	
  and	
  finally	
  we	
  will	
  move	
  
into	
  the	
  operations	
  phase	
  where	
  we	
  will	
  define	
  our	
  needs	
  at	
  each	
  stage	
  along	
  the	
  supply	
  
chain	
  (i.e.	
  inventory,	
  transportation,	
  and	
  facilities).	
  By	
  performing	
  each	
  step	
  of	
  this	
  plan,	
  we	
  
will	
  be	
  able	
  to	
  develop	
  and	
  implement	
  an	
  applicable	
  SCM	
  software	
  information	
  system	
  to	
  
simulate	
  our	
  integrated	
  enterprise	
  supply	
  chain.	
  
	
  
Through	
  this	
  project,	
  our	
  team	
  intends	
  to	
  meet	
  all	
  the	
  objectives	
  of	
  the	
  Management	
  of	
  
Technology	
  II	
  course	
  as	
  well	
  as	
  engage	
  the	
  resolutions	
  we	
  established	
  at	
  the	
  beginning	
  of	
  
this	
  class.	
  	
  
	
  
2) Description	
  of	
  Product	
  
	
  
Figure	
  A.1	
  below	
  illustrates	
  the	
  Function	
  Analysis	
  System	
  Technique	
  diagram	
  for	
  our	
  
product,	
  myGlass:	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   5	
  
	
  
Figure	
  A.1:	
  FAST	
  Diagram	
  for	
  myGlass	
  
	
  
	
  
	
  
The	
  FAST	
  diagram	
  is	
  a	
  technique	
  for	
  analyzing	
  the	
  functional	
  structure	
  of	
  a	
  technical	
  
system.	
  It	
  serves	
  as	
  a	
  useful	
  starting	
  point	
  from	
  which	
  to	
  introduce	
  the	
  functions	
  of	
  our	
  
product	
  and	
  therefore	
  define	
  our	
  target	
  customer	
  base.	
  This	
  customer	
  base	
  is	
  essential	
  to	
  
the	
  design	
  of	
  our	
  entire	
  supply	
  chain	
  network.	
  
	
  
3) Time-­‐phased	
  Project	
  Plan	
  	
  
	
  
We	
  organized	
  the	
  timeline	
  of	
  deliverables	
  for	
  our	
  project	
  into	
  the	
  follow	
  Table	
  A.1	
  below:	
  
	
  
Table	
  A.1:	
  Time-­‐Phased	
  Project	
  Plan	
  
	
  
Task	
   Due	
  Date	
  
Form	
  Project	
  Teams	
  &	
  Choose	
  Technology	
  Domain	
   In	
  class	
  on	
  January	
  6,	
  
2015	
  
Formulate	
  Project	
  Proposal	
   January	
  8,	
  2015	
  
Final	
  Project	
  Report	
   6	
  
Phase	
  1:	
  Technology/Product	
  Strategy	
  &	
  Supply	
  Chain	
  
Strategy/Design	
  
January	
  20,	
  2015	
  
Phase	
  2:	
  Supply	
  Chain	
  Modeling	
  +	
  Planning	
  via	
  Demand	
  
Forecasting	
  
February	
  3,	
  2015	
  
Phase	
  3:	
  Supply	
  Chain	
  Operations	
  -­‐	
  Inventory,	
  Transportation,	
  &	
  
Facilities	
  
February	
  24,	
  2015	
  
Phase	
  4:	
  The	
  Software	
  Information	
  System	
  for	
  the	
  Supply	
  Chain	
  
via	
  Simulation	
  
March	
  10,	
  2015	
  
Phase	
  5:	
  Closure	
  &	
  Final	
  Report	
   March	
  12,	
  2015	
  
	
  
4) Benchmark	
  Our	
  Plan	
  Against	
  an	
  Established	
  Company	
  
	
  
When	
   designing	
   our	
   supply	
   chain	
   management	
   approach	
   and	
   implementation,	
   we	
  
internalized	
  two	
  key	
  lesson	
  takeaways	
  from	
  Kai	
  Hypko,	
  former	
  Senior	
  Director	
  of	
  Supply	
  
Chain	
   Systems	
   and	
   Strategy	
   at	
   Plantronics.	
   The	
   first	
   is	
   that	
   supply	
   chain	
   management	
  
efforts	
  deliver	
  the	
  greatest	
  results	
  when	
  SCM	
  is	
  part	
  of	
  an	
  overall	
  business	
  strategy	
  –
not	
   a	
   stand	
   alone	
   effort.	
   We	
   interpreted	
   this	
   takeaway	
   as	
   the	
   need	
   to	
   align	
   Jesture’s	
  
competitive	
  strategy	
  with	
  its	
  supply	
  chain	
  strategy	
  to	
  optimize	
  and	
  maintain	
  our	
  placement	
  
in	
  the	
  zone	
  of	
  strategic	
  fit.	
  We	
  don’t	
  want	
  Jesture’s	
  individual	
  strategies	
  to	
  be	
  mismatched	
  
with	
   the	
   overarching	
   business	
   strategy.	
   The	
   second	
   takeaway	
   is	
   that	
   supply	
   chain	
  
management	
  is	
  most	
  likely	
  to	
  under	
  deliver	
  when	
  there	
  is	
  poor	
  connection	
  between	
  
functions	
  across	
  a	
  total	
  business	
  –	
  often	
  noted	
  by	
  poor	
  supply	
  chain	
  visibility	
  and	
  
lack	
  of	
  best	
  practice	
  sharing	
  internally.	
  To	
  us	
  this	
  meant	
  collaboration	
  both	
  upstream	
  
and	
   downstream	
   between	
   each	
   stage	
   and	
   within	
   each	
   cycle	
   of	
   our	
   supply	
   chain.	
   It	
   also	
  
highlights	
  the	
  need	
  for	
  sophisticated	
  information	
  infrastructure.	
  
	
  
We	
  can	
  turn	
  these	
  strategic	
  takeaways	
  into	
  operational	
  components	
  by	
  implementing	
  what	
  
Hypko	
  defines	
  as	
  qualities	
  of	
  world	
  class	
  supply	
  chain	
  companies.	
  First,	
  Jesture	
  must	
  make	
  
effecting	
  internal	
  collaboration	
  to	
  optimize	
  processing	
  a	
  core	
  competency	
  of	
  our	
  company.	
  
Second,	
   we	
   need	
   to	
   identify	
   key	
   suppliers	
   and	
   customers,	
   prioritize	
   and	
   organize	
   their	
  
needs,	
  and	
  work	
  closely	
  with	
  them	
  to	
  best	
  match	
  their	
  demands.	
  Third,	
  we	
  must	
  effectively	
  
apply	
   technology	
   as	
   an	
   enabler.	
   This	
   means	
   using	
   our	
   demand	
   forecasting	
   modules,	
  
inventory	
  management	
  modules,	
  and	
  integrated	
  information	
  systems	
  to	
  enable	
  us	
  to	
  best	
  
meet	
  customer	
  demand.	
  
	
  
Plantronics	
  broke	
  down	
  their	
  supply	
  chain	
  implementation	
  into	
  a	
  timeline	
  which	
  we	
  have	
  
organized	
  into	
  Table	
  A.2	
  below.	
  Jesture	
  will	
  use	
  this	
  time	
  phased	
  process	
  to	
  benchmark	
  the	
  
progress	
  of	
  our	
  own	
  supply	
  chain	
  management	
  approach	
  and	
  implementation.	
  
	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   7	
  
Table	
  A.2:	
  Plantronics’	
  SCM	
  Implementation	
  Benchmarks	
  
	
  
Year	
  1	
   Year	
  2	
   Year	
  3	
   Year	
  
Demand	
  Planning	
   Sales	
  &	
  Operations	
  
Planning	
  
Global	
  Order	
  
Promising	
  
Promotions	
  
Management	
  and	
  
Optimization	
  
Supplier	
  Collaboration	
   Inventory	
  
Optimization	
  
	
   Customer	
  
Collaboration	
  
Advanced	
  Planning	
  
and	
  Scheduling	
  (Part	
  
1)	
  
Advanced	
  Planning	
  
and	
  Scheduling	
  (Part	
  
2)	
  
	
   Transportation	
  
Planning	
  
Supply	
  Chain	
  Business	
  
Intelligence	
  
	
   	
   Production	
  Scheduling	
  
	
  
We	
  can	
  use	
  this	
  planning	
  structure	
  to	
  gauge	
  the	
  progress	
  of	
  Jesture’s	
  supply	
  chain	
  maturity	
  
by	
  benchmarking	
  it	
  against	
  the	
  maturity	
  of	
  another	
  company	
  in	
  the	
  technology	
  space.	
  
	
  
5) Roles	
  &	
  Responsibilities	
  of	
  Team	
  Members	
  
	
  
Jason	
  Sher-­‐	
  Jason	
  has	
  taken	
  TIM	
  105	
  in	
  the	
  Fall	
  of	
  2013	
  and	
  is	
  now	
  excited	
  to	
  join	
  the	
  
Jesture	
  team	
  and	
  the	
  product	
  myGlass.	
  This	
  opportunity	
  has	
  given	
  the	
  team	
  a	
  different	
  
perspective	
  on	
  how	
  management	
  of	
  technology	
  is	
  performed	
  and	
  also	
  gives	
  different	
  
experiences	
  due	
  to	
  him	
  working	
  with	
  other	
  groups	
  and	
  seeing	
  other	
  ideas	
  executed.	
  
This	
  project	
  will	
  be	
  difficult	
  because	
  the	
  Jesture	
  team	
  must	
  integrate	
  two	
  new	
  
members	
  into	
  their	
  team,	
  but	
  Jason	
  is	
  confident	
  that	
  the	
  team	
  will	
  ultimately	
  be	
  able	
  to	
  
successfully	
  consolidate	
  any	
  differences	
  and	
  act	
  as	
  a	
  functioning	
  unit.	
  	
  
	
  
Tanusree	
  Munshi	
  -­‐	
  Tanusree	
  was	
  a	
  part	
  of	
  the	
  original	
  Jesture	
  group	
  in	
  TIM	
  105	
  in	
  Fall	
  
2014.	
  Because	
  of	
  this,	
  Tanusree	
  has	
  more	
  insight	
  on	
  the	
  product	
  and	
  can	
  clarify	
  the	
  
details	
  of	
  both	
  our	
  product	
  and	
  company	
  to	
  our	
  newer	
  members.	
  Tanusree	
  is	
  good	
  at	
  
communicating	
  what	
  needs	
  to	
  be	
  completed	
  and	
  organizing	
  tasks;	
  because	
  of	
  these	
  
strengths	
  she	
  believes	
  she	
  will	
  be	
  able	
  to	
  help	
  the	
  team	
  work	
  more	
  efficiently.	
  
Tanusree	
  thinks	
  she	
  will	
  focus	
  on	
  any	
  part	
  that	
  needs	
  to	
  be	
  completed.	
  
	
  
Anthony	
  Siao	
  -­‐	
  Anthony	
  is	
  one	
  of	
  the	
  original	
  members	
  from	
  TIM	
  105,	
  	
  he	
  can	
  contribute	
  to	
  
explaining	
  our	
  product	
  to	
  the	
  new	
  members	
  of	
  the	
  progress	
  we	
  have	
  made.	
  As	
  Anthony	
  
being	
  an	
  Environmental	
  Studies	
  major	
  and	
  minor	
  in	
  TIM,	
  he	
  can	
  bring	
  different	
  ideas	
  
to	
  the	
  table.	
  The	
  course	
  being	
  focused	
  on	
  technology,	
  he	
  can	
  bring	
  other	
  ideas	
  of	
  what	
  
can	
  help	
  the	
  environment.	
  Whatever	
  tasks	
  he	
  is	
  assigned	
  to,	
  he	
  will	
  finish	
  it.	
  	
  
	
  
Angela	
  Hu	
  -­‐	
  As	
  a	
  member	
  of	
  the	
  group	
  in	
  the	
  previous	
  course	
  (TIM105),	
  Angela	
  can	
  
provide	
  help	
  to	
  the	
  newer	
  team	
  members	
  by	
  letting	
  them	
  know	
  about	
  our	
  product	
  and	
  
Final	
  Project	
  Report	
   8	
  
what	
  we’ve	
  done	
  so	
  far.	
  Being	
  more	
  interested	
  in	
  the	
  business	
  aspect	
  of	
  this	
  class,	
  
Angela	
  can	
  provide	
  ideas	
  and	
  do	
  research	
  about	
  similar	
  products.	
  Also,	
  Angela	
  can	
  
provide	
  help	
  with	
  organizing	
  the	
  different	
  phases	
  that	
  we	
  are	
  assigned.	
  	
  
	
  
Colin	
  Kraczkowsky	
  -­‐	
  Being	
  one	
  of	
  the	
  newest	
  members,	
  Colin	
  can	
  serve	
  as	
  a	
  fresh	
  eye	
  to	
  
the	
  Jesture	
  team	
  offering	
  affirmations	
  to	
  what	
  was	
  done	
  well	
  and	
  suggestions	
  to	
  areas	
  
that	
  may	
  have	
  been	
  overlooked.	
  As	
  a	
  Business	
  Management	
  and	
  Economics	
  major,	
  
Colin	
  brings	
  a	
  background	
  in	
  supply	
  chain	
  analysis	
  and	
  management	
  to	
  the	
  table	
  as	
  
well	
  as	
  a	
  basic	
  knowledge	
  of	
  Excel	
  to	
  be	
  leveraged	
  for	
  spreadsheet	
  build	
  outs,	
  visual	
  
basics,	
  and	
  various	
  analyses.	
  Colin	
  foresees	
  playing	
  his	
  greatest	
  role	
  in	
  the	
  strategy	
  
phase	
  and	
  demand	
  forecasting	
  phase.	
  
	
  
Last	
  quarter,	
  in	
  TIM	
  105,	
  our	
  group	
  worked	
  very	
  efficiently.	
  We	
  all	
  communicated	
  well	
  with	
  
each	
  other	
  and	
  met	
  up	
  at	
  least	
  once	
  a	
  week	
  to	
  discuss	
  our	
  progress	
  and	
  what	
  tasks	
  were	
  
remaining.	
  A	
  major	
  challenge	
  for	
  our	
  group	
  was	
  that	
  we	
  were	
  left	
  with	
  only	
  four	
  group	
  
members	
  while	
  most	
  other	
  groups	
  had	
  six	
  or	
  seven.	
  This	
  was	
  difficult	
  for	
  us	
  in	
  the	
  
beginning	
  because	
  individually,	
  we	
  had	
  to	
  complete	
  more	
  work	
  to	
  get	
  everything	
  done	
  on	
  
time.	
  In	
  the	
  end	
  though,	
  it	
  wasn’t	
  so	
  bad	
  having	
  only	
  four	
  team	
  members	
  because	
  it	
  allowed	
  
us	
  to	
  communicate	
  and	
  work	
  more	
  efficiently	
  since	
  there	
  were	
  less	
  people	
  to	
  coordinate	
  
with.	
  	
  
	
  
This	
  quarter,	
  we	
  decided	
  to	
  split	
  up	
  the	
  tasks	
  according	
  to	
  our	
  strengths	
  and	
  weaknesses	
  so	
  
everyone	
  would	
  be	
  comfortable	
  doing	
  their	
  assigned	
  role.	
  How	
  our	
  group	
  can	
  improve	
  the	
  
quality	
  of	
  our	
  work	
  is	
  to	
  keep	
  on	
  completing	
  our	
  tasks	
  efficiently.	
  Also	
  we	
  want	
  to	
  build	
  a	
  
good	
  working	
  system	
  with	
  our	
  new	
  partners,	
  since	
  we	
  lost	
  three	
  members	
  of	
  our	
  group	
  in	
  
TIM	
  105.	
  We	
  want	
  to	
  continue	
  on	
  having	
  good	
  communication	
  with	
  one	
  another	
  and	
  
always	
  having	
  assigned	
  tasks.	
  Since	
  we	
  have	
  more	
  group	
  members	
  now,	
  we	
  have	
  to	
  be	
  
more	
  flexible	
  with	
  our	
  schedules	
  and	
  efficient	
  with	
  assigning	
  each	
  other	
  tasks.	
  
	
  
B. Developing	
  a	
  Supply	
  Chain	
  Strategy	
  
	
  
In	
  this	
  phase,	
  our	
  team	
  continued	
  building	
  our	
  strategies	
  for	
  the	
  launch	
  and	
  production	
  of	
  
myGlass	
  including	
  developing	
  our	
  competitive	
  strategy	
  and	
  supply	
  chain	
  strategy	
  along	
  
with	
  compiling	
  estimates	
  of	
  demand	
  for	
  our	
  product.	
  
	
  
1) Competitive	
  (Marketing)	
  Strategy	
  
	
  
For	
  our	
  marketing	
  strategy,	
  we	
  decided	
  to	
  partner	
  up	
  with	
  retail	
  locations	
  like	
  Home	
  Depot	
  
and	
  provide	
  them	
  incentives	
  for	
  our	
  product	
  to	
  be	
  displayed	
  at	
  their	
  stores.	
  The	
  primary	
  
market	
  for	
  our	
  products	
  will	
  be	
  consumers,	
  specifically	
  homeowners,	
  while	
  the	
  secondary	
  
market	
  will	
  be	
  enterprises.	
  Jesture	
  will	
  be	
  a	
  leader	
  in	
  innovation,	
  quality,	
  and	
  performance.	
  
We	
  will	
  have	
  a	
  differentiated	
  strategy	
  approach	
  with	
  unique	
  products	
  that	
  will	
  reach	
  a	
  
large	
  portion	
  of	
  the	
  market,	
  enabling	
  us	
  to	
  have	
  substantial	
  market	
  opportunity	
  with	
  a	
  wide	
  
range	
  of	
  buyers.	
  The	
  price	
  of	
  our	
  products	
  may	
  start	
  out	
  high	
  in	
  order	
  to	
  cover	
  startup	
  and	
  
developmental	
  costs	
  associated	
  with	
  the	
  creation	
  of	
  our	
  unique	
  products,	
  but	
  will	
  shortly	
  
become	
  affordable	
  to	
  the	
  every-­‐day	
  consumer.	
  This	
  will	
  allow	
  us	
  to	
  engage	
  with	
  most	
  of	
  the	
  
Final	
  Project	
  Report	
   9	
  
prospective	
  market	
  and	
  to	
  dominate,	
  as	
  well	
  as	
  lead,	
  the	
  unique	
  new	
  market	
  we	
  have	
  
created.	
  	
  
	
  
Figure	
  B.1:	
  2x2	
  Competitive	
  Strategy	
  Matrix	
  for	
  myGlass	
  
	
  
	
   	
  
	
  
As	
  indicated	
  in	
  Figure	
  B.1	
  above,	
  our	
  competitive	
  strategy	
  for	
  myGlass	
  is	
  a	
  Focused/Niche	
  
competitive	
  strategy.	
  Since	
  our	
  product	
  is	
  a	
  breakthrough	
  product	
  and	
  there	
  isn’t	
  much	
  of	
  
a	
  market	
  for	
  products	
  like	
  it	
  yet,	
  we	
  need	
  to	
  have	
  a	
  focused	
  strategy	
  and	
  target	
  a	
  particular	
  
segment	
  of	
  the	
  market,	
  such	
  as	
  upper-­‐middle	
  class	
  homeowners.	
  Above	
  is	
  the	
  matrix	
  that	
  
shows	
  our	
  position	
  in	
  the	
  competitive	
  strategy	
  matrix.	
  Our	
  product	
  is	
  very	
  unique	
  so	
  we	
  
need	
  to	
  focus	
  on	
  a	
  particular	
  segment	
  of	
  the	
  market.	
  If	
  we	
  begin	
  by	
  targeting	
  everyone,	
  our	
  
product	
  will	
  not	
  be	
  successful.	
  
	
  
2) Product	
  Development	
  Strategy	
  
	
  
Our	
  developmental	
  goals	
  for	
  our	
  product	
  seek	
  to	
  satisfy	
  our	
  users’	
  needs.	
  We	
  are	
  going	
  to	
  
make	
  our	
  products	
  simple	
  and	
  yet	
  complex.	
  We	
  want	
  to	
  provide	
  all	
  the	
  technology	
  that	
  a	
  
standard	
  home	
  needs.	
  We	
  want	
  to	
  develop	
  myGlass	
  step-­‐by-­‐step	
  since	
  we	
  are	
  selling	
  to	
  a	
  
wider	
  market.	
  In	
  order	
  for	
  our	
  company	
  to	
  be	
  successful,	
  we	
  must	
  develop	
  as	
  much	
  as	
  we	
  
can.	
  We	
  want	
  to	
  provide	
  as	
  much	
  technological	
  features	
  to	
  our	
  products	
  so	
  it	
  can	
  be	
  very	
  
beneficial	
  to	
  homeowners.	
  Once	
  we	
  fully	
  develop	
  our	
  products,	
  we	
  are	
  going	
  to	
  introduce	
  
more	
  technology	
  that	
  can	
  be	
  added	
  to	
  bigger	
  markets.	
  Our	
  main	
  goal	
  for	
  our	
  products	
  is	
  to	
  
provide	
  as	
  much	
  key	
  features	
  that	
  will	
  benefit	
  standard	
  homes	
  and	
  people’s	
  everyday	
  lives.	
  	
