SlideShare a Scribd company logo
1 of 3
Download to read offline
  1	
  
Detailed	
  Numerical	
  Modeling	
  of	
  Multi-­‐
Planet	
  Systems	
  
Our	
  scientific	
  understanding	
  of	
  the	
  Universe	
  through	
  astronomical	
  
measurements	
  has	
  been	
  improving	
  enormously	
  over	
  the	
  last	
  few	
  decades,	
  but	
  there	
  
is	
  still	
  so	
  much	
  to	
  learn.	
  One	
  of	
  the	
  topics	
  at	
  the	
  forefront	
  of	
  astrophysical	
  research	
  
is	
  exoplanets,	
  planets	
  that	
  orbit	
  stars	
  or	
  stellar	
  remnants	
  outside	
  of	
  our	
  own	
  solar	
  
system.	
  Since	
  the	
  discovery	
  of	
  the	
  first	
  exoplanet	
  in	
  1995,	
  51-­‐Pegasi,	
  the	
  field	
  has	
  
been	
  growing	
  rapidly.	
  Today,	
  more	
  than	
  1,800	
  new	
  exoplanets	
  have	
  been	
  confirmed	
  
through	
  a	
  variety	
  of	
  observational	
  techniques	
  and	
  over	
  4,000	
  additional	
  candidate	
  
planets	
  are	
  awaiting	
  confirmation	
  [6].	
  
The	
  Kepler	
  spacecraft,	
  launched	
  by	
  NASA	
  in	
  2009,	
  is	
  responsible	
  for	
  a	
  large	
  
majority	
  of	
  these	
  discoveries,	
  and	
  more	
  importantly,	
  for	
  most	
  of	
  the	
  nearly	
  500	
  
multi-­‐planet	
  systems	
  that	
  have	
  been	
  discovered.	
  These	
  Kepler	
  multi-­‐planet	
  systems	
  
are	
  one	
  of	
  the	
  many	
  surprises	
  that	
  have	
  been	
  brought	
  to	
  light	
  from	
  our	
  interest	
  in	
  
exoplanets	
  [1].	
  Many	
  Kepler	
  multi-­‐planet	
  systems	
  contain	
  planets	
  with	
  very	
  tight	
  
orbits.	
  Some	
  of	
  these	
  systems	
  contain	
  “Hot	
  Jupiters”	
  Jupiter	
  sized	
  planets	
  with	
  
orbital	
  periods	
  less	
  than	
  Mercury’s	
  (e.g.,	
  [2,3,4,5]).	
  Kepler	
  multi-­‐planet	
  systems	
  with	
  
close	
  planets	
  that	
  have	
  masses	
  ranging	
  from	
  Earth-­‐like	
  to	
  Jupiter-­‐like	
  and	
  orbits	
  of	
  
only	
  a	
  few	
  days	
  challenge	
  the	
  existing	
  theories	
  of	
  planetary	
  creation	
  and	
  evolution.	
  	
  
Because	
  many	
  of	
  these	
  planets	
  are	
  on	
  tight	
  orbits,	
  orbiting	
  very	
  close	
  to	
  the	
  
central	
  star,	
  tides	
  are	
  expected	
  to	
  play	
  a	
  key	
  role	
  in	
  the	
  formation,	
  evolution,	
  and	
  
survival	
  of	
  Kepler	
  multi-­‐planet	
  systems.	
  Tides	
  are	
  a	
  secondary	
  effect	
  of	
  the	
  
gravitational	
  forces	
  between	
  objects.	
  	
  They	
  arise	
  because	
  one	
  side	
  of	
  an	
  object	
  feels	
  
stronger	
  gravitational	
  attraction	
  than	
  the	
  other.	
  In	
  the	
  simple	
  case	
  of	
  a	
  two-­‐object	
  
system,	
  tides	
  affect	
  the	
  spin	
  of	
  the	
  components	
  and	
  –	
  more	
  importantly	
  –	
  the	
  orbital	
  
separation,	
  in	
  an	
  attempt	
  to	
  drive	
  the	
  system	
  into	
  an	
  equilibrium	
  state	
  where	
  the	
  
spin	
  frequency	
  of	
  each	
  object	
  is	
  equal	
  to	
  the	
  orbital	
  frequency.	
  	