  
	
  
3) Software	
  Development	
  Strategy	
  
	
  
Our	
  high	
  level	
  plan	
  for	
  the	
  software	
  development	
  of	
  myGlass	
  will	
  be	
  critical	
  for	
  the	
  success	
  
of	
  our	
  supply	
  chain	
  and	
  our	
  myGlass	
  product.	
  Our	
  plan	
  will	
  need	
  to	
  incorporate	
  
information	
  systems	
  that	
  make	
  key	
  and	
  valuable	
  information:	
  
Final	
  Project	
  Report	
   10	
  
	
  
1. Easy	
  to	
  access,	
  easy	
  to	
  manipulate.	
  
2. Readily	
  available	
  for	
  all	
  members	
  that	
  need	
  access.	
  
3. Information	
  must	
  be	
  correct	
  and	
  reliable.	
  	
  
	
  
Our	
  IT	
  system	
  will	
  involve	
  a	
  cloud-­‐based	
  information	
  system	
  that	
  will	
  communicate	
  key	
  
information	
  regarding	
  supplier,	
  customer	
  and	
  many	
  other	
  types	
  of	
  data.	
  This	
  data	
  will	
  be	
  
communicated	
  throughout	
  the	
  supply	
  chain	
  and	
  help	
  guide	
  the	
  development	
  of	
  the	
  
software	
  component	
  for	
  our	
  myGlass	
  product.	
  	
  Figure	
  B.2	
  below	
  maps	
  out	
  the	
  flow	
  of	
  
information	
  into	
  our	
  centralized	
  database	
  system:	
  
	
  
Figure	
  B.2:	
  Company	
  Information	
  Infrastructure	
  Map	
  
	
  
	
   	
  
Our	
  system	
  will	
  have	
  open	
  communication	
  between	
  our	
  departments	
  to	
  be	
  able	
  to	
  deliver	
  
to	
  our	
  customers	
  a	
  built-­‐to-­‐order	
  product	
  in	
  a	
  timely	
  and	
  cost	
  effective	
  manner.	
  Our	
  system	
  
will	
  utilize	
  the	
  cloud	
  to	
  communicate	
  data	
  throughout	
  the	
  every	
  department	
  so	
  they	
  can	
  
understand	
  the	
  changes	
  in	
  customers	
  needs,	
  prices,	
  changes	
  in	
  demand	
  and	
  many	
  other	
  
important	
  aspect	
  of	
  the	
  supply	
  chain	
  and	
  our	
  business.	
  This	
  system	
  will	
  be	
  a	
  source	
  of	
  
important	
  data	
  from	
  departments	
  that	
  are	
  not	
  necessarily	
  connected	
  directly,	
  such	
  as	
  
manufacturing	
  and	
  retail.	
  The	
  customers	
  data	
  retail	
  gets	
  from	
  their	
  interaction	
  with	
  
customers	
  can	
  be	
  communicated	
  to	
  manufacturing	
  through	
  the	
  Cloud-­‐based	
  IT	
  system.	
  
Final	
  Project	
  Report	
   11	
  
This	
  will	
  help	
  manufacturing	
  to	
  be	
  more	
  efficient	
  on	
  how	
  much	
  supply	
  to	
  buy	
  from	
  
suppliers	
  and	
  keep	
  costs	
  for	
  the	
  system	
  relatively	
  low.	
  	
  The	
  communication	
  between	
  our	
  
departments	
  directly,	
  along	
  with	
  the	
  shared	
  information	
  communicated	
  on	
  the	
  IT	
  system	
  
will	
  be	
  very	
  beneficial	
  in	
  keeping	
  our	
  customers	
  satisfied	
  and	
  also	
  keeping	
  the	
  systems	
  
profit	
  level	
  at	
  a	
  sustainable	
  rate.	
  	
  
	
  
4) Supply	
  Chain	
  Network	
  Strategy	
  
	
  
Our	
  goal	
  is	
  to	
  align	
  each	
  of	
  these	
  strategies	
  above	
  with	
  a	
  supple	
  chain	
  strategy	
  that	
  
provides	
  both	
  the	
  level	
  of	
  responsiveness	
  demanded	
  by	
  our	
  customers	
  as	
  well	
  as	
  means	
  of	
  
efficiency	
  to	
  lower	
  our	
  overhead	
  costs	
  and	
  achieve	
  a	
  high	
  surplus	
  across	
  our	
  entire	
  supply	
  
chain.	
  	
  
	
  
In	
  our	
  supply	
  chain	
  network,	
  Jesture	
  is	
  its	
  own	
  manufacturer	
  and	
  distributor.	
  We	
  don’t	
  
have	
  any	
  other	
  companies	
  which	
  we	
  rely	
  on	
  to	
  be	
  our	
  distributors	
  and	
  retailers,	
  but	
  we	
  do	
  
rely	
  on	
  companies	
  such	
  as	
  The	
  Home	
  Depot,	
  Brookstone,	
  Wal-­‐Mart,	
  and	
  Bed	
  Bath	
  &	
  Beyond	
  
for	
  marketing	
  purposes.	
  Home	
  improvement	
  and	
  large	
  retail	
  chains	
  would	
  showcase	
  our	
  
product	
  to	
  the	
  general	
  public	
  where	
  Jesture	
  would	
  position	
  a	
  representative	
  that	
  would	
  be	
  
talking	
  to	
  our	
  potential	
  customers	
  as	
  an	
  interactive	
  advertisement	
  for	
  myGlass.	
  The	
  
customer-­‐order	
  cycle	
  begins	
  when	
  an	
  interested	
  consumer	
  files	
  their	
  order	
  directly	
  to	
  
Jesture.	
  We	
  would	
  then	
  enter	
  the	
  manufacturing	
  cycle	
  as	
  Jesture’s	
  plants	
  begin	
  to	
  custom	
  
build	
  the	
  demanded	
  myGlass	
  according	
  to	
  the	
  customer’s	
  specified	
  measurements.	
  By	
  
reducing	
  the	
  chain	
  of	
  distributors	
  and	
  retailers,	
  Jesture	
  is	
  trying	
  to	
  create	
  a	
  more	
  
personalized	
  product,	
  with	
  results	
  similar	
  to	
  those	
  produced	
  by	
  Dell’s	
  supply	
  chain.	
  By	
  
doing	
  this,	
  we	
  are	
  maximizing	
  the	
  responsiveness	
  of	
  our	
  company.	
  To	
  achieve	
  this	
  optimal	
  
supply	
  chain	
  network,	
  we	
  had	
  to	
  build	
  a	
  strategy	
  that	
  achieved	
  a	
  strategic	
  fit	
  between	
  the	
  
implied	
  demand	
  uncertainty	
  facing	
  myGlass	
  and	
  the	
  optimal	
  trade-­‐off	
  between	
  
responsiveness	
  and	
  efficiency	
  to	
  both	
  serve	
  the	
  needs	
  of	
  our	
  customers	
  as	
  well	
  as	
  maximize	
  
supply	
  chain	
  surplus.	
  
	
  
Figure	
  B.3	
  below	
  shows	
  the	
  spectrum	
  of	
  the	
  combined	
  uncertainty	
  of	
  supply	
  and	
  demand	
  
referred	
  to	
  as	
  implied	
  demand	
  uncertainty	
  which	
  is	
  the	
  uncertainty	
  imposed	
  on	
  the	
  supply	
  
chain	
  due	
  to	
  the	
  customer	
  needs	
  we	
  seek	
  to	
  satisfy.	
  We	
  have	
  determined	
  that	
  myGlass	
  will	
  
experience	
  a	
  high	
  level	
  of	
  implied	
  demand	
  uncertainty	
  because	
  our	
  product	
  is	
  less	
  mature	
  
and	
  is	
  entering	
  a	
  relatively	
  uninhabited	
  market	
  of	
  the	
  technology	
  space	
  meaning	
  that	
  our	
  
sourcing	
   drivers	
   are	
   unstable	
   and	
   more	
   difficult	
   to	
   predict.	
   We	
   also	
   experience	
   higher	
  
implied	
  demand	
  uncertainty	
  because	
  our	
  distribution	
  network	
  strategy	
  requires	
  that	
  the	
  
number	
   channels	
   through	
   which	
   myGlass	
   is	
   acquired	
   increases	
   with	
   the	
   various	
   retail	
  
marketing	
   locations	
   we	
   offer	
   as	
   customer	
   pickup	
   locations.	
   This	
   increased	
   Jesture’s	
   IDU	
  
because	
  the	
  total	
  customer	
  demand	
  is	
  now	
  disaggregated	
  over	
  more	
  channels.	
  
	
  
Figure	
  3.3:	
  Implied	
  Demand	
  Uncertainty	
  Spectrum	
  for	
  myGlass	
  
	
  
	
  
Final	
  Project	
  Report	
   12	
  
In	
  terms	
  of	
  responsiveness	
  and	
  efficiency,	
  our	
  goal	
  is	
  to	
  target	
  a	
  higher	
  placement	
  on	
  the	
  
responsiveness	
  frontier	
  that	
  is	
  consistent	
  with	
  our	
  implied	
  demand	
  uncertainty.	
  As	
  
discussed	
  earlier,	
  since	
  myGlass	
  is	
  custom-­‐ordered	
  on	
  a	
  pull-­‐based	
  process,	
  our	
  customers	
  
implicitly	
  value	
  responsiveness.	
  We	
  achieve	
  responsiveness	
  by:	
  
	
  
• Offering	
  our	
  customers	
  the	
  ability	
  to	
  use	
  our	
  product	
  at	
  our	
  retail	
  marketing	
  
locations	
  before	
  making	
  their	
  purchase.	
  
• Allowing	
  the	
  customer	
  to	
  fully	
  customize	
  their	
  myGlass	
  to	
  meet	
  their	
  exact	
  needs.	
  
• Supporting	
  multiple	
  regional	
  manufacturing	
  locations	
  to	
  facilitate	
  short	
  lead	
  times	
  
during	
  our	
  replenishment	
  cycles.	
  
• Source	
  our	
  components	
  from	
  multiple	
  suppliers	
  to	
  better	
  handle	
  fluctuations	
  in	
  
supply	
  uncertainty.	
  
	
  
We	
  understand	
  that	
  higher	
  responsiveness	
  comes	
  at	
  higher	
  costs,	
  however	
  maintaining	
  our	
  
position	
  in	
  the	
  zone	
  of	
  strategic	
  fit	
  is	
  crucial	
  to	
  aligning	
  our	
  competitive	
  strategy	
  with	
  our	
  
supply	
  chains	
  strategy	
  and	
  ultimately,	
  as	
  Kai	
  Hypko	
  noted	
  in	
  his	
  200	
  presentation	
  on	
  
Platronics,	
  leading	
  to	
  a	
  world	
  class	
  supply	
  chain	
  structure.	
  Figure	
  B.4	
  below	
  illustrates	
  
Jesture’s	
  positioning	
  on	
  the	
  Efficiency	
  versus	
  Responsiveness	
  spectrum.	
  
	
  
Figure	
  B.4:	
  Efficiency	
  versus	
  Responsiveness	
  Spectrum	
  for	
  myGlass	
  
	
  
	
  
Combining	
  both	
  the	
  Implied	
  Demand	
  Uncertainty	
  Spectrum	
  and	
  the	
  Responsiveness	
  versus	
  
Efficiency	
  Spectrum,	
  we	
  obtain	
  a	
  graph	
  that	
  depicts	
  the	
  zone	
  of	
  strategic	
  fit,	
  drawn	
  in	
  
Figure	
  3.5	
  below,	
  where	
  Jesture	
  achieves	
  alignment	
  of	
  our	
  strategies.	
  
	
  
Figure	
  
3.5:	
   Zone	
  
of	
   Strategic	
  
Fit	
   Graph	
  
	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   13	
  
Achieving	
  and	
  maintaining	
  Jesture’s	
  optimal	
  space	
  within	
  the	
  zone	
  of	
  strategic	
  fit,	
  starred	
  
in	
  Figure	
  3.5,	
  requires	
  that	
  we	
  achieve	
  the	
  balance	
  between	
  responsiveness	
  and	
  efficiency	
  
that	
  best	
  supports	
  our	
  Focused	
  Niche	
  competitive	
  strategy.	
  We	
  can	
  shift	
  our	
  position	
  on	
  
the	
  efficiency	
  versus	
  responsiveness	
  spectrum,	
  as	
  illustrated	
  Figure	
  3.4,	
  through	
  changing	
  
and	
  adapting	
  our	
  logistical	
  and	
  cross-­‐functional	
  drivers:	
  facilities,	
  inventory,	
  
transportation,	
  information,	
  sourcing,	
  and	
  pricing.	
  
	
  
C. Forecasting	
  Demand	
  for	
  myGlass	
  
	
  
In	
  this	
  phase,	
  our	
  team	
  sought	
  to	
  prepare	
  a	
  demand	
  forecast	
  for	
  our	
  myGlass	
  to	
  help	
  us	
  get	
  
an	
  idea	
  of	
  production	
  and	
  sales	
  volume	
  that	
  we	
  will	
  face	
  period	
  over	
  period	
  and	
  so	
  we	
  can	
  
move	
  towards	
  the	
  next	
  phase	
  of	
  inventory	
  management.	
  We	
  broke	
  our	
  approach	
  into	
  
phases:	
  first	
  aggregating	
  demand	
  estimates	
  from	
  like-­‐products	
  to	
  simulate	
  our	
  historical	
  
demand	
  data;	
  then	
  organizing	
  this	
  data	
  into	
  an	
  Excel	
  format	
  to	
  run	
  it	
  through	
  various	
  
forecasting	
  models;	
  and	
  finally	
  drawing	
  conclusions	
  from	
  the	
  results	
  of	
  these	
  models	
  to	
  
determine	
  the	
  most	
  accurate	
  representation	
  of	
  the	
  forecasted	
  demand	
  for	
  myGlass.	
  
	
  
i. Look	
  up	
  demand	
  for	
  tablet	
  market	
  from	
  previous	
  years	
  to	
  use	
  as	
  a	
  basis	
  for	
  
myGlass	
  demand	
  estimates.	
  
	
  
According	
  to	
  Gartner,	
  Inc.,	
  the	
  demand	
  data	
  for	
  the	
  tablet	
  market	
  from	
  2011	
  -­‐	
  2013	
  can	
  be	
  
broken	
  down	
  as	
  follows:	
  
	
  
2011	
   2012	
   2013	
  
60,017,000	
  units	
   118,883,000	
  units	
   182,457,000	
  units	
  
	
  
This	
  data	
  is	
  important	
  for	
  two	
  reasons.	
  First,	
  it	
  gives	
  our	
  team	
  an	
  idea	
  of	
  what	
  global	
  
demand	
  for	
  similar	
  products	
  looks	
  like.	
  Second,	
  the	
  data	
  shows	
  that	
  the	
  demand	
  for	
  tablets	
  
is	
  growing	
  and	
  has	
  been	
  increasing	
  by	
  an	
  average	
  of	
  76%	
  year	
  over	
  year	
  since	
  2011.	
  This	
  
proves	
  that	
  the	
  market	
  is	
  lucrative	
  and	
  the	
  growing	
  demand	
  will	
  support	
  the	
  introduction	
  
of	
  myGlass.	
  
	
  
ii. Aggregate	
  annual	
  tablet	
  demand	
  data	
  and	
  source	
  quarterly	
  demand	
  data	
  from	
  
competitor	
  products	
  mentioned	
  in	
  our	
  Business	
  Plan:	
  Apple	
  iPad	
  &	
  Samsung	
  
Galaxy	
  Tab.	
  
	
  
To	
  figure	
  out	
  demand	
  estimates	
  for	
  myGlass,	
  we	
  decided	
  to	
  extract	
  quarterly	
  demand	
  data	
  
for	
  two	
  prominent	
  products	
  within	
  the	
  tablet	
  industry.	
  We	
  chose	
  Apple’s	
  iPad	
  and	
  
Samsung’s	
  Galaxy	
  Tab	
  because	
  they	
  are	
  market	
  leading	
  products	
  with	
  readily	
  available	
  
demand	
  data.	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   14	
  
Year	
   Quarter	
  
Apple	
  iPad	
  Demand	
  
(millions	
  of	
  units)	
  
Samsung	
  Tablet	
  Demand	
  
(millions	
  of	
  units)	
  
2011	
   Q1	
   7.33	
   .08	
  
	
   Q2	
   4.69	
   .27	
  
	
   Q3	
   9.25	
   .3	
  
	
   Q4	
   11.12	
   .35	
  
2012	
   Q1	
   15.43	
   .16	
  
	
   Q2	
   11.8	
   .04	
  
	
   Q3	
   17.04	
   .9	
  
	
   Q4	
   14.04	
   7.5	
  
2013	
   Q1	
   22.86	
   8.5	
  
	
   Q2	
   19.48	
   6.9	
  
	
   Q3	
   14.62	
   8.4	
  
	
   Q4	
   14.08	
   13.6	
  
	
  
Using	
  data	
  from	
  Appleinsider,	
  we	
  were	
  able	
  to	
  source	
  the	
  quarterly	
  units	
  sold	
  of	
  these	
  two	
  
substitute	
  products	
  from	
  three	
  prior	
  demand	
  cycles.	
  
	
  
iii. Estimate	
  prior	
  demand	
  data	
  using	
  metrics	
  from	
  theoretic	
  substitute	
  products.	
  
	
  
Year	
   Quarter	
  
Apple	
  iPad	
  
Demand	
  
(millions	
  of	
  units)	
  
Samsung	
  Tablet	
  
Demand	
  
(millions	
  of	
  units)	
  
Estimated	
  Past	
  
Demand	
  
(millions	
  of	
  units)	
  
2011	
   Q1	
   7.33	
   0.08	
   3.705	
  
	
   Q2	
   4.69	
   0.27	
   2.48	
  
	
   Q3	
   9.25	
   0.3	
   4.775	
  
	
   Q4	
   11.12	
   0.35	
   5.735	
  
2012	
   Q1	
   15.43	
   0.16	
   7.795	
  
	
   Q2	
   11.8	
   0.04	
   5.92	
  
Final	
  Project	
  Report	
   15	
  
	
   Q3	
   17.04	
   0.9	
   8.97	
  
	
   Q4	
   14.04	
   7.5	
   10.77	
  
2013	
   Q1	
   22.86	
   8.5	
   15.68	
  
	
   Q2	
   19.48	
   6.9	
   13.19	
  
	
   Q3	
   14.62	
   8.4	
   11.51	
  
	
   Q4	
   14.08	
   13.6	
   13.84	
  
(Demand	
  estimated	
  using	
  the	
  averages	
  of	
  the	
  demand	
  for	
  these	
  two	
  products)	
  
	
  
We	
  used	
  the	
  actual	
  sales	
  data	
  of	
  both	
  the	
  Apple	
  iPad	
  and	
  the	
  Samsung	
  Galaxy	
  Tab	
  to	
  make	
  
demand	
  predictions	
  for	
  myGlass.	
  This	
  data	
  comes	
  from	
  both	
  of	
  these	
  products	
  as	
  they	
  
entered	
  the	
  introductory	
  phase	
  of	
  the	
  product	
  lifecycle.	
  This	
  simulates	
  the	
  kind	
  of	
  demand	
  
our	
  product	
  would	
  face	
  as	
  it	
  enters	
  the	
  product	
  lifecycle	
  giving	
  us	
  an	
  accurate	
  sense	
  of	
  
production	
  needs.	
  
	
  
iv. Translate	
  this	
  data	
  to	
  our	
  financial	
  software.	
  
	
  
We	
  perform	
  this	
  step	
  to	
  synthesize	
  the	
  demand	
  data	
  with	
  our	
  production	
  schedule	
  and	
  to	
  
accurately	
  factor	
  our	
  production	
  and	
  sales	
  volume	
  into	
  the	
  projections	
  for	
  the	
  Net	
  Present	
  
Value	
  of	
  the	
  myGlass	
  project.	
  Using	
  these	
  demand	
  estimates	
  we	
  expect	
  to	
  see	
  positive	
  cash	
  
flows	
  within	
  two	
  years	
  and	
  a	
  positive	
  Net	
  Present	
  Value	
  after	
  six	
  years.	
  	
  
	
  
v. Begin	
  forecasting	
  demand	
  using	
  the	
  Static	
  Forecasting	
  method	
  by	
  first	
  calculating	
  
the	
  deseasonalized	
  demand	
  for	
  the	
  estimated	
  demand	
  data	
  of	
  myGlass.	
  
	
  
Using	
  demand	
  estimates	
  we	
  acquired	
  in	
  step	
  iii.,we	
  then	
  sought	
  to	
  remove	
  variations	
  in	
  the	
  
data	
  that	
  are	
  caused	
  by	
  seasonal	
  fluctuations.	
  We	
  performed	
  this	
  step	
  by	
  looking	
  for	
  the	
  
periodicity	
  of	
  demand	
  in	
  the	
  tablet	
  market.	
  Looking	
  at	
  the	
  data,	
  the	
  general	
  trend	
  appeared	
  
to	
  be	
  that	
  demand	
  was	
  relatively	
  low	
  during	
  the	
  second	
  quarter	
  of	
  each	
  year	
  and	
  then	
  
would	
  increase	
  through	
  the	
  next	
  three	
  periods	
  before	
  dipping	
  again	
  in	
  the	
  second	
  quarter.	
  
This	
  gave	
  us	
  a	
  periodicity	
  of	
  four	
  meaning	
  that	
  we	
  observed	
  roughly	
  four	
  periods	
  between	
  
the	
  start	
  and	
  the	
  end	
  of	
  a	
  seasonal	
  cycle.	
  Combined	
  with	
  this	
  periodicity	
  estimate,	
  we	
  were	
  
then	
  able	
  to	
  calculate	
  the	
  deseasonalized	
  demand	
  using	
  the	
  formula	
  for	
  calculating	
  
deseasonalized	
  demand	
  with	
  an	
  even	
  periodicity.	
  
	
  
vi. Run	
  a	
  regression	
  through	
  the	
  deseasonalized	
  demand	
  data	
  to	
  locate	
  the	
  trend	
  and	
  
level	
  for	
  the	
  demand	
  for	
  myGlass.	
  