  
NASA	
  has	
  archived	
  all	
  the	
  recorded	
  data	
  regarding	
  exoplanets	
  for	
  public	
  
use[6].	
  This	
  archive	
  contains	
  a	
  wealth	
  of	
  information	
  about	
  each	
  system’s	
  orbital	
  
period,	
  planetary	
  radius	
  and	
  mass,	
  as	
  well	
  as	
  other	
  statistics	
  regarding	
  the	
  system’s	
  
characteristics.	
  To	
  start	
  with,	
  my	
  research	
  would	
  focus	
  on	
  specific	
  Kepler	
  multi-­‐
planet	
  systems	
  with	
  two	
  close	
  planets	
  that	
  have	
  tight	
  orbits,	
  as	
  this	
  is	
  the	
  simplest	
  
case	
  in	
  terms	
  of	
  Kepler	
  multi-­‐planet	
  systems.	
  	
  
My	
  goal	
  is	
  to	
  look	
  at	
  the	
  observed	
  properties	
  of	
  these	
  systems	
  and	
  
understand	
  how	
  tides	
  affect	
  their	
  formation,	
  evolution,	
  and	
  long-­‐term	
  survival.	
  I	
  will	
  
accomplish	
  my	
  goal	
  by	
  extracting	
  pertinent	
  data	
  from	
  the	
  relevant	
  Kepler	
  systems	
  
to	
  create	
  state	
  of	
  the	
  art	
  numerical	
  models.	
  These	
  numerical	
  models	
  will	
  include	
  the	
  
most	
  up	
  to	
  date	
  understanding	
  of	
  tidal	
  dissipation	
  and	
  its	
  uncertainties	
  [7].	
  The	
  
computational	
  tools	
  needed	
  to	
  construct	
  these	
  models	
  have	
  already	
  been	
  developed	
  
in	
  the	
  theoretical	
  astrophysics	
  group	
  at	
  NU	
  (part	
  of	
  CIERA,	
  the	
  Center	
  for	
  
  2	
  
Interdisciplinary	
  Exploration	
  and	
  Research	
  in	
  Astrophysics).	
  By	
  comparing	
  my	
  
numerical	
  model	
  with	
  the	
  observations,	
  I	
  will	
  attempt	
  to	
  explain	
  trends	
  in	
  the	
  data,	
  
potentially	
  shedding	
  light	
  on	
  how	
  tides	
  affect	
  the	
  secular	
  evolution	
  of	
  two-­‐planet	
  
systems.	
  This	
  work	
  will	
  also	
  potentially	
  reveal	
  new	
  trends	
  in	
  the	
  properties	
  of	
  the	
  
systems.	
  From	
  there	
  I	
  will	
  attempt	
  to	
  generalize	
  my	
  findings	
  in	
  relation	
  to	
  more	
  
complex	
  systems	
  with	
  more	
  exoplanets	
  involved,	
  as	
  well	
  as	
  to	
  apply	
  my	
  results	
  to	
  
the	
  confirmed	
  exoplanets	
  that	
  arise	
  from	
  the	
  large	
  pool	
  of	
  candidate	
  planets,	
  which	
  
is	
  updated	
  continuously.	
  	
  
This	
  research	
  is	
  important	
  to	
  the	
  field	
  of	
  astrophysics	
  for	
  many	
  reasons.	
  First	
  
off,	
  the	
  Kepler	
  mission	
  gave	
  astrophysicists	
  a	
  wealth	
  of	
  information	
  on	
  exoplanets.	
  
The	
  number	
  of	
  exoplanets	
  discovered	
  by	
  Kepler	
  is	
  massive	
  compared	
  to	
  the	
  
conventional	
  methods	
  in	
  place	
  before	
  Kepler.	
  This	
  research	
  will	
  help	
  maximize	
  the	
  
benefits	
  of	
  the	
  Kepler	
  mission,	
  which	
  produced	
  so	
  much	
  raw	
  data	
  that	
  can	
  be	
  looked	
  
through	
  and	
  played	
  with.	
  Secondly,	
  the	
  Kepler	
  mission	
  created	
  a	
  multitude	
  of	
  other	
  
projects	
  related	
  to	
  the	
  discovery	
  of	
  exoplanets.	
  These	
  projects	
  will	
  be	
  compiling	
  
similar	
  data	
  to	
  what	
  Kepler	
  produced,	
  so	
  knowing	
  what	
  to	
  do	
  with	
  this	
  type	
  of	
  data	
  
will	
  be	
  imperative	
  to	
  maximize	
  future	
  results	
  from	
  these	
  other	
  projects.	
  Additionally	
  
this	
  kind	
  of	
  theoretical	
  work	
  can	
  provide	
  important	
  constraints	
  on	
  the	
  physical	
  
mechanisms	
  entering	
  the	
  evolution	
  of	
  planetary	
  systems.	
  Specifically,	
  it	
  will	
  allow	
  us	
  
to	
  learn	
  about	
  tidal	
  theories,	
  which	
  are	
  yet	
  not	
  well	
  constrained,	
  and	
  we	
  can	
  become	
  
more	
  precise	
  with	
  our	
  models	
  for	
  the	
  future.	
  	
  
I	
  will	
  be	
  taking	
  many	
  steps	
  to	
  prepare	
  for	
  this	
  research	
  project.	
  I	
  am	
  enrolled	
  
in	
  ASTRO	
  330-­‐ISP	
  Astrophysics	
  for	
  Spring	
  2015	
  in	
  order	
  to	
  better	
  familiarize	
  myself	
  
with	
  the	
  necessary	
  background	
  information	
  regarding	
  astrophysics.	
  I	
  will	
  also	
  be	
  
taking	
  a	
  fifth	
  credit	
  of	
  independent	
  study,	
  ASTRO	
  399,	
  with	
  Professor	
  Frederic	
  
Rasio,	
  who	
  will	
  be	
  my	
  sponsor	
  for	
  this	
  project.	
  	
  Professor	
  Rasio	
  and	
  I	
  have	
  already	
  
talked	
  about	
  using	
  this	
  independent	
  study	
  credit	
  to	
  better	
  educate	
  me	
  on	
  the	
  
intricacies	
  regarding	
  exoplanets	
  and	
  the	
  Kepler	
  multi-­‐planet	
  systems	
  I	
  will	
  be	
  
focusing	
  on.	
  I	
  have	
  also	
  taken	
  the	
  entire	
  PHYS	
  330	
  Classical	
  Mechanics	
  sequence,	
  
which	
  covers	
  planetary	
  motion	
  and	
  the	
  evolution	
  of	
  planetary	
  orbits,	
  amongst	
  other	
  
topics	
  in	
  classical	
  mechanics.	
  I	
  have	
  completed	
  courses	
  in	
  Python	
  and	
  am	
  a	
  
proficient	
  coder.	
  This	
  is	
  helpful	
  in	
  the	
  data	
  analysis	
  aspect	
  of	
  the	
  project,	
  which	
  will	
  
most	
  likely	
  involve	
  the	
  use	
  of	
  Python	
  in	
  order	
  to	
  extract	
  the	
  information	
  from	
  the	
  
NASA	
  archive	
  that	
  is	
  relevant	
  to	
  my	
  project.	
  	
  
With	
  the	
  completion	
  of	
  ASTRO	
  330	
  in	
  the	
  spring,	
  the	
  help	
  of	
  Professor	
  Rasio,	
  
and	
  my	
  knowledge	
  of	
  Python,	
  I	
  will	
  have	
  all	
  of	
  the	
  necessary	
  preparation	
  I	
  need	
  in	
  
order	
  to	
  accurately	
  assess	
  the	
  data	
  and	
  attempt	
  to	
  understand	
  how	
  tides	
  effects	
  the	
  
formation,	
  evolution,	
  and	
  survival	
  of	
  Kepler	
  multi-­‐planet	
  systems.	
  I	
  would	
  like	
  to	
  
continue	
  research	
  on	
  exoplanets	
  after	
  this	
  project	
  and	
  delve	
  deeper	
  into	
  the	
  
intricacies	
  of	
  how	
  these	
  Kepler	
  multi-­‐planet	
  systems	
  form	
  in	
  order	
  to	
  see	
  what	
  they	
  
can	
  tell	
  us	
  about	
  the	
  formation	
  of	
  solar	
  systems	
  as	
  a	
  whole.	
  	