	
  
Above	
  is	
  a	
  graphical	
  representation	
  of	
  both	
  our	
  Estimated	
  Demand	
  and	
  Deseasonalized	
  
Demand	
  for	
  the	
  tablet	
  market.	
  Removing	
  predictable	
  seasonal	
  fluctuations	
  from	
  our	
  
demand	
  estimates	
  allowed	
  us	
  to	
  run	
  a	
  regression	
  analysis	
  and	
  draw	
  a	
  trendline	
  through	
  the	
  
deseasonalized	
  data.	
  We	
  needed	
  to	
  deseasonalize	
  our	
  Estimated	
  Demand	
  in	
  order	
  to	
  run	
  a	
  
Final	
  Project	
  Report	
   16	
  
linear	
  regression	
  because,	
  as	
  indicated	
  graphically	
  by	
  the	
  blue	
  diamonds,	
  the	
  original	
  
demand	
  estimates	
  do	
  not	
  exhibit	
  a	
  linear	
  relationship.	
  The	
  regression	
  line	
  shown	
  gives	
  us	
  a	
  
visual	
  representation	
  of	
  the	
  relationship	
  between	
  the	
  independent	
  variable,	
  number	
  of	
  
periods,	
  and	
  the	
  dependent	
  variable,	
  demand	
  for	
  homeware	
  tablets,	
  to	
  estimate	
  the	
  
conditional	
  expectation	
  of	
  demand	
  from	
  the	
  second	
  quarter	
  of	
  Year	
  2	
  to	
  the	
  second	
  quarter	
  
of	
  Year	
  6.	
  
	
  
The	
  equation	
  of	
  this	
  regression	
  line	
  is	
  as	
  follows:	
  
	
  
Deseasonalized	
  Demand	
  =	
  1,372.2	
  +	
  930.25	
  *	
  a	
  given	
  Period	
  
	
  
This	
  tells	
  us	
  that	
  the	
  level	
  of	
  demand	
  at	
  Period	
  0	
  is	
  1,372,000	
  units	
  (Level	
  =	
  1,372.2)	
  and	
  
that	
  the	
  rate	
  of	
  growth	
  of	
  demand	
  from	
  one	
  period	
  to	
  the	
  next	
  is	
  930,250	
  (Trend	
  =	
  
930.25).	
  
	
  
vii. Using	
  the	
  trend	
  and	
  level,	
  calculate	
  the	
  deseasonalized	
  demand	
  for	
  all	
  the	
  past	
  
estimated	
  demand	
  data	
  of	
  myGlass.	
  
	
  
Equation:	
  Deseasonalized	
  Demand	
  =	
  1,372.2	
  +	
  930.25	
  *	
  Estimated	
  Past	
  Demand	
  
	
  
Using	
  the	
  above	
  equation	
  allowed	
  us	
  to	
  get	
  accurate	
  estimates	
  for	
  deseasonalized	
  demand	
  
for	
  all	
  periods	
  since	
  the	
  equation	
  for	
  deseasonalized	
  demand	
  has	
  restrictions.	
  We	
  will	
  need	
  
the	
  demand	
  data	
  for	
  every	
  period	
  to	
  calculate	
  the	
  seasonal	
  factors	
  that	
  would	
  have	
  affected	
  
our	
  demand	
  estimates	
  in	
  the	
  past	
  and	
  will	
  likely	
  affect	
  our	
  forecasted	
  demand	
  after	
  we	
  
begin	
  producing	
  myGlass.	
  
	
  
viii. Use	
  the	
  estimated	
  demand	
  and	
  the	
  deseasonalized	
  demand	
  to	
  calculate	
  seasonal	
  
factors.	
  
	
  
Equation:	
  Seasonal	
  Factors	
  =	
  Estimated	
  Demand	
  Data	
  /	
  Deseasonalized	
  Demand	
  Data	
  
	
  
The	
  above	
  equation	
  will	
  produce	
  the	
  predictable	
  seasonal	
  factors	
  that	
  caused	
  fluctuations	
  
in	
  our	
  demand	
  estimates.	
  We	
  need	
  to	
  calculate	
  these	
  factors	
  so	
  that	
  we	
  can	
  reseasonalize	
  
the	
  demand	
  data	
  to	
  get	
  accurate	
  demand	
  forecasts.	
  
	
  
ix. Use	
  the	
  seasonal	
  cycles	
  of	
  the	
  demand	
  periodicity	
  to	
  predict	
  the	
  seasonal	
  factors	
  for	
  
future	
  demand.	
  
	
  
The	
  equation	
  for	
  calculating	
  seasonal	
  factors	
  is	
  restricted	
  by	
  requiring	
  both	
  observed	
  (in	
  
our	
  case	
  estimated)	
  and	
  deseasonalized	
  demand	
  data	
  which	
  is	
  only	
  available	
  after	
  the	
  
period	
  has	
  ended	
  and	
  the	
  data	
  can	
  be	
  aggregated.	
  To	
  estimate	
  the	
  seasonal	
  factors	
  that	
  will	
  
affect	
  our	
  future	
  demand,	
  we	
  average	
  out	
  the	
  calculated	
  seasonal	
  factors	
  for	
  periods	
  in	
  the	
  
same	
  position	
  within	
  the	
  seasonal	
  cycle	
  (i.e.	
  Periods	
  6,	
  10,	
  and	
  14	
  all	
  exhibit	
  low	
  points	
  in	
  
demand	
  so	
  we	
  would	
  take	
  the	
  average	
  of	
  these	
  three	
  periods	
  to	
  produce	
  an	
  estimated	
  
seasonal	
  factor	
  for	
  Period	
  18).	
  We	
  need	
  the	
  seasonal	
  factors	
  for	
  the	
  periods	
  we	
  are	
  
Final	
  Project	
  Report	
   17	
  
forecasting	
  demand	
  because	
  we	
  will	
  need	
  to	
  reseasonalize	
  our	
  deseasonalized	
  demand	
  
forecasts	
  during	
  that	
  time.	
  
	
  
x. Use	
  the	
  trend,	
  level,	
  and	
  seasonal	
  factors	
  to	
  forecast	
  future	
  demand	
  for	
  my	
  glass.	
  
	
  
Equation:	
  Forecasted	
  Demand	
  =	
  (Level	
  +	
  Period	
  *	
  Trend)	
  *	
  Seasonal	
  Factor	
  
	
  
The	
  equation	
  for	
  forecasting	
  demand	
  has	
  two	
  components:	
  forecasted	
  deseasonalized	
  
demand	
  for	
  a	
  given	
  future	
  period	
  and	
  the	
  corresponding	
  seasonal	
  factor.	
  Recalling	
  the	
  
equation	
  we	
  extracted	
  from	
  the	
  graph	
  in	
  step	
  v.	
  we	
  know	
  that	
  the	
  future	
  deseasonalized	
  
demand	
  will	
  fall	
  somewhere	
  along	
  the	
  line:	
  Deseasonalized	
  Demand	
  =	
  1,372.2	
  +	
  930.25	
  *	
  a	
  
given	
  Period.	
  Factoring	
  in	
  the	
  periods	
  we	
  are	
  forecasting	
  demand	
  for,	
  we	
  then	
  multiply	
  by	
  
our	
  estimated	
  seasonal	
  factors	
  to	
  get	
  measurements	
  for	
  our	
  demand	
  forecasts	
  that	
  will	
  
accurately	
  take	
  into	
  account	
  seasonal	
  fluctuations.	
  
	
  
Using	
  static	
  demand	
  forecasting,	
  we	
  have	
  estimated	
  that	
  demand	
  for	
  our	
  tablet	
  homeware	
  
technology	
  will	
  have	
  reached	
  500	
  thousand	
  by	
  the	
  time	
  we	
  are	
  on	
  the	
  market	
  in	
  2016.	
  
	
  
xi. Check	
  your	
  work	
  by	
  plotting	
  estimated	
  demand	
  data	
  and	
  forecasted	
  demand	
  data	
  
on	
  the	
  same	
  graph.	
  
	
  
Plotting	
  our	
  observed	
  demand	
  against	
  our	
  demand	
  forecasts	
  provides	
  a	
  visual	
  
representation	
  to	
  see	
  if	
  the	
  Static	
  Forecasting	
  method	
  is	
  appropriate	
  for	
  our	
  demand	
  data.	
  
While	
  the	
  forecasts	
  under	
  this	
  method	
  do	
  exhibit	
  a	
  similar	
  level	
  and	
  seasonal	
  pattern	
  as	
  the	
  
observed	
  data,	
  the	
  static	
  method	
  appears	
  to	
  continue	
  growing	
  past	
  Year	
  6	
  while	
  we	
  have	
  
estimated	
  that	
  our	
  product	
  will	
  have	
  fully	
  matured	
  by	
  then	
  and	
  actually	
  have	
  entered	
  the	
  
Decline	
  phase	
  of	
  the	
  product	
  lifecycle.	
  This	
  is	
  because	
  the	
  static	
  method	
  assumes	
  that	
  level,	
  
seasonality,	
  and	
  trend	
  are	
  all	
  static	
  meaning	
  that	
  the	
  trend	
  will	
  increase	
  at	
  a	
  constant	
  
growth	
  rate.	
  
	
  
Because	
  of	
  the	
  assumptions	
  under	
  the	
  Static	
  Forecasting	
  method,	
  we	
  have	
  decided	
  to	
  
pursue	
  another	
  forecasting	
  method	
  that	
  will	
  take	
  into	
  consideration	
  the	
  full	
  scope	
  of	
  
myGlass	
  as	
  it	
  passes	
  through	
  the	
  product	
  lifecycle.	
  
	
  
xii. Begin	
  forecasting	
  demand	
  using	
  Winter’s	
  method	
  by	
  first	
  getting	
  initial	
  values	
  for	
  
both	
  Level	
  and	
  Trend	
  using	
  the	
  deseasonalized	
  demand	
  data	
  from	
  the	
  Statis	
  
Forecasting	
  method.	
  
	
  
We	
  decided	
  to	
  pursue	
  Winter’s	
  adaptive	
  forecasting	
  method	
  because	
  it’s	
  adaptive	
  qualities	
  
smooth	
  the	
  changes	
  in	
  Level,	
  Trend,	
  and	
  Seasonality	
  that	
  we	
  have	
  observed	
  in	
  our	
  demand	
  
data.	
  These	
  changes	
  occur	
  as	
  myGlass	
  transitions	
  through	
  the	
  stages	
  of	
  the	
  product	
  
lifecycle.	
  
	
  
Because	
  Winter’s	
  model	
  of	
  adaptive	
  demand	
  forecasting	
  adjusts	
  for	
  seasonality,	
  we	
  use	
  the	
  
deseasonalized	
  demand	
  data	
  to	
  get	
  initial	
  estimates	
  for	
  the	
  Level	
  and	
  the	
  Trend.	
  As	
  can	
  be	
  
Final	
  Project	
  Report	
   18	
  
seen	
  in	
  the	
  chart	
  above,	
  we	
  will	
  use	
  an	
  Initial	
  Estimate	
  of	
  Level	
  =	
  1372.2	
  and	
  an	
  Initial	
  
Estimate	
  of	
  Trend	
  =	
  930.25	
  as	
  the	
  basis	
  for	
  our	
  forecasts.	
  	
  
	
  
xiii. Use	
  the	
  initial	
  estimates	
  of	
  Level	
  and	
  Trend	
  to	
  make	
  estimates	
  for	
  future	
  levels	
  of	
  
Level	
  and	
  Trend	
  and	
  to	
  get	
  Predicted	
  Seasonal	
  Factors.	
  
	
  
xiv. 	
  Having	
  built	
  out	
  the	
  forecasted	
  estimates	
  for	
  Level,	
  Trend,	
  and	
  Seasonal	
  Factors,	
  
forecast	
  demand	
  for	
  Periods	
  1	
  -­‐	
  7.	
  
	
  
xv. xv.	
   Perform	
  an	
  error	
  analysis	
  for	
  the	
  forecasted	
  demand	
  data.	
  
	
  
The	
  constants	
  we	
  chose	
  were	
  as	
  follows:	
  a	
  Level	
  smoothing	
  constant	
  of	
  0.9,	
  a	
  Trend	
  
smoothing	
  constant	
  of	
  0.9,	
  and	
  a	
  Seasonal	
  Factor	
  smoothing	
  constant	
  of	
  0.1.	
  We	
  chose	
  these	
  
constants	
  because	
  they	
  provided	
  us	
  the	
  most	
  accurate	
  forecast	
  numbers	
  as	
  determined	
  by	
  
the	
  most	
  minimal	
  errors.	
  As	
  can	
  be	
  seen	
  by	
  our	
  error	
  analysis	
  above,	
  our	
  Forecasted	
  
Demand	
  estimates	
  start	
  off	
  shakey	
  with	
  Mean	
  Absolute	
  Percentage	
  Errors	
  higher	
  than	
  we	
  
would	
  like	
  but	
  that	
  decrease	
  with	
  time	
  meaning	
  that	
  our	
  method	
  will	
  become	
  more	
  
accurate	
  over	
  time.	
  An	
  encouraging	
  sign	
  is	
  the	
  Tracking	
  Signal	
  consistently	
  ranging	
  
between	
  0	
  and	
  1	
  meaning	
  that	
  our	
  estimates	
  aren’t	
  overly	
  biased	
  in	
  either	
  direction.	
  
	
  
xvi. Check	
  your	
  work	
  by	
  plotting	
  estimated	
  demand	
  data	
  and	
  forecasted	
  demand	
  data	
  
on	
  the	
  same	
  graph.	
  
	
  
Plotting	
  the	
  Forecasted	
  Demand	
  data	
  we	
  obtained	
  using	
  Winter’s	
  adaptive	
  forecasting	
  
method	
  against	
  the	
  Observed	
  Demand	
  data	
  we	
  estimated	
  using	
  the	
  historical	
  demand	
  data	
  
of	
  a	
  similar	
  branch	
  of	
  products	
  serves	
  us	
  in	
  two	
  ways.	
  First,	
  we	
  are	
  able	
  to	
  see	
  how	
  closely	
  
the	
  Forecasted	
  Demand	
  points	
  relate	
  to	
  the	
  Observed	
  Demand	
  points	
  providing	
  confidence	
  
that	
  we	
  performed	
  the	
  time-­‐series	
  forecasting	
  correctly	
  and	
  that	
  it	
  provided	
  accurate	
  
results.	
  Second,	
  we	
  are	
  able	
  to	
  observe	
  what	
  the	
  demand	
  of	
  future	
  periods	
  will	
  look	
  like	
  for	
  
which	
  we	
  do	
  not	
  have	
  historical	
  demand	
  data.	
  What	
  we	
  see	
  is	
  a	
  similar	
  pattern	
  of	
  seasonal	
  
fluctuations	
  as	
  was	
  seen	
  in	
  past	
  periods	
  however	
  we	
  also	
  observe	
  a	
  slight	
  dip	
  in	
  demand.	
  
The	
  dip	
  in	
  demand	
  comes	
  between	
  our	
  fourth	
  and	
  fifth	
  year	
  of	
  operation	
  and	
  is	
  to	
  be	
  expected	
  
as	
  fur	
  product	
  will	
  have	
  entered	
  the	
  Decline	
  Phase	
  of	
  the	
  product	
  lifecycle	
  similarly	
  to	
  what	
  
we	
  saw	
  in	
  the	
  lifecycle	
  of	
  other	
  tablet	
  computers.	
  
	
  
xvii. Synthesize	
  the	
  Forecasted	
  Demand	
  from	
  the	
  Winter’s	
  model	
  of	
  adaptive	
  forecasting	
  
with	
  our	
  financial	
  estimates.	
  
	
  
Our	
  final	
  step	
  is	
  to	
  take	
  the	
  Forecasted	
  Demand	
  data	
  we	
  obtained	
  in	
  step	
  xiv	
  and	
  implant	
  it	
  
into	
  our	
  financial	
  estimates.	
  To	
  maintain	
  accurate	
  estimates	
  of	
  future	
  demand,	
  we	
  decided	
  
to	
  forecast	
  up	
  until	
  Year	
  7.	
  Given	
  that	
  forecasting	
  further	
  than	
  historical	
  demand	
  data	
  
under	
  Winter’s	
  method	
  means	
  multiplying	
  the	
  Trend	
  by	
  an	
  increasing	
  constant,	
  our	
  
Forecasted	
  Demand	
  estimates	
  would	
  appear	
  to	
  continue	
  growing	
  which	
  would	
  be	
  
inaccurate.	
  Because	
  there	
  was	
  not	
  enough	
  historical	
  data	
  to	
  substantiate	
  forecasting	
  
further,	
  we	
  decided	
  to	
  hold	
  until	
  new	
  demand	
  would	
  come	
  in	
  and	
  provide	
  the	
  best	
  
forecasts	
  for	
  Year	
  8	
  and	
  beyond.	
  
Final	
  Project	
  Report	
   19	
  
	
  
Consistent	
  with	
  our	
  observation	
  that	
  myGlass	
  will	
  have	
  entered	
  the	
  Decline	
  Phase	
  of	
  the	
  
product	
  lifecycle	
  by	
  Year	
  7,	
  our	
  financial	
  software	
  shows	
  that	
  the	
  cash	
  flows	
  and	
  net	
  
present	
  values	
  will	
  also	
  begin	
  to	
  decline.	
  Our	
  company,	
  Jesture,	
  will	
  then	
  have	
  to	
  decide	
  
actions	
  to	
  take	
  next.	
  We	
  may	
  consider	
  increasing	
  our	
  investment	
  in	
  Marketing	
  &	
  Support	
  to	
  
keep	
  myGlass	
  relevant,	
  generating	
  a	
  line	
  of	
  complementary	
  products	
  to	
  increase	
  demand	
  
for	
  myGlass,	
  or	
  investigating	
  a	
  new	
  product	
  line	
  and	
  let	
  myGlass	
  run	
  the	
  full	
  length	
  of	
  the	
  
lifecycle.	
  
	
  
D. Inventory	
  Management	
  in	
  Jesture’s	
  Supply	
  Chain	
  
	
  
1) Estimating	
  Fixed	
  Shipping	
  Charges	
  
	
  
We	
   plan	
   to	
   ship	
   by	
   truck	
   if	
   the	
   customer	
   is	
   located	
   locally	
   within	
   the	
   Bay	
   Area	
   and	
   by	
  
freight	
  or	
  air	
  if	
  the	
  customer	
  is	
  further	
  away	
  from	
  the	
  central	
  manufacturing	
  location	
  in	
  San	
  
Jose.	
   If	
   the	
   customer	
   is	
   within	
   California	
   or	
   within	
   the	
   bordering	
   states,	
   we	
   would	
   ship	
  
them	
   the	
   product	
   by	
   train,	
   but	
   if	
   the	
   customer	
   is	
   further	
   away	
   in	
   the	
   Mid-­‐West	
   or	
   East	
  
Coast,	
  we	
  would	
  ship	
  the	
  product	
  through	
  airplane.	
  	
  
	
  
-­‐ Estimated	
  shipping	
  through	
  truck	
  (within	
  Bay	
  Area):	
  $50	
  -­‐	
  $100	
  per	
  shipment	
  (for	
  
one	
  unit	
  of	
  product)	
  
-­‐ Estimated	
  shipping	
  through	
  train	
  (within	
  California	
  or	
  bordering	
  states):	
  $100	
  per	
  
shipment	
  (for	
  one	
  unit	
  of	
  product)	
  
-­‐ Estimated	
  shipping	
  through	
  air:	
  $135	
  per	
  shipment	
  (for	
  one	
  unit	
  of	
  product)	
  
	
  
2) Estimating	
  the	
  Cost	
  per	
  Unit	
  
	
  
We	
  plan	
  on	
  charging	
  our	
  customers	
  $500	
  for	
  the	
  initial	
  (2x2)	
  system,	
  then	
  $25	
  extra	
  per	
  
square	
  foot.	
  The	
  cost	
  for	
  our	
  company	
  for	
  producing	
  the	
  product	
  is	
  about	
  $200	
  per	
  unit,	
  
depending	
  on	
  the	
  size	
  of	
  the	
  order.	
  $200	
  would	
  be	
  the	
  initial	
  cost	
  for	
  producing	
  the	
  system,	
  
including	
   the	
   receiver	
   and	
   central	
   processing	
   unit.	
   The	
   additional	
   costs	
   will	
   come	
   from	
  
producing	
  the	
  glass	
  itself,	
  which	
  varies	
  depending	
  on	
  the	
  size	
  of	
  the	
  customer’s	
  order.	
  Our	
  
main	
   product	
   that	
   we	
   will	
   be	
   focusing	
   on	
   is	
   a	
   2	
   foot	
   by	
   2	
   foot	
   square	
   of	
   myGlass.	
   This	
  
product	
  will	
  include	
  one	
  receiver/CPU	
  and	
  a	
  2	
  by	
  2	
  piece	
  of	
  myGlass	
  that	
  can	
  be	
  used	
  on	
  
the	
  go.	
  