  	
  
	
  
	
  
	
  
  3	
  
Reference	
  List:	
  	
  
	
  
1.	
  Howard,	
  A.	
  W.	
  et	
  al.	
  Nature	
  http://dx.doi.org/10.1038/nature12767	
  (2013)	
  	
  
	
  
2.	
  Valsecchi,	
  Francesca;	
  Rasio,	
  Frederic	
  A	
  et	
  al.	
  2014,	
  The	
  Astrophysical	
  Journal,	
  
Volume	
  786	
  Issue	
  2,	
  pg	
  102	
  	
  
	
  
3.	
  Valsecchi,	
  Francesca;	
  Rasio,	
  Frederic	
  A	
  et	
  al.	
  2014,	
  The	
  Astrophysical	
  Journal	
  
Letters,	
  Volume	
  787	
  Issue	
  1,	
  pg	
  L9	
  	
  
	
  
4.	
  Valsecchi,	
  Francesca;	
  Rasio,	
  Frederic	
  A	
  et	
  al.	
  2014,	
  The	
  Astrophysical	
  Journal	
  
Letters,	
  Volume	
  793	
  Issue	
  1,	
  pg	
  L3	
  	
  
	
  
5.	
  Li,	
  Shu-­‐Lin	
  et	
  al.	
  2010,	
  Nature,	
  Volume	
  463	
  Issue	
  7284,	
  pg	
  104-­‐106	
  	
  	
  
	
  
6.	
  NASA	
  Exoplanet	
  Archive,	
  http://exoplanetarchive.ipac.caltech.edu	
  	
  	
  
	
  
7.	
  Hut,	
  P.	
  et	
  al.	
  1982,	
  Astronomy	
  and	
  Astrophysics,	
  vol.	
  110	
  no.	
  1,	
  pg	
  37-­‐42	
  

More Related Content

What's hot

Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...
Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...
Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...Sérgio Sacani
 
The neowise discovered_comet_population_and_the_co_co2_production_rates
The neowise discovered_comet_population_and_the_co_co2_production_ratesThe neowise discovered_comet_population_and_the_co_co2_production_rates
The neowise discovered_comet_population_and_the_co_co2_production_ratesSérgio Sacani
 
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_starTemperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_starSérgio Sacani
 
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownEvidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownSérgio Sacani
 
Surprising Science
Surprising ScienceSurprising Science
Surprising Sciencerandommiles
 
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...GLOBAL HEAVYLIFT HOLDINGS
 
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...GLOBAL HEAVYLIFT HOLDINGS
 
Isolated compact elliptical_galaxies_stellar_systems_that_ran_away
Isolated compact elliptical_galaxies_stellar_systems_that_ran_awayIsolated compact elliptical_galaxies_stellar_systems_that_ran_away
Isolated compact elliptical_galaxies_stellar_systems_that_ran_awaySérgio Sacani
 
Discovery of a_makemakean_moon
Discovery of a_makemakean_moonDiscovery of a_makemakean_moon
Discovery of a_makemakean_moonSérgio Sacani
 
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...Sérgio Sacani
 
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Sérgio Sacani
 
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Sérgio Sacani
 
Deep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaDeep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaSérgio Sacani
 
NGTS-1b: A hot Jupiter transiting an M-dwarf
NGTS-1b: A hot Jupiter transiting an M-dwarfNGTS-1b: A hot Jupiter transiting an M-dwarf
NGTS-1b: A hot Jupiter transiting an M-dwarfSérgio Sacani
 
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...GLOBAL HEAVYLIFT HOLDINGS
 
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...Sérgio Sacani
 
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5Sérgio Sacani
 
The Next Generation Transit Survey (NGTS)
The Next Generation Transit Survey (NGTS)The Next Generation Transit Survey (NGTS)
The Next Generation Transit Survey (NGTS)Sérgio Sacani
 

What's hot (20)

Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...
Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...
Kepler 432b a_massive_warm_jupiter_in_a_52days_eccentric_orbit_transiting_a_g...
 