	
  
#	
  of	
  CPUs	
  needed	
  to	
  fulfill	
  EOQ	
  	
  =	
  454*1=	
  454	
  
#	
  of	
  Bose	
  speakers	
  to	
  fulfill	
  EOQ	
  =	
  454*2	
  =	
  908	
  
#	
  of	
  myGlass	
  pieces	
  of	
  technology	
  to	
  fulfill	
  EOQ	
  =	
  454*4	
  =	
  1816	
  
#	
  of	
  Processor’s	
  needed	
  to	
  fulfill	
  EOQ=	
  454*1	
  =	
  454	
  
	
  
3) Annual	
  Inventory	
  Holding	
  Cost	
  
	
  
Annual	
  Holding	
  Cost	
  is	
  given	
  by	
  this	
  formula:	
  
	
  
Order	
  Quantity	
  *	
  Holding	
  cost	
  per	
  unit	
  per	
  year	
  
Final	
  Project	
  Report	
   20	
  
	
  
For	
  our	
  product,	
  the	
  order	
  quantity	
  (shown	
  below)	
  is	
  454	
  units	
  and	
  the	
  holding	
  cost	
  per	
  
unit	
  is	
  given	
  by	
  (0.2	
  *	
  200)	
  =	
  $40.	
  With	
  these	
  numbers,	
  we	
  can	
  fill	
  in	
  the	
  formula	
  above:	
  
4542	
  *	
  $40	
  =	
  $9,080	
  per	
  year	
  
	
  
4) Estimating	
  Cycle	
  Inventory	
  
	
  
Economic	
  Order	
  Quantity	
  is	
  given	
  by	
  the	
  following	
  equation:	
  
	
  
2(Annual	
  Demand)(Shipping	
  Cost)(Holding	
  Cost)(Unit	
  Cost)	
  
	
  
Our	
  annual	
  projected	
  demand	
  for	
  year	
  7	
  is	
  55,022	
  units	
  of	
  our	
  product.	
  Assuming	
  we	
  ship	
  
by	
  truck	
  and	
  the	
  unit	
  cost	
  is	
  around	
  $200,	
  and	
  the	
  holding	
  percentage	
  is	
  20%	
  we	
  get	
  the	
  
following	
  equation:	
  	
  
	
  
2(55,022)($75)(0.2)($200)	
  
	
  
From	
  this	
  equation,	
  we	
  calculate	
  our	
  EOQ	
  to	
  be	
  about	
  454	
  units	
  per	
  shipment.	
  
	
  
5) Determine	
  Aggregation	
  Strategy	
  
	
  
Our	
   aggregate	
   strategy	
   would	
   be	
   to	
   try	
   and	
   ship	
   out	
   as	
   many	
   orders	
   as	
   possible	
   on	
   the	
  
same	
  shipment.	
  If	
  the	
  customers	
  are	
  within	
  the	
  same	
  area,	
  their	
  orders	
  would	
  be	
  shipped	
  at	
  
the	
  same	
  time	
  to	
  reduce	
  costs	
  for	
  our	
  company.	
  Since	
  we	
  do	
  not	
  have	
  any	
  retailers	
  that	
  our	
  
distributors	
  would	
  ship	
  to,	
  we	
  do	
  not	
  have	
  to	
  have	
  an	
  advanced	
  aggregation	
  strategy,	
  but	
  
rather,	
  we	
  have	
  to	
  strategically	
  ship	
  orders	
  at	
  the	
  same	
  time	
  that	
  would	
  be	
  going	
  to	
  the	
  
same	
  place.	
  
	
  
Table	
  D.1:	
  Demand	
  Data	
  for	
  Year	
  7	
  of	
  Production	
  
	
  
Year/Quarter	
   Forecasted	
  Demand	
  
Year	
  7/Quarter	
  1	
   14,749	
  
Year	
  7/Quarter	
  2	
   14,234	
  
Year	
  7/Quarter	
  3	
   13,055	
  
Year	
  7/Quarter	
  4	
   12,984	
  
Total:	
   55,022	
  
	
  
Using	
  our	
  FAST	
  diagram	
  we	
  created	
  during	
  the	
  design	
  phase	
  of	
  our	
  product	
  we	
  can	
  have	
  an	
  
idea	
  of	
  how	
  many	
  suppliers	
  we	
  need	
  and	
  how	
  we	
  can	
  begin	
  to	
  aggregate	
  our	
  orders	
  for	
  our	
  
supplies.	
   As	
   shown	
   above	
   one	
   myGlass	
   unit	
   would	
   be	
   composed	
   of	
   an	
   Intel	
   Pentium	
  
Final	
  Project	
  Report	
   21	
  
microprocessor,	
   Bose	
   internal	
   speakers,	
   one	
   fingerprint	
   recognition	
   software	
   system,	
   an	
  
Android	
  OS	
  and	
  one	
  Intel	
  730	
  SSD	
  card.	
  	
  
	
  
6) Determine	
  the	
  Economic	
  Order	
  Quantity	
  of	
  Supplies	
  
	
  
As	
  mentioned	
  in	
  our	
  inventory	
  managment	
  for	
  myGlass	
  we	
  are	
  expecting	
  to	
  have	
  an	
  EOQ	
  of	
  
454	
   units	
   of	
   myGlass	
   per	
   shipment.	
   To	
   fulfill	
   this	
   order	
   our	
   SC	
   manager	
   should	
   be	
  
calculating	
  how	
  many	
  units	
  of	
  each	
  component	
  our	
  company	
  should	
  order	
  to	
  add	
  to	
  our	
  
inventory	
  that	
  will	
  minimize	
  total	
  cost.	
  We	
  have	
  labeled	
  our	
  assumptions	
  for	
  how	
  many	
  
units	
  of	
  each	
  component	
  would	
  need	
  to	
  be	
  ordres	
  to	
  build	
  the	
  454	
  units	
  needed	
  for	
  our	
  
EOQ:	
  
	
  
Table	
  D.2:	
  Economic	
  Order	
  Quantities	
  of	
  our	
  Components	
  
	
  
Components	
   Order	
  Quantity	
  
	
  
1	
  CPU	
  
	
  
2	
  Internal	
  Bose	
  speakers	
  
	
  
2x2	
  square	
  feet	
  of	
  myGlass	
  glass	
  technology	
  	
  
	
  
1	
  microprocessor	
  
	
  
	
  
#	
  of	
  CPUs	
  needed	
  to	
  fulfill	
  EOQ	
  	
  =	
  454*1=	
  
454	
  
#	
  of	
  Bose	
  speakers	
  to	
  fulfill	
  EOQ	
  =	
  454*2	
  =	
  
908	
  
#	
  of	
  myGlass	
  technology	
  to	
  fulfill	
  EOQ=	
  
454*4	
  =	
  1816	
  
#	
  of	
  Processor’s	
  needed	
  to	
  fulfill	
  EOQ=	
  
454*1	
  =	
  454	
  
	
  
	
  
E. Designing/Implementing	
  our	
  Supply	
  Chain	
  Drivers	
  Network	
  
	
  
1) Designing	
  Jesture’s	
  Facilities	
  Network	
  
	
  
While	
  making	
  decisions	
  regarding	
  Jesture’s	
  facilities	
  driver	
  in	
  our	
  supply	
  chain	
  network	
  
design,	
  we	
  looked	
  at	
  the	
  role	
  of	
  each	
  facility,	
  the	
  location	
  of	
  manufacturing,	
  our	
  storage	
  
needs,	
  and	
  the	
  allocation	
  of	
  capacity	
  and	
  markets	
  to	
  each	
  facility.	
  We	
  classified	
  these	
  down	
  
into	
  high-­‐level	
  planning	
  decisions	
  as	
  follows:	
  
	
  
1. Facility	
  Role:	
  What	
  role	
  will	
  each	
  facility	
  play?	
  What	
  processes	
  are	
  performed	
  at	
  
each	
  facility?	
  
2. Facility	
  Location:	
  Where	
  will	
  we	
  locate	
  our	
  facilities?	
  
3. Capacity	
  Allocation:	
  How	
  much	
  capacity	
  will	
  we	
  allocate	
  to	
  each	
  facility?	
  
4. Market	
  and	
  Supply	
  Allocation:	
  What	
  markets	
  will	
  each	
  facility	
  serve?	
  Which	
  
supply	
  sources	
  will	
  feed	
  into	
  each	
  facility?	
  
	
  
To	
  determine	
  the	
  specifics	
  for	
  each	
  of	
  these	
  planning	
  decisions,	
  we	
  broke	
  our	
  process	
  down	
  
into	
  a	
  phase-­‐based	
  framework	
  from	
  which	
  we	
  could	
  execute	
  a	
  plan.	
  
	
  
Final	
  Project	
  Report	
   22	
  
Phase	
  I:	
  Define	
  a	
  Supply	
  Chain	
  Strategy/Design	
  
	
  
Following	
  the	
  strategy	
  to	
  planning	
  to	
  operation	
  procedural	
  outline,	
  our	
  first	
  step	
  was	
  to	
  
define	
  Jesture’s	
  high-­‐level	
  supply	
  chain	
  design	
  that	
  maintains	
  alignment	
  between	
  our	
  
competitive	
  and	
  supply	
  chain	
  strategies.	
  Having	
  identified	
  our	
  competitive	
  strategy	
  as	
  
focusing	
  on	
  a	
  niche	
  market	
  of	
  tech-­‐savvy	
  consumers	
  interested	
  in	
  the	
  integration	
  of	
  
technology	
  into	
  homewares	
  who	
  are	
  active	
  buyers	
  in	
  the	
  Internet	
  of	
  Things	
  marketspace,	
  
we	
  were	
  then	
  faced	
  with	
  the	
  challenge	
  of	
  specifying	
  what	
  capabilities	
  our	
  supply	
  chain	
  
network	
  must	
  have	
  to	
  support	
  that	
  strategy.	
  
	
  
Phase	
  II:	
  Define	
  the	
  Regional	
  Facility	
  Configuration	
  
	
  
The	
  objective	
  of	
  the	
  next	
  phase	
  is	
  to	
  plan	
  out	
  and	
  identify	
  regions	
  where	
  our	
  facilities	
  will	
  
be	
  located,	
  what	
  roles	
  they	
  will	
  serve,	
  and	
  how	
  much	
  capacity	
  will	
  be	
  allocated	
  to	
  each	
  
facility.	
  We	
  first	
  revisit	
  Jesture’s	
  overall	
  supply	
  chain	
  network	
  as	
  illustrated	
  in	
  Figure	
  B-­‐2	
  
below	
  to	
  identify	
  the	
  layout	
  and	
  roles	
  of	
  our	
  facilities.	
  	
  
	
  
Figure	
  E.1:	
  Jesture’s	
  Supply	
  Chain	
  Network	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
For	
  
myGlass,	
  Jesture	
  serves	
  the	
  primary	
  role	
  of	
  manufacturer.	
  Upstream	
  on	
  our	
  supply	
  chain,	
  
we	
  have	
  outsourced	
  our	
  raw	
  material	
  and	
  components	
  suppliers	
  as	
  we	
  do	
  not	
  have	
  the	
  
talent	
  nor	
  the	
  marginal	
  funds	
  to	
  develop	
  those	
  core	
  competencies	
  in-­‐house.	
  Downstream	
  
on	
  our	
  supply	
  chain,	
  we	
  have	
  our	
  retailer	
  marketing	
  outlets	
  which	
  we	
  have	
  also	
  outsourced	
  
to	
  push	
  us	
  towards	
  the	
  efficiency	
  frontier.	
  These	
  locations	
  are	
  inside	
  established	
  retailers	
  
who	
  have	
  a	
  historically	
  large	
  customer	
  base	
  that	
  includes	
  our	
  target	
  consumers.	
  Thus,	
  
Final	
  Project	
  Report	
   23	
  
Jesture’s	
  facilities	
  driver	
  will	
  comprise	
  of	
  manufacturing	
  plants	
  that	
  serve	
  the	
  role	
  as	
  
production	
  facilities	
  of	
  myGlass,	
  transportation	
  docks	
  to	
  receive	
  parts	
  and	
  components	
  and	
  
distribute	
  finished	
  products	
  to	
  our	
  retail	
  marketing	
  locations,	
  and,	
  lastly,	
  as	
  customer	
  
pickup	
  locations.	
  
	
  
Having	
  looked	
  at	
  the	
  role	
  of	
  our	
  facilities,	
  we	
  next	
  planned	
  out	
  the	
  general	
  area	
  we	
  want	
  to	
  
locate	
  them	
  in.	
  To	
  do	
  this	
  we	
  broke	
  down	
  our	
  U.S.	
  market	
  into	
  three	
  supply	
  regions:	
  the	
  
Pacific	
  Region,	
  the	
  Central	
  Region,	
  and	
  the	
  Atlantic	
  Region.	
  The	
  options	
  on	
  the	
  table	
  during	
  
this	
  phase	
  are	
  to	
  determine	
  whether	
  we	
  needed	
  large	
  consolidated	
  facilities	
  or	
  smaller,	
  
localized	
  facilities.	
  One	
  determining	
  factor	
  is	
  that	
  if	
  economies	
  of	
  scope	
  or	
  sale	
  are	
  not	
  
significant	
  it	
  may	
  be	
  better	
  for	
  each	
  market	
  to	
  have	
  its	
  own	
  facility.	
  As	
  we	
  know	
  economies	
  
of	
  scope	
  refer	
  to	
  the	
  ability	
  of	
  a	
  business	
  to	
  share	
  centralized	
  functions	
  improving	
  cost	
  
efficiency	
  by	
  using	
  the	
  same	
  input	
  for	
  multiple	
  outputs.	
  Economies	
  of	
  scale,	
  on	
  the	
  other	
  
hand,	
  are	
  the	
  cost	
  advantages	
  that	
  enterprises	
  obtain	
  due	
  to	
  scalability	
  of	
  their	
  operation	
  as	
  
cost	
  per	
  output	
  generally	
  decreases	
  with	
  quantity	
  of	
  output	
  as	
  fixed	
  costs	
  are	
  spread	
  out	
  
over	
  more	
  units.	
  Economies	
  of	
  scope	
  are	
  thus	
  efficiencies	
  wrought	
  by	
  variety	
  while	
  
economies	
  of	
  scale	
  are	
  efficiencies	
  wrought	
  by	
  volume.	
  Our	
  economies	
  of	
  scope	
  are	
  
minimal	
  since	
  we	
  serve	
  the	
  primary	
  role	
  of	
  manufacturer	
  that	
  outsources	
  most	
  of	
  our	
  
secondary	
  functions	
  and	
  our	
  product	
  line	
  is	
  small	
  so,	
  as	
  of	
  now,	
  our	
  inputs	
  generate	
  just	
  a	
  
single	
  output.	
  However	
  our	
  economies	
  of	
  scope	
  are	
  scaleable	
  as	
  we	
  forecast	
  growing	
  
demand	
  for	
  our	
  product	
  over	
  time.	
  We	
  thus	
  initiated	
  this	
  process	
  with	
  the	
  plan	
  to	
  have	
  one	
  
consolidated	
  manufacturing	
  plant	
  in	
  each	
  of	
  our	
  demand	
  regions.	
  
	
  
Having	
  a	
  general	
  idea	
  of	
  our	
  regional	
  facility	
  configuration	
  in	
  mind,	
  our	
  next	
  step	
  was	
  to	
  
build	
  a	
  network	
  design	
  model	
  that	
  would	
  help	
  us	
  determine	
  if	
  our	
  location	
  plan	
  was	
  
economically	
  efficient	
  and	
  assign	
  the	
  corresponding	
  capacity	
  limits	
  to	
  our	
  plants.	
  We	
  also	
  
needed	
  the	
  model	
  to	
  assign	
  demand	
  to	
  each	
  facility	
  and	
  identify	
  lanes	
  along	
  which	
  myGlass	
  
would	
  be	
  transported.	
  We	
  chose	
  a	
  capacitated	
  network	
  optimization	
  model	
  as	
  a	
  
launching	
  point	
  to	
  help	
  us	
  make	
  these	
  decisions.	
  To	
  create	
  this	
  model	
  we	
  first	
  needed	
  to	
  
collect	
  and	
  organize	
  our	
  data	
  in	
  a	
  form	
  that	
  can	
  be	
  used	
  for	
  a	
  quantitative	
  mode.	
  The	
  data	
  
collected	
  are	
  shown	
  in	
  Figure	
  E.2.	
  
	
  
Figure	
  E.2:	
  Cost	
  and	
  Demand	
  Data	
  for	
  myGlass	
  
Final	
  Project	
  Report	
   24	
  
	
  
We	
  started	
  with	
  dividing	
  total	
  demand	
  amongst	
  our	
  demand	
  regions.	
  Using	
  our	
  demand	
  
forecast	
  data,	
  we	
  anticipate	
  that	
  in	
  Year	
  7	
  of	
  production	
  we	
  will	
  see	
  a	
  mean	
  annual	
  demand	
  
of	
  13,106,370	
  units	
  of	
  myGlass.	
  Taking	
  this	
  demand	
  figure,	
  we	
  distributed	
  it	
  to	
  each	
  supply	
  
region,	
  assuming	
  that	
  the	
  West	
  Coast	
  and	
  East	
  Coast	
  would	
  exhibit	
  higher	
  levels	
  of	
  demand	
  
due	
  to	
  the	
  density	
  of	
  their	
  populations	
  and	
  higher	
  buying	
  trends	
  of	
  tech	
  products.	
  	
  
	
  
We	
  then	
  developed	
  a	
  two-­‐tier	
  capacity	
  plan	
  where	
  we	
  have	
  the	
  option	
  of	
  building	
  a	
  low-­‐
capacity	
  plant	
  able	
  to	
  produce	
  3	
  million	
  units	
  per	
  year	
  or	
  a	
  high-­‐capacity	
  plant	
  able	
  to	
  
produce	
  6	
  million	
  units	
  per	
  year.	
  To	
  determine	
  the	
  fixed	
  cost	
  of	
  these	
  plants,	
  we	
  performed	
  
some	
  outside	
  research	
  gathering	
  sales	
  data	
  on	
  available	
  factory	
  property	
  throughout	
  the	
  
United	
  States.	
  These	
  listings	
  were	
  priced	
  according	
  to	
  size,	
  in	
  square	
  feet,	
  so	
  we	
  estimated	
  
that	
  a	
  low-­‐capacity	
  plant	
  for	
  myGlass	
  production	
  would	
  be	
  25,000	
  square	
  feet,	
  or	
  half	
  the	
  
size	
  of	
  a	
  football	
  field,	
  and	
  a	
  high-­‐capacity	
  plant	
  would	
  be	
  50,000	
  square	
  feet,	
  or	
  roughly	
  the	
  
size	
  of	
  an	
  average	
  American	
  football	
  field.	
  Using	
  these	
  parameters	
  and	
  the	
  location	
  of	
  the	
  
listing,	
  we	
  then	
  determined	
  the	
  fixed	
  cost	
  inputs	
  as	
  seen	
  in	
  Figure	
  B-­‐2.	
  
	
  
Our	
  final	
  step	
  was	
  to	
  calculate	
  the	
  inputs	
  that	
  would	
  hold	
  the	
  cost	
  of	
  producing	
  and	
  
shipping	
  one	
  unit	
  of	
  myGlass	
  from	
  a	
  supply	
  region	
  to	
  a	
  corresponding	
  demand	
  region.	
  We	
  
started	
  with	
  our	
  base	
  unit	
  production	
  cost	
  of	
  $400	
  per	
  unit	
  that	
  we	
  identified	
  in	
  the	
  
financial	
  analysis	
  performed	
  in	
  the	
  TIM	
  105	
  course.	
  This	
  cost	
  would	
  be	
  standard	
  no	
  matter	
  
which	
  region	
  we	
  chose	
  to	
  manufacture	
  in.	
  We	
  then	
  had	
  to	
  determine	
  the	
  transportation	
  
costs	
  associated	
  with	
  getting	
  that	
  unit	
  from	
  its	
  supply	
  region	
  of	
  origin	
  to	
  its	
  relative	
  
demand	
  region.	
  Referring	
  to	
  our	
  transportation	
  driver,	
  we	
  had	
  planned	
  to	
  use	
  LTL	
  shipping	
  
to	
  move	
  finished	
  goods	
  from	
  our	
  manufacturing	
  plants	
  to	
  the	
  customer	
  pickup	
  location.	
  
Performing	
  some	
  outside	
  research,	
  we	
  pulled	
  trucking	
  rates	
  for	
  each	
  region	
  to	
  estimate	
  the	
  
dollar	
  per	
  mile	
  it	
  would	
  cost	
  per	
  unit	
  as	
  well	
  as	
  the	
  length	
  and	
  width	
  of	
  the	
  United	
  States	
  to	
  
estimate	
  the	
  distance	
  that	
  unit	
  would	
  need	
  to	
  travel.	
  