The neowise discovered_comet_population_and_the_co_co2_production_rates
The neowise discovered_comet_population_and_the_co_co2_production_ratesThe neowise discovered_comet_population_and_the_co_co2_production_rates
The neowise discovered_comet_population_and_the_co_co2_production_rates
 
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_starTemperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
 
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownEvidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
 
BETTIIGoalsExploration
BETTIIGoalsExplorationBETTIIGoalsExploration
BETTIIGoalsExploration
 
Surprising Science
Surprising ScienceSurprising Science
Surprising Science
 
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...
Possible Ripple in LIGO MIT NSF Announcement of Gravitational Wave "Ripples i...
 
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
 
Isolated compact elliptical_galaxies_stellar_systems_that_ran_away
Isolated compact elliptical_galaxies_stellar_systems_that_ran_awayIsolated compact elliptical_galaxies_stellar_systems_that_ran_away
Isolated compact elliptical_galaxies_stellar_systems_that_ran_away
 
Discovery of a_makemakean_moon
Discovery of a_makemakean_moonDiscovery of a_makemakean_moon
Discovery of a_makemakean_moon
 
Presentation
PresentationPresentation
Presentation
 
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
 
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
Frontier fields clusters_chandra_and_jvla_view_of_the_pre_m_erging_cluster_ma...
 
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
 
Deep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaDeep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebula
 
NGTS-1b: A hot Jupiter transiting an M-dwarf
NGTS-1b: A hot Jupiter transiting an M-dwarfNGTS-1b: A hot Jupiter transiting an M-dwarf
NGTS-1b: A hot Jupiter transiting an M-dwarf
 
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
Infinite Energy, Space Travel... Would this be the greatest Discovery of our ...
 
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...
Kathryn wheel a_spectacular_galaxy_collision_discoverd_in_the_galactic_neighb...
 
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5
Chandra deep observation_of_xdcpj004402033_a_massive_galaxy_cluster_at_z_1_5
 
The Next Generation Transit Survey (NGTS)
The Next Generation Transit Survey (NGTS)The Next Generation Transit Survey (NGTS)
The Next Generation Transit Survey (NGTS)
 

Similar to GrantProposalSethKrantzler_Fra

Complete essay on exoplanet
Complete essay on exoplanetComplete essay on exoplanet
Complete essay on exoplanetAnamul Haque
 
The Hunt for Exoplanets
The Hunt for ExoplanetsThe Hunt for Exoplanets
The Hunt for ExoplanetsAnamul Haque
 
STEREO Science Writer's Guide
STEREO Science Writer's GuideSTEREO Science Writer's Guide
STEREO Science Writer's GuideCamille Haley
 
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...Sérgio Sacani
 
Search for potential collaborators and students in UJ research fields: Nuclea...
Search for potential collaborators and students in UJ research fields: Nuclea...Search for potential collaborators and students in UJ research fields: Nuclea...
Search for potential collaborators and students in UJ research fields: Nuclea...Rene Kotze
 
Astronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxAstronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxDr Robert Craig PhD
 
Amanda Grecula Earth Space CMap.docx.pdf
Amanda Grecula Earth Space CMap.docx.pdfAmanda Grecula Earth Space CMap.docx.pdf
Amanda Grecula Earth Space CMap.docx.pdfnorthernlightsecoadv
 
Effects of differing statistical methodologies on inferences about Earth-like...
Effects of differing statistical methodologies on inferences about Earth-like...Effects of differing statistical methodologies on inferences about Earth-like...
Effects of differing statistical methodologies on inferences about Earth-like...John Owens
 
Computational Training and Data Literacy for Domain Scientists
Computational Training and Data Literacy for Domain ScientistsComputational Training and Data Literacy for Domain Scientists
Computational Training and Data Literacy for Domain ScientistsJoshua Bloom
 
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...IRJET Journal
 
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...csandit
 
A gallery of_planet_hunters
A gallery of_planet_huntersA gallery of_planet_hunters
A gallery of_planet_huntersSérgio Sacani
 
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...Dmitry Tseitlin
 
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...Sérgio Sacani
 
“Bridging Worlds: 1 How CERN Sheds Light on Eclipses
“Bridging Worlds: 1 How CERN Sheds Light on Eclipses“Bridging Worlds: 1 How CERN Sheds Light on Eclipses
“Bridging Worlds: 1 How CERN Sheds Light on Eclipsesrozina shaheen
 

Similar to GrantProposalSethKrantzler_Fra (20)

Complete essay on exoplanet
Complete essay on exoplanetComplete essay on exoplanet
Complete essay on exoplanet
 
The Hunt for Exoplanets
The Hunt for ExoplanetsThe Hunt for Exoplanets
The Hunt for Exoplanets
 
STEREO Science Writer's Guide
STEREO Science Writer's GuideSTEREO Science Writer's Guide
STEREO Science Writer's Guide
 
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...
Know the star_know_the_planet_discovery_of_l_ate_type_companions_to_two_exopl...
 
Search for potential collaborators and students in UJ research fields: Nuclea...
Search for potential collaborators and students in UJ research fields: Nuclea...Search for potential collaborators and students in UJ research fields: Nuclea...
Search for potential collaborators and students in UJ research fields: Nuclea...
 
Astronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxAstronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptx
 
Amanda Grecula Earth Space CMap.docx.pdf
Amanda Grecula Earth Space CMap.docx.pdfAmanda Grecula Earth Space CMap.docx.pdf
Amanda Grecula Earth Space CMap.docx.pdf
 
Overview of NASA's Science Mission Directorate
Overview of NASA's Science Mission DirectorateOverview of NASA's Science Mission Directorate
Overview of NASA's Science Mission Directorate
 
PhysCon Poster
PhysCon PosterPhysCon Poster
PhysCon Poster
 
Effects of differing statistical methodologies on inferences about Earth-like...
Effects of differing statistical methodologies on inferences about Earth-like...Effects of differing statistical methodologies on inferences about Earth-like...
Effects of differing statistical methodologies on inferences about Earth-like...
 
Computational Training and Data Literacy for Domain Scientists
Computational Training and Data Literacy for Domain ScientistsComputational Training and Data Literacy for Domain Scientists
Computational Training and Data Literacy for Domain Scientists
 
Astronomy chapter 1
Astronomy chapter 1Astronomy chapter 1
Astronomy chapter 1
 
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...
Amelioration of the Lightkurve Package: Advancing Exoplanet Detection through...
 
Ph circumbinary final
Ph circumbinary finalPh circumbinary final
Ph circumbinary final
 
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...
ASTRONOMICAL OBJECTS DETECTION IN CELESTIAL BODIES USING COMPUTER VISION ALGO...
 
1098
10981098
1098
 
A gallery of_planet_hunters
A gallery of_planet_huntersA gallery of_planet_hunters
A gallery of_planet_hunters
 
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
 
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...
Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets an...
 
“Bridging Worlds: 1 How CERN Sheds Light on Eclipses
“Bridging Worlds: 1 How CERN Sheds Light on Eclipses“Bridging Worlds: 1 How CERN Sheds Light on Eclipses
“Bridging Worlds: 1 How CERN Sheds Light on Eclipses
 

GrantProposalSethKrantzler_Fra

  • 1.   1   Detailed  Numerical  Modeling  of  Multi-­‐ Planet  Systems   Our  scientific  understanding  of  the  Universe  through  astronomical   measurements  has  been  improving  enormously  over  the  last  few  decades,  but  there   is  still  so  much  to  learn.  One  of  the  topics  at  the  forefront  of  astrophysical  research   is  exoplanets,  planets  that  orbit  stars  or  stellar  remnants  outside  of  our  own  solar   system.  Since  the  discovery  of  the  first  exoplanet  in  1995,  51-­‐Pegasi,  the  field  has   been  growing  rapidly.  Today,  more  than  1,800  new  exoplanets  have  been  confirmed   through  a  variety  of  observational  techniques  and  over  4,000  additional  candidate   planets  are  awaiting  confirmation  [6].   The  Kepler  spacecraft,  launched  by  NASA  in  2009,  is  responsible  for  a  large   majority  of  these  discoveries,  and  more  importantly,  for  most  of  the  nearly  500   multi-­‐planet  systems  that  have  been  discovered.  These  Kepler  multi-­‐planet  systems   are  one  of  the  many  surprises  that  have  been  brought  to  light  from  our  interest  in   exoplanets  [1].  Many  Kepler  multi-­‐planet  systems  contain  planets  with  very  tight   orbits.  Some  of  these  systems  contain  “Hot  Jupiters”  Jupiter  sized  planets  with   orbital  periods  less  than  Mercury’s  (e.g.,  [2,3,4,5]).  Kepler  multi-­‐planet  systems  with   close  planets  that  have  masses  ranging  from  Earth-­‐like  to  Jupiter-­‐like  and  orbits  of   only  a  few  days  challenge  the  existing  theories  of  planetary  creation  and  evolution.     Because  many  of  these  planets  are  on  tight  orbits,  orbiting  very  close  to  the   central  star,  tides  are  expected  to  play  a  key  role  in  the  formation,  evolution,  and   survival  of  Kepler  multi-­‐planet  systems.  Tides  are  a  secondary  effect  of  the   gravitational  forces  between  objects.    They  arise  because  one  side  of  an  object  feels   stronger  gravitational  attraction  than  the  other.  In  the  simple  case  of  a  two-­‐object   system,  tides  affect  the  spin  of  the  components  and  –  more  importantly  –  the  orbital   separation,  in  an  attempt  to  drive  the  system  into  an  equilibrium  state  where  the   spin  frequency  of  each  object  is  equal  to  the  orbital  frequency.     NASA  has  archived  all  the  recorded  data  regarding  exoplanets  for  public   use[6].  This  archive  contains  a  wealth  of  information  about  each  system’s  orbital   period,  planetary  radius  and  mass,  as  well  as  other  statistics  regarding  the  system’s   characteristics.  To  start  with,  my  research  would  focus  on  specific  Kepler  multi-­‐ planet  systems  with  two  close  planets  that  have  tight  orbits,  as  this  is  the  simplest   case  in  terms  of  Kepler  multi-­‐planet  systems.     My  goal  is  to  look  at  the  observed  properties  of  these  systems  and   understand  how  tides  affect  their  formation,  evolution,  and  long-­‐term  survival.  I  will   accomplish  my  goal  by  extracting  pertinent  data  from  the  relevant  Kepler  systems   to  create  state  of  the  art  numerical  models.  These  numerical  models  will  include  the   most  up  to  date  understanding  of  tidal  dissipation  and  its  uncertainties  [7].  The   computational  tools  needed  to  construct  these  models  have  already  been  developed   in  the  theoretical  astrophysics  group  at  NU  (part  of  CIERA,  the  Center  for  
  • 2.   2   Interdisciplinary  Exploration  and  Research  in  Astrophysics).  By  comparing  my   numerical  model  with  the  observations,  I  will  attempt  to  explain  trends  in  the  data,   potentially  shedding  light  on  how  tides  affect  the  secular  evolution  of  two-­‐planet   systems.  This  work  will  also  potentially  reveal  new  trends  in  the  properties  of  the   systems.  From  there  I  will  attempt  to  generalize  my  findings  in  relation  to  more   complex  systems  with  more  exoplanets  involved,  as  well  as  to  apply  my  results  to   the  confirmed  exoplanets  that  arise  from  the  large  pool  of  candidate  planets,  which   is  updated  continuously.     This  research  is  important  to  the  field  of  astrophysics  for  many  reasons.  First   off,  the  Kepler  mission  gave  astrophysicists  a  wealth  of  information  on  exoplanets.   The  number  of  exoplanets  discovered  by  Kepler  is  massive  compared  to  the   conventional  methods  in  place  before  Kepler.  This  research  will  help  maximize  the   benefits  of  the  Kepler  mission,  which  produced  so  much  raw  data  that  can  be  looked   through  and  played  with.  Secondly,  the  Kepler  mission  created  a  multitude  of  other   projects  related  to  the  discovery  of  exoplanets.  These  projects  will  be  compiling   similar  data  to  what  Kepler  produced,  so  knowing  what  to  do  with  this  type  of  data   will  be  imperative  to  maximize  future  results  from  these  other  projects.  Additionally   this  kind  of  theoretical  work  can  provide  important  constraints  on  the  physical   mechanisms  entering  the  evolution  of  planetary  systems.  Specifically,  it  will  allow  us   to  learn  about  tidal  theories,  which  are  yet  not  well  constrained,  and  we  can  become   more  precise  with  our  models  for  the  future.     I  will  be  taking  many  steps  to  prepare  for  this  research  project.  I  am  enrolled   in  ASTRO  330-­‐ISP  Astrophysics  for  Spring  2015  in  order  to  better  familiarize  myself   with  the  necessary  background  information  regarding  astrophysics.  I  will  also  be   taking  a  fifth  credit  of  independent  study,  ASTRO  399,  with  Professor  Frederic   Rasio,  who  will  be  my  sponsor  for  this  project.    Professor  Rasio  and  I  have  already   talked  about  using  this  independent  study  credit  to  better  educate  me  on  the   intricacies  regarding  exoplanets  and  the  Kepler  multi-­‐planet  systems  I  will  be   focusing  on.  I  have  also  taken  the  entire  PHYS  330  Classical  Mechanics  sequence,   which  covers  planetary  motion  and  the  evolution  of  planetary  orbits,  amongst  other   topics  in  classical  mechanics.  I  have  completed  courses  in  Python  and  am  a   proficient  coder.  This  is  helpful  in  the  data  analysis  aspect  of  the  project,  which  will   most  likely  involve  the  use  of  Python  in  order  to  extract  the  information  from  the   NASA  archive  that  is  relevant  to  my  project.     With  the  completion  of  ASTRO  330  in  the  spring,  the  help  of  Professor  Rasio,   and  my  knowledge  of  Python,  I  will  have  all  of  the  necessary  preparation  I  need  in   order  to  accurately  assess  the  data  and  attempt  to  understand  how  tides  effects  the   formation,  evolution,  and  survival  of  Kepler  multi-­‐planet  systems.  I  would  like  to   continue  research  on  exoplanets  after  this  project  and  delve  deeper  into  the   intricacies  of  how  these  Kepler  multi-­‐planet  systems  form  in  order  to  see  what  they   can  tell  us  about  the  formation  of  solar  systems  as  a  whole.            
  • 3.   3   Reference  List:       1.  Howard,  A.  W.  et  al.  Nature  http://dx.doi.org/10.1038/nature12767  (2013)       2.  Valsecchi,  Francesca;  Rasio,  Frederic  A  et  al.  2014,  The  Astrophysical  Journal,   Volume  786  Issue  2,  pg  102       3.  Valsecchi,  Francesca;  Rasio,  Frederic  A  et  al.  2014,  The  Astrophysical  Journal   Letters,  Volume  787  Issue  1,  pg  L9       4.  Valsecchi,  Francesca;  Rasio,  Frederic  A  et  al.  2014,  The  Astrophysical  Journal   Letters,  Volume  793  Issue  1,  pg  L3       5.  Li,  Shu-­‐Lin  et  al.  2010,  Nature,  Volume  463  Issue  7284,  pg  104-­‐106         6.  NASA  Exoplanet  Archive,  http://exoplanetarchive.ipac.caltech.edu         7.  Hut,  P.  et  al.  1982,  Astronomy  and  Astrophysics,  vol.  110  no.  1,  pg  37-­‐42