	
  
Having	
  calculated	
  our	
  inputs	
  we	
  then	
  needed	
  to	
  build	
  the	
  matrices	
  to	
  hold	
  our	
  decision	
  
variables	
  and	
  constraints	
  that	
  would	
  correspond	
  with	
  our	
  objective	
  function.	
  Our	
  end	
  
objective	
  function	
  measures	
  the	
  total	
  fixed	
  cost	
  +	
  the	
  variable	
  cost	
  of	
  setting	
  up	
  and	
  
operating	
  Jesture’s	
  network.	
  Within	
  the	
  decision	
  variables	
  table,	
  the	
  grouping	
  of	
  cells	
  on	
  
the	
  left	
  holds	
  the	
  quantity	
  that	
  would	
  be	
  shipped	
  from	
  a	
  plant	
  to	
  a	
  demand	
  region	
  within	
  
our	
  network.	
  The	
  grouping	
  of	
  cells	
  on	
  the	
  right	
  holds	
  the	
  binary	
  value	
  of	
  whether	
  the	
  plant	
  
would	
  actually	
  be	
  open	
  with	
  a	
  “1”	
  signifying	
  that	
  particular	
  plant	
  would	
  be	
  operational	
  and	
  
a	
  “0”	
  signifying	
  that	
  particular	
  plant	
  would	
  not	
  be	
  operational.	
  The	
  constraints	
  table	
  holds	
  
the	
  values	
  that	
  restricts	
  the	
  objective	
  function.	
  For	
  example,	
  the	
  capacity	
  of	
  one	
  of	
  our	
  
plants,	
  subject	
  to	
  its	
  being	
  operational	
  as	
  determined	
  by	
  the	
  corresponding	
  decision	
  
variable,	
  must	
  either	
  exceed	
  or	
  equal	
  the	
  total	
  annual	
  demand	
  coming	
  in	
  from	
  the	
  demand	
  
regions	
  it	
  is	
  supplying.	
  Having	
  translated	
  these	
  pseudocoded	
  instructions	
  into	
  a	
  working	
  
Excel	
  format,	
  we	
  could	
  then	
  leverage	
  Excel’s	
  Solver	
  tool	
  to	
  minimize	
  the	
  objective	
  function	
  
subject	
  to	
  the	
  constraint	
  variables	
  and	
  produce	
  the	
  most	
  efficient	
  possible	
  design	
  for	
  our	
  
network.	
  The	
  results	
  of	
  building	
  these	
  decision	
  and	
  constraint	
  matrices,	
  calculating	
  our	
  
objective	
  function,	
  and	
  running	
  the	
  optimization	
  on	
  our	
  objective	
  function	
  are	
  illustrated	
  in	
  
Figure	
  E.3	
  below:	
  
Final	
  Project	
  Report	
   25	
  
Figure	
  E.3:	
  Capacity	
  &	
  Cost	
  Allocation	
  of	
  Facilities	
  
	
  
Recall	
  that	
  the	
  capacitated	
  plant	
  location	
  model	
  focuses	
  on	
  minimizing	
  the	
  cost	
  of	
  meeting	
  
the	
  demand	
  facing	
  the	
  network	
  using	
  it.	
  What	
  this	
  snapshot	
  is	
  thus	
  telling	
  us	
  is	
  that	
  Jesture	
  
should	
  seek	
  to	
  build	
  and	
  operate	
  three	
  facilities,	
  one	
  in	
  each	
  of	
  its	
  supply	
  regions.	
  Both	
  the	
  
Western	
  Plant	
  and	
  the	
  Eastern	
  plant	
  will	
  be	
  high-­‐capacity	
  facilities	
  capable	
  of	
  
producing	
  six	
  million	
  units	
  of	
  myGlass	
  per	
  year.	
  While,	
  the	
  Central	
  Plant	
  will	
  be	
  a	
  low-­‐
capacity	
  facility	
  capable	
  of	
  producing	
  three	
  million	
  units	
  of	
  myGlass	
  per	
  year.	
  
Furthermore,	
  each	
  of	
  our	
  production	
  facilities	
  will	
  serve	
  the	
  market	
  within	
  the	
  region	
  
it	
  is	
  located	
  i.e.	
  the	
  Western	
  Plant	
  will	
  supply	
  the	
  demand	
  from	
  the	
  West	
  Coast,	
  the	
  Central	
  
Plant	
  will	
  supply	
  the	
  demand	
  from	
  Midwest,	
  and	
  Eastern	
  Plant	
  will	
  supply	
  the	
  demand	
  
from	
  the	
  East	
  Coast.	
  These	
  network	
  decisions	
  are	
  organized	
  and	
  displayed	
  in	
  Table	
  E.1	
  
below:	
  
	
  
Table	
  E.1:	
  Role,	
  Location,	
  &	
  Capacity	
  of	
  Jesture’s	
  Facilities	
  
	
  
	
   Will	
  the	
  region	
  
have	
  a	
  facility?	
  
What	
  is	
  the	
  role	
  
of	
  the	
  facility?	
  
Who	
  will	
  the	
  
facility	
  serve?	
  
How	
  big	
  is	
  
the	
  facility?	
  
Western	
  
Supply	
  
Region	
  
Yes	
  
Manufacturing	
  
Plant	
  
Western	
  
Demand	
  Region	
  
6,000,000	
  
units	
  per	
  year	
  
Central	
  
Supply	
  
Yes	
  
Manufacturing	
  
Plant	
  
Central	
  Demand	
  
Region	
  
3,000,000	
  
units	
  per	
  year	
  
Final	
  Project	
  Report	
   26	
  
Region	
  
Eastern	
  
Supply	
  
Region	
  
Yes	
  
Manufacturing	
  
Plant	
  
Eastern	
  
Demand	
  Region	
  
6,000,000	
  
units	
  per	
  year	
  
	
  
Fixed	
  and	
  variable	
  costs	
  considered,	
  this	
  optimized	
  network	
  will	
  cost	
  Jesture	
  $32.52	
  
million	
  to	
  operate	
  as	
  determined	
  by	
  minimizing	
  the	
  objective	
  function.	
  
	
  
Phase	
  III:	
  Select	
  a	
  Set	
  of	
  Desirable	
  Potential	
  Sites	
  
	
  
Having	
  built	
  and	
  run	
  a	
  model	
  that	
  provides	
  a	
  minimized	
  cost	
  of	
  our	
  facilities	
  network	
  
subject	
  to	
  the	
  decisions	
  of	
  which	
  of	
  our	
  supply	
  regions	
  contain	
  manufacturing	
  facilities	
  and	
  
the	
  corresponding	
  capacities	
  of	
  these	
  facilities,	
  our	
  company	
  moved	
  to	
  the	
  next	
  phase	
  of	
  
identifying	
  potential	
  locations	
  in	
  each	
  region	
  that	
  will	
  contain	
  a	
  Jesture	
  manufacturing	
  
plant.	
  To	
  do	
  this,	
  we	
  leveraged	
  the	
  capabilities	
  of	
  the	
  gravity	
  location	
  model	
  which	
  useful	
  
when	
  identifying	
  suitable	
  geographic	
  locations	
  within	
  a	
  region	
  that	
  minimize	
  the	
  cost	
  of	
  
transporting	
  raw	
  materials	
  from	
  suppliers	
  as	
  well	
  as	
  finished	
  goods	
  to	
  the	
  markets	
  served.	
  
Our	
  first	
  step	
  is	
  to	
  identify	
  or	
  calculate	
  the	
  required	
  inputs	
  for	
  the	
  gravity	
  location	
  model.	
  
The	
  results	
  from	
  this	
  first	
  step	
  are	
  shown	
  in	
  Figure	
  E.4	
  below:	
  
	
  
Figure	
  E.4:	
  Source	
  &	
  Market	
  Data	
  Inputs	
  
	
  
We	
  determined	
  that	
  our	
  key	
  supply	
  source	
  would	
  be	
  Corning	
  Inc.	
  who	
  would	
  serve	
  as	
  the	
  
main	
  supplier	
  of	
  our	
  manufacturing	
  demand	
  for	
  myGlass’	
  glass	
  component.	
  Given	
  that	
  glass	
  
is	
  the	
  most	
  variable	
  component	
  in	
  our	
  production	
  line,	
  erecting	
  myGlass	
  production	
  plants	
  
within	
  a	
  cost-­‐effective	
  distance	
  from	
  our	
  key	
  supplier	
  would	
  optimize	
  our	
  overall	
  supply	
  
Final	
  Project	
  Report	
   27	
  
network	
  strategy.	
  Corning	
  Inc.	
  maintains	
  U.S.	
  production	
  facilities	
  in	
  Harrodsburg,	
  
Kentucky,	
  Canton,	
  New	
  York,	
  and	
  Christiansburg,	
  Virginia,	
  cities	
  whose	
  latitudinal	
  and	
  
longitudinal	
  coordinates	
  we	
  input	
  into	
  our	
  gravity	
  location	
  model	
  as	
  seen	
  in	
  Figure	
  E.4.	
  We	
  
then	
  identified	
  and	
  found	
  the	
  corresponding	
  latitudes	
  and	
  longitudes	
  for	
  our	
  biggest	
  
markets	
  within	
  each	
  of	
  the	
  demand	
  regions	
  that	
  our	
  three	
  production	
  facilities	
  would	
  be	
  
serving.	
  To	
  determine	
  the	
  unit	
  shipping	
  cost	
  per	
  unit,	
  we	
  referred	
  back	
  to	
  our	
  dollar	
  per	
  
mile	
  trucking	
  costs	
  from	
  performing	
  the	
  capacitated	
  plant	
  location	
  model	
  in	
  Phase	
  II	
  of	
  
designing	
  Jesture’s	
  facilities	
  network.	
  We	
  also	
  referred	
  back	
  to	
  this	
  phase	
  to	
  pull	
  the	
  
quantity	
  that	
  would	
  be	
  shipped	
  to	
  our	
  production	
  facilities	
  inbound	
  from	
  our	
  suppliers	
  to	
  
meet	
  our	
  demand	
  as	
  well	
  as	
  outbound	
  to	
  the	
  regional	
  markets	
  to	
  meet	
  their	
  demand.	
  
Performing	
  this	
  step	
  establishes	
  base	
  parameters	
  from	
  which	
  to	
  build	
  out	
  the	
  rest	
  of	
  the	
  
model.	
  	
  
	
  
With	
  an	
  established	
  base,	
  our	
  next	
  step	
  was	
  to	
  create	
  a	
  column	
  of	
  distance	
  variables	
  that	
  
would	
  hold	
  the	
  distance	
  between	
  our	
  production	
  facilities	
  at	
  the	
  optimal	
  location	
  and	
  the	
  
corresponding	
  supply	
  sources	
  and	
  markets.	
  This	
  is	
  calculated	
  as	
  the	
  root	
  of	
  the	
  squared	
  
sum	
  of	
  the	
  distances	
  between	
  the	
  coordinates	
  we	
  provided	
  for	
  the	
  supply	
  source	
  or	
  the	
  
market	
  and	
  the	
  coordinates	
  of	
  the	
  location	
  we	
  have	
  chosen	
  for	
  our	
  facility.	
  We	
  then	
  sought	
  
to	
  calculate	
  the	
  resulting	
  cost	
  of	
  the	
  transportation	
  amongst	
  these	
  facilities	
  which	
  is	
  the	
  
sum	
  of	
  the	
  distances	
  between	
  the	
  facility	
  and	
  supply	
  source/market	
  multiplied	
  by	
  the	
  
quantity	
  to	
  be	
  shipped	
  between	
  that	
  facility	
  and	
  supply	
  source/market	
  multiplied	
  by	
  the	
  
cost	
  of	
  shipping	
  one	
  unit	
  for	
  one	
  mile	
  between	
  the	
  facility	
  and	
  supply	
  source/market	
  -­‐	
  each	
  
factor	
  having	
  been	
  previously	
  entered	
  in	
  our	
  base	
  parameters.	
  This	
  total	
  cost	
  is	
  then	
  
populated	
  in	
  a	
  variable	
  holding	
  the	
  total	
  cost	
  of	
  each	
  scenario.	
  Building	
  this	
  into	
  a	
  readable	
  
Excel	
  format,	
  we	
  can	
  than	
  utilize	
  Excel’s	
  Solver	
  tool	
  to	
  minimize	
  this	
  total	
  cost	
  cell	
  by	
  
changing	
  the	
  cells	
  holding	
  the	
  variables	
  that	
  correspond	
  with	
  the	
  coordinates	
  of	
  the	
  facility.	
  
Our	
  results	
  from	
  performing	
  this	
  procedure	
  are	
  illustrated	
  by	
  market	
  in	
  Figures	
  E.5,	
  E.6,	
  
and	
  E.7	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Final	
  Project	
  Report	
   28	
  
Figure	
  B.5:	
  Jesture’s	
  Eastern	
  Plant	
  Location	
  
	
  
By	
  minimizing	
  the	
  cell	
  containing	
  the	
  total	
  cost	
  of	
  transportation	
  by	
  changing	
  the	
  
coordinates	
  of	
  the	
  facility	
  location,	
  we	
  have	
  successfully	
  used	
  the	
  gravity	
  location	
  model	
  to	
  
obtain	
  an	
  optimal	
  location	
  for	
  our	
  manufacturing	
  plant	
  for	
  the	
  Eastern	
  markets.	
  The	
  
coordinates	
  of	
  this	
  plant	
  were	
  a	
  latitude	
  of	
  39.64	
  degrees	
  North	
  and	
  a	
  longitude	
  of	
  -­‐78.34	
  
degrees	
  West.	
  Locating	
  this	
  point	
  through	
  a	
  geographic	
  positioning	
  tool,	
  we	
  have	
  identified	
  
that	
  Jesture’s	
  manufacturing	
  facility	
  for	
  the	
  East	
  Coast	
  that	
  will	
  serve	
  our	
  Eastern	
  
markets	
  will	
  be	
  located	
  in	
  Pittsburgh,	
  Pennsylvania.	
  The	
  minimized	
  transportation	
  
cost	
  of	
  this	
  decision	
  will	
  be	
  $184,650.31.	
  
Figure	
  E.6:	
  Jesture’s	
  Central	
  Plant	
  Location	
  
Final	
  Project	
  Report	
   29	
  
	
  
	
  
By	
  minimizing	
  the	
  cell	
  containing	
  the	
  total	
  cost	
  of	
  transportation	
  by	
  changing	
  the	
  
coordinates	
  of	
  the	
  facility	
  location,	
  we	
  have	
  successfully	
  used	
  the	
  gravity	
  location	
  model	
  to	
  
obtain	
  an	
  optimal	
  location	
  for	
  our	
  manufacturing	
  plant	
  for	
  the	
  Central	
  markets.	
  The	
  
coordinates	
  of	
  this	
  plant	
  were	
  a	
  latitude	
  of	
  38.07	
  degrees	
  North	
  and	
  a	
  longitude	
  of	
  -­‐81.81	
  
degrees	
  West.	
  Locating	
  this	
  point	
  through	
  a	
  geographic	
  positioning	
  tool,	
  we	
  have	
  identified	
  
that	
  Jesture’s	
  manufacturing	
  facility	
  for	
  the	
  Midwest	
  that	
  will	
  serve	
  our	
  Central	
  
markets	
  will	
  be	
  located	
  in	
  Charleston,	
  WV.	
  The	
  minimized	
  transportation	
  cost	
  of	
  this	
  
decision	
  will	
  be	
  $201,114.01.	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  E.7:	
  Jesture’s	
  Western	
  Plant	
  Location	
  
Final	
  Project	
  Report	
   30	
  
	
  
	
  
	
  
By	
  minimizing	
  the	
  cell	
  containing	
  the	
  total	
  cost	
  of	
  transportation	
  by	
  changing	
  the	
  
coordinates	
  of	
  the	
  facility	
  location,	
  we	
  have	
  successfully	
  used	
  the	
  gravity	
  location	
  model	
  to	
  
obtain	
  an	
  optimal	
  location	
  for	
  our	
  manufacturing	
  plant	
  for	
  the	
  Western	
  markets.	
  The	
  
coordinates	
  of	
  this	
  plant	
  were	
  a	
  latitude	
  of	
  37.76	
  degrees	
  North	
  and	
  a	
  longitude	
  of	
  -­‐84.85	
  
degrees	
  West.	
  Locating	
  this	
  point	
  through	
  a	
  geographic	
  positioning	
  tool,	
  we	
  have	
  identified	
  
that	
  Jesture’s	
  manufacturing	
  facility	
  for	
  the	
  West	
  Coast	
  that	
  will	
  serve	
  our	
  Western	
  
markets	
  will	
  be	
  located	
  in	
  Harrodsburg,	
  Kentucky.	
  The	
  minimized	
  transportation	
  cost	
  
of	
  this	
  decision	
  will	
  be	
  $503,919.82.	
  
	
  
Phase	
  IV:	
  Location	
  Choices	
  
	
  
Having	
  determine	
  the	
  optimal	
  geographic	
  locations	
  of	
  each	
  facility	
  and	
  the	
  resulting	
  costs	
  
to	
  transport	
  product	
  from	
  our	
  supply	
  source	
  to	
  each	
  facility	
  and	
  from	
  each	
  facility	
  to	
  its	
  
corresponding	
  market,	
  we	
  can	
  now	
  add	
  to	
  Table	
  E.1	
  that	
  we	
  drew	
  in	
  Phase	
  II	
  to	
  organize	
  
and	
  display	
  this	
  new	
  information.	
  The	
  results	
  are	
  shown	
  in	
  Table	
  E.2	
  below:	
  
	
  
	
  
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project
Final Project

More Related Content

Similar to Final Project

World Snow Sports TV Lacey_Shawn
World Snow Sports TV Lacey_ShawnWorld Snow Sports TV Lacey_Shawn
World Snow Sports TV Lacey_ShawnShawn Lacey
 
Vss wht paper sustainable sox c ompliance made easy
Vss wht paper sustainable sox c ompliance made easyVss wht paper sustainable sox c ompliance made easy
Vss wht paper sustainable sox c ompliance made easyLaurie LeBlanc
 
A Decision Support System For Sales Territory Planning Using The Genetic Algo...
A Decision Support System For Sales Territory Planning Using The Genetic Algo...A Decision Support System For Sales Territory Planning Using The Genetic Algo...
A Decision Support System For Sales Territory Planning Using The Genetic Algo...Tony Lisko
 
Epgp term v its group assignment may 2010
Epgp term v    its group assignment may 2010Epgp term v    its group assignment may 2010
Epgp term v its group assignment may 2010Rajendra Inani
 
Directing intelligence in_private_banking
Directing intelligence in_private_bankingDirecting intelligence in_private_banking
Directing intelligence in_private_bankingGregory Philippatos
 
El valor de la migración y Modernizacion a Microsoft azure
El valor de la migración y Modernizacion a Microsoft azureEl valor de la migración y Modernizacion a Microsoft azure
El valor de la migración y Modernizacion a Microsoft azureCade Soluciones
 
01 content analytics-iw2015
01 content analytics-iw201501 content analytics-iw2015
01 content analytics-iw2015Kaizenlogcom
 
Agile Integration eBook from 2018
Agile Integration eBook from 2018Agile Integration eBook from 2018
Agile Integration eBook from 2018Kim Clark
 
AgilePath Cloud Playbook Strategy Template
AgilePath Cloud Playbook Strategy TemplateAgilePath Cloud Playbook Strategy Template
AgilePath Cloud Playbook Strategy TemplateAgilePath Corporation
 
“Management of Large and Complex Software Projects”
“Management of Large and Complex Software Projects”“Management of Large and Complex Software Projects”
“Management of Large and Complex Software Projects”Sudipta Das
 

Similar to Final Project (20)

FinalProjectReport
FinalProjectReportFinalProjectReport
FinalProjectReport
 
World Snow Sports TV Lacey_Shawn
World Snow Sports TV Lacey_ShawnWorld Snow Sports TV Lacey_Shawn
World Snow Sports TV Lacey_Shawn
 
Vss wht paper sustainable sox c ompliance made easy
Vss wht paper sustainable sox c ompliance made easyVss wht paper sustainable sox c ompliance made easy
Vss wht paper sustainable sox c ompliance made easy
 
A Decision Support System For Sales Territory Planning Using The Genetic Algo...
A Decision Support System For Sales Territory Planning Using The Genetic Algo...A Decision Support System For Sales Territory Planning Using The Genetic Algo...
A Decision Support System For Sales Territory Planning Using The Genetic Algo...
 
Cloud view platform-highlights-web3
Cloud view platform-highlights-web3Cloud view platform-highlights-web3
Cloud view platform-highlights-web3
 
Montero thesis-project
Montero thesis-projectMontero thesis-project
Montero thesis-project
 
Semester 5 Experts in Teams Project - Opus
Semester 5 Experts in Teams Project - OpusSemester 5 Experts in Teams Project - Opus
Semester 5 Experts in Teams Project - Opus
 
Epgp term v its group assignment may 2010
Epgp term v    its group assignment may 2010Epgp term v    its group assignment may 2010
Epgp term v its group assignment may 2010
 
Directing intelligence in_private_banking
Directing intelligence in_private_bankingDirecting intelligence in_private_banking
Directing intelligence in_private_banking
 
El valor de la migración y Modernizacion a Microsoft azure
El valor de la migración y Modernizacion a Microsoft azureEl valor de la migración y Modernizacion a Microsoft azure
El valor de la migración y Modernizacion a Microsoft azure
 
Project management assignment
Project management assignmentProject management assignment
Project management assignment
 
01 content analytics-iw2015
01 content analytics-iw201501 content analytics-iw2015
01 content analytics-iw2015
 
Thesis
ThesisThesis
Thesis
 
battery pa report.docx
battery pa report.docxbattery pa report.docx
battery pa report.docx
 
Tech team
Tech teamTech team
Tech team
 
Tech Teams - Glovo
Tech Teams - GlovoTech Teams - Glovo
Tech Teams - Glovo
 
Agile Integration eBook from 2018
Agile Integration eBook from 2018Agile Integration eBook from 2018
Agile Integration eBook from 2018
 
AgilePath Cloud Playbook Strategy Template
AgilePath Cloud Playbook Strategy TemplateAgilePath Cloud Playbook Strategy Template
AgilePath Cloud Playbook Strategy Template
 
“Management of Large and Complex Software Projects”
“Management of Large and Complex Software Projects”“Management of Large and Complex Software Projects”
“Management of Large and Complex Software Projects”
 
FinalPhasesIp
FinalPhasesIpFinalPhasesIp
FinalPhasesIp
 

Final Project

  • 1. Final  Project  Report   1     Jesture                 MyGlass     Created  by:    Collin  Kraczkowsky,  Angela  Hu,  Tanusree  Munshi,     Anthony  Siao,  and  Jason  Sher                                          
  • 2. Final  Project  Report   2   Table  of  Contents     Executive  Summary      …………………………………………………………………………………………...Page  3     Contents  of  Report        ……………………………………………………………………………………Pages  4  -­‐  54                     A. Introduction    ………………………………………………………………………………………Pages  4  -­‐  8     1) Project  Overview      ………………………………………………………………………………          4   2) Description  of  Project    ………………………………………………………………………..          4   3) Project  Plan    ………………………………………………………………………………………..          5   4) Corporate  Benchmarking    …………………………………………………………………..          6   5) Roles  &  Responsibilities    …………………………………………………………………….          7                   B. Developing  a  Supply  Chain  Strategy    ……………………………………………….Pages  8  -­‐  13     1) Competitive  Strategy    ………………………………………………………………………….          8   2) Product  Development  Strategy    ………………………………………………………….          9   3) Software  Development  Strategy    ………………………………………………………..          9   4) Supply  Chain  Network  Strategy    …………………………………………………………      11     C. Demand  Forecasting    ……………………………………………………………………..Pages  13  -­‐  19     D. Inventory  Management    …………………………………………………………………Pages  19  -­‐  21     1) Fixed  Costs    ………………………………………………………………………………………….    19   2) Cost  per  Unit    ……………………………………………………………………………………….    19   3) Inventory  Holding  Cost    ………………………………………………………………………    20   4) Cycle  Inventory    …………………………………………………………………………………..    20   5) Aggregation  Strategy    ………………………………………………………………………….    20   6) Economic  Order  Quantity    …………………………………………………………………..    21     E. Distribution  Network    ……………………………………………………………………Pages  21  -­‐  35     1) Designing  the  Facilities  Network    ……………………………………………………….    21   2) Designing  the  Transportation  Network    …………………………………………….      31     F. Supply  Chain  Driver  Alignment    …………………………………………………….Pages  36  -­‐  40     G. SCM  Software  Implementation    ……………………………………………………..Pages  40  -­‐  46     1) Software  Implementation    …………………………………………………………………..    40   2) User  Manual    ………………………………………………………………………………………..    46     Conclusion    …………………………………………………………………………………....................Pages  47  -­‐  54    
  • 3. Final  Project  Report   3   Executive  Summary     Creating MyGlass our consumers will be able to look up recipes, watch the news, follow tutorials, and much more on surfaces they would normally overlook. MyGlass utilizes a central receiver system and a high-tech display system to allow consumers to interact with a glass surface that can be put on top of a mirror, counter top, or even a television. Drawing inspiration primarily from tablets, we hope to create a design that allows consumers to still perform all of their daily tasks with the surface while still being able to utilize the basic functions of a computer. As a result, our team has been working on a product that we hope homeowners will see as a tool to bridge the gap between almost every appliance in their home and their computer.   Our  product  myGlass  has  developed  to  the  point  where  consumers  are  able  to   perform  all  of  their  daily  tasks  with  the  surface.  We  integrated  as  much  technical  features   make  our  customer’s  lives  easier.  Now  the  goal  of  this  project  is  to  implement  an  applicable   SCM  software  information  system  to  simulate  our  integrated  enterprise  supply  chain.     We  want  to  provide  all  the  technology  that  a  standard  home  needs.  We  want  to   develop  our  products  step  by  step  since  we  are  pushing  at  a  wider  market  at  a  low  cost.  In   order  for  our  company  to  be  successful,  we  must  develop  as  much  as  we  can.  We  want  to   provide  as  much  technological  features  to  our  products  so  it  can  be  very  beneficial  to   homeowners.     Throughout  this  quarter,  we  have  improved  and  developed  our  business  plan  from   the  previous  quarter  by  performing  a  full-­‐scale  design  process  to  create  the  supply  chain   network  for  our  company’s  flagship  product,  myGlass.  This  process  began  with  high-­‐level   strategy  conception,    then  moved  into  detailed  planning  out  the  scope  of  our  supply  chain,   before  ending  with  the  daily  operations  of  each  component.  This  intensive  framework   ensured  that  each  decision  aligned  with  the  decisions  made  during  the  preceding  phase   and  ultimately  created  harmony  between  our  strategy  and  our  execution.  At  the  planning   level,  we  utilized  tools  such  as  network  optimization  models  and  Microsoft  Excel  to   perform  forecasting/time-­‐series  analysis  as  well  as  uncertainty  analysis.  At  the  operational   phase  we  defined  our  needs  at  each  stage  along  the  supply  chain  such  as  inventory,   transportation,  and  facilities  developing  an  integrated  software  in  Visual  Basic  to  simulate   the  impact  of  various  scenarios  to  test  the  robustness  of  our  design.     Our   distribution   strategy   is   to   ship   out   as   many   orders   as   possible   on   the   same   shipment.  If  the  customers  are  within  the  same  area,  their  orders  would  be  shipped  at  the   same  time  to  reduce  costs  for  our  company.  Since  we  do  not  have  any  retailers  that  our   distributors  would  ship  to,  we  do  not  have  to  have  an  advanced  aggregation  strategy,  but   rather,  we  have  to  strategically  ship  orders  at  the  same  time  that  would  be  going  to  the   same  place.    
  • 4. Final  Project  Report   4   The  strength  of  our  distribution  network  strategy  is  also  in  the  financial  benefits  we   exploit  from  centralizing  inventory,  aggregating  demand,  and  simplifying  product  handling.   This  report  will  go  into  much  more  detail  about  the  strategies  just  discussed,  and  we  hope   to  have  your  continued  support  as  we  begin  to  work  on  prototyping  and  our  product   release  strategy  execution.               Contents  of  Report     A. Introduction     1) Project  Overview     In  Fall  Quarter  2014,  our  technology  firm,  Jesture,  developed  a  Business  Plan  for  our   product  -­‐  myGlass.  myGlass  is  a  large,  all-­‐purpose  surface  tablet  that  can  be  overlaid  on  to   any  plane  (i.e.  kitchen  counters,  shower  ledges,  car  hoods,  etc.)  to  become  a  computing   element  for  that  surface.  Given  the  portability  and  flexible  user  interface,  Jesture  initially   plans  to  target  the  homeowner  market  with  myGlass  before  eventually  expanding  into   enterprises  through  additional  professional  features.     During  Winter  Quarter  2015,  our  team  will  build  on  our  work  from  the  previous  quarter  by   designing  and  developing  the  value  and  supply  chain  network  for  myGlass.  Our   development  plan  is  3-­‐tier  beginning  with  the  high-­‐level  strategy  for  myGlass’  supply  chain   network,  moving  then  into  the  planning  phase  where  we  will  leverage  Excel  to  perform   forecasting/time-­‐series  analysis  as  well  as  uncertainty  analysis,  and  finally  we  will  move   into  the  operations  phase  where  we  will  define  our  needs  at  each  stage  along  the  supply   chain  (i.e.  inventory,  transportation,  and  facilities).  By  performing  each  step  of  this  plan,  we   will  be  able  to  develop  and  implement  an  applicable  SCM  software  information  system  to   simulate  our  integrated  enterprise  supply  chain.     Through  this  project,  our  team  intends  to  meet  all  the  objectives  of  the  Management  of   Technology  II  course  as  well  as  engage  the  resolutions  we  established  at  the  beginning  of   this  class.       2) Description  of  Product     Figure  A.1  below  illustrates  the  Function  Analysis  System  Technique  diagram  for  our   product,  myGlass:        
  • 5. Final  Project  Report   5     Figure  A.1:  FAST  Diagram  for  myGlass         The  FAST  diagram  is  a  technique  for  analyzing  the  functional  structure  of  a  technical   system.  It  serves  as  a  useful  starting  point  from  which  to  introduce  the  functions  of  our   product  and  therefore  define  our  target  customer  base.  This  customer  base  is  essential  to   the  design  of  our  entire  supply  chain  network.     3) Time-­‐phased  Project  Plan       We  organized  the  timeline  of  deliverables  for  our  project  into  the  follow  Table  A.1  below:     Table  A.1:  Time-­‐Phased  Project  Plan     Task   Due  Date   Form  Project  Teams  &  Choose  Technology  Domain   In  class  on  January  6,   2015   Formulate  Project  Proposal   January  8,  2015  
  • 6. Final  Project  Report   6   Phase  1:  Technology/Product  Strategy  &  Supply  Chain   Strategy/Design   January  20,  2015   Phase  2:  Supply  Chain  Modeling  +  Planning  via  Demand   Forecasting   February  3,  2015   Phase  3:  Supply  Chain  Operations  -­‐  Inventory,  Transportation,  &   Facilities   February  24,  2015   Phase  4:  The  Software  Information  System  for  the  Supply  Chain   via  Simulation   March  10,  2015   Phase  5:  Closure  &  Final  Report   March  12,  2015     4) Benchmark  Our  Plan  Against  an  Established  Company     When   designing   our   supply   chain   management   approach   and   implementation,   we   internalized  two  key  lesson  takeaways  from  Kai  Hypko,  former  Senior  Director  of  Supply   Chain   Systems   and   Strategy   at   Plantronics.   The   first   is   that   supply   chain   management   efforts  deliver  the  greatest  results  when  SCM  is  part  of  an  overall  business  strategy  – not   a   stand   alone   effort.   We   interpreted   this   takeaway   as   the   need   to   align   Jesture’s   competitive  strategy  with  its  supply  chain  strategy  to  optimize  and  maintain  our  placement   in  the  zone  of  strategic  fit.  We  don’t  want  Jesture’s  individual  strategies  to  be  mismatched   with   the   overarching   business   strategy.   The   second   takeaway   is   that   supply   chain   management  is  most  likely  to  under  deliver  when  there  is  poor  connection  between   functions  across  a  total  business  –  often  noted  by  poor  supply  chain  visibility  and   lack  of  best  practice  sharing  internally.  To  us  this  meant  collaboration  both  upstream   and   downstream   between   each   stage   and   within   each   cycle   of   our   supply   chain.   It   also   highlights  the  need  for  sophisticated  information  infrastructure.     We  can  turn  these  strategic  takeaways  into  operational  components  by  implementing  what   Hypko  defines  as  qualities  of  world  class  supply  chain  companies.  First,  Jesture  must  make   effecting  internal  collaboration  to  optimize  processing  a  core  competency  of  our  company.   Second,   we   need   to   identify   key   suppliers   and   customers,   prioritize   and   organize   their   needs,  and  work  closely  with  them  to  best  match  their  demands.  Third,  we  must  effectively   apply   technology   as   an   enabler.   This   means   using   our   demand   forecasting   modules,   inventory  management  modules,  and  integrated  information  systems  to  enable  us  to  best   meet  customer  demand.     Plantronics  broke  down  their  supply  chain  implementation  into  a  timeline  which  we  have   organized  into  Table  A.2  below.  Jesture  will  use  this  time  phased  process  to  benchmark  the   progress  of  our  own  supply  chain  management  approach  and  implementation.          
  • 7. Final  Project  Report   7   Table  A.2:  Plantronics’  SCM  Implementation  Benchmarks     Year  1   Year  2   Year  3   Year   Demand  Planning   Sales  &  Operations   Planning   Global  Order   Promising   Promotions   Management  and   Optimization   Supplier  Collaboration   Inventory   Optimization     Customer   Collaboration   Advanced  Planning   and  Scheduling  (Part   1)   Advanced  Planning   and  Scheduling  (Part   2)     Transportation   Planning   Supply  Chain  Business   Intelligence       Production  Scheduling     We  can  use  this  planning  structure  to  gauge  the  progress  of  Jesture’s  supply  chain  maturity   by  benchmarking  it  against  the  maturity  of  another  company  in  the  technology  space.     5) Roles  &  Responsibilities  of  Team  Members     Jason  Sher-­‐  Jason  has  taken  TIM  105  in  the  Fall  of  2013  and  is  now  excited  to  join  the   Jesture  team  and  the  product  myGlass.  This  opportunity  has  given  the  team  a  different   perspective  on  how  management  of  technology  is  performed  and  also  gives  different   experiences  due  to  him  working  with  other  groups  and  seeing  other  ideas  executed.   This  project  will  be  difficult  because  the  Jesture  team  must  integrate  two  new   members  into  their  team,  but  Jason  is  confident  that  the  team  will  ultimately  be  able  to   successfully  consolidate  any  differences  and  act  as  a  functioning  unit.       Tanusree  Munshi  -­‐  Tanusree  was  a  part  of  the  original  Jesture  group  in  TIM  105  in  Fall   2014.  Because  of  this,  Tanusree  has  more  insight  on  the  product  and  can  clarify  the   details  of  both  our  product  and  company  to  our  newer  members.  Tanusree  is  good  at   communicating  what  needs  to  be  completed  and  organizing  tasks;  because  of  these   strengths  she  believes  she  will  be  able  to  help  the  team  work  more  efficiently.   Tanusree  thinks  she  will  focus  on  any  part  that  needs  to  be  completed.     Anthony  Siao  -­‐  Anthony  is  one  of  the  original  members  from  TIM  105,    he  can  contribute  to   explaining  our  product  to  the  new  members  of  the  progress  we  have  made.  As  Anthony   being  an  Environmental  Studies  major  and  minor  in  TIM,  he  can  bring  different  ideas   to  the  table.  The  course  being  focused  on  technology,  he  can  bring  other  ideas  of  what   can  help  the  environment.  Whatever  tasks  he  is  assigned  to,  he  will  finish  it.       Angela  Hu  -­‐  As  a  member  of  the  group  in  the  previous  course  (TIM105),  Angela  can   provide  help  to  the  newer  team  members  by  letting  them  know  about  our  product  and  
  • 8. Final  Project  Report   8   what  we’ve  done  so  far.  Being  more  interested  in  the  business  aspect  of  this  class,   Angela  can  provide  ideas  and  do  research  about  similar  products.  Also,  Angela  can   provide  help  with  organizing  the  different  phases  that  we  are  assigned.       Colin  Kraczkowsky  -­‐  Being  one  of  the  newest  members,  Colin  can  serve  as  a  fresh  eye  to   the  Jesture  team  offering  affirmations  to  what  was  done  well  and  suggestions  to  areas   that  may  have  been  overlooked.  As  a  Business  Management  and  Economics  major,   Colin  brings  a  background  in  supply  chain  analysis  and  management  to  the  table  as   well  as  a  basic  knowledge  of  Excel  to  be  leveraged  for  spreadsheet  build  outs,  visual   basics,  and  various  analyses.  Colin  foresees  playing  his  greatest  role  in  the  strategy   phase  and  demand  forecasting  phase.     Last  quarter,  in  TIM  105,  our  group  worked  very  efficiently.  We  all  communicated  well  with   each  other  and  met  up  at  least  once  a  week  to  discuss  our  progress  and  what  tasks  were   remaining.  A  major  challenge  for  our  group  was  that  we  were  left  with  only  four  group   members  while  most  other  groups  had  six  or  seven.  This  was  difficult  for  us  in  the   beginning  because  individually,  we  had  to  complete  more  work  to  get  everything  done  on   time.  In  the  end  though,  it  wasn’t  so  bad  having  only  four  team  members  because  it  allowed   us  to  communicate  and  work  more  efficiently  since  there  were  less  people  to  coordinate   with.       This  quarter,  we  decided  to  split  up  the  tasks  according  to  our  strengths  and  weaknesses  so   everyone  would  be  comfortable  doing  their  assigned  role.  How  our  group  can  improve  the   quality  of  our  work  is  to  keep  on  completing  our  tasks  efficiently.  Also  we  want  to  build  a   good  working  system  with  our  new  partners,  since  we  lost  three  members  of  our  group  in   TIM  105.  We  want  to  continue  on  having  good  communication  with  one  another  and   always  having  assigned  tasks.  Since  we  have  more  group  members  now,  we  have  to  be   more  flexible  with  our  schedules  and  efficient  with  assigning  each  other  tasks.     B. Developing  a  Supply  Chain  Strategy     In  this  phase,  our  team  continued  building  our  strategies  for  the  launch  and  production  of   myGlass  including  developing  our  competitive  strategy  and  supply  chain  strategy  along   with  compiling  estimates  of  demand  for  our  product.     1) Competitive  (Marketing)  Strategy     For  our  marketing  strategy,  we  decided  to  partner  up  with  retail  locations  like  Home  Depot   and  provide  them  incentives  for  our  product  to  be  displayed  at  their  stores.  The  primary   market  for  our  products  will  be  consumers,  specifically  homeowners,  while  the  secondary   market  will  be  enterprises.  Jesture  will  be  a  leader  in  innovation,  quality,  and  performance.   We  will  have  a  differentiated  strategy  approach  with  unique  products  that  will  reach  a   large  portion  of  the  market,  enabling  us  to  have  substantial  market  opportunity  with  a  wide   range  of  buyers.  The  price  of  our  products  may  start  out  high  in  order  to  cover  startup  and   developmental  costs  associated  with  the  creation  of  our  unique  products,  but  will  shortly   become  affordable  to  the  every-­‐day  consumer.  This  will  allow  us  to  engage  with  most  of  the  
  • 9. Final  Project  Report   9   prospective  market  and  to  dominate,  as  well  as  lead,  the  unique  new  market  we  have   created.       Figure  B.1:  2x2  Competitive  Strategy  Matrix  for  myGlass           As  indicated  in  Figure  B.1  above,  our  competitive  strategy  for  myGlass  is  a  Focused/Niche   competitive  strategy.  Since  our  product  is  a  breakthrough  product  and  there  isn’t  much  of   a  market  for  products  like  it  yet,  we  need  to  have  a  focused  strategy  and  target  a  particular   segment  of  the  market,  such  as  upper-­‐middle  class  homeowners.  Above  is  the  matrix  that   shows  our  position  in  the  competitive  strategy  matrix.  Our  product  is  very  unique  so  we   need  to  focus  on  a  particular  segment  of  the  market.  If  we  begin  by  targeting  everyone,  our   product  will  not  be  successful.     2) Product  Development  Strategy     Our  developmental  goals  for  our  product  seek  to  satisfy  our  users’  needs.  We  are  going  to   make  our  products  simple  and  yet  complex.  We  want  to  provide  all  the  technology  that  a   standard  home  needs.  We  want  to  develop  myGlass  step-­‐by-­‐step  since  we  are  selling  to  a   wider  market.  In  order  for  our  company  to  be  successful,  we  must  develop  as  much  as  we   can.  We  want  to  provide  as  much  technological  features  to  our  products  so  it  can  be  very   beneficial  to  homeowners.  Once  we  fully  develop  our  products,  we  are  going  to  introduce   more  technology  that  can  be  added  to  bigger  markets.  Our  main  goal  for  our  products  is  to   provide  as  much  key  features  that  will  benefit  standard  homes  and  people’s  everyday  lives.       3) Software  Development  Strategy     Our  high  level  plan  for  the  software  development  of  myGlass  will  be  critical  for  the  success   of  our  supply  chain  and  our  myGlass  product.  Our  plan  will  need  to  incorporate   information  systems  that  make  key  and  valuable  information:  
  • 10. Final  Project  Report   10     1. Easy  to  access,  easy  to  manipulate.   2. Readily  available  for  all  members  that  need  access.   3. Information  must  be  correct  and  reliable.       Our  IT  system  will  involve  a  cloud-­‐based  information  system  that  will  communicate  key   information  regarding  supplier,  customer  and  many  other  types  of  data.  This  data  will  be   communicated  throughout  the  supply  chain  and  help  guide  the  development  of  the   software  component  for  our  myGlass  product.    Figure  B.2  below  maps  out  the  flow  of   information  into  our  centralized  database  system:     Figure  B.2:  Company  Information  Infrastructure  Map         Our  system  will  have  open  communication  between  our  departments  to  be  able  to  deliver   to  our  customers  a  built-­‐to-­‐order  product  in  a  timely  and  cost  effective  manner.  Our  system   will  utilize  the  cloud  to  communicate  data  throughout  the  every  department  so  they  can   understand  the  changes  in  customers  needs,  prices,  changes  in  demand  and  many  other   important  aspect  of  the  supply  chain  and  our  business.  This  system  will  be  a  source  of   important  data  from  departments  that  are  not  necessarily  connected  directly,  such  as   manufacturing  and  retail.  The  customers  data  retail  gets  from  their  interaction  with   customers  can  be  communicated  to  manufacturing  through  the  Cloud-­‐based  IT  system.  
  • 11. Final  Project  Report   11   This  will  help  manufacturing  to  be  more  efficient  on  how  much  supply  to  buy  from   suppliers  and  keep  costs  for  the  system  relatively  low.    The  communication  between  our   departments  directly,  along  with  the  shared  information  communicated  on  the  IT  system   will  be  very  beneficial  in  keeping  our  customers  satisfied  and  also  keeping  the  systems   profit  level  at  a  sustainable  rate.       4) Supply  Chain  Network  Strategy     Our  goal  is  to  align  each  of  these  strategies  above  with  a  supple  chain  strategy  that   provides  both  the  level  of  responsiveness  demanded  by  our  customers  as  well  as  means  of   efficiency  to  lower  our  overhead  costs  and  achieve  a  high  surplus  across  our  entire  supply   chain.       In  our  supply  chain  network,  Jesture  is  its  own  manufacturer  and  distributor.  We  don’t   have  any  other  companies  which  we  rely  on  to  be  our  distributors  and  retailers,  but  we  do   rely  on  companies  such  as  The  Home  Depot,  Brookstone,  Wal-­‐Mart,  and  Bed  Bath  &  Beyond   for  marketing  purposes.  Home  improvement  and  large  retail  chains  would  showcase  our   product  to  the  general  public  where  Jesture  would  position  a  representative  that  would  be   talking  to  our  potential  customers  as  an  interactive  advertisement  for  myGlass.  The   customer-­‐order  cycle  begins  when  an  interested  consumer  files  their  order  directly  to   Jesture.  We  would  then  enter  the  manufacturing  cycle  as  Jesture’s  plants  begin  to  custom   build  the  demanded  myGlass  according  to  the  customer’s  specified  measurements.  By   reducing  the  chain  of  distributors  and  retailers,  Jesture  is  trying  to  create  a  more   personalized  product,  with  results  similar  to  those  produced  by  Dell’s  supply  chain.  By   doing  this,  we  are  maximizing  the  responsiveness  of  our  company.  To  achieve  this  optimal   supply  chain  network,  we  had  to  build  a  strategy  that  achieved  a  strategic  fit  between  the   implied  demand  uncertainty  facing  myGlass  and  the  optimal  trade-­‐off  between   responsiveness  and  efficiency  to  both  serve  the  needs  of  our  customers  as  well  as  maximize   supply  chain  surplus.     Figure  B.3  below  shows  the  spectrum  of  the  combined  uncertainty  of  supply  and  demand   referred  to  as  implied  demand  uncertainty  which  is  the  uncertainty  imposed  on  the  supply   chain  due  to  the  customer  needs  we  seek  to  satisfy.  We  have  determined  that  myGlass  will   experience  a  high  level  of  implied  demand  uncertainty  because  our  product  is  less  mature   and  is  entering  a  relatively  uninhabited  market  of  the  technology  space  meaning  that  our   sourcing   drivers   are   unstable   and   more   difficult   to   predict.   We   also   experience   higher   implied  demand  uncertainty  because  our  distribution  network  strategy  requires  that  the   number   channels   through   which   myGlass   is   acquired   increases   with   the   various   retail   marketing   locations   we   offer   as   customer   pickup   locations.   This   increased   Jesture’s   IDU   because  the  total  customer  demand  is  now  disaggregated  over  more  channels.     Figure  3.3:  Implied  Demand  Uncertainty  Spectrum  for  myGlass      
  • 12. Final  Project  Report   12   In  terms  of  responsiveness  and  efficiency,  our  goal  is  to  target  a  higher  placement  on  the   responsiveness  frontier  that  is  consistent  with  our  implied  demand  uncertainty.  As   discussed  earlier,  since  myGlass  is  custom-­‐ordered  on  a  pull-­‐based  process,  our  customers   implicitly  value  responsiveness.  We  achieve  responsiveness  by:     • Offering  our  customers  the  ability  to  use  our  product  at  our  retail  marketing   locations  before  making  their  purchase.   • Allowing  the  customer  to  fully  customize  their  myGlass  to  meet  their  exact  needs.   • Supporting  multiple  regional  manufacturing  locations  to  facilitate  short  lead  times   during  our  replenishment  cycles.   • Source  our  components  from  multiple  suppliers  to  better  handle  fluctuations  in   supply  uncertainty.     We  understand  that  higher  responsiveness  comes  at  higher  costs,  however  maintaining  our   position  in  the  zone  of  strategic  fit  is  crucial  to  aligning  our  competitive  strategy  with  our   supply  chains  strategy  and  ultimately,  as  Kai  Hypko  noted  in  his  200  presentation  on   Platronics,  leading  to  a  world  class  supply  chain  structure.  Figure  B.4  below  illustrates   Jesture’s  positioning  on  the  Efficiency  versus  Responsiveness  spectrum.     Figure  B.4:  Efficiency  versus  Responsiveness  Spectrum  for  myGlass       Combining  both  the  Implied  Demand  Uncertainty  Spectrum  and  the  Responsiveness  versus   Efficiency  Spectrum,  we  obtain  a  graph  that  depicts  the  zone  of  strategic  fit,  drawn  in   Figure  3.5  below,  where  Jesture  achieves  alignment  of  our  strategies.     Figure   3.5:   Zone   of   Strategic   Fit   Graph                            
  • 13. Final  Project  Report   13   Achieving  and  maintaining  Jesture’s  optimal  space  within  the  zone  of  strategic  fit,  starred   in  Figure  3.5,  requires  that  we  achieve  the  balance  between  responsiveness  and  efficiency   that  best  supports  our  Focused  Niche  competitive  strategy.  We  can  shift  our  position  on   the  efficiency  versus  responsiveness  spectrum,  as  illustrated  Figure  3.4,  through  changing   and  adapting  our  logistical  and  cross-­‐functional  drivers:  facilities,  inventory,   transportation,  information,  sourcing,  and  pricing.     C. Forecasting  Demand  for  myGlass     In  this  phase,  our  team  sought  to  prepare  a  demand  forecast  for  our  myGlass  to  help  us  get   an  idea  of  production  and  sales  volume  that  we  will  face  period  over  period  and  so  we  can   move  towards  the  next  phase  of  inventory  management.  We  broke  our  approach  into   phases:  first  aggregating  demand  estimates  from  like-­‐products  to  simulate  our  historical   demand  data;  then  organizing  this  data  into  an  Excel  format  to  run  it  through  various   forecasting  models;  and  finally  drawing  conclusions  from  the  results  of  these  models  to   determine  the  most  accurate  representation  of  the  forecasted  demand  for  myGlass.     i. Look  up  demand  for  tablet  market  from  previous  years  to  use  as  a  basis  for   myGlass  demand  estimates.     According  to  Gartner,  Inc.,  the  demand  data  for  the  tablet  market  from  2011  -­‐  2013  can  be   broken  down  as  follows:     2011   2012   2013   60,017,000  units   118,883,000  units   182,457,000  units     This  data  is  important  for  two  reasons.  First,  it  gives  our  team  an  idea  of  what  global   demand  for  similar  products  looks  like.  Second,  the  data  shows  that  the  demand  for  tablets   is  growing  and  has  been  increasing  by  an  average  of  76%  year  over  year  since  2011.  This   proves  that  the  market  is  lucrative  and  the  growing  demand  will  support  the  introduction   of  myGlass.     ii. Aggregate  annual  tablet  demand  data  and  source  quarterly  demand  data  from   competitor  products  mentioned  in  our  Business  Plan:  Apple  iPad  &  Samsung   Galaxy  Tab.     To  figure  out  demand  estimates  for  myGlass,  we  decided  to  extract  quarterly  demand  data   for  two  prominent  products  within  the  tablet  industry.  We  chose  Apple’s  iPad  and   Samsung’s  Galaxy  Tab  because  they  are  market  leading  products  with  readily  available   demand  data.        
  • 14. Final  Project  Report   14   Year   Quarter   Apple  iPad  Demand   (millions  of  units)   Samsung  Tablet  Demand   (millions  of  units)   2011   Q1   7.33   .08     Q2   4.69   .27     Q3   9.25   .3     Q4   11.12   .35   2012   Q1   15.43   .16     Q2   11.8   .04     Q3   17.04   .9     Q4   14.04   7.5   2013   Q1   22.86   8.5     Q2   19.48   6.9     Q3   14.62   8.4     Q4   14.08   13.6     Using  data  from  Appleinsider,  we  were  able  to  source  the  quarterly  units  sold  of  these  two   substitute  products  from  three  prior  demand  cycles.     iii. Estimate  prior  demand  data  using  metrics  from  theoretic  substitute  products.     Year   Quarter   Apple  iPad   Demand   (millions  of  units)   Samsung  Tablet   Demand   (millions  of  units)   Estimated  Past   Demand   (millions  of  units)   2011   Q1   7.33   0.08   3.705     Q2   4.69   0.27   2.48     Q3   9.25   0.3   4.775     Q4   11.12   0.35   5.735   2012   Q1   15.43   0.16   7.795     Q2   11.8   0.04   5.92  
  • 15. Final  Project  Report   15     Q3   17.04   0.9   8.97     Q4   14.04   7.5   10.77   2013   Q1   22.86   8.5   15.68     Q2   19.48   6.9   13.19     Q3   14.62   8.4   11.51     Q4   14.08   13.6   13.84   (Demand  estimated  using  the  averages  of  the  demand  for  these  two  products)     We  used  the  actual  sales  data  of  both  the  Apple  iPad  and  the  Samsung  Galaxy  Tab  to  make   demand  predictions  for  myGlass.  This  data  comes  from  both  of  these  products  as  they   entered  the  introductory  phase  of  the  product  lifecycle.  This  simulates  the  kind  of  demand   our  product  would  face  as  it  enters  the  product  lifecycle  giving  us  an  accurate  sense  of   production  needs.     iv. Translate  this  data  to  our  financial  software.     We  perform  this  step  to  synthesize  the  demand  data  with  our  production  schedule  and  to   accurately  factor  our  production  and  sales  volume  into  the  projections  for  the  Net  Present   Value  of  the  myGlass  project.  Using  these  demand  estimates  we  expect  to  see  positive  cash   flows  within  two  years  and  a  positive  Net  Present  Value  after  six  years.       v. Begin  forecasting  demand  using  the  Static  Forecasting  method  by  first  calculating   the  deseasonalized  demand  for  the  estimated  demand  data  of  myGlass.     Using  demand  estimates  we  acquired  in  step  iii.,we  then  sought  to  remove  variations  in  the   data  that  are  caused  by  seasonal  fluctuations.  We  performed  this  step  by  looking  for  the   periodicity  of  demand  in  the  tablet  market.  Looking  at  the  data,  the  general  trend  appeared   to  be  that  demand  was  relatively  low  during  the  second  quarter  of  each  year  and  then   would  increase  through  the  next  three  periods  before  dipping  again  in  the  second  quarter.   This  gave  us  a  periodicity  of  four  meaning  that  we  observed  roughly  four  periods  between   the  start  and  the  end  of  a  seasonal  cycle.  Combined  with  this  periodicity  estimate,  we  were   then  able  to  calculate  the  deseasonalized  demand  using  the  formula  for  calculating   deseasonalized  demand  with  an  even  periodicity.     vi. Run  a  regression  through  the  deseasonalized  demand  data  to  locate  the  trend  and   level  for  the  demand  for  myGlass.     Above  is  a  graphical  representation  of  both  our  Estimated  Demand  and  Deseasonalized   Demand  for  the  tablet  market.  Removing  predictable  seasonal  fluctuations  from  our   demand  estimates  allowed  us  to  run  a  regression  analysis  and  draw  a  trendline  through  the   deseasonalized  data.  We  needed  to  deseasonalize  our  Estimated  Demand  in  order  to  run  a  
  • 16. Final  Project  Report   16   linear  regression  because,  as  indicated  graphically  by  the  blue  diamonds,  the  original   demand  estimates  do  not  exhibit  a  linear  relationship.  The  regression  line  shown  gives  us  a   visual  representation  of  the  relationship  between  the  independent  variable,  number  of   periods,  and  the  dependent  variable,  demand  for  homeware  tablets,  to  estimate  the   conditional  expectation  of  demand  from  the  second  quarter  of  Year  2  to  the  second  quarter   of  Year  6.     The  equation  of  this  regression  line  is  as  follows:     Deseasonalized  Demand  =  1,372.2  +  930.25  *  a  given  Period     This  tells  us  that  the  level  of  demand  at  Period  0  is  1,372,000  units  (Level  =  1,372.2)  and   that  the  rate  of  growth  of  demand  from  one  period  to  the  next  is  930,250  (Trend  =   930.25).     vii. Using  the  trend  and  level,  calculate  the  deseasonalized  demand  for  all  the  past   estimated  demand  data  of  myGlass.     Equation:  Deseasonalized  Demand  =  1,372.2  +  930.25  *  Estimated  Past  Demand     Using  the  above  equation  allowed  us  to  get  accurate  estimates  for  deseasonalized  demand   for  all  periods  since  the  equation  for  deseasonalized  demand  has  restrictions.  We  will  need   the  demand  data  for  every  period  to  calculate  the  seasonal  factors  that  would  have  affected   our  demand  estimates  in  the  past  and  will  likely  affect  our  forecasted  demand  after  we   begin  producing  myGlass.     viii. Use  the  estimated  demand  and  the  deseasonalized  demand  to  calculate  seasonal   factors.     Equation:  Seasonal  Factors  =  Estimated  Demand  Data  /  Deseasonalized  Demand  Data     The  above  equation  will  produce  the  predictable  seasonal  factors  that  caused  fluctuations   in  our  demand  estimates.  We  need  to  calculate  these  factors  so  that  we  can  reseasonalize   the  demand  data  to  get  accurate  demand  forecasts.     ix. Use  the  seasonal  cycles  of  the  demand  periodicity  to  predict  the  seasonal  factors  for   future  demand.     The  equation  for  calculating  seasonal  factors  is  restricted  by  requiring  both  observed  (in   our  case  estimated)  and  deseasonalized  demand  data  which  is  only  available  after  the   period  has  ended  and  the  data  can  be  aggregated.  To  estimate  the  seasonal  factors  that  will   affect  our  future  demand,  we  average  out  the  calculated  seasonal  factors  for  periods  in  the   same  position  within  the  seasonal  cycle  (i.e.  Periods  6,  10,  and  14  all  exhibit  low  points  in   demand  so  we  would  take  the  average  of  these  three  periods  to  produce  an  estimated   seasonal  factor  for  Period  18).  We  need  the  seasonal  factors  for  the  periods  we  are  
  • 17. Final  Project  Report   17   forecasting  demand  because  we  will  need  to  reseasonalize  our  deseasonalized  demand   forecasts  during  that  time.     x. Use  the  trend,  level,  and  seasonal  factors  to  forecast  future  demand  for  my  glass.     Equation:  Forecasted  Demand  =  (Level  +  Period  *  Trend)  *  Seasonal  Factor     The  equation  for  forecasting  demand  has  two  components:  forecasted  deseasonalized   demand  for  a  given  future  period  and  the  corresponding  seasonal  factor.  Recalling  the   equation  we  extracted  from  the  graph  in  step  v.  we  know  that  the  future  deseasonalized   demand  will  fall  somewhere  along  the  line:  Deseasonalized  Demand  =  1,372.2  +  930.25  *  a   given  Period.  Factoring  in  the  periods  we  are  forecasting  demand  for,  we  then  multiply  by   our  estimated  seasonal  factors  to  get  measurements  for  our  demand  forecasts  that  will   accurately  take  into  account  seasonal  fluctuations.     Using  static  demand  forecasting,  we  have  estimated  that  demand  for  our  tablet  homeware   technology  will  have  reached  500  thousand  by  the  time  we  are  on  the  market  in  2016.     xi. Check  your  work  by  plotting  estimated  demand  data  and  forecasted  demand  data   on  the  same  graph.     Plotting  our  observed  demand  against  our  demand  forecasts  provides  a  visual   representation  to  see  if  the  Static  Forecasting  method  is  appropriate  for  our  demand  data.   While  the  forecasts  under  this  method  do  exhibit  a  similar  level  and  seasonal  pattern  as  the   observed  data,  the  static  method  appears  to  continue  growing  past  Year  6  while  we  have   estimated  that  our  product  will  have  fully  matured  by  then  and  actually  have  entered  the   Decline  phase  of  the  product  lifecycle.  This  is  because  the  static  method  assumes  that  level,   seasonality,  and  trend  are  all  static  meaning  that  the  trend  will  increase  at  a  constant   growth  rate.     Because  of  the  assumptions  under  the  Static  Forecasting  method,  we  have  decided  to   pursue  another  forecasting  method  that  will  take  into  consideration  the  full  scope  of   myGlass  as  it  passes  through  the  product  lifecycle.     xii. Begin  forecasting  demand  using  Winter’s  method  by  first  getting  initial  values  for   both  Level  and  Trend  using  the  deseasonalized  demand  data  from  the  Statis   Forecasting  method.     We  decided  to  pursue  Winter’s  adaptive  forecasting  method  because  it’s  adaptive  qualities   smooth  the  changes  in  Level,  Trend,  and  Seasonality  that  we  have  observed  in  our  demand   data.  These  changes  occur  as  myGlass  transitions  through  the  stages  of  the  product   lifecycle.     Because  Winter’s  model  of  adaptive  demand  forecasting  adjusts  for  seasonality,  we  use  the   deseasonalized  demand  data  to  get  initial  estimates  for  the  Level  and  the  Trend.  As  can  be  
  • 18. Final  Project  Report   18   seen  in  the  chart  above,  we  will  use  an  Initial  Estimate  of  Level  =  1372.2  and  an  Initial   Estimate  of  Trend  =  930.25  as  the  basis  for  our  forecasts.       xiii. Use  the  initial  estimates  of  Level  and  Trend  to  make  estimates  for  future  levels  of   Level  and  Trend  and  to  get  Predicted  Seasonal  Factors.     xiv.  Having  built  out  the  forecasted  estimates  for  Level,  Trend,  and  Seasonal  Factors,   forecast  demand  for  Periods  1  -­‐  7.     xv. xv.   Perform  an  error  analysis  for  the  forecasted  demand  data.     The  constants  we  chose  were  as  follows:  a  Level  smoothing  constant  of  0.9,  a  Trend   smoothing  constant  of  0.9,  and  a  Seasonal  Factor  smoothing  constant  of  0.1.  We  chose  these   constants  because  they  provided  us  the  most  accurate  forecast  numbers  as  determined  by   the  most  minimal  errors.  As  can  be  seen  by  our  error  analysis  above,  our  Forecasted   Demand  estimates  start  off  shakey  with  Mean  Absolute  Percentage  Errors  higher  than  we   would  like  but  that  decrease  with  time  meaning  that  our  method  will  become  more   accurate  over  time.  An  encouraging  sign  is  the  Tracking  Signal  consistently  ranging   between  0  and  1  meaning  that  our  estimates  aren’t  overly  biased  in  either  direction.     xvi. Check  your  work  by  plotting  estimated  demand  data  and  forecasted  demand  data   on  the  same  graph.     Plotting  the  Forecasted  Demand  data  we  obtained  using  Winter’s  adaptive  forecasting   method  against  the  Observed  Demand  data  we  estimated  using  the  historical  demand  data   of  a  similar  branch  of  products  serves  us  in  two  ways.  First,  we  are  able  to  see  how  closely   the  Forecasted  Demand  points  relate  to  the  Observed  Demand  points  providing  confidence   that  we  performed  the  time-­‐series  forecasting  correctly  and  that  it  provided  accurate   results.  Second,  we  are  able  to  observe  what  the  demand  of  future  periods  will  look  like  for   which  we  do  not  have  historical  demand  data.  What  we  see  is  a  similar  pattern  of  seasonal   fluctuations  as  was  seen  in  past  periods  however  we  also  observe  a  slight  dip  in  demand.   The  dip  in  demand  comes  between  our  fourth  and  fifth  year  of  operation  and  is  to  be  expected   as  fur  product  will  have  entered  the  Decline  Phase  of  the  product  lifecycle  similarly  to  what   we  saw  in  the  lifecycle  of  other  tablet  computers.     xvii. Synthesize  the  Forecasted  Demand  from  the  Winter’s  model  of  adaptive  forecasting   with  our  financial  estimates.     Our  final  step  is  to  take  the  Forecasted  Demand  data  we  obtained  in  step  xiv  and  implant  it   into  our  financial  estimates.  To  maintain  accurate  estimates  of  future  demand,  we  decided   to  forecast  up  until  Year  7.  Given  that  forecasting  further  than  historical  demand  data   under  Winter’s  method  means  multiplying  the  Trend  by  an  increasing  constant,  our   Forecasted  Demand  estimates  would  appear  to  continue  growing  which  would  be   inaccurate.  Because  there  was  not  enough  historical  data  to  substantiate  forecasting   further,  we  decided  to  hold  until  new  demand  would  come  in  and  provide  the  best   forecasts  for  Year  8  and  beyond.  
  • 19. Final  Project  Report   19     Consistent  with  our  observation  that  myGlass  will  have  entered  the  Decline  Phase  of  the   product  lifecycle  by  Year  7,  our  financial  software  shows  that  the  cash  flows  and  net   present  values  will  also  begin  to  decline.  Our  company,  Jesture,  will  then  have  to  decide   actions  to  take  next.  We  may  consider  increasing  our  investment  in  Marketing  &  Support  to   keep  myGlass  relevant,  generating  a  line  of  complementary  products  to  increase  demand   for  myGlass,  or  investigating  a  new  product  line  and  let  myGlass  run  the  full  length  of  the   lifecycle.     D. Inventory  Management  in  Jesture’s  Supply  Chain     1) Estimating  Fixed  Shipping  Charges     We   plan   to   ship   by   truck   if   the   customer   is   located   locally   within   the   Bay   Area   and   by   freight  or  air  if  the  customer  is  further  away  from  the  central  manufacturing  location  in  San   Jose.   If   the   customer   is   within   California   or   within   the   bordering   states,   we   would   ship   them   the   product   by   train,   but   if   the   customer   is   further   away   in   the   Mid-­‐West   or   East   Coast,  we  would  ship  the  product  through  airplane.       -­‐ Estimated  shipping  through  truck  (within  Bay  Area):  $50  -­‐  $100  per  shipment  (for   one  unit  of  product)   -­‐ Estimated  shipping  through  train  (within  California  or  bordering  states):  $100  per   shipment  (for  one  unit  of  product)   -­‐ Estimated  shipping  through  air:  $135  per  shipment  (for  one  unit  of  product)     2) Estimating  the  Cost  per  Unit     We  plan  on  charging  our  customers  $500  for  the  initial  (2x2)  system,  then  $25  extra  per   square  foot.  The  cost  for  our  company  for  producing  the  product  is  about  $200  per  unit,   depending  on  the  size  of  the  order.  $200  would  be  the  initial  cost  for  producing  the  system,   including   the   receiver   and   central   processing   unit.   The   additional   costs   will   come   from   producing  the  glass  itself,  which  varies  depending  on  the  size  of  the  customer’s  order.  Our   main   product   that   we   will   be   focusing   on   is   a   2   foot   by   2   foot   square   of   myGlass.   This   product  will  include  one  receiver/CPU  and  a  2  by  2  piece  of  myGlass  that  can  be  used  on   the  go.     #  of  CPUs  needed  to  fulfill  EOQ    =  454*1=  454   #  of  Bose  speakers  to  fulfill  EOQ  =  454*2  =  908   #  of  myGlass  pieces  of  technology  to  fulfill  EOQ  =  454*4  =  1816   #  of  Processor’s  needed  to  fulfill  EOQ=  454*1  =  454     3) Annual  Inventory  Holding  Cost     Annual  Holding  Cost  is  given  by  this  formula:     Order  Quantity  *  Holding  cost  per  unit  per  year  
  • 20. Final  Project  Report   20     For  our  product,  the  order  quantity  (shown  below)  is  454  units  and  the  holding  cost  per   unit  is  given  by  (0.2  *  200)  =  $40.  With  these  numbers,  we  can  fill  in  the  formula  above:   4542  *  $40  =  $9,080  per  year     4) Estimating  Cycle  Inventory     Economic  Order  Quantity  is  given  by  the  following  equation:     2(Annual  Demand)(Shipping  Cost)(Holding  Cost)(Unit  Cost)     Our  annual  projected  demand  for  year  7  is  55,022  units  of  our  product.  Assuming  we  ship   by  truck  and  the  unit  cost  is  around  $200,  and  the  holding  percentage  is  20%  we  get  the   following  equation:       2(55,022)($75)(0.2)($200)     From  this  equation,  we  calculate  our  EOQ  to  be  about  454  units  per  shipment.     5) Determine  Aggregation  Strategy     Our   aggregate   strategy   would   be   to   try   and   ship   out   as   many   orders   as   possible   on   the   same  shipment.  If  the  customers  are  within  the  same  area,  their  orders  would  be  shipped  at   the  same  time  to  reduce  costs  for  our  company.  Since  we  do  not  have  any  retailers  that  our   distributors  would  ship  to,  we  do  not  have  to  have  an  advanced  aggregation  strategy,  but   rather,  we  have  to  strategically  ship  orders  at  the  same  time  that  would  be  going  to  the   same  place.     Table  D.1:  Demand  Data  for  Year  7  of  Production     Year/Quarter   Forecasted  Demand   Year  7/Quarter  1   14,749   Year  7/Quarter  2   14,234   Year  7/Quarter  3   13,055   Year  7/Quarter  4   12,984   Total:   55,022     Using  our  FAST  diagram  we  created  during  the  design  phase  of  our  product  we  can  have  an   idea  of  how  many  suppliers  we  need  and  how  we  can  begin  to  aggregate  our  orders  for  our   supplies.   As   shown   above   one   myGlass   unit   would   be   composed   of   an   Intel   Pentium  
  • 21. Final  Project  Report   21   microprocessor,   Bose   internal   speakers,   one   fingerprint   recognition   software   system,   an   Android  OS  and  one  Intel  730  SSD  card.       6) Determine  the  Economic  Order  Quantity  of  Supplies     As  mentioned  in  our  inventory  managment  for  myGlass  we  are  expecting  to  have  an  EOQ  of   454   units   of   myGlass   per   shipment.   To   fulfill   this   order   our   SC   manager   should   be   calculating  how  many  units  of  each  component  our  company  should  order  to  add  to  our   inventory  that  will  minimize  total  cost.  We  have  labeled  our  assumptions  for  how  many   units  of  each  component  would  need  to  be  ordres  to  build  the  454  units  needed  for  our   EOQ:     Table  D.2:  Economic  Order  Quantities  of  our  Components     Components   Order  Quantity     1  CPU     2  Internal  Bose  speakers     2x2  square  feet  of  myGlass  glass  technology       1  microprocessor       #  of  CPUs  needed  to  fulfill  EOQ    =  454*1=   454   #  of  Bose  speakers  to  fulfill  EOQ  =  454*2  =   908   #  of  myGlass  technology  to  fulfill  EOQ=   454*4  =  1816   #  of  Processor’s  needed  to  fulfill  EOQ=   454*1  =  454       E. Designing/Implementing  our  Supply  Chain  Drivers  Network     1) Designing  Jesture’s  Facilities  Network     While  making  decisions  regarding  Jesture’s  facilities  driver  in  our  supply  chain  network   design,  we  looked  at  the  role  of  each  facility,  the  location  of  manufacturing,  our  storage   needs,  and  the  allocation  of  capacity  and  markets  to  each  facility.  We  classified  these  down   into  high-­‐level  planning  decisions  as  follows:     1. Facility  Role:  What  role  will  each  facility  play?  What  processes  are  performed  at   each  facility?   2. Facility  Location:  Where  will  we  locate  our  facilities?   3. Capacity  Allocation:  How  much  capacity  will  we  allocate  to  each  facility?   4. Market  and  Supply  Allocation:  What  markets  will  each  facility  serve?  Which   supply  sources  will  feed  into  each  facility?     To  determine  the  specifics  for  each  of  these  planning  decisions,  we  broke  our  process  down   into  a  phase-­‐based  framework  from  which  we  could  execute  a  plan.    
  • 22. Final  Project  Report   22   Phase  I:  Define  a  Supply  Chain  Strategy/Design     Following  the  strategy  to  planning  to  operation  procedural  outline,  our  first  step  was  to   define  Jesture’s  high-­‐level  supply  chain  design  that  maintains  alignment  between  our   competitive  and  supply  chain  strategies.  Having  identified  our  competitive  strategy  as   focusing  on  a  niche  market  of  tech-­‐savvy  consumers  interested  in  the  integration  of   technology  into  homewares  who  are  active  buyers  in  the  Internet  of  Things  marketspace,   we  were  then  faced  with  the  challenge  of  specifying  what  capabilities  our  supply  chain   network  must  have  to  support  that  strategy.     Phase  II:  Define  the  Regional  Facility  Configuration     The  objective  of  the  next  phase  is  to  plan  out  and  identify  regions  where  our  facilities  will   be  located,  what  roles  they  will  serve,  and  how  much  capacity  will  be  allocated  to  each   facility.  We  first  revisit  Jesture’s  overall  supply  chain  network  as  illustrated  in  Figure  B-­‐2   below  to  identify  the  layout  and  roles  of  our  facilities.       Figure  E.1:  Jesture’s  Supply  Chain  Network                                         For   myGlass,  Jesture  serves  the  primary  role  of  manufacturer.  Upstream  on  our  supply  chain,   we  have  outsourced  our  raw  material  and  components  suppliers  as  we  do  not  have  the   talent  nor  the  marginal  funds  to  develop  those  core  competencies  in-­‐house.  Downstream   on  our  supply  chain,  we  have  our  retailer  marketing  outlets  which  we  have  also  outsourced   to  push  us  towards  the  efficiency  frontier.  These  locations  are  inside  established  retailers   who  have  a  historically  large  customer  base  that  includes  our  target  consumers.  Thus,  
  • 23. Final  Project  Report   23   Jesture’s  facilities  driver  will  comprise  of  manufacturing  plants  that  serve  the  role  as   production  facilities  of  myGlass,  transportation  docks  to  receive  parts  and  components  and   distribute  finished  products  to  our  retail  marketing  locations,  and,  lastly,  as  customer   pickup  locations.     Having  looked  at  the  role  of  our  facilities,  we  next  planned  out  the  general  area  we  want  to   locate  them  in.  To  do  this  we  broke  down  our  U.S.  market  into  three  supply  regions:  the   Pacific  Region,  the  Central  Region,  and  the  Atlantic  Region.  The  options  on  the  table  during   this  phase  are  to  determine  whether  we  needed  large  consolidated  facilities  or  smaller,   localized  facilities.  One  determining  factor  is  that  if  economies  of  scope  or  sale  are  not   significant  it  may  be  better  for  each  market  to  have  its  own  facility.  As  we  know  economies   of  scope  refer  to  the  ability  of  a  business  to  share  centralized  functions  improving  cost   efficiency  by  using  the  same  input  for  multiple  outputs.  Economies  of  scale,  on  the  other   hand,  are  the  cost  advantages  that  enterprises  obtain  due  to  scalability  of  their  operation  as   cost  per  output  generally  decreases  with  quantity  of  output  as  fixed  costs  are  spread  out   over  more  units.  Economies  of  scope  are  thus  efficiencies  wrought  by  variety  while   economies  of  scale  are  efficiencies  wrought  by  volume.  Our  economies  of  scope  are   minimal  since  we  serve  the  primary  role  of  manufacturer  that  outsources  most  of  our   secondary  functions  and  our  product  line  is  small  so,  as  of  now,  our  inputs  generate  just  a   single  output.  However  our  economies  of  scope  are  scaleable  as  we  forecast  growing   demand  for  our  product  over  time.  We  thus  initiated  this  process  with  the  plan  to  have  one   consolidated  manufacturing  plant  in  each  of  our  demand  regions.     Having  a  general  idea  of  our  regional  facility  configuration  in  mind,  our  next  step  was  to   build  a  network  design  model  that  would  help  us  determine  if  our  location  plan  was   economically  efficient  and  assign  the  corresponding  capacity  limits  to  our  plants.  We  also   needed  the  model  to  assign  demand  to  each  facility  and  identify  lanes  along  which  myGlass   would  be  transported.  We  chose  a  capacitated  network  optimization  model  as  a   launching  point  to  help  us  make  these  decisions.  To  create  this  model  we  first  needed  to   collect  and  organize  our  data  in  a  form  that  can  be  used  for  a  quantitative  mode.  The  data   collected  are  shown  in  Figure  E.2.     Figure  E.2:  Cost  and  Demand  Data  for  myGlass  
  • 24. Final  Project  Report   24     We  started  with  dividing  total  demand  amongst  our  demand  regions.  Using  our  demand   forecast  data,  we  anticipate  that  in  Year  7  of  production  we  will  see  a  mean  annual  demand   of  13,106,370  units  of  myGlass.  Taking  this  demand  figure,  we  distributed  it  to  each  supply   region,  assuming  that  the  West  Coast  and  East  Coast  would  exhibit  higher  levels  of  demand   due  to  the  density  of  their  populations  and  higher  buying  trends  of  tech  products.       We  then  developed  a  two-­‐tier  capacity  plan  where  we  have  the  option  of  building  a  low-­‐ capacity  plant  able  to  produce  3  million  units  per  year  or  a  high-­‐capacity  plant  able  to   produce  6  million  units  per  year.  To  determine  the  fixed  cost  of  these  plants,  we  performed   some  outside  research  gathering  sales  data  on  available  factory  property  throughout  the   United  States.  These  listings  were  priced  according  to  size,  in  square  feet,  so  we  estimated   that  a  low-­‐capacity  plant  for  myGlass  production  would  be  25,000  square  feet,  or  half  the   size  of  a  football  field,  and  a  high-­‐capacity  plant  would  be  50,000  square  feet,  or  roughly  the   size  of  an  average  American  football  field.  Using  these  parameters  and  the  location  of  the   listing,  we  then  determined  the  fixed  cost  inputs  as  seen  in  Figure  B-­‐2.     Our  final  step  was  to  calculate  the  inputs  that  would  hold  the  cost  of  producing  and   shipping  one  unit  of  myGlass  from  a  supply  region  to  a  corresponding  demand  region.  We   started  with  our  base  unit  production  cost  of  $400  per  unit  that  we  identified  in  the   financial  analysis  performed  in  the  TIM  105  course.  This  cost  would  be  standard  no  matter   which  region  we  chose  to  manufacture  in.  We  then  had  to  determine  the  transportation   costs  associated  with  getting  that  unit  from  its  supply  region  of  origin  to  its  relative   demand  region.  Referring  to  our  transportation  driver,  we  had  planned  to  use  LTL  shipping   to  move  finished  goods  from  our  manufacturing  plants  to  the  customer  pickup  location.   Performing  some  outside  research,  we  pulled  trucking  rates  for  each  region  to  estimate  the   dollar  per  mile  it  would  cost  per  unit  as  well  as  the  length  and  width  of  the  United  States  to   estimate  the  distance  that  unit  would  need  to  travel.     Having  calculated  our  inputs  we  then  needed  to  build  the  matrices  to  hold  our  decision   variables  and  constraints  that  would  correspond  with  our  objective  function.  Our  end   objective  function  measures  the  total  fixed  cost  +  the  variable  cost  of  setting  up  and   operating  Jesture’s  network.  Within  the  decision  variables  table,  the  grouping  of  cells  on   the  left  holds  the  quantity  that  would  be  shipped  from  a  plant  to  a  demand  region  within   our  network.  The  grouping  of  cells  on  the  right  holds  the  binary  value  of  whether  the  plant   would  actually  be  open  with  a  “1”  signifying  that  particular  plant  would  be  operational  and   a  “0”  signifying  that  particular  plant  would  not  be  operational.  The  constraints  table  holds   the  values  that  restricts  the  objective  function.  For  example,  the  capacity  of  one  of  our   plants,  subject  to  its  being  operational  as  determined  by  the  corresponding  decision   variable,  must  either  exceed  or  equal  the  total  annual  demand  coming  in  from  the  demand   regions  it  is  supplying.  Having  translated  these  pseudocoded  instructions  into  a  working   Excel  format,  we  could  then  leverage  Excel’s  Solver  tool  to  minimize  the  objective  function   subject  to  the  constraint  variables  and  produce  the  most  efficient  possible  design  for  our   network.  The  results  of  building  these  decision  and  constraint  matrices,  calculating  our   objective  function,  and  running  the  optimization  on  our  objective  function  are  illustrated  in   Figure  E.3  below:  
  • 25. Final  Project  Report   25   Figure  E.3:  Capacity  &  Cost  Allocation  of  Facilities     Recall  that  the  capacitated  plant  location  model  focuses  on  minimizing  the  cost  of  meeting   the  demand  facing  the  network  using  it.  What  this  snapshot  is  thus  telling  us  is  that  Jesture   should  seek  to  build  and  operate  three  facilities,  one  in  each  of  its  supply  regions.  Both  the   Western  Plant  and  the  Eastern  plant  will  be  high-­‐capacity  facilities  capable  of   producing  six  million  units  of  myGlass  per  year.  While,  the  Central  Plant  will  be  a  low-­‐ capacity  facility  capable  of  producing  three  million  units  of  myGlass  per  year.   Furthermore,  each  of  our  production  facilities  will  serve  the  market  within  the  region   it  is  located  i.e.  the  Western  Plant  will  supply  the  demand  from  the  West  Coast,  the  Central   Plant  will  supply  the  demand  from  Midwest,  and  Eastern  Plant  will  supply  the  demand   from  the  East  Coast.  These  network  decisions  are  organized  and  displayed  in  Table  E.1   below:     Table  E.1:  Role,  Location,  &  Capacity  of  Jesture’s  Facilities       Will  the  region   have  a  facility?   What  is  the  role   of  the  facility?   Who  will  the   facility  serve?   How  big  is   the  facility?   Western   Supply   Region   Yes   Manufacturing   Plant   Western   Demand  Region   6,000,000   units  per  year   Central   Supply   Yes   Manufacturing   Plant   Central  Demand   Region   3,000,000   units  per  year  
  • 26. Final  Project  Report   26   Region   Eastern   Supply   Region   Yes   Manufacturing   Plant   Eastern   Demand  Region   6,000,000   units  per  year     Fixed  and  variable  costs  considered,  this  optimized  network  will  cost  Jesture  $32.52   million  to  operate  as  determined  by  minimizing  the  objective  function.     Phase  III:  Select  a  Set  of  Desirable  Potential  Sites     Having  built  and  run  a  model  that  provides  a  minimized  cost  of  our  facilities  network   subject  to  the  decisions  of  which  of  our  supply  regions  contain  manufacturing  facilities  and   the  corresponding  capacities  of  these  facilities,  our  company  moved  to  the  next  phase  of   identifying  potential  locations  in  each  region  that  will  contain  a  Jesture  manufacturing   plant.  To  do  this,  we  leveraged  the  capabilities  of  the  gravity  location  model  which  useful   when  identifying  suitable  geographic  locations  within  a  region  that  minimize  the  cost  of   transporting  raw  materials  from  suppliers  as  well  as  finished  goods  to  the  markets  served.   Our  first  step  is  to  identify  or  calculate  the  required  inputs  for  the  gravity  location  model.   The  results  from  this  first  step  are  shown  in  Figure  E.4  below:     Figure  E.4:  Source  &  Market  Data  Inputs     We  determined  that  our  key  supply  source  would  be  Corning  Inc.  who  would  serve  as  the   main  supplier  of  our  manufacturing  demand  for  myGlass’  glass  component.  Given  that  glass   is  the  most  variable  component  in  our  production  line,  erecting  myGlass  production  plants   within  a  cost-­‐effective  distance  from  our  key  supplier  would  optimize  our  overall  supply  
  • 27. Final  Project  Report   27   network  strategy.  Corning  Inc.  maintains  U.S.  production  facilities  in  Harrodsburg,   Kentucky,  Canton,  New  York,  and  Christiansburg,  Virginia,  cities  whose  latitudinal  and   longitudinal  coordinates  we  input  into  our  gravity  location  model  as  seen  in  Figure  E.4.  We   then  identified  and  found  the  corresponding  latitudes  and  longitudes  for  our  biggest   markets  within  each  of  the  demand  regions  that  our  three  production  facilities  would  be   serving.  To  determine  the  unit  shipping  cost  per  unit,  we  referred  back  to  our  dollar  per   mile  trucking  costs  from  performing  the  capacitated  plant  location  model  in  Phase  II  of   designing  Jesture’s  facilities  network.  We  also  referred  back  to  this  phase  to  pull  the   quantity  that  would  be  shipped  to  our  production  facilities  inbound  from  our  suppliers  to   meet  our  demand  as  well  as  outbound  to  the  regional  markets  to  meet  their  demand.   Performing  this  step  establishes  base  parameters  from  which  to  build  out  the  rest  of  the   model.       With  an  established  base,  our  next  step  was  to  create  a  column  of  distance  variables  that   would  hold  the  distance  between  our  production  facilities  at  the  optimal  location  and  the   corresponding  supply  sources  and  markets.  This  is  calculated  as  the  root  of  the  squared   sum  of  the  distances  between  the  coordinates  we  provided  for  the  supply  source  or  the   market  and  the  coordinates  of  the  location  we  have  chosen  for  our  facility.  We  then  sought   to  calculate  the  resulting  cost  of  the  transportation  amongst  these  facilities  which  is  the   sum  of  the  distances  between  the  facility  and  supply  source/market  multiplied  by  the   quantity  to  be  shipped  between  that  facility  and  supply  source/market  multiplied  by  the   cost  of  shipping  one  unit  for  one  mile  between  the  facility  and  supply  source/market  -­‐  each   factor  having  been  previously  entered  in  our  base  parameters.  This  total  cost  is  then   populated  in  a  variable  holding  the  total  cost  of  each  scenario.  Building  this  into  a  readable   Excel  format,  we  can  than  utilize  Excel’s  Solver  tool  to  minimize  this  total  cost  cell  by   changing  the  cells  holding  the  variables  that  correspond  with  the  coordinates  of  the  facility.   Our  results  from  performing  this  procedure  are  illustrated  by  market  in  Figures  E.5,  E.6,   and  E.7  below:                                      
  • 28. Final  Project  Report   28   Figure  B.5:  Jesture’s  Eastern  Plant  Location     By  minimizing  the  cell  containing  the  total  cost  of  transportation  by  changing  the   coordinates  of  the  facility  location,  we  have  successfully  used  the  gravity  location  model  to   obtain  an  optimal  location  for  our  manufacturing  plant  for  the  Eastern  markets.  The   coordinates  of  this  plant  were  a  latitude  of  39.64  degrees  North  and  a  longitude  of  -­‐78.34   degrees  West.  Locating  this  point  through  a  geographic  positioning  tool,  we  have  identified   that  Jesture’s  manufacturing  facility  for  the  East  Coast  that  will  serve  our  Eastern   markets  will  be  located  in  Pittsburgh,  Pennsylvania.  The  minimized  transportation   cost  of  this  decision  will  be  $184,650.31.   Figure  E.6:  Jesture’s  Central  Plant  Location  
  • 29. Final  Project  Report   29       By  minimizing  the  cell  containing  the  total  cost  of  transportation  by  changing  the   coordinates  of  the  facility  location,  we  have  successfully  used  the  gravity  location  model  to   obtain  an  optimal  location  for  our  manufacturing  plant  for  the  Central  markets.  The   coordinates  of  this  plant  were  a  latitude  of  38.07  degrees  North  and  a  longitude  of  -­‐81.81   degrees  West.  Locating  this  point  through  a  geographic  positioning  tool,  we  have  identified   that  Jesture’s  manufacturing  facility  for  the  Midwest  that  will  serve  our  Central   markets  will  be  located  in  Charleston,  WV.  The  minimized  transportation  cost  of  this   decision  will  be  $201,114.01.               Figure  E.7:  Jesture’s  Western  Plant  Location  
  • 30. Final  Project  Report   30         By  minimizing  the  cell  containing  the  total  cost  of  transportation  by  changing  the   coordinates  of  the  facility  location,  we  have  successfully  used  the  gravity  location  model  to   obtain  an  optimal  location  for  our  manufacturing  plant  for  the  Western  markets.  The   coordinates  of  this  plant  were  a  latitude  of  37.76  degrees  North  and  a  longitude  of  -­‐84.85   degrees  West.  Locating  this  point  through  a  geographic  positioning  tool,  we  have  identified   that  Jesture’s  manufacturing  facility  for  the  West  Coast  that  will  serve  our  Western   markets  will  be  located  in  Harrodsburg,  Kentucky.  The  minimized  transportation  cost   of  this  decision  will  be  $503,919.82.     Phase  IV:  Location  Choices     Having  determine  the  optimal  geographic  locations  of  each  facility  and  the  resulting  costs   to  transport  product  from  our  supply  source  to  each  facility  and  from  each  facility  to  its   corresponding  market,  we  can  now  add  to  Table  E.1  that  we  drew  in  Phase  II  to  organize   and  display  this  new  information.  The  results  are  shown  in  Table  E.2  below: