SlideShare a Scribd company logo
1 of 50
Download to read offline
METHANE	
  PRODUCTION	
  ANALYSIS	
  OF	
  INHIBITED	
  POULTRY	
  DIGESTION	
  
EFFLUENT	
  AFTER	
  DILUTION	
  AND	
  AMMONIA	
  VOLATILIZATION	
  
	
  
	
  
	
  
	
  
	
  
By	
  
PAUL	
  FOSTER	
  GAMBLE	
  
	
  
	
  
	
  
	
  
A	
  thesis	
  submitted	
  in	
  partial	
  fulfillment	
  of	
  
the	
  requirements	
  for	
  the	
  degree	
  of	
  
MASTER	
  OF	
  SCIENCE	
  IN	
  ENGINEERING	
  
	
  
	
  
	
  
WASHINGTON	
  STATE	
  UNIVERSITY	
  
Voiland	
  College	
  of	
  Engineering	
  and	
  Architecture	
  
AUGUST	
  2015	
  
©Copyright	
  by	
  PAUL	
  FOSTER	
  GAMBLE,	
  2015	
  
All	
  Rights	
  Reserved	
  
	
  
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
©Copyright	
  by	
  PAUL	
  FOSTER	
  GAMBLE,	
  2015	
  
All	
  Rights	
  Reserved	
  
	
   	
  
 
	
   	
  ii	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
To	
  the	
  Faculty	
  of	
  Washington	
  State	
  University:	
  
	
   The	
  members	
  of	
  the	
  Committee	
  appointed	
  to	
  examine	
  the	
  thesis	
  of	
  PAUL	
  FOSTER	
  
GAMBLE	
  find	
  it	
  satisfactory	
  and	
  recommend	
  that	
  it	
  be	
  accepted.	
  
	
  
	
  
	
   	
   	
   	
   	
   ________________________________________________________	
  
	
   	
   	
   	
   	
   	
   	
   Pius	
  Ndegwa,	
  Ph.D.,	
  Chair	
  
	
  
	
  
	
  
	
   	
   	
   	
   	
   	
  
	
  
________________________________________________________	
  
	
   	
   	
   	
   	
   	
   	
   Craig	
  Frear,	
  Ph.D.	
  
	
  
	
  
	
  
	
   	
   	
   	
   	
   	
  
________________________________________________________	
  
	
   	
   	
   	
   	
   	
   	
   Troy	
  Peters,	
  Ph.D.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
   	
  iii	
  
ACKNOWLEDGMENT	
  
I’d	
  like	
  to	
  thank	
  my	
  committee	
  members	
  Dr.	
  Pius	
  Ndegwa,	
  Dr.	
  Craig	
  Frear,	
  and	
  Dr.	
  Troy	
  
Peters.	
  	
  Dr.	
  Ndegwa:	
  thank	
  you	
  for	
  the	
  effort	
  you	
  put	
  into	
  my	
  written	
  thesis	
  and	
  your	
  
continued	
  patience	
  and	
  support	
  to	
  get	
  this	
  thesis	
  right.	
  	
  Dr.	
  Frear:	
  thank	
  you	
  for	
  a	
  very	
  
interesting	
  thesis	
  topic	
  and	
  finding	
  financial	
  support	
  for	
  the	
  time	
  I	
  had	
  it.	
  	
  Dr.	
  Peters:	
  thank	
  
you	
  for	
  your	
  flexibility	
  in	
  this	
  process.	
  	
  Thank	
  you	
  Dr.	
  Stockle	
  and	
  administrative	
  staff	
  at	
  
Biological	
  Systems	
  Engineering	
  for	
  your	
  hard	
  work	
  and	
  diligence	
  to	
  direct	
  me	
  through	
  the	
  
thesis	
  process.	
  	
  Thanks	
  Jonathan	
  Lomber	
  for	
  your	
  help	
  in	
  the	
  lab.	
  
	
  
Thank	
  you	
  Andgar	
  Corporation	
  in	
  part	
  for	
  your	
  financial	
  support.	
  
	
  
Thanks	
  to	
  my	
  friends	
  and	
  mentors	
  in	
  Pullman	
  who	
  listened	
  to	
  me	
  talk	
  about	
  my	
  process	
  
through	
  my	
  thesis;	
  I	
  wouldn’t	
  have	
  made	
  it	
  without	
  you.	
  
	
  
And	
  thank	
  you	
  to	
  my	
  family.	
  	
  I	
  appreciate	
  your	
  encouragement	
  and	
  honest	
  candor.	
  	
  
	
  	
  
I	
  love	
  and	
  appreciate	
  you	
  all!	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
   	
  iv	
  
METHANE	
  PRODUCTION	
  ANALYSIS	
  OF	
  INHIBITED	
  POULTRY	
  DIGESTION	
  	
  
EFFLUENT	
  AFTER	
  DILUTION	
  AND	
  AMMONIA	
  VOLATILIZATION	
  
Abstract	
  
	
  
by	
  Paul	
  Foster	
  Gamble,	
  M.S.	
  
Washington	
  State	
  University	
  
August	
  2015	
  
	
  
Chair:	
  Pius	
  M.	
  Ndegwa	
  
	
  
This	
  study	
  was	
  conducted	
  using	
  manure	
  waste	
  from	
  a	
  concentrated	
  animal	
  feeding	
  
operation	
  (CAFO)	
  that	
  consisted	
  of	
  1.5	
  million	
  chicken	
  egg-­‐laying	
  at	
  facility	
  in	
  Ohio	
  in	
  the	
  
Mid-­‐West	
  of	
  the	
  United	
  States,	
  which	
  operated	
  a	
  mesophilic,	
  plug	
  flow	
  anaerobic	
  digester	
  
(AD)	
  to	
  handle	
  its	
  poultry	
  litter	
  waste.	
  	
  The	
  AD	
  had	
  become	
  sour	
  (inhibited),	
  most	
  probably	
  
due	
  to	
  elevated	
  levels	
  of	
  ammonia,	
  and	
  its	
  gas	
  production	
  had	
  dropped	
  to	
  40%	
  of	
  its	
  initial	
  
gas	
  levels.	
  
	
  
Economic	
  efficiencies	
  in	
  CAFOs	
  are	
  realized	
  through	
  integration	
  of	
  scale,	
  mechanization,	
  
and	
  technology	
  in	
  order	
  to	
  produce	
  affordable	
  animal	
  products	
  for	
  consumption.	
  	
  However,	
  
as	
  CAFOs	
  continue	
  to	
  increase	
  in	
  size	
  and	
  concentrate	
  geographically,	
  animal	
  feeds	
  no	
  
longer	
  comes	
  from	
  only	
  the	
  surrounding	
  land	
  but	
  some	
  have	
  to	
  be	
  imported.	
  	
  The	
  imported	
  
feeds	
  have	
  led	
  to	
  CAFOs	
  being	
  net	
  nutrient	
  positive	
  (difference	
  between	
  imported	
  nutrients	
  
and	
  nutrients	
  used	
  within	
  the	
  CAFOs	
  after	
  nutrients	
  are	
  applied	
  on	
  available	
  land	
  at	
  
desired	
  agronomic	
  rates).	
  Such	
  scenarios	
  heighten	
  environmental	
  concerns	
  if	
  these	
  excess	
  
 
	
   	
  v	
  
nutrients	
  leach	
  to	
  groundwater	
  or	
  run-­‐off	
  to	
  surface	
  water	
  masses,	
  especially	
  if	
  they	
  are	
  not	
  
properly	
  managed.	
  	
  Traditionally,	
  poultry	
  CAFOs	
  dispose	
  of	
  their	
  manure	
  waste	
  via	
  either	
  
land	
  application	
  or	
  export,	
  but	
  they	
  have	
  been	
  exploring	
  AD	
  as	
  an	
  alternative	
  option.	
  	
  	
  
	
  
The	
  Ohio	
  poultry	
  manure	
  anaerobic	
  digester	
  (AD)	
  was	
  built	
  to	
  handle	
  its	
  poultry	
  litter	
  in	
  
order	
  to	
  tap	
  into	
  AD’s	
  beneficial	
  attributes	
  including:	
  stabilization	
  and	
  reduction	
  of	
  manure	
  
waste,	
  production	
  of	
  a	
  stable	
  organic	
  soil	
  conditioner	
  and/	
  or	
  liquid	
  fertilizer,	
  and	
  
production	
  of	
  a	
  combustible,	
  renewable	
  biogas.	
  	
  Yet	
  the	
  recycling	
  of	
  the	
  digester’s	
  effluent	
  
back	
  into	
  the	
  digester	
  as	
  influent	
  led	
  to	
  the	
  persistence	
  of	
  ammonia,	
  a	
  known	
  inhibitor	
  of	
  
digester	
  microbial	
  ecology	
  at	
  higher	
  levels.	
  	
  The	
  goal	
  of	
  this	
  research	
  was	
  to	
  investigate	
  
operation	
  restoration	
  of	
  this	
  sour	
  AD	
  via	
  two	
  treatments	
  at	
  various	
  dilutions:	
  1)	
  aeration	
  of	
  
the	
  digester’s	
  ammonia-­‐inhibited	
  contents,	
  and	
  2)	
  coupling	
  aeration	
  and	
  heat	
  treatment	
  of	
  
the	
  digester’s	
  ammonia-­‐inhibited	
  contents.	
  	
  	
  
	
  
The	
  results	
  of	
  this	
  study	
  suggest	
  that	
  both	
  aeration	
  and	
  dilution	
  treatments	
  are	
  effective	
  
methods	
  of	
  conditioning	
  inhibited	
  digester’s	
  effluent	
  and	
  thus	
  restoring	
  normal	
  operations	
  
of	
  an	
  inhibited	
  digester.	
  	
  	
  
	
   	
  
 
	
   	
  vi	
  
TABLE	
  OF	
  CONTENTS	
  
	
  
ACKNOWLEDGEMENTS……………………………………………………………………………...	
   iii	
  
ABSTRACT………………………………………………………………………………………………….	
   iv-­‐v	
  
LIST	
  OF	
  TABLES………………………………………………………………………………………….	
   viii	
  
LIST	
  OF	
  FIGURES	
  ………………………………………………………………………………….........	
   ix-­‐x	
  
DEDICATION………………………………………………………………………………………………	
   xi	
  
	
   	
  
CHAPTER	
  1	
  	
   	
  
INTRODUCTION	
  AND	
  BACKGROUND……………………...……………………….……….......	
   1	
  
	
  	
  	
  	
  1.1	
  Concentrated	
  Animal	
  Feeding	
  Operations	
  (CAFOs)………………………………	
   1	
  
	
  	
  	
  	
  1.2	
  Purpose	
  of	
  CAFO	
  waste	
  handling…………………………………………………………	
   2	
  
	
  	
  	
  	
  1.3	
  Known	
  Environmental	
  Effects	
  of	
  CAFOs………………………………………………	
   4	
  
	
  	
  	
  	
  1.4	
  Effective	
  Land	
  Application…………………………………………………………………..	
   6	
  
	
  	
  	
  	
  1.5	
  Anaerobic	
  Digestion	
  (AD)	
  in	
  CAFOs……………………………………………………..	
   6	
  
	
   	
  
CHAPTER	
  2	
  	
   	
  
METHANE	
  PRODUCTION	
  ANALYSIS	
  OF	
  INHIBITED	
  POULTRY	
  DIGESTION	
  
EFFLUENT	
  AFTER	
  DILUTION	
  AND	
  AMMONIA	
  VOLATILIZATION…………………	
  
	
  
8	
  
	
  	
  	
  	
  2.1	
  Abstract……………………………………………………………………………………………..	
   8	
  
	
  	
  	
  	
  2.2	
  Introduction……………………………………………………………………………………….	
   9	
  
	
  	
  	
  	
  2.3	
  Methods	
  and	
  Materials……………………………………………………………………….	
   12	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.3.1	
  Farm	
  Operation…………………………………………………………………………….	
   12	
  
 
	
   	
  vii	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.3.2	
  Effluent	
  Used	
  In	
  Experiment…………………………………………………………..	
   13	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.3.3	
  Experimental	
  Design……………………………………………………………………..	
   13	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.3.4	
  Methane	
  Production	
  Analysis………………………………………………………...	
   14	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.3.5	
  Laboratory	
  Analysis………………………………………………………………………	
   15	
  
	
  	
  	
  	
  2.4	
  Results	
  and	
  Discussion………………………………………………………………………..	
   16	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.1	
  Effects	
  of	
  Dilution	
  on	
  TS	
  and	
  VS	
  of	
  Influent……………………………………..	
   16	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.2	
  Initial	
  TAN-­‐N	
  Levels	
  According	
  to	
  Effluent	
  Type………………………..........	
   16	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.3	
  Inhibition	
  Test……………………………………………………………………………….	
   18	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.4	
  Methane	
  Production	
  within	
  Treatments……………………………………........	
   23	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.5	
  Effect	
  of	
  Dilution	
  on	
  Specific	
  Methane	
  Yield…………………………………….	
   25	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.6	
  Effect	
  of	
  Treatment	
  on	
  Specific	
  Methane	
  Yield…………………………….......	
   26	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.7	
  Effect	
  of	
  Dilution	
  on	
  Volumetric	
  Methane	
  Yield………………………………	
   27	
  
	
  	
  	
  	
  	
  	
  	
  	
  2.4.8	
  Effect	
  of	
  Treatment	
  on	
  Volumetric	
  Methane	
  Yield…………………………..	
   28	
  
	
  	
  	
  	
  2.5	
  Conclusions………………………………………………………………………………………..	
  
	
  
30	
  
	
  	
  	
  	
  2.6	
  Recommendations………………………………………………………………………….......	
   31	
  
	
  	
  	
  	
  2.7	
  References………………………………………………………………………………………….	
  
	
  
32	
  
	
  
	
  
	
   	
  
 
	
   	
  viii	
  
LIST	
  OF	
  TABLES	
  
	
  
Table	
  2.1:	
  Basic	
  characteristics	
  of	
  treatment	
  samples	
  and	
  poultry	
  litter	
  used	
  
in	
   this	
   study	
   (all	
   effluents	
   were	
   extracted	
   from	
   an	
   inhibited	
  
digester	
  between	
  September	
  and	
  October,	
  2011)………………………….	
  
	
  
	
  
13	
  
Table	
   2.2:Effectiveness	
   of	
   dilution	
   on	
   total	
   solids	
   and	
   volatile	
   solids	
  
distribution……………………………………………………………………………….	
  
	
  
16	
  
Table	
  2.3:	
  Characteristics	
  of	
  seed	
  and	
  effluent	
  samples	
  before	
  and	
  after	
  
anaerobic	
  digestions	
  during	
  the	
  BMPs	
  determination…………………	
  
	
  
17	
  
Table	
  2.4:	
  Literature	
  values	
  for	
  poultry	
  manure	
  and	
  poultry	
  litter	
  bio-­‐
methane	
  potentials……………………………………………………………………...	
  
	
  
19	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
 
	
   	
  ix	
  
LIST	
  OF	
  FIGURES	
  
	
  
Figure	
  2.1:	
  The	
  experiment	
  consisted	
  of	
  three	
  treatments:	
  Aeration	
  Effluent	
  
(AE),	
  Heat	
  and	
  Aeration	
  (HAE),	
  and	
  control	
  (Inhibited	
  Effluent	
  IE)	
  
each	
  at	
  four	
  dilutions	
  (6%,	
  20%,	
  40%,	
  &	
  60%).	
  	
  Acclimated	
  Seed	
  at	
  
20%	
  by	
  volume	
  supplemented	
  with	
  4.45	
  g	
  chicken	
  litter	
  per	
  100	
  
mL	
  substrate	
  was	
  used	
  as	
  the	
  seed	
  in	
  this	
  
study…………………………………………..	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
14	
  
Figure	
  2.2:	
  Concentrations	
  of	
  TAN	
  at	
  different	
  dilutions	
  of	
  the	
  treatment	
  
samples	
  and	
  the	
  Seed…………………………………………………………………..	
  
	
  
18	
  
Figure	
  2.3:	
  Effect	
  of	
  dilution	
  of	
  inhibited	
  digester’s	
  effluent	
  on	
  TAN	
  and	
  
specific	
  methane	
  yield………………………………………………………………….	
  
	
  
20	
  
Figure	
  2.4:	
  Specific	
  methane	
  yields	
  of	
  each	
  of	
  the	
  treated	
  effluents,	
  the	
  
control	
  (inhibited	
  effluent),	
  and	
  the	
  Seed……………………………………..	
  	
  	
  
	
  
24	
  
Figure	
  2.5:	
  Volumetric	
  methane	
  yields	
  of	
  each	
  of	
  the	
  treated	
  effluents,	
  the	
  
control	
  (inhibited	
  effluent),	
  and	
  the	
  Seed…................................................	
  
	
  
25	
  
Figure	
  2.6:	
  Effect	
  of	
  dilution	
  on	
  methane	
  yield	
  (same	
  letters	
  above	
  each	
  
cluster	
  denote	
  statistical	
  similarity,	
  while	
  the	
  converse	
  is	
  also	
  
true)……………………………………………………………………………………………	
  	
  
	
  
	
  
26	
  
Figure	
  2.7:	
  Comparison	
  of	
  specific	
  methane	
  yields	
  across	
  treatments	
  (same	
  
letters	
  above	
  the	
  clusters	
  denote	
  statistical	
  similarity,	
  while	
  the	
  
converse	
  is	
  true;	
  Aeration	
  and	
  the	
  Seed	
  had	
  statistically	
  higher	
  
specific	
  yield	
  than	
  the	
  Inhibited	
  Effluent	
  and	
  the	
  Heat	
  and	
  Aerated	
  
	
  
	
  
	
  
	
  
 
	
   	
  x	
  
Effluent)……………………………………………………………………………………...	
   27	
  
Figure	
  2.8:	
  Comparison	
  of	
  volumetric	
  methane	
  yields	
  at	
  various	
  dilutions.……	
   28	
  
Figure	
  2.9:	
  Effect	
  of	
  treatments	
  (aeration	
  or	
  combined	
  heating	
  and	
  aeration)	
  
on	
  volumetric	
  methane	
  yield	
  compared	
  to	
  the	
  Seed	
  and	
  Inhibited	
  
Effluent……………………………………………………………………………………...	
  	
  	
  
	
  
	
  
29	
  
	
  
	
   	
  
 
	
   	
  xi	
  
DEDICATION	
  
	
  
This	
  thesis	
  is	
  dedicated	
  to	
  my	
  Grandparents:	
  Gene,	
  Katie,	
  Leonard,	
  and	
  Vera.	
  	
  	
  
	
  
I	
  appreciate	
  your	
  love	
  of	
  goodness,	
  loyalty,	
  and	
  of	
  each	
  other	
  you	
  instilled	
  in	
  all	
  of	
  us.	
  	
  I	
  
hope	
  to	
  make	
  you	
  proud	
  in	
  this	
  life.	
  
	
   	
  
 
	
   	
  1	
  
Chapter	
  1.	
  Introduction	
  and	
  Background	
  
	
  
	
  
1.1	
  Concentrated	
  Animal	
  Feeding	
  Operations	
  (CAFOs)	
  
	
  
	
  
Concentrated	
  animal	
  feeding	
  operations	
  (CAFOs)	
  take	
  advantage	
  of	
  economies	
  of	
  scale	
  to	
  
provide	
  various	
  animal	
  products	
  for	
  consumption	
  at	
  affordable	
  prices.	
  	
  Between	
  1982	
  and	
  
2002,	
  the	
  number	
  of	
  CAFOs	
  in	
  the	
  United	
  States	
  grew	
  by	
  approximately	
  230%.	
  	
  In	
  addition	
  
to	
  the	
  number	
  of	
  CAFOs	
  growth,	
  further	
  analysis	
  indicates	
  a	
  clear	
  trend	
  towards	
  
geographic	
  concentration	
  of	
  animal	
  production,	
  and	
  more	
  animals	
  per	
  farm	
  (Williams,	
  
Barker,	
  and	
  Sims,	
  1999;	
  Sims	
  et	
  al.,	
  2005;	
  Bradford	
  et	
  al.,	
  2008;	
  Mallin,	
  2000).	
  	
  Similarly,	
  
global	
  animal	
  inventory	
  has	
  increased,	
  as	
  has	
  global	
  demand	
  for	
  meat	
  products,	
  leading	
  to	
  
an	
  increase	
  in	
  animal	
  production	
  worldwide	
  (Sims	
  et	
  al.,	
  2005).	
  	
  The	
  poultry	
  industry,	
  
specifically,	
  is	
  one	
  of	
  the	
  largest	
  and	
  fastest	
  growing	
  agro-­‐based	
  industries	
  in	
  the	
  world	
  due	
  
to	
  increasing	
  demand	
  for	
  meat	
  and	
  eggs.	
  	
  In	
  the	
  U.S.	
  in	
  2008,	
  the	
  broiler	
  industry	
  accounted	
  
for	
  8.8	
  billion	
  birds.	
  	
  The	
  estimated	
  manure	
  production,	
  from	
  those	
  birds,	
  was	
  44.4	
  million	
  
tons,	
  representing	
  2.2	
  million	
  tons	
  of	
  N,	
  0.7	
  million	
  tons	
  of	
  P,	
  and	
  1.4	
  million	
  tons	
  of	
  K	
  
(Bolan	
  et	
  al.,	
  2010).	
  	
  These	
  historic	
  trends,	
  therefore,	
  have	
  resulted	
  in	
  larger	
  quantities	
  of	
  
manures	
  in	
  concentrated	
  regions,	
  which	
  cannot	
  be	
  utilized	
  locally	
  without	
  posing	
  serious	
  
threats	
  to	
  the	
  environment	
  unless	
  active	
  advanced	
  management	
  practices	
  are	
  
incorporated.	
  
	
  
In	
  general,	
  CAFOs	
  have	
  become	
  net	
  positive	
  nutrient	
  producer	
  as	
  their	
  sizes	
  have	
  grown	
  
requiring	
  the	
  need	
  to	
  import	
  feed	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999;	
  Collins,	
  Murphy,	
  and	
  
Bainbridge,	
  2000).	
  	
  This	
  in	
  turn	
  has	
  decoupled	
  manure	
  management	
  with	
  land	
  nutrient	
  
 
	
   	
  2	
  
needs	
  because	
  nutrients	
  exceed	
  the	
  surrounding	
  lands’	
  ability	
  to	
  uptake	
  them.	
  	
  In	
  other	
  
words,	
  feed	
  is	
  drawn	
  from	
  a	
  wide	
  area	
  while	
  manure	
  distribution	
  is	
  limited	
  to	
  a	
  small,	
  local	
  
landmass.	
  	
  Without	
  proper	
  and	
  deliberate	
  management,	
  the	
  industry	
  risks	
  re-­‐occurring	
  
incidences	
  of	
  soil	
  accumulation	
  and	
  run-­‐off	
  of	
  N,	
  P,	
  and	
  other	
  pollutants	
  (Thorne,	
  2007),	
  
gaseous	
  ammonia	
  volatilization	
  (Sims	
  et	
  al.,	
  2005),	
  and	
  other	
  adverse	
  environmental	
  
impacts.	
  	
  	
  
	
  
1.2	
  Purpose	
  of	
  CAFO	
  waste	
  handling	
  
	
  
The	
  balance	
  of	
  nutrients	
  in	
  terms	
  of	
  input,	
  export,	
  and	
  land	
  assimilation	
  is	
  the	
  basis	
  for	
  
proper	
  nutrient	
  and	
  runoff	
  management	
  at	
  CAFOs.	
  	
  The	
  ultimate	
  manure	
  management	
  goal	
  
is	
  to	
  develop	
  and	
  practice	
  nutrient	
  handling	
  practices	
  that	
  prevent	
  diffuse	
  nutrient	
  
pollution,	
  and	
  to	
  think	
  in	
  terms	
  of	
  farm	
  and	
  watershed	
  nutrient	
  balances	
  (Sims	
  et	
  al.,	
  2005).	
  	
  
Nutrient	
  Management	
  Plans	
  (NMPs)	
  are	
  an	
  example	
  of	
  accounting	
  for	
  CAFO	
  nutrients,	
  and	
  
are	
  developed	
  considering	
  all	
  nutrient	
  input	
  sources	
  such	
  as	
  manure,	
  fertilizer,	
  lagoon	
  
water,	
  and	
  well	
  water.	
  	
  Additionally,	
  they	
  consider	
  soil	
  surface	
  nutrient	
  content,	
  nutrient	
  
volatilization,	
  nutrient	
  mineralization	
  rates,	
  and	
  plant	
  uptake	
  (Bradford	
  et	
  al.,	
  2008).1	
  
	
  
The	
  most	
  effective	
  way	
  to	
  handle	
  nutrients	
  associated	
  with	
  manures	
  is	
  to	
  not	
  produce	
  them	
  
in	
  the	
  first	
  place.	
  	
  The	
  first	
  line	
  of	
  attack,	
  therefore,	
  is	
  manipulation	
  of	
  diet	
  to	
  maximize	
  
animal	
  uptake	
  and	
  thus	
  reduce	
  total	
  nutrient	
  production	
  in	
  manures	
  (Bradford	
  et	
  al.,	
  
2008).	
  	
  The	
  most	
  obvious	
  option	
  of	
  handling	
  excess	
  manure	
  nutrient	
  is	
  to	
  export	
  them,	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  NMPs	
  are	
  written	
  to	
  protect	
  surface	
  resources,	
  and	
  only	
  provide	
  limited	
  guidance	
  on	
  characterizing	
  and	
  
protecting	
  ground	
  water	
  contamination	
  
 
	
   	
  3	
  
this	
  approach	
  is,	
  in	
  general,	
  not	
  cost	
  effective.	
  	
  In	
  some	
  cases,	
  however,	
  exporting	
  through	
  
hauling	
  manure	
  waste	
  is	
  the	
  only	
  option	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999;	
  Kelleher	
  et	
  al.,	
  
2002;	
  Sims	
  et	
  al.,	
  2005;	
  Liedl,	
  Bombardiere,	
  and	
  Chatfield,	
  2006;	
  Bradford	
  et	
  al.,	
  2008).	
  	
  	
  
	
  
On	
  the	
  other	
  hand,	
  storage	
  of	
  manures	
  may	
  be	
  necessary	
  in	
  order	
  to	
  properly	
  handle	
  them	
  
at	
  different	
  appropriate	
  periods.	
  	
  Biological	
  processes	
  during	
  storage	
  are	
  continuous,	
  so	
  
odors	
  and	
  other	
  gas	
  emissions	
  associated	
  with	
  the	
  anaerobic	
  conditions	
  of	
  the	
  piles	
  or	
  
liquid	
  storages	
  are	
  constant	
  issues.	
  	
  For	
  example,	
  if	
  litter	
  is	
  moist,	
  ammonia	
  is	
  emitted	
  from	
  
the	
  production	
  or	
  storage	
  facility	
  while	
  if	
  the	
  litter	
  is	
  dry,	
  emissions	
  and	
  dust	
  particles	
  are	
  
emitted	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999).	
  	
  Whatever	
  type	
  of	
  storage	
  approach,	
  careful	
  
management	
  practices	
  must	
  be	
  put	
  in	
  place.	
  	
  	
  
	
  
Storage	
  lagoons	
  are	
  often	
  utilized	
  as	
  a	
  method	
  to	
  eliminate	
  nitrogen	
  through	
  volatilization	
  
(Mallin,	
  2000).	
  	
  Similar	
  to	
  watershed	
  science,	
  airshed	
  science	
  is	
  becoming	
  more	
  relevant	
  in	
  
assessing	
  and	
  managing	
  the	
  effects	
  of	
  air	
  emissions	
  on	
  the	
  surrounding	
  environment	
  
(Williams,	
  Barker,	
  and	
  Sims,	
  1999).	
  	
  Volatilization	
  of	
  ammonia	
  from	
  storage	
  ponds	
  is	
  a	
  
common	
  management	
  practice	
  to	
  reduce	
  an	
  operation’s	
  net	
  nitrogen	
  (Edwards	
  and	
  Daniel,	
  
1992;	
  Burkholder	
  et	
  al.,	
  2007).	
  	
  Once	
  the	
  ammonia	
  gas	
  volatilizes,	
  it	
  is	
  subsequently	
  
deposited	
  through	
  wet	
  and	
  dry	
  adsorption	
  or	
  may	
  be	
  oxidized	
  to	
  nitrates.	
  	
  Such	
  ammonia	
  
volatilization	
  can	
  lead	
  to	
  10-­‐50%	
  external	
  nitrogen	
  loading	
  (Williams,	
  Barker,	
  and	
  Sims,	
  
1999).	
  	
  Similar	
  to	
  the	
  municipal	
  wastewater	
  industry,	
  volatilization	
  of	
  ammonia	
  to	
  
ammonia	
  gas	
  and	
  the	
  conversion	
  of	
  ammonia	
  to	
  nitrogen	
  gas	
  are	
  some	
  of	
  the	
  main	
  
strategies	
  to	
  reduce	
  nitrogen	
  in	
  the	
  wastewater	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999).	
  	
  Yet	
  the	
  
 
	
   	
  4	
  
method	
  is	
  not	
  without	
  its	
  flaws;	
  ammonia	
  emissions	
  have	
  an	
  inverse	
  relationship	
  between	
  
source	
  distance	
  and	
  deposition	
  (Angus,	
  Hodge,	
  and	
  Sutton,	
  2006).	
  	
  Thus,	
  ammonia	
  
volatilization	
  simply	
  shifts	
  it	
  from	
  a	
  point	
  source	
  to	
  a	
  diffuse	
  source	
  of	
  pollution.	
  	
  	
  
	
  
Storage	
  lagoons	
  are	
  not	
  designed	
  to	
  sustain	
  major	
  natural	
  disaster	
  events,	
  and	
  massive	
  
one-­‐time	
  pollution	
  events	
  have	
  resulted	
  in	
  over-­‐flow	
  incidents,	
  spilling	
  manures	
  into	
  
waterways	
  (Mallin,	
  2000;	
  Burkholder	
  et	
  al.,	
  2007).	
  	
  Other	
  considerations	
  to	
  make	
  when	
  
considering	
  storage	
  effectiveness	
  are	
  depth	
  of	
  the	
  water	
  table,	
  soil	
  structure	
  and	
  
infiltration	
  rates,	
  and	
  CAFO	
  drainage	
  patterns	
  (Bradford	
  et	
  al.,	
  2008).	
  	
  Once	
  the	
  decision	
  to	
  
store	
  manure	
  is	
  made,	
  then	
  effective	
  land	
  application	
  of	
  the	
  stored	
  manure	
  becomes	
  the	
  
focal	
  point.	
  
	
  
1.3	
  Known	
  Environmental	
  Effects	
  of	
  CAFOs	
  
	
  
In	
  1997,	
  the	
  US	
  Senate	
  Committee	
  on	
  Agriculture,	
  Nutrition,	
  and	
  Forestry	
  noted	
  that	
  
pollutants	
  from	
  CAFOs	
  impaired	
  more	
  miles	
  of	
  US	
  rivers	
  than	
  all	
  other	
  industry	
  sources	
  
and	
  municipal	
  sewers	
  combined	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999).	
  	
  The	
  U,S.	
  animal	
  
agriculture	
  accounted	
  for	
  133	
  million	
  tons	
  of	
  manure	
  per	
  year	
  (dry	
  weight),	
  representing	
  
13-­‐fold	
  more	
  solid	
  waste	
  than	
  human	
  sanitary	
  waste	
  production	
  (Burkholder	
  et	
  al.,	
  2007).	
  	
  
Environmental	
  contamination	
  is	
  known	
  to	
  occur	
  when	
  land	
  application’s	
  sole	
  purpose	
  is	
  
manure	
  disposal	
  rather	
  than	
  application	
  in	
  accordance	
  with	
  fertilizer	
  or	
  soil	
  amendment	
  
agronomic	
  rates.	
  	
  The	
  other	
  management	
  practice	
  that	
  contributes	
  to	
  polluting	
  waterways	
  
is	
  application	
  of	
  manures	
  in	
  excess	
  or	
  under	
  poor	
  management	
  conditions	
  (Edwards	
  and	
  
 
	
   	
  5	
  
Daniel,	
  1992;	
  Williams,	
  Barker,	
  and	
  Sims,	
  1999;	
  Burkholder	
  et	
  al.,	
  2007).	
  	
  Over	
  application	
  
leads	
  to	
  either	
  migration	
  of	
  nutrients,	
  causing	
  problems	
  elsewhere,	
  or	
  to	
  nutrient-­‐
accumulation	
  if	
  they	
  don’t	
  migrate	
  (Edwards	
  and	
  Daniel,	
  1992;	
  Williams,	
  Barker,	
  and	
  Sims,	
  
1999).	
  	
  Proper	
  manure	
  management	
  should	
  account	
  for	
  soil	
  properties,	
  contaminant	
  
properties,	
  hydraulic	
  loading	
  characteristics,	
  and	
  crop	
  management,	
  all	
  of	
  which	
  determine	
  
the	
  magnitude	
  of	
  contaminant	
  run-­‐off	
  (Burkholder	
  et	
  al.,	
  2007).	
  	
  	
  
	
  
Nitrogen	
  is	
  mobile	
  in	
  both	
  ammonium	
  and	
  nitrate	
  forms,	
  and	
  the	
  impacts	
  on	
  surface	
  water	
  
sources	
  and	
  wildlife	
  have	
  been	
  well	
  documented	
  in	
  many	
  agricultural	
  areas	
  in	
  the	
  U.S.	
  
(Burkholder	
  et	
  al.,	
  2007).	
  	
  Ammonia	
  originating	
  in	
  CAFOs	
  may	
  end	
  up	
  be	
  being	
  toxic	
  to	
  
many	
  organisms	
  through	
  a	
  variety	
  of	
  mechanisms	
  (Mallin,	
  2000),	
  the	
  most	
  common	
  being	
  
eutrophication.	
  	
  Eutrophication	
  is	
  the	
  decrease	
  in	
  dissolved	
  oxygen	
  due	
  to	
  bacteria	
  
oxidation	
  of	
  fecal	
  or	
  plant	
  matter,	
  which	
  has	
  obvious	
  repercussions	
  to	
  aquatic	
  species	
  
(Williams,	
  Barker,	
  and	
  Sims,	
  1999;	
  Kelleher	
  et	
  al.,	
  2002).	
  	
  Algal	
  blooms	
  usually	
  account	
  for	
  
the	
  plant	
  matter	
  in	
  waterways,	
  whose	
  concentrations	
  can	
  be	
  toxic	
  to	
  species.	
  	
  Additionally,	
  
settling	
  of	
  algal	
  blooms	
  after	
  death	
  consumes	
  all	
  oxygen	
  as	
  bacteria	
  degrade	
  the	
  algal	
  
matter.	
  	
  Fecal	
  matter	
  has	
  the	
  same	
  bacterial	
  effect	
  (Mallin,	
  2000).	
  	
  Impacts	
  of	
  waste	
  from	
  
CAFOs	
  have	
  been	
  documented	
  as	
  far	
  as	
  30	
  km	
  downstream	
  from	
  point	
  of	
  entry	
  into	
  surface	
  
waters	
  (Burkholder	
  et	
  al.,	
  2007).	
  
	
  
In	
  addition	
  to	
  macro-­‐nutrients,	
  there	
  are	
  a	
  number	
  of	
  compounds	
  and	
  bacteria	
  that	
  are	
  also	
  
associated	
  with	
  CAFOs:	
  hydrogen	
  sulfide	
  and	
  ammonia	
  gas	
  can	
  pose	
  health	
  threats	
  to	
  farm-­‐
workers	
  and	
  animals	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999);	
  endocrine	
  and	
  reproductive	
  
 
	
   	
  6	
  
systems	
  disrupters	
  are	
  found	
  in	
  feedlot	
  effluents	
  (Whitehead	
  et	
  al.,	
  2004);	
  pathogens	
  are	
  a	
  
concern	
  after	
  raw	
  deposition	
  (El-­‐Hadidi	
  and	
  Al-­‐Turki,	
  2007);	
  and	
  the	
  use	
  of	
  nontherapeutic	
  
anti-­‐microbial	
  growth	
  promoters	
  has	
  intensified	
  the	
  risk	
  for	
  more	
  resistant	
  
microorganisms	
  (Burkholder	
  et	
  al.,	
  2007;	
  Gilchrist	
  et	
  al.,	
  2007)	
  .	
  
	
  
1.4	
  Effective	
  Land	
  Application	
  
	
  
Most	
  litter	
  produced	
  from	
  poultry	
  operations	
  is	
  land	
  applied	
  (Williams,	
  Barker,	
  and	
  Sims,	
  
1999;	
  Bolan	
  et	
  al.,	
  2010).	
  	
  Land	
  application	
  is	
  an	
  effective	
  means	
  of	
  manure	
  management	
  
when	
  method	
  of	
  application,	
  timing	
  of	
  application,	
  and	
  rate	
  of	
  application	
  are	
  considered.	
  	
  
Yet	
  it	
  is	
  difficult	
  to	
  optimize	
  agronomic	
  rates	
  due	
  to	
  the	
  heterogeneous	
  nature	
  of	
  manure	
  as	
  
opposed	
  to	
  commercial,	
  inorganic	
  fertilizers;	
  so	
  manures	
  are	
  often	
  applied	
  in	
  excess	
  to	
  
compensate	
  for	
  the	
  variability.	
  	
  Nevertheless,	
  organic	
  material	
  in	
  manures	
  offer	
  positive	
  
benefits	
  to	
  soils.	
  	
  They	
  are	
  a	
  valuable	
  source	
  of	
  plant	
  nutrients,	
  increased	
  soil	
  organic	
  
matter,	
  increased	
  water-­‐holding	
  capacity,	
  improved	
  oxygen	
  diffusion	
  rate,	
  and	
  aggregated	
  
stability	
  in	
  soils.	
  	
  Numerous	
  crops	
  have	
  thrived	
  when	
  the	
  soil	
  salinity	
  concentrations	
  didn’t	
  
get	
  too	
  high	
  (Bolan	
  et	
  al.,	
  2010).	
  	
  Although	
  land	
  application	
  has	
  its	
  place	
  in	
  CAFO	
  nutrient	
  
management,	
  the	
  poultry	
  industry’s	
  environmental	
  impacts	
  have	
  stimulated	
  interest	
  in	
  
cleaner	
  and	
  safer	
  disposal	
  options	
  (Kelleher	
  et	
  al.,	
  2002).	
  
	
  
1.5	
  Anaerobic	
  digestion	
  (AD)	
  in	
  CAFOs	
  
	
  
Anaerobic	
  digestion	
  is	
  a	
  technology	
  utilized	
  at	
  CAFOs	
  for	
  numerous	
  reasons,	
  but	
  the	
  main	
  
ones	
  are	
  that	
  the	
  process:	
  stabilizes	
  and	
  reduces	
  manure	
  waste,	
  produces	
  a	
  stable	
  organic	
  
 
	
   	
  7	
  
soil	
  conditioner	
  and/	
  or	
  liquid	
  fertilizer,	
  and	
  produces	
  a	
  combustible,	
  renewable	
  biogas	
  
(Sakar,	
  Yetilmezsoy,	
  and	
  Kocak,	
  2009;	
  Zhang	
  et	
  al.,	
  2011).	
  	
  Additionally,	
  it	
  is	
  an	
  effective	
  
method	
  of	
  sanitation	
  through	
  pathogen	
  reduction	
  via	
  substrate	
  consumption	
  (Yongabi,	
  
Harris,	
  and	
  Lewis,	
  2009).	
  	
  This	
  technology,	
  however,	
  has	
  not	
  received	
  wide-­‐spread	
  
adoption	
  most	
  probably	
  because	
  of	
  unfavorable	
  economics,	
  low	
  biogas	
  yields	
  for	
  litter-­‐
based	
  systems,	
  and	
  technical	
  operational	
  difficulties	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999).	
  	
  	
  
	
  
Nutrient	
  recovery	
  (more	
  specifically	
  ammonia	
  volatilization)	
  is	
  a	
  good	
  tool	
  for	
  balancing	
  of	
  
nutrients,	
  beyond	
  its	
  effect	
  on	
  the	
  AD	
  process.	
  	
  Nutrient	
  recovery	
  extracts	
  nutrients	
  from	
  
the	
  AD	
  effluent,	
  which	
  alleviates	
  the	
  inhibition	
  associated	
  with	
  TAN	
  accumulation.	
  	
  
Simultaneously,	
  nutrient	
  recovery	
  acts	
  as	
  a	
  nutrient	
  extraction	
  process,	
  both	
  reducing	
  the	
  
amount	
  of	
  nitrogen	
  to	
  be	
  land	
  applied	
  while	
  also	
  producing	
  a	
  nitrogen	
  product	
  that	
  can	
  be	
  
exported.	
  	
  The	
  ability	
  to	
  export	
  nutrients	
  enables	
  CAFOs	
  the	
  potential	
  to	
  increase	
  animal	
  
density	
  (animals	
  per	
  unit	
  area).	
  	
  In	
  this	
  context,	
  AD	
  as	
  a	
  technology	
  reaches	
  far	
  beyond	
  its	
  
ability	
  to	
  reduce	
  the	
  mass	
  of	
  solid	
  waste	
  or	
  produce	
  a	
  combustible	
  biogas;	
  it	
  is	
  a	
  
management	
  practice	
  with	
  the	
  capability	
  to	
  regulate	
  the	
  macronutrients	
  applied	
  to	
  a	
  farm’s	
  
footprint,	
  and	
  to	
  a	
  watershed	
  (Sims	
  et	
  al.,	
  2005).	
  
	
  
	
  
	
   	
  
 
	
   	
  8	
  
Chapter	
  2:	
  Methane	
  Production	
  Analysis	
  of	
  Inhibited	
  Poultry	
  Litter	
  
Digestion	
  Effluent	
  after	
  Dilution	
  and	
  Ammonia	
  Volatilization	
  
	
  
2.1	
  Abstract	
  
	
  
	
  
This	
  study	
  was	
  conducted	
  using	
  inhibited	
  poultry	
  waste	
  from	
  a	
  1.5	
  million	
  chicken	
  egg	
  
laying	
  facility	
  in	
  Ohio	
  in	
  the	
  Mid-­‐West	
  of	
  the	
  United	
  States,	
  which	
  operated	
  a	
  mesophilic,	
  
plug	
  flow	
  anaerobic	
  digester	
  (AD)	
  to	
  handle	
  its	
  poultry	
  litter	
  waste.	
  	
  After	
  two	
  years	
  of	
  re-­‐
circulating	
  the	
  AD’s	
  effluent	
  as	
  influent,	
  gas	
  production	
  dropped	
  to	
  40%	
  of	
  initial	
  gas	
  levels	
  
with	
  effluent	
  accumulating	
  in	
  excess	
  of	
  8,000	
  mg	
  total	
  ammonia	
  nitrogen	
  (TAN)/L.	
  	
  Tests	
  
were	
  conducted	
  to	
  condition	
  the	
  inhibited	
  digester’s	
  content	
  via	
  three	
  treatments:	
  aeration	
  
of	
  effluent	
  (AE),	
  combined	
  heat	
  and	
  aeration	
  of	
  effluent	
  (HAE),	
  and	
  dilution	
  (60%,	
  40%,	
  
20%	
  and	
  6%).	
  	
  The	
  effects	
  of	
  these	
  treatments	
  were	
  determined	
  using	
  bio-­‐methane	
  
potentials	
  (BMPs)	
  after	
  each	
  treatment.	
  	
  The	
  specific	
  methane	
  yield	
  of	
  the	
  IE6%	
  at	
  57	
  mL	
  
CH4/g	
  VSin	
  indicated	
  that	
  digester’s	
  contents	
  were	
  significantly	
  inhibited.	
  	
  Conversely,	
  the	
  
IE	
  diluted	
  to	
  80%	
  (referred	
  to	
  as	
  the	
  Seed)	
  achieved	
  a	
  specific	
  methane	
  yield	
  of	
  1,053	
  mL	
  
CH4/g	
  VSin	
  (1.68%	
  TS,	
  2,017	
  mg	
  TAN/L).	
  	
  Dilution	
  of	
  the	
  effluent	
  treatments,	
  in	
  general,	
  
enhanced	
  the	
  specific	
  methane	
  yield	
  but	
  not	
  the	
  volumetric	
  methane	
  yield.	
  	
  The	
  AE	
  
treatment	
  resulted	
  in	
  higher	
  specific/	
  volumetric	
  methane	
  yields	
  than	
  both	
  the	
  HAE	
  and	
  IE	
  
treatments.	
  	
  The	
  results	
  of	
  this	
  study	
  suggest	
  that	
  both	
  aeration	
  and	
  dilution	
  treatments	
  are	
  
effective	
  methods	
  of	
  conditioning	
  inhibited	
  digester’s	
  effluent	
  and	
  thus	
  restoring	
  normal	
  
operations	
  of	
  an	
  inhibited	
  digester.	
  	
  	
  
 
	
   	
  9	
  
2.2	
  Introduction	
  
	
  
	
  
Concentrated	
  animal	
  feeding	
  operations	
  (CAFOs)	
  have	
  become	
  the	
  norm	
  for	
  the	
  United	
  
States’	
  livestock	
  and	
  poultry	
  industries	
  and	
  have	
  advanced	
  economic	
  efficiencies	
  by	
  
integrating	
  scale,	
  mechanization,	
  and	
  technology	
  into	
  their	
  operations.	
  	
  But	
  with	
  this	
  
economy	
  of	
  scale,	
  operational	
  dilemmas	
  such	
  as	
  manure	
  management	
  and	
  nutrient	
  run-­‐off	
  
have	
  become	
  more	
  poignant	
  (Williams,	
  Barker,	
  and	
  Sims,	
  1999;	
  Sims	
  et	
  al.,	
  2005).	
  	
  As	
  a	
  
result,	
  land	
  application	
  of	
  manures	
  has	
  had	
  to	
  consider	
  soil	
  surface	
  nutrient	
  content,	
  
nutrient	
  volatilization,	
  nutrient	
  mineralization	
  rates,	
  and	
  plant	
  uptake	
  (Bradford	
  et	
  al.,	
  
2008).	
  	
  Similarly,	
  resources	
  that	
  have	
  not	
  been	
  traditionally	
  limited	
  including	
  energy	
  usage,	
  
transportation	
  fuels,	
  and	
  water,	
  require	
  more	
  informed	
  consideration.	
  	
  As	
  CAFOs	
  have	
  
increased	
  in	
  size	
  and	
  concentrated	
  geographically,	
  animal	
  feeds	
  no	
  longer	
  comes	
  from	
  only	
  
the	
  surrounding	
  land	
  but	
  some	
  have	
  to	
  be	
  imported.	
  	
  This	
  leads	
  into	
  CAFOs	
  being	
  nutrient	
  
net	
  positive	
  (difference	
  between	
  imported	
  nutrients	
  and	
  nutrients	
  used	
  within	
  the	
  CAFOs	
  
after	
  nutrients	
  are	
  applied	
  on	
  available	
  land	
  at	
  desired	
  agronomic	
  rates)	
  (Williams,	
  Barker,	
  
and	
  Sims,	
  1999;	
  Collins,	
  Murphy,	
  and	
  Bainbridge,	
  2000).	
  
	
  
Traditionally,	
  CAFOs	
  have	
  land-­‐applied	
  its	
  manures/	
  litter	
  (Bradford	
  et	
  al.,	
  2008;	
  Williams,	
  
Barker,	
  and	
  Sims,	
  1999;	
  Mallin,	
  2000;	
  Kelleher	
  et	
  al.,	
  2002).	
  	
  Whereas	
  dairy	
  CAFOs	
  have	
  
been	
  more	
  apt	
  to	
  apply	
  on-­‐site	
  handling	
  technologies	
  such	
  as	
  anaerobic	
  digestion,	
  poultry	
  
operations	
  have	
  been	
  more	
  reluctant	
  to	
  add	
  water	
  to	
  solid	
  manure	
  because	
  it	
  adds	
  
complexity	
  to	
  the	
  operation.	
  	
  This	
  technology,	
  therefore,	
  is	
  more	
  common	
  in	
  dairy	
  and	
  
swine	
  CAFOs,	
  which	
  produce	
  liquid	
  manures	
  or	
  manure	
  slurries.	
  	
  	
  
 
	
   	
  10	
  
	
  
Perhaps	
  more	
  indicative	
  for	
  the	
  lack	
  of	
  historic	
  widespread	
  utilization	
  of	
  anaerobic	
  
technology	
  application	
  to	
  poultry	
  manure	
  is	
  unfavorable	
  economics	
  and	
  the	
  inhibition	
  of	
  
digester	
  performance	
  related	
  to	
  the	
  manure’s	
  high	
  ammonia	
  content	
  (Williams,	
  Barker,	
  and	
  
Sims,	
  1999).	
  	
  While	
  high	
  ammonia	
  is	
  not	
  ideal	
  for	
  anaerobic	
  digestion,	
  there	
  are	
  a	
  number	
  
of	
  reasons	
  to	
  develop	
  the	
  ability	
  to	
  overcome	
  the	
  inhibitory	
  dilemmas	
  such	
  as	
  low	
  gas	
  
production,	
  water	
  scarcity,	
  bio-­‐nutrient	
  generation,	
  and	
  alleviation	
  of	
  pollution	
  (Kelleher	
  et	
  
al.,	
  2002).	
  	
  
	
  
Dilution	
  and	
  C:N	
  adjustments	
  are	
  the	
  simplest	
  means	
  to	
  alleviate	
  ammonia-­‐inhibition.	
  	
  
Bujoczek	
  et	
  al.	
  (2000)	
  noted	
  that	
  the	
  common	
  approach	
  traditionally	
  was	
  to	
  dilute	
  manure	
  
to	
  0.5%–3%	
  solids,	
  but	
  the	
  resulting	
  large	
  volume	
  of	
  waste	
  makes	
  this	
  method	
  
economically	
  unattractive.	
  	
  Nielsen	
  and	
  Angelidaki	
  (2008)	
  also	
  stabilized	
  an	
  ammonia-­‐
inhibited	
  digester	
  through	
  dilution.	
  	
  Resch	
  et	
  al.	
  (2011)	
  recommended	
  a	
  C:N	
  ratio	
  between	
  
16:1-­‐25:1,	
  and	
  promoted	
  adjusting	
  the	
  C:N	
  ratio	
  in	
  high	
  protein	
  substrates	
  to	
  overcome	
  
inhibition.	
  	
  Co-­‐digestion,	
  through	
  C:N	
  ratio	
  adjustment,	
  has	
  also	
  has	
  shown	
  promising	
  
results	
  (Yangin-­‐Gomec	
  and	
  Ozturk,	
  2013;	
  Y.	
  Zhang	
  et	
  al.,	
  2011;	
  Sharma,	
  Espinosa-­‐Solares,	
  
and	
  Huber,	
  2013).	
  	
  	
  
	
  
Another	
  approach	
  for	
  increased	
  process	
  stabilization	
  is	
  ammonia	
  volatilization.	
  	
  A	
  number	
  
of	
  experiments	
  have	
  examined	
  various	
  forms	
  of	
  ammonia	
  volatilization	
  for	
  improved	
  
control	
  and	
  enhancement	
  of	
  biogas	
  production.	
  	
  Zhang	
  et	
  al	
  (2012)	
  pretreated	
  piggery	
  
wastewater	
  by	
  increasing	
  the	
  pH	
  with	
  sodium	
  hydroxide	
  and	
  achieved	
  methane	
  production	
  
 
	
   	
  11	
  
of	
  0.75	
  CH4/L	
  d	
  and	
  0.57	
  CH4/L	
  d	
  at	
  pH	
  of	
  9.5	
  and	
  10,	
  respectively,	
  an	
  increase	
  over	
  the	
  
control	
  of	
  0.23	
  CH4/L	
  d.	
  	
  Using	
  biogas	
  as	
  the	
  stripping	
  medium	
  within	
  a	
  digester,	
  
Abouelenien	
  et	
  al.	
  (2010)	
  were	
  able	
  to	
  extract	
  65.6%	
  of	
  total	
  N	
  as	
  ammonia	
  while	
  Serna-­‐
Maza,	
  Heaven,	
  and	
  Banks	
  (2014)	
  achieved	
  48%	
  TAN	
  removal	
  at	
  70°C	
  and	
  pH	
  10.	
  	
  Resch	
  et	
  
al.	
  (2011)	
  increased	
  COD	
  degradation	
  by	
  55%	
  when	
  TKN	
  was	
  decreased	
  during	
  digestion	
  
from	
  7.5	
  to	
  4.0	
  g	
  	
  kg-­‐1.	
  	
  Post-­‐digestion	
  ammonia	
  volatilization	
  also	
  has	
  been	
  studied	
  as	
  a	
  
nutrient	
  removal	
  method	
  for	
  digester	
  effluent	
  (Guštin	
  and	
  Marinšek-­‐Logar,	
  2011;	
  Rico,	
  
García,	
  and	
  Rico,	
  2011;	
  Gangagni	
  Rao,	
  Gandu,	
  and	
  Swamy,	
  2012).	
  
	
  
Very	
  little	
  work	
  has	
  been	
  done	
  to	
  examine	
  the	
  effects	
  of	
  similar	
  conditioning	
  of	
  ammonia-­‐
inhibited	
  anaerobic	
  digester’s	
  effluent	
  in	
  order	
  to	
  resuscitate	
  a	
  sour	
  digester	
  under	
  the	
  
stipulation	
  that	
  the	
  effluent	
  is	
  reused	
  either	
  in	
  part	
  or	
  as	
  the	
  sole	
  feed	
  substrate.	
  	
  Lei	
  et	
  al.	
  
(2007)	
  used	
  ammonia	
  stripping	
  via	
  air	
  stripping	
  and	
  pH	
  adjustment	
  to	
  pretreat	
  effluent	
  for	
  
disposal,	
  but	
  were	
  less	
  concerned	
  with	
  the	
  treated	
  effluent’s	
  performance	
  when	
  recycled	
  
back	
  into	
  the	
  digestion	
  system.	
  	
  Little	
  else	
  has	
  been	
  examined	
  to	
  determine	
  methods	
  of	
  
alleviating	
  chronically	
  ammonia-­‐inhibited	
  effluent	
  for	
  reuse	
  in	
  the	
  digester.	
  	
  This	
  
experiment	
  differs	
  from	
  previous	
  work	
  in	
  that	
  it	
  examined	
  treatments	
  to	
  a	
  chronically	
  
inhibited	
  digester	
  as	
  opposed	
  to	
  the	
  majority	
  of	
  inhibition	
  studies	
  that	
  slowly	
  increased	
  the	
  
amount	
  of	
  ammonia	
  to	
  inhibitory	
  levels	
  (Benabdallah	
  El	
  Hadj	
  et	
  al.,	
  2009;	
  Lay,	
  Li,	
  and	
  
Noike,	
  1998;	
  Lü	
  et	
  al.,	
  2013;	
  Kayhanian,	
  1994;	
  Krylova	
  et	
  al.,	
  1997).	
  	
  The	
  goal	
  of	
  this	
  
research	
  was	
  to	
  investigate	
  operation	
  restoration	
  of	
  a	
  sour	
  anaerobic	
  digester	
  via	
  two	
  
treatments	
  at	
  various	
  dilutions:	
  1)	
  aeration	
  of	
  the	
  digester’s	
  ammonia-­‐inhibited	
  contents,	
  
and	
  2)	
  coupling	
  aeration	
  and	
  heat	
  treatment	
  of	
  the	
  digester’s	
  ammonia-­‐inhibited	
  contents.	
  	
  	
  
 
	
   	
  12	
  
2.3	
  Methods	
  and	
  Materials	
  
	
  
	
  
2.3.1	
  Farm	
  Operation	
  
	
  
	
  
A	
  1.5	
  million	
  chicken	
  egg	
  laying	
  operation	
  in	
  Fort	
  Recovery,	
  OH,	
  United	
  States,	
  installed	
  an	
  
axial-­‐mixed,	
  mesophilic,	
  plug-­‐flow	
  anaerobic	
  digester	
  (DVO	
  Inc.,	
  Chilton	
  WI)	
  for	
  production	
  
of	
  combined	
  heat	
  and	
  power	
  on	
  the	
  farm.	
  	
  Hydraulic	
  retention	
  time	
  (HRT)	
  of	
  the	
  digester	
  
was	
  30-­‐35	
  days.	
  	
  A	
  mix	
  of	
  poultry	
  litter	
  (PL),	
  egg	
  wash	
  water,	
  and	
  recycled	
  effluent	
  served	
  
as	
  the	
  digester’s	
  influent	
  or	
  feed	
  substrate.	
  
	
  
The	
  commercial	
  digester	
  during	
  the	
  period	
  of	
  study	
  was	
  in	
  a	
  state	
  of	
  inhibition	
  probably	
  
due	
  to	
  being	
  overloaded	
  with	
  ammonia.	
  	
  Total	
  ammonia	
  nitrogen	
  (TAN)	
  had	
  accumulated	
  
to	
  8,000	
  mg/L	
  within	
  the	
  digester,	
  while	
  biogas	
  had	
  dropped	
  to	
  40%	
  of	
  initial	
  production	
  
levels	
  after	
  two	
  years	
  of	
  operation.	
  	
  Addition	
  of	
  carbon	
  had	
  been	
  tried	
  as	
  a	
  means	
  to	
  reduce	
  
inhibition,	
  but	
  was	
  not	
  a	
  sustainable	
  option	
  due	
  to	
  the	
  lack	
  of	
  a	
  long-­‐term,	
  viable	
  source.	
  	
  A	
  
subsequent	
  approach	
  was	
  to	
  centrifuge	
  out	
  most	
  of	
  the	
  suspended	
  solids	
  and	
  then	
  aerate	
  
and	
  partially	
  strip	
  the	
  effluent	
  of	
  ammonia,	
  producing	
  an	
  aerated	
  effluent	
  (AE)	
  that	
  was	
  
being	
  used	
  as	
  new	
  recycle	
  water.	
  	
  The	
  process	
  consisted	
  of	
  98%	
  suspended	
  solids	
  removal	
  
with	
  a	
  decanting	
  centrifuge,	
  followed	
  by	
  a	
  12-­‐hour	
  aeration	
  within	
  an	
  aeration	
  pit	
  fitted	
  
with	
  12	
  diffusers	
  resulting	
  in	
  an	
  overall	
  aeration	
  rate	
  of	
  250	
  cfm.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
   	
  13	
  
2.3.2	
  Effluent	
  Used	
  in	
  Experiment	
  
	
  
	
  
Laboratory	
  experiments	
  utilized	
  farm	
  poultry	
  litter	
  (PL)	
  as	
  well	
  as	
  three	
  effluent	
  
treatments,	
  either	
  sourced	
  from	
  treatments	
  at	
  the	
  farm	
  or	
  produced	
  within	
  the	
  laboratory.	
  
The	
  treatments	
  in	
  the	
  laboratory	
  included	
  either	
  aeration	
  (AE)	
  or	
  combined	
  heating	
  and	
  
aeration	
  (HAE)	
  of	
  the	
  inhibited	
  effluents	
  (IE).	
  	
  All	
  samples	
  obtained	
  from	
  the	
  farm	
  were	
  
composite,	
  random	
  samples	
  shipped	
  overnight	
  and	
  stored	
  at	
  4°C	
  until	
  use.	
  	
  Table	
  2.1	
  shows	
  
the	
  descriptions	
  and	
  properties	
  of	
  the	
  three	
  effluents	
  and	
  the	
  poultry	
  litter.	
  	
  
	
  
Table	
  2.1:	
  Basic	
  characteristics	
  of	
  treatment	
  samples	
  and	
  poultry	
  litter	
  used	
  in	
  this	
  study	
  
(all	
  effluents	
  were	
  extracted	
  from	
  an	
  inhibited	
  digester	
  between	
  September	
  and	
  October,	
  
2011).	
  	
  
	
  
	
  
2.3.3	
  Experimental	
  Design	
  
	
  
	
  
Biological	
  methane	
  potential	
  (BMP)	
  studies	
  were	
  conducted	
  to	
  determine	
  the	
  degree	
  to	
  
which	
  both	
  recycle	
  rate	
  and	
  treatment	
  of	
  recycle	
  effluent	
  impacts	
  inhibition	
  as	
  measured	
  
by	
  biogas	
  production.	
  	
  The	
  study	
  consisted	
  of	
  three	
  treatments:	
  Inhibited	
  Effluent	
  (IE),	
  
Treatment(
Effluent(Samples/(
Poultry(Litter Eflluent(Description TS VS VS/TS TAN;N
%(decrease(TAN(
from(Inhibited(
Effluent
Inhibited)Effluent
Effluent)from)poultry)digester)
process:)30935)day)HRT,)C:N) 5.219)±0.022 3.088)±0.0161 59.16)±0.2678 8661)±3.888 9
Aerated)Effluent
)Centrifuged)effluent)treated)in)
aeration)chamber)adjoined)to)
poultry)digester)with)an)HRT)of)
12)hours,)at)an)aeration)rate)of)
250)cfm 4.069)±0.3269 2.257)±0.01842 55.67)±3.865 6307)±25.66 27.2%
Heated)and)
Aerated)Effluent
Trial)1)Effluent)aerated)in)lab)
for)8)hrs)at)55°)C)at)aeration)
rate)of)1)L)air)/)min/)L)effluent 4.625)±0.005888 2.57)±0.002988 55.57)±0.1236 3917)±14.74 54.8%
Poultry)Litter
Ohio)egg)laying)operation.))
Mostly)manure)with)some)
feathers)and)egg)shells 53.09)±4.091 36.28)±4.153 68.2)±2.604
 
	
   	
  14	
  
Aeration	
  Effluent	
  (AE),	
  and	
  Heat	
  and	
  Aeration	
  Effluent	
  (HAE)	
  each	
  with	
  four	
  dilutions	
  (6%,	
  
20%,	
  40%,	
  &	
  60%)	
  as	
  outlined	
  in	
  Figure	
  2.1.	
  	
  Acclimated	
  effluent	
  was	
  used	
  for	
  “seed”	
  and	
  
represented	
  20%	
  of	
  the	
  flask	
  volume	
  (4.45	
  g	
  of	
  chicken	
  litter	
  was	
  added	
  per	
  100	
  mL	
  of	
  
solution).	
  	
  Dilution	
  values	
  were	
  chosen	
  to	
  straddle	
  4	
  g/L	
  TAN,	
  which	
  is	
  the	
  accepted	
  
threshold	
  of	
  TAN	
  concentration	
  for	
  ammonia-­‐inhibited	
  digesters	
  (Hao	
  et	
  al.,	
  2013;	
  Smith	
  et	
  
al.,	
  2014;	
  Angenent,	
  Sung,	
  and	
  Raskin,	
  2002;	
  Westerholm	
  et	
  al.,	
  2011;	
  Zhang,	
  Yuan,	
  and	
  Lu,	
  
2014;	
  Westerholm	
  et	
  al.,	
  2011).	
  
	
  
	
  
Figure	
  2.1:	
  The	
  experiment	
  consisted	
  of	
  three	
  treatments:	
  Aeration	
  Effluent	
  (AE),	
  Heat	
  and	
  
Aeration	
  (HAE),	
  and	
  control	
  (Inhibited	
  Effluent,	
  IE)	
  each	
  at	
  four	
  dilutions	
  (6%,	
  20%,	
  40%,	
  
&	
  60%).	
  	
  Acclimated	
  seed	
  at	
  20%	
  by	
  volume	
  supplemented	
  with	
  4.45	
  g	
  chicken	
  litter	
  per	
  
100	
  mL	
  substrate	
  was	
  used	
  as	
  the	
  seed	
  in	
  this	
  study.	
  	
  	
  
	
  
2.3.4	
  Methane	
  Production	
  Analysis	
  
	
  
	
  
A	
  modified	
  BMP	
  outlined	
  in	
  Frear	
  et	
  al.	
  (2011)	
  was	
  completed	
  using	
  a	
  AER-­‐200	
  
respirometer	
  (AER-­‐200,	
  CES	
  Inc.,	
  USA).	
  Either	
  250	
  or	
  125	
  mL	
  bottles	
  (depending	
  on	
  
 
	
   	
  15	
  
availability)	
  were	
  filled	
  with	
  prescribed	
  treatment	
  substrate,	
  and	
  the	
  headspace	
  (20%	
  of	
  
bottle	
  volume)	
  was	
  purged	
  with	
  nitrogen	
  gas	
  for	
  10	
  minutes.	
  	
  Potassium	
  hydroxide	
  was	
  
used	
  in	
  solution	
  as	
  a	
  scrubbing	
  medium	
  to	
  purify	
  non-­‐methane	
  biogas	
  by	
  adsorbing	
  carbon	
  
dioxide	
  and	
  hydrogen	
  sulfide.	
  	
  Homogenous	
  mixing	
  was	
  provided	
  with	
  magnetic	
  stirring	
  
bars,	
  and	
  mesophilic	
  temperatures	
  were	
  maintained	
  through	
  submersing	
  the	
  digestion	
  
bottles	
  in	
  a	
  temperature	
  controlled	
  water	
  bath	
  at	
  35°C.	
  	
  Methane	
  gas	
  production	
  was	
  
automatically	
  logged	
  in	
  a	
  computer	
  every	
  5	
  min.	
  	
  All	
  tests	
  were	
  conducted	
  in	
  either	
  
triplicate	
  or	
  duplicate	
  and	
  were	
  terminated	
  once	
  methane	
  production	
  ceased,	
  which	
  was	
  
between	
  30	
  and	
  45	
  days.	
  	
  	
  
	
  
2.3.5	
  Laboratory	
  Analysis	
  
	
  
	
  
The	
  laboratory	
  analyses	
  for	
  the	
  parameters	
  listed	
  below	
  were	
  conducted	
  using	
  either	
  
Standard	
  Methods	
  (APHA,	
  2005,	
  particular	
  method	
  given	
  in	
  parentheses)	
  or	
  standard	
  
Equipment	
  as	
  follows:	
  total	
  solids	
  (TS,	
  2540B),	
  volatile	
  solids	
  (VS,	
  2540E),	
  pH	
  (AB	
  15,	
  
Accumet	
  Basic),	
  and	
  Total	
  Ammonia	
  Nitrogen	
  (TAN)	
  (Tecator	
  2300	
  Kjeltec	
  Analyzer,	
  Eden	
  
Prairie,	
  MN,	
  USA;	
  4500-­‐NorgB;	
  4500NH3BC).	
  	
  	
  
 
	
   	
  16	
  
2.4	
  Results	
  and	
  Discussion	
  
	
  
	
  
2.4.1	
  Effects	
  of	
  Dilution	
  on	
  TS	
  and	
  VS	
  of	
  Influent	
  	
  
	
  
	
  
Table	
  2.2	
  represents	
  the	
  characteristics	
  of	
  samples	
  of	
  each	
  treatment	
  after	
  dilution.	
  	
  The	
  
nearly	
  constant	
  ratio	
  of	
  the	
  VS	
  to	
  TS	
  ratio	
  after	
  dilution	
  indicates	
  evenly	
  distributed	
  VS	
  and	
  
TS,	
  which	
  suggested	
  that	
  the	
  dilution	
  for	
  all	
  samples	
  were	
  accomplished	
  successfully.	
  	
  The	
  
TS	
  of	
  the	
  samples,	
  however,	
  were	
  higher	
  compared	
  to	
  the	
  TS	
  of	
  inhibited	
  effluent	
  due	
  to	
  the	
  
addition	
  of	
  supplemental	
  solid	
  poultry	
  litter	
  to	
  each	
  of	
  the	
  other	
  samples.	
  
	
  
	
  
Table	
  2.2:	
  Effectiveness	
  of	
  dilution	
  on	
  total	
  solids	
  and	
  volatile	
  solids	
  distribution.	
  
	
  	
  
	
  
2.4.2	
  Initial	
  TAN-­‐N	
  Levels	
  According	
  to	
  Effluent	
  Type	
  
	
  
	
  
The	
  experimental	
  values	
  of	
  TAN	
  for	
  each	
  treatment	
  sample	
  were	
  staggered	
  and	
  straddled	
  
the	
  4,000	
  mg/L	
  (Table	
  2.3),	
  which	
  is	
  the	
  often	
  cited	
  threshold	
  level	
  of	
  ammonia-­‐inhibited	
  
anaerobic	
  digestion	
  (Hao	
  et	
  al.,	
  2013;	
  Smith	
  et	
  al.,	
  2014;	
  Angenent,	
  Sung,	
  and	
  Raskin,	
  2002;	
  
Westerholm	
  et	
  al.,	
  2011;	
  Zhang,	
  Yuan,	
  and	
  Lu,	
  2014;	
  Westerholm	
  et	
  al.,	
  2011).	
  	
  In	
  general,	
  
Treatment Dilution TS	
  (%) VS	
  (%) VS/TS	
  (%/%)
Seed Seed 1.682±0.33 1.134±0.15 62.82±2.53
60% 2.818±0.54 1.732±0.46 60.89±4.49
40% 4.744±0.42 3.058±0.41 64.27±3.01
20% 5.591±0.14 3.515±0.11 62.86±0.60
6% 5.918±0.72 3.671±0.56 61.81±2.146
60% 2.672±0.05 1.622±0.05 60.45±0.69
40% 3.727±0.18 2.275±0.15 60.69±0.75
20% 4.594±0.08 2.803±0.04 60.9±0.19
6% 4.826±0.36 2.9±0.26 60.07±1.01
60% 2.452±0.03 1.431±0.03 58.61±0.77
40% 3.507±0.01 2.038±0.00 58.19±0.82
20% 4.624±0.23 2.698±0.19 57.9±1.24
6% 5.148±0.28 3.007±0.23 57.93±0.89
Inhibited	
  Effluent
Aerated	
  Effluent
Heated	
  and	
  Aerated	
  
Effluent
 
	
   	
  17	
  
the	
  concentrations	
  of	
  TAN	
  increased	
  during	
  anaerobic	
  digestions/	
  incubation,	
  during	
  
determination	
  of	
  BMPs,	
  presumably	
  following	
  mineralization	
  of	
  organic	
  nitrogen	
  to	
  TAN.	
  
	
  
Table	
  2.3:	
  Characteristics	
  of	
  seed	
  and	
  effluent	
  samples	
  before	
  and	
  after	
  anaerobic	
  
digestions	
  during	
  the	
  BMPs	
  determination.	
  
	
  
	
  
Figure	
  2.2	
  shows	
  the	
  levels	
  of	
  average	
  initial	
  TAN	
  for	
  all	
  samples	
  at	
  different	
  dilution	
  levels.	
  	
  
Heat	
  and	
  Aeration	
  Effluent	
  (HAE)	
  had	
  significantly	
  less	
  TAN	
  than	
  the	
  Aeration	
  Effluent	
  (AE)	
  
or	
  the	
  Inhibited	
  Effluent	
  (IE).	
  	
  The	
  AE	
  process	
  reduced	
  the	
  initial	
  TAN	
  levels	
  of	
  the	
  IE	
  by	
  
approximately	
  27%,	
  while	
  the	
  HAE	
  process	
  reduced	
  the	
  IE	
  by	
  approximately	
  55%,	
  which	
  
was	
  almost	
  double	
  that	
  by	
  AE	
  process	
  only.	
  	
  	
  
	
  
	
  
	
  
Treatment Dilution TAN-­‐N	
  Initial	
  (mg/L) TAN-­‐N	
  Final	
  (mg/L) %	
  Increase
Seed Seed 2017±55.14 2722±449.3 34.93%
60% 3835±27.33 4169±552 8.70%
40% 5413±209.50 6278±94.4 15.98%
20% 7141±126.60 8061±63.15 12.88%
6% 8141±116.20 8756±590.3 7.55%
60% 3301±74.35 4297±287 30.16%
40% 4655±51.65 5698±187.5 22.41%
20% 5918±128.90 7065±122.4 19.38%
6% 6466±27.24 7811±141.4 20.81%
60% 2861±59.09 3302±22.98 15.42%
40% 3626±41.20 4245±147.8 17.06%
20% 4137±76.19 5118±136.1 23.71%
6% 4525±100.30 5358±617.7 18.40%
Inhibited	
  Effluent
Aerated	
  Effluent
Heated	
  and	
  Aerated	
  
Effluent
 
	
   	
  18	
  
	
  
Figure	
  2.2:	
  Concentrations	
  of	
  TAN	
  at	
  different	
  dilutions	
  of	
  the	
  treatment	
  samples	
  and	
  the	
  
Seed.	
  
	
  
2.4.3	
  Inhibition	
  Test	
  
	
  
	
  
This	
  experiment	
  was	
  conducted	
  to	
  test	
  if	
  either	
  the	
  aeration	
  treatment	
  or	
  combined	
  heat	
  
and	
  aeration	
  treatment	
  of	
  effluent	
  from	
  a	
  sour,	
  full-­‐scale	
  anaerobic	
  digester	
  could	
  restore	
  
the	
  digester	
  to	
  normal	
  operation.	
  	
  The	
  first	
  task	
  was	
  to	
  establish,	
  in	
  the	
  lab,	
  whether	
  the	
  
effluent	
  that	
  originated	
  from	
  the	
  full-­‐scale	
  digester	
  was	
  indeed	
  inhibited.	
  	
  The	
  Inhibited	
  
Effluent	
  (IE)	
  diluted	
  at	
  6%	
  (IE6)	
  was	
  used	
  in	
  this	
  test	
  to	
  mimic	
  the	
  inhibited	
  conditions	
  of	
  
the	
  full-­‐scale	
  digester.	
  	
  Table	
  2.4	
  presents	
  some	
  typical	
  values	
  of	
  poultry	
  litter	
  BMPs	
  for	
  
comparison.	
  	
  At	
  5.9%	
  TS,	
  IE6	
  had	
  a	
  specific	
  yield	
  of	
  57	
  mL	
  CH4/	
  g	
  VSin	
  at	
  a	
  TAN	
  value	
  of	
  
8,141	
  mg/L,	
  which	
  was	
  significantly	
  lower	
  than	
  most	
  literature	
  BMPs,	
  confirming	
  that	
  the	
  
effluent	
  was	
  indeed	
  from	
  an	
  inhibited	
  digester.	
  	
  	
  
	
  
The	
  seed	
  BMP,	
  on	
  the	
  other	
  hand,	
  indicated	
  substantially	
  higher	
  values	
  of	
  specific	
  methane	
  
yield	
  (1053	
  mL	
  CH4/g	
  VSin,	
  1.68%	
  TS,	
  2017	
  mg	
  TAN/	
  L)	
  than	
  the	
  literature	
  values	
  listed	
  in	
  
0 20 40 60 80
0
2000
4000
6000
8000
10000
Dilution Rates
TAN-N(mg/L)
Inhibited Effluent
Aerated
Heat and Aeration
Seed
 
	
   	
  19	
  
Table	
  2.4.	
  	
  The	
  gas	
  production	
  of	
  an	
  uninhibited	
  system	
  is	
  evidently	
  significantly	
  less	
  than	
  
the	
  gas	
  production	
  from	
  that	
  of	
  an	
  inhibited	
  substrate	
  once	
  the	
  inhibition	
  is	
  alleviated.	
  	
  
Furthermore,	
  the	
  yield	
  may	
  be	
  a	
  function	
  of	
  both	
  the	
  time	
  the	
  substrate	
  was	
  under	
  
inhibition,	
  and	
  the	
  extent	
  of	
  inhibition	
  mitigation	
  during	
  subsequent	
  treatment.	
  	
  The	
  latter	
  
effect	
  is	
  clearly	
  illustrated	
  in	
  Figure	
  2.3.	
  
	
  
Table	
  2.4:	
  Literature	
  values	
  for	
  poultry	
  manure	
  and	
  poultry	
  litter	
  bio-­‐methane	
  potentials.	
  	
  	
  
Specific	
  Methane	
  Yield	
  	
   Description	
   Source	
  or	
  reference	
  
140	
  	
  mL	
  CH4/	
  g	
  VSin	
   Self-­‐mixed	
  anaerobic	
  
digester,	
  poultry	
  litter.	
  10%	
  
TS,	
  25	
  day	
  HRT	
  
Gangagni	
  Rao	
  et	
  al.	
  (2013)	
  
160	
  mL	
  CH4/	
  g	
  VS	
  reduced	
   3.5	
  kg	
  VS/	
  m3/day	
  13	
  day	
  
HRT	
  
Gangagni	
  Rao	
  et	
  al.	
  (2011)	
  
245	
  mL	
  CH4/g	
  VSin	
  and	
  372	
  mL	
  CH4/g	
  VSin	
   29	
  day	
  HRT,	
  4%	
  VS	
  and	
  12	
  
day	
  HRT,	
  1%	
  VS,	
  
respectively	
  
Webb	
  and	
  Hawkes	
  (1985)	
  
320	
  mL	
  CH4/g	
  VSin	
   TAN	
  2,830	
  mg/L,	
  
thermophilic	
  CSTR	
  
Niu	
  et	
  al.	
  (2014)	
  
195	
  and	
  157	
  mL	
  CH4/	
  g	
  VSin	
   Batch	
  initial	
  pH	
  8,	
  55°C;	
  
treated	
  poultry	
  manure	
  and	
  
mixture	
  treated	
  and	
  non-­‐
treated	
  manure,	
  respectively	
  
Abouelenien	
  et	
  al.	
  (2010)	
  
31	
  mL	
  CH4/	
  g	
  VSin	
   Sequential	
  batch	
  experiment	
  
to	
  test	
  acclimated	
  bacterial	
  
performance	
  in	
  high	
  TAN	
  of	
  
8-­‐14	
  g-­‐N	
  kg-­‐1	
  
Abouelenien	
  et	
  al.	
  (2009)	
  
350–400	
   mL	
   CH4/g	
   VSinat	
   TAN	
   lower	
   than	
  
5,000	
   mg/L;	
   300	
   mL	
   CH4/g	
   VSin	
   at	
   TAN	
   of	
  
10,000	
   mg/L;	
   complete	
   inhibition	
   at	
   TAN	
  
16,000	
  mg/L	
  
12-­‐L,	
  mesophilic	
  CSTR.	
  	
  30-­‐
day	
  HRT	
  
Niu	
  et	
  al.	
  (2013)	
  
	
  
 
	
   	
  20	
  
	
  
Figure	
  2.3:	
  Effect	
  of	
  dilution	
  of	
  inhibited	
  digester’s	
  effluent	
  on	
  TAN	
  and	
  specific	
  methane	
  
yield.	
  	
  	
  	
  	
  
	
  
Whereas	
  the	
  6%	
  dilution	
  in	
  the	
  IE	
  treatment	
  was	
  substantially	
  inhibited,	
  the	
  seed	
  
treatment	
  that	
  was	
  80%	
  diluted	
  and	
  20%	
  acclimated	
  seed	
  (IE)	
  achieved	
  substantially	
  
higher	
  methane	
  yields	
  (per	
  g	
  VSin)	
  than	
  those	
  observed	
  in	
  previous	
  BMPs	
  studies	
  of	
  poultry	
  
manure	
  (Table	
  2.4).	
  	
  These	
  results	
  agree	
  with	
  the	
  conclusions	
  of	
  Chen	
  et	
  al	
  (2008),	
  which	
  
also	
  noted	
  BMP	
  values	
  vary	
  substantially	
  due	
  to	
  differences	
  in	
  the	
  consortium	
  of	
  anaerobic	
  
microorganisms	
  and	
  substrate	
  composition.	
  	
  In	
  general,	
  however,	
  the	
  higher	
  BMP	
  values	
  
observed	
  with	
  inhibited	
  digestion	
  systems	
  may	
  be	
  attributed	
  to	
  proper	
  seed	
  acclimation,	
  
VFA	
  accumulation,	
  and	
  changes	
  in	
  Archea	
  metabolic	
  pathways.	
  	
  	
  
	
  
Early	
  inhibition	
  studies	
  set	
  the	
  tolerance	
  for	
  acclimated	
  Archea	
  at	
  4	
  g/L	
  TAN	
  (Angelidaki	
  I.,	
  
Ellegaard	
  L.,	
  Ahring	
  B.	
  K.,	
  1993),	
  while	
  similar	
  studies	
  noted	
  lack	
  of	
  inhibition	
  of	
  acclimated	
  
bacteria	
  that	
  were	
  7-­‐10	
  times	
  higher	
  in	
  NH3	
  tolerance	
  than	
  studies	
  that	
  didn’t	
  use	
  a	
  seed	
  
acclimated	
  to	
  the	
  substrate	
  (Hansen,	
  Angelidaki,	
  and	
  Ahring	
  1998).	
  	
  Similarly,	
  anaerobic	
  
 
	
   	
  21	
  
systems	
  have	
  experienced	
  less	
  inhibition	
  after	
  extended	
  periods	
  of	
  operations,	
  indicating	
  
microbial	
  adaptation	
  to	
  inhibitory	
  conditions	
  (Wang,	
  Hovland,	
  and	
  Bakke	
  2013).	
  	
  
Abouelenien,	
  Nakashimada,	
  and	
  Nishio	
  (2009)	
  further	
  identified	
  the	
  effectiveness	
  of	
  
acclimated	
  seed	
  bacteria	
  by	
  conducting	
  nine	
  sequential	
  batch	
  studies,	
  where	
  a	
  portion	
  of	
  
each	
  batch	
  was	
  added	
  to	
  the	
  next	
  as	
  seed.	
  	
  Biogas	
  continued	
  to	
  increase	
  even	
  as	
  the	
  
ammonia	
  concentration	
  increased.	
  	
  Other	
  research	
  also	
  indicated	
  that	
  AD	
  systems	
  that	
  
function	
  in	
  higher	
  TAN	
  levels	
  benefit	
  from	
  the	
  increased	
  buffering	
  capacity	
  associated	
  with	
  
the	
  ammonium	
  ion	
  (Procházka	
  et	
  al.	
  2012).	
  	
  The	
  Seed	
  in	
  this	
  study	
  was	
  effluent	
  from	
  a	
  
digester	
  system	
  operating	
  for	
  two	
  years	
  under	
  inhibitory	
  conditions	
  being	
  loaded	
  with	
  the	
  
poultry	
  litter	
  and	
  recycled	
  effluent	
  substrates	
  used	
  in	
  the	
  study,	
  and	
  therefore,	
  can	
  be	
  
considered	
  acclimated.	
  
	
  
There	
  is	
  also	
  evidence	
  in	
  the	
  literature	
  that	
  supports	
  this	
  study’s	
  elevated	
  methane	
  
production	
  based	
  on	
  the	
  accumulation	
  of	
  volatile	
  fatty	
  acids	
  (VFA).	
  	
  Wilson	
  et	
  al.	
  (2013)	
  
reported	
  that	
  acclimated	
  bacteria	
  achieved	
  similar	
  rates	
  of	
  hydrolysis	
  at	
  5	
  g/L	
  TAN	
  to	
  the	
  
baseline	
  values,	
  confirming	
  that	
  hydrolysis	
  isn’t	
  rate	
  limiting	
  in	
  TAN	
  inhibited	
  digestion	
  
systems.	
  	
  Elevated	
  ammonia	
  levels	
  are	
  well	
  documented	
  to	
  accumulate	
  VFA	
  (Resch	
  et	
  al.	
  
2011),	
  with	
  longer	
  chain	
  VFA-­‐	
  propionic,	
  butyric	
  and	
  valeric	
  acids,	
  having	
  more	
  elevated	
  
levels	
  in	
  the	
  more	
  highly	
  inhibited	
  systems	
  (Poggi-­‐Varaldo	
  et	
  al.	
  1997).	
  	
  Other	
  studies	
  
indicated	
  VFA	
  accumulation	
  at	
  higher	
  TAN	
  levels	
  (Bruni	
  et	
  al.	
  2013;	
  Niu	
  et	
  al.,	
  2014).	
  	
  Niu	
  et	
  
al.	
  (2013)	
  conducted	
  a	
  study	
  in	
  which	
  they	
  established	
  BMPs	
  for	
  a	
  chicken	
  manure	
  
feedstock	
  at	
  TAN	
  concentrations	
  lower	
  than	
  5,000	
  mg/L,	
  then	
  increased	
  TAN	
  to	
  extreme	
  
inhibitory	
  levels	
  (16,000	
  mg	
  TAN/L),	
  and	
  finally	
  diluted	
  the	
  substrate	
  after	
  the	
  extreme	
  
 
	
   	
  22	
  
inhibitory	
  levels	
  to	
  4,000	
  mg	
  TAN/L.	
  	
  The	
  initial	
  BMP	
  was	
  350–400	
  mL	
  biogas/g	
  VSin;	
  the	
  
process	
  was	
  completely	
  inhibited	
  at	
  the	
  extreme	
  TAN	
  levels;	
  but	
  achieved	
  a	
  value	
  of	
  500	
  
mL	
  biogas/g	
  VSin	
  after	
  dilution.	
  	
  Similar	
  to	
  this	
  study,	
  the	
  Niu	
  et	
  al.	
  (2013)	
  study	
  
demonstrated	
  an	
  increased	
  yield	
  potential	
  of	
  previously	
  inhibited	
  substrate	
  once	
  inhibitory	
  
characteristics	
  are	
  alleviated.	
  	
  Niu	
  et	
  al.	
  (2014)	
  noted	
  that	
  prolonged	
  accumulation	
  of	
  TAN	
  
(over	
  6,000	
  mg/L)	
  resulted	
  in	
  elevated	
  levels	
  of	
  VFA	
  accumulation	
  in	
  the	
  digester	
  system	
  of	
  
25,000	
  mg/L.	
  	
  This	
  result	
  corroborates	
  the	
  potential	
  for	
  an	
  inhibited	
  system	
  to	
  accumulate	
  
VFA	
  under	
  inhibited	
  conditions,	
  and	
  once	
  the	
  inhibited	
  conditions	
  are	
  alleviated,	
  provide	
  a	
  
substrate	
  with	
  higher	
  methane	
  potential.	
  	
  	
  
	
  
The	
  shift	
  of	
  methanogenic	
  pathways	
  in	
  ammonia/	
  ammonium	
  inhibited	
  anaerobic	
  
environments,	
  and	
  the	
  Archea	
  that	
  drive	
  them,	
  has	
  been	
  well	
  documented	
  in	
  the	
  literature.	
  	
  
The	
  consensus	
  is	
  that	
  the	
  shift	
  from	
  the	
  aceticlastic	
  to	
  syntrophic	
  acetate	
  oxidation	
  (SAO)/	
  
hydrogenotrophic	
  pathway	
  depends	
  on	
  how	
  acclimated	
  the	
  bacteria	
  are	
  to	
  elevated	
  levels	
  
of	
  TAN,	
  but	
  happens	
  at	
  approximately	
  4	
  g/L	
  TAN	
  (Hao	
  et	
  al.,	
  2013;	
  Smith	
  et	
  al.,	
  2014;	
  
Angenent,	
  Sung,	
  and	
  Raskin,	
  2002;	
  Westerholm	
  et	
  al.,	
  2011;	
  Zhang,	
  Yuan,	
  and	
  Lu,	
  2014;	
  
Westerholm	
  et	
  al.,	
  2011).	
  	
  The	
  energetics	
  between	
  acetotrophic	
  (aceticlastic)	
  and	
  SAO/	
  
hydrogenotrophic	
  Archea	
  differ	
  as	
  do	
  their	
  tolerances	
  for	
  higher	
  pH	
  and	
  ammonium/	
  
ammonia.	
  	
  Energetically,	
  aceticlastic	
  methanogenesis	
  is	
  more	
  favorable	
  than	
  the	
  
combination	
  of	
  syntrophic	
  acetate	
  oxidation	
  and	
  hydrogenotropic	
  methanogenesis,	
  with	
  
their	
  ΔG	
  being	
  -­‐36.0	
  kj/mol	
  CH4	
  and	
  -­‐22.0	
  kj/mol	
  CH4	
  respectively	
  (Welte	
  and	
  
Deppenmeier,	
  2014;	
  Dolfing,	
  2014).	
  	
  But	
  SAO	
  and	
  hydrogenotrophic	
  Archea	
  consortium	
  
have	
  exhibited	
  higher	
  tolerances	
  for	
  proton	
  imbalance,	
  thus	
  being	
  better	
  adapted	
  to	
  
 
	
   	
  23	
  
elevated	
  TAN	
  and	
  pH	
  environs	
  (Smith	
  et	
  al.,	
  2014;	
  Angenent,	
  Sung,	
  and	
  Raskin,	
  2002;	
  
Westerholm	
  et	
  al.,	
  2011).	
  	
  With	
  the	
  shift	
  in	
  pathways	
  also	
  comes	
  a	
  decrease	
  in	
  acetate	
  
degradation	
  efficiency.	
  	
  Schnürer,	
  Zellner,	
  and	
  Svensson	
  (1999)	
  noted	
  the	
  decrease	
  was	
  
substantially	
  lower	
  (10-­‐800	
  times)	
  when	
  SAO/	
  hydrogenotrophic	
  methanogenesis	
  was	
  the	
  
dominant	
  acetate	
  degradation	
  pathway.	
  	
  This	
  is	
  perhaps	
  related	
  to	
  the	
  difference	
  of	
  
doubling	
  time	
  of	
  SAO	
  cultures	
  compared	
  to	
  aceticlastic	
  methanogens,	
  measured	
  at	
  28	
  days	
  
and	
  2-­‐12	
  days	
  respectively	
  (A.	
  Schnürer	
  and	
  Nordberg,	
  2008).	
  	
  In	
  addition	
  to	
  the	
  SAO/	
  
hydrogenotrophic	
  Archea	
  being	
  more	
  tolerant	
  to	
  elevated	
  TAN,	
  their	
  slow	
  growth	
  rate	
  also	
  
alludes	
  to	
  the	
  need	
  for	
  an	
  acclimated	
  seed	
  as	
  it	
  would	
  take	
  time	
  to	
  establish	
  substantial	
  
population	
  levels.	
  
	
  
In	
  summary,	
  proper	
  seed	
  acclimation,	
  VFA	
  accumulation	
  in	
  inhibited	
  systems,	
  and	
  shifts	
  in	
  
Archea	
  pathways	
  as	
  a	
  result	
  of	
  increased	
  TAN	
  may	
  explain	
  the	
  significantly	
  different	
  BMPs	
  
observed	
  from	
  the	
  Seed	
  and	
  inhibited	
  effluent	
  (IE6)	
  sample	
  used	
  in	
  this	
  study.	
  	
  	
  
	
  
2.4.4	
  Methane	
  Production	
  within	
  Treatments	
  
	
  
	
  
Methane	
  production	
  can	
  be	
  considered	
  in	
  terms	
  of	
  volatile	
  solids	
  input	
  or	
  in	
  terms	
  of	
  a	
  unit	
  
volume	
  of	
  substrate,	
  which	
  in	
  this	
  study	
  was	
  100mL.	
  	
  The	
  former	
  is	
  referred	
  to	
  as	
  specific	
  
yield,	
  while	
  the	
  latter	
  is	
  the	
  volumetric	
  yield.	
  	
  Specific	
  yield	
  normalizes	
  the	
  methane	
  
production	
  to	
  volatile	
  solids	
  input	
  and	
  is	
  the	
  common	
  metric	
  used	
  within	
  the	
  scientific	
  
community.	
  	
  Volumetric	
  yield,	
  on	
  the	
  other	
  hand,	
  normalizes	
  methane	
  production	
  with	
  
respect	
  to	
  the	
  substrate	
  volumetric	
  loading	
  into	
  the	
  digestion	
  vessel.	
  	
  The	
  latter	
  is	
  more	
  
useful	
  in	
  the	
  industry	
  for	
  engineering	
  designs	
  of	
  digesters.	
  
 
	
   	
  24	
  
	
  
	
  
The	
  specific	
  methane	
  yields	
  for	
  each	
  of	
  the	
  treatments,	
  at	
  different	
  dilutions,	
  are	
  shown	
  in	
  
Figure	
  2.4.	
  	
  The	
  Aerated	
  Effluent	
  (AE)	
  resulted	
  in	
  significantly	
  higher	
  specific	
  methane	
  
yields	
  than	
  either	
  the	
  Heated	
  and	
  Aerated	
  (HAE)	
  or	
  the	
  Inhibited	
  Effluent	
  (IE).	
  	
  For	
  each	
  
treatment,	
  dilution	
  further	
  enhanced	
  the	
  specific	
  methane	
  yields.	
  
	
  
	
  
Figure	
  2.4:	
  Specific	
  methane	
  yield	
  of	
  each	
  of	
  the	
  treated	
  effluents,	
  the	
  control	
  (inhibited	
  
effluent),	
  and	
  the	
  Seed.	
  	
  	
  
	
  
Figure	
  2.5	
  show	
  the	
  volumetric	
  yield	
  for	
  all	
  treatments	
  at	
  different	
  dilution	
  levels.	
  	
  
Volumetric	
  methane	
  yield	
  is	
  a	
  relevant	
  design	
  parameter	
  that	
  takes	
  into	
  account	
  TS.	
  	
  While	
  
the	
  normalization	
  of	
  methane	
  to	
  VS	
  is	
  scientifically	
  standard,	
  it	
  often	
  undervalues	
  methane	
  
production	
  at	
  high	
  solids.	
  	
  The	
  gas	
  production	
  at	
  higher	
  solids	
  can	
  be	
  similar	
  to	
  that	
  of	
  a	
  
lower	
  solid	
  trial,	
  but	
  have	
  a	
  lower	
  specific	
  yield	
  due	
  the	
  higher	
  VS.	
  	
  Volumetric	
  yield	
  is	
  a	
  
better	
  indicator	
  of	
  how	
  much	
  methane	
  a	
  treatment	
  will	
  effectively	
  yield.	
  	
  	
  
	
  
0 20 40 60 80
0
500
1000
1500
Dilution Rates
mLMethane/gVSin
Inhibited Effluent
Aerated
Heat and Aeration
Seed
 
	
   	
  25	
  
	
  
Figure	
  2.5:	
  Volumetric	
  methane	
  yields	
  of	
  each	
  of	
  the	
  treated	
  effluents,	
  the	
  control	
  
(inhibited	
  effluent),	
  and	
  the	
  Seed.	
  	
  	
  
	
  
2.4.5	
  Effect	
  of	
  Dilution	
  on	
  Specific	
  Methane	
  Yield	
  
	
  
	
  
The	
  specific	
  methane	
  yields	
  for	
  the	
  Seed	
  dilution	
  and	
  the	
  60%	
  dilution	
  were	
  statistically	
  
higher	
  than	
  the	
  yields	
  from	
  the	
  6%,	
  20%,	
  and	
  40%	
  dilutions	
  (Figure	
  2.6).	
  	
  As	
  the	
  dilution	
  
increased,	
  both	
  TS	
  and	
  TAN	
  decreased	
  simultaneously.	
  	
  For	
  both	
  the	
  60%	
  dilution	
  and	
  the	
  
80%	
  seed	
  dilution,	
  the	
  TAN	
  levels	
  were	
  below	
  the	
  4,000	
  mg/L	
  threshold	
  for	
  the	
  onset	
  of	
  
TAN	
  inhibition,	
  at	
  2,017	
  mg/L	
  and	
  3,391	
  mg/L,	
  respectively.	
  	
  Below	
  this	
  level	
  of	
  TAN,	
  it	
  is	
  
expected	
  that	
  the	
  more	
  energetically	
  favorable	
  aceticlastic	
  degradation	
  pathway	
  is	
  
predominant.	
  
	
  
0 20 40 60 80
0
500
1000
1500
2000
2500
Dilution Rates
mLMethane/100mLSolution
Inhibited Effluent
Aerated
Heat and Aeration
Seed
 
	
   	
  26	
  
	
  
Figure	
  2.6:	
  Effect	
  of	
  dilution	
  on	
  specific	
  methane	
  yield	
  (same	
  letters	
  above	
  each	
  cluster	
  
denote	
  statistical	
  similarity,	
  while	
  the	
  converse	
  is	
  also	
  true).	
  	
  	
  
	
  
	
  
2.4.6	
  Effect	
  of	
  Treatment	
  on	
  Specific	
  Methane	
  Yield	
  
	
  
	
  
The	
  specific	
  methane	
  yields	
  for	
  both	
  the	
  AE	
  and	
  the	
  Seed	
  treatment	
  were	
  statistically	
  
greater	
  than	
  those	
  for	
  either	
  the	
  HAE	
  Treatment	
  or	
  the	
  IE	
  Treatment	
  (Figure	
  2.7).	
  	
  Since	
  the	
  
levels	
  of	
  TAN	
  were	
  lower	
  in	
  the	
  HAE	
  than	
  in	
  the	
  AE,	
  these	
  results	
  suggest	
  that	
  the	
  heating	
  
process	
  may	
  have	
  sterilized	
  or	
  killed	
  some	
  beneficial	
  Archea,	
  which	
  on	
  the	
  other	
  hand,	
  
could	
  survive	
  the	
  aeration	
  process.	
  	
  Further	
  work	
  to	
  elucidate	
  the	
  dynamics	
  and	
  fate	
  of	
  the	
  
microbial	
  consortia	
  is	
  necessary.	
  	
  Another	
  possible	
  explanation	
  for	
  these	
  results	
  is	
  the	
  
potential	
  volatilization	
  of	
  short-­‐chained	
  VFA	
  during	
  the	
  heat-­‐treatment	
  process.	
  	
  Future	
  
studies	
  should	
  also	
  be	
  designed	
  to	
  test	
  this	
  stipulation.	
  
	
  
	
  
6%
20%
40%
60%
Seed:80%
0
500
1000
1500
2000
Dilution Rates
mLMethane/gVSin
a a
a
b b
 
	
   	
  27	
  
	
  
Figure	
  2.7:	
  Comparison	
  of	
  specific	
  methane	
  yields	
  across	
  treatments	
  (same	
  letters	
  above	
  
the	
  clusters	
  denote	
  statistical	
  similarity,	
  while	
  the	
  converse	
  is	
  true;	
  Aeration	
  and	
  the	
  Seed	
  
had	
  statistically	
  higher	
  specific	
  yield	
  than	
  the	
  Inhibited	
  Effluent	
  and	
  the	
  Heat	
  and	
  Aeration	
  
Effluent).	
  
	
  
	
  
2.4.7	
  Effect	
  of	
  Dilution	
  on	
  Volumetric	
  Methane	
  Yield	
  
	
  
	
  
Figure	
  2.8	
  shows	
  the	
  effect	
  of	
  dilution	
  on	
  volumetric	
  methane	
  yield.	
  	
  Unlike	
  the	
  specific	
  
methane	
  yield,	
  dilution	
  had	
  no	
  significant	
  effect	
  on	
  volumetric	
  yield.	
  	
  These	
  results	
  suggest	
  
that,	
  while	
  substrates	
  with	
  higher	
  solid	
  treatments	
  (less	
  diluted)	
  are	
  not	
  converted	
  to	
  
methane	
  more	
  efficiently,	
  the	
  higher	
  solids	
  content	
  counterbalances	
  the	
  dilution	
  effect.	
  	
  	
  
	
  
H
eatand
A
eration
A
eration
Inhibited
Effluent
Seed
0
500
1000
1500
2000
Effluent Treatment
mLMethanegVSin
b b
a a
 
	
   	
  28	
  
	
  
Figure	
  2.8:	
  Comparison	
  of	
  volumetric	
  methane	
  yields	
  at	
  various	
  dilutions.	
  	
  
	
  
	
  
2.4.8	
  Effect	
  of	
  Treatment	
  on	
  Volumetric	
  Methane	
  Yield	
  
	
  
The	
  effects	
  of	
  treatments	
  on	
  methane	
  volumetric	
  yield	
  are	
  presented	
  in	
  Figure	
  2.9.	
  	
  The	
  AE	
  
treatment	
  resulted	
  in	
  significantly	
  higher	
  volumetric	
  methane	
  yield	
  than	
  the	
  other	
  
treatments.	
  	
  The	
  Seed	
  treatment,	
  however,	
  led	
  into	
  significantly	
  more	
  volumetric	
  methane	
  
yield	
  than	
  the	
  HAE,	
  but	
  not	
  to	
  the	
  IE.	
  	
  The	
  HAE	
  and	
  the	
  IE	
  showed	
  no	
  statistical	
  difference.	
  	
  
As	
  previously	
  noted,	
  the	
  heat-­‐treatment	
  process	
  most	
  probably	
  degraded	
  useful	
  microbial	
  
consortium.	
  	
  	
  
	
  
6%
20%
40%
60%
Seed:80%
0
500
1000
1500
2000
2500
Dilution Rates
mLMethane/100mLSolution
a
a
a
a
a
 
	
   	
  29	
  
	
  
Figure	
  2.9:	
  Effect	
  of	
  treatments	
  (aeration	
  or	
  combined	
  heating	
  and	
  aeration)	
  on	
  volumetric	
  
methane	
  yield	
  compared	
  to	
  the	
  Seed	
  and	
  Inhibited	
  Effluent.	
  	
  	
  
	
  
There	
  are	
  valuable	
  ramifications,	
  based	
  on	
  the	
  results	
  of	
  this	
  study,	
  for	
  producers	
  
processing	
  their	
  high	
  TAN	
  chicken	
  wastes	
  through	
  anaerobic	
  digestion.	
  	
  Both	
  aeration	
  and	
  
dilution	
  treatments	
  have	
  proven	
  as	
  effective	
  conditioning	
  methods	
  of	
  inhibited-­‐effluent	
  
from	
  an	
  inhibited	
  or	
  sour	
  anaerobic	
  digester.	
  	
  However,	
  water	
  is	
  a	
  valuable	
  resource,	
  which	
  
also	
  exacerbates	
  effluent	
  volume	
  and	
  subsequent	
  management	
  issues.	
  	
  The	
  less	
  the	
  water	
  
that	
  is	
  introduced	
  into	
  an	
  anaerobic	
  digestion	
  system,	
  the	
  better	
  it	
  is	
  for	
  the	
  entire	
  poultry	
  
operation.	
  	
  On	
  the	
  other	
  hand,	
  aeration	
  treatment,	
  although	
  a	
  viable	
  choice,	
  is	
  not	
  only	
  
expensive	
  but	
  also	
  may	
  result	
  in	
  negative	
  impacts	
  on	
  air	
  and	
  water	
  quality	
  issues.	
  	
  A	
  
thorough	
  economic	
  and	
  environmental	
  impact	
  assessment,	
  for	
  each	
  method,	
  is	
  
recommended	
  to	
  guide	
  selection	
  of	
  the	
  approach	
  to	
  be	
  adopted.	
  
	
  
	
  
	
  
	
   	
  
H
eatand
A
eration
A
eration
Inhibited
Effluent
Seed
0
500
1000
1500
2000
2500
Effluent Treatment
mLMethane/100mLSolution
c
b
a ab
 
	
   	
  30	
  
2.5	
  Conclusions	
  
	
  
	
  
1. This	
  research	
  revealed	
  the	
  potential	
  for	
  higher	
  yield	
  of	
  methane	
  from	
  previously	
  
ammonia-­‐inhibited	
  poultry	
  waste	
  effluent	
  from	
  an	
  anaerobic	
  digester	
  than	
  literature	
  
BMPs	
  once	
  the	
  inhibited	
  conditions	
  were	
  alleviated.	
  
2. The	
  aeration	
  treatment	
  of	
  previously	
  ammonia-­‐inhibited	
  poultry	
  waste	
  from	
  an	
  
anaerobic	
  digester	
  significantly	
  enhanced	
  specific	
  methane	
  yield	
  more	
  than	
  either	
  the	
  
combined	
  heat	
  and	
  aeration	
  treatment	
  or	
  the	
  inhibited	
  effluent.	
  	
  
3. For	
  each	
  treatment	
  (aeration,	
  combined	
  heat	
  and	
  aeration,	
  and	
  the	
  inhibited	
  effluent),	
  
dilution	
  also	
  enhanced	
  the	
  specific	
  methane	
  yields.	
  
4. Aeration	
  of	
  previously	
  ammonia-­‐inhibited	
  anaerobic	
  digestion	
  poultry	
  litter	
  effluent	
  
significantly	
  enhanced	
  volumetric	
  methane	
  yields	
  more	
  than	
  the	
  combined	
  heating	
  and	
  
aeration	
  of	
  the	
  ammonia-­‐inhibited	
  substrate.	
  	
  
5. Unlike	
  for	
  the	
  specific	
  methane	
  yield,	
  however,	
  dilution	
  of	
  ammonia-­‐inhibited	
  
digester’s	
  effluent	
  had	
  no	
  significant	
  effect	
  on	
  volumetric	
  methane	
  yield.	
  
6. Overall,	
  this	
  study	
  suggests	
  that	
  both	
  aeration	
  and	
  dilution	
  could	
  be	
  effective	
  methods	
  
for	
  conditioning	
  previously	
  ammonia-­‐inhibited	
  anaerobic	
  digester’s	
  effluent	
  prior	
  to	
  
re-­‐using	
  it	
  to	
  restore	
  digester’s	
  normal	
  operation.	
  
	
  
	
   	
  
 
	
   	
  31	
  
2.6	
  Recommendations	
  
	
  
Future	
  work	
  should	
  be	
  directed	
  at:	
  1)	
  establishing	
  microbial	
  dynamics	
  and	
  fate	
  during	
  the	
  
heating	
  and	
  aeration	
  processes,	
  2)	
  VFA	
  identification	
  and	
  their	
  potential	
  volatilization	
  
during	
  the	
  heating	
  and	
  aeration	
  process,	
  and	
  3)	
  extent	
  of	
  VFA	
  accumulation	
  in	
  inhibited	
  
anaerobic	
  digesters.	
  
	
   	
  
 
	
   	
  32	
  
2.7	
  References	
  
	
  
Abouelenien,	
  F.,	
  W.	
  Fujiwara,	
  Y.	
  Namba,	
  M.	
  Kosseva,	
  N.	
  Nishio,	
  Y.	
  Nakashimada.	
  2010.	
  
“Improved	
  Methane	
  Fermentation	
  of	
  Chicken	
  Manure	
  via	
  Ammonia	
  Removal	
  by	
  
Biogas	
  Recycle.”	
  Bioresource	
  Technology	
  101	
  (16):	
  6368–73.	
  
doi:10.1016/j.biortech.2010.03.071.	
  
	
  
Abouelenien,	
  F.,	
  Y.	
  Nakashimada,	
  N.	
  Nishio.	
  2009.	
  “Dry	
  Mesophilic	
  Fermentation	
  of	
  Chicken	
  
Manure	
  for	
  Production	
  of	
  Methane	
  by	
  Repeated	
  Batch	
  Culture.”	
  Journal	
  of	
  Bioscience	
  
and	
  Bioengineering	
  107	
  (3):	
  293–95.	
  doi:10.1016/j.jbiosc.2008.10.009.	
  
	
  
Angelidaki	
  I.,	
  L.	
  Ellegaard,	
  B.K.	
  Ahring.	
  1993.	
  “A	
  Mathematical	
  Model	
  for	
  Dynamic	
  
Simulation	
  of	
  Anaerobic	
  Digestion	
  of	
  Complex	
  Substrates:	
  Focusing	
  on	
  Ammonia	
  
Inhibition.”	
  Bioresources	
  and	
  Biotechnology	
  42:	
  159–66.	
  
	
  
Angenent,	
  L.T.,	
  S.	
  Sung,	
  L.	
  Raskin.	
  2002.	
  “Methanogenic	
  Population	
  Dynamics	
  during	
  
Startup	
  of	
  a	
  Full-­‐Scale	
  Anaerobic	
  Sequencing	
  Batch	
  Reactor	
  Treating	
  Swine	
  Waste.”	
  
Water	
  Research	
  36	
  (18):	
  4648–54.	
  doi:10.1016/S0043-­‐1354(02)00199-­‐9.	
  
	
  
Angus,	
  A.J.,	
  I.D.	
  Hodge,	
  M.A.	
  Sutton.	
  2006.	
  “Ammonia	
  Abatement	
  Strategies	
  in	
  Livestock	
  
Production:	
  A	
  Case	
  Study	
  of	
  a	
  Poultry	
  Installation.”	
  Agricultural	
  Systems	
  89	
  (1):	
  204–
22.	
  doi:10.1016/j.agsy.2005.09.003.	
  
	
  
Benabdallah	
  E.H.,	
  T.,	
  S.	
  Astals,	
  A.	
  Galí,	
  S.	
  Mace,	
  J.	
  Mata-­‐Álvarez.	
  2009.	
  “Ammonia	
  Influence	
  in	
  
Anaerobic	
  Digestion	
  of	
  OFMSW.”	
  Water	
  Science	
  &	
  Technology	
  59	
  (6):	
  1153–58.	
  
doi:10.2166/wst.2009.100.	
  
	
  
Bolan,	
  N.S.,	
  A.A.	
  Szogi,	
  T.	
  Chuasavathi,	
  B.	
  Seshadri,	
  M.J.	
  Rothrock,	
  P.	
  Panneerselvam.	
  2010.	
  
“Uses	
  and	
  Management	
  of	
  Poultry	
  Litter.”	
  World’s	
  Poultry	
  Science	
  Journal	
  66	
  (04):	
  
673–98.	
  doi:10.1017/S0043933910000656.	
  
	
  
Bradford,	
  S.A.,	
  E.	
  Segal,	
  W.	
  Zheng,	
  Q.	
  Wang,	
  S.R.	
  Hutchins.	
  2008.	
  “Reuse	
  of	
  Concentrated	
  
Animal	
  Feeding	
  Operation	
  Wastewater	
  on	
  Agricultural	
  Lands.”	
  Journal	
  of	
  
Environmental	
  Quality	
  37	
  (5):	
  S97–115.	
  doi:10.2134/jeq2007.0393.	
  
	
  
 
	
   	
  33	
  
Bruni,	
  E.,	
  A.J.	
  Ward,	
  M.	
  Køcks,	
  A.	
  Feilberg,	
  A.P.S.	
  Adamsen,	
  A.P.	
  Jensen,	
  A.K.	
  Poulsen.	
  2013.	
  
“Comprehensive	
  Monitoring	
  of	
  a	
  Biogas	
  Process	
  during	
  Pulse	
  Loads	
  with	
  Ammonia.”	
  
Biomass	
  and	
  Bioenergy	
  56:	
  211–20.	
  doi:10.1016/j.biombioe.2013.05.002.	
  
	
  
Bujoczek,	
  G.,	
  J.	
  Oleszkiewicz,	
  R.	
  Sparling,	
  S.	
  Cenkowski.	
  2000.	
  “High	
  Solid	
  Anaerobic	
  
Digestion	
  of	
  Chicken	
  Manure.”	
  Journal	
  of	
  Agricultural	
  Engineering	
  Research	
  76	
  (1):	
  
51–60.	
  doi:10.1006/jaer.2000.0529.	
  
	
  
Burkholder,	
  J.,	
  B.	
  Libra,	
  P.	
  Weyer,	
  S.	
  Heathcote,	
  D.	
  Kolpin,	
  P	
  S.	
  Thorne,	
  M.	
  Wichman.	
  2007.	
  
“Impacts	
  of	
  Waste	
  from	
  Concentrated	
  Animal	
  Feeding	
  Operations	
  on	
  Water	
  Quality.”	
  
Environmental	
  Health	
  Perspectives	
  115	
  (2):	
  308–12.	
  doi:10.1289/ehp.8839.	
  
	
  
Chen,	
  Y.,	
  J.J.	
  Cheng,	
  K.S.	
  Creamer.	
  2008.	
  “Inhibition	
  of	
  Anaerobic	
  Digestion	
  Process:	
  A	
  
Review.”	
  Bioresource	
  Technology	
  99	
  (10):	
  4044–64.	
  
doi:10.1016/j.biortech.2007.01.057.	
  
	
  
Collins,	
  A.R.,	
  J.	
  Murphy,	
  D.	
  Bainbridge.	
  2000.	
  “Optimal	
  Loading	
  Rates	
  and	
  Economic	
  
Analyses	
  for	
  Anaerobic	
  Digestion	
  of	
  Poultry	
  Waste.”	
  Journal	
  of	
  the	
  Air	
  &	
  Waste	
  
Management	
  Association	
  50	
  (6):	
  1037–44.	
  
	
  
Dolfing,	
  J.	
  2014.	
  “Thermodynamic	
  Constraints	
  on	
  Syntrophic	
  Acetate	
  Oxidation.”	
  Applied	
  
and	
  Environmental	
  Microbiology	
  80	
  (4):	
  1539–41.	
  doi:10.1128/AEM.03312-­‐13.	
  
	
  
Edwards,	
  D.R.,	
  T.C.	
  Daniel.	
  1992.	
  “Environmental	
  Impacts	
  of	
  on-­‐Farm	
  Poultry	
  Waste-­‐
Disposal	
  -­‐	
  a	
  Review.”	
  Bioresource	
  Technology	
  41	
  (1):	
  9–33.	
  doi:10.1016/0960-­‐
8524(92)90094-­‐E.	
  
	
  
El-­‐Hadidi,	
  Y.M.,	
  A.I.	
  Al-­‐Turki.	
  2007.	
  “Organic	
  Fertilizer	
  and	
  Biogas	
  Production	
  from	
  Poultry	
  
Wastes.”	
  Journal	
  of	
  Food	
  Agriculture	
  &	
  Environment	
  5	
  (1):	
  228–33.	
  
	
  
Frear,	
  C.,	
  Z.-­‐W.	
  Wang,	
  C.	
  Li,	
  and	
  S.	
  Chen.	
  2011.	
  “Biogas	
  Potential	
  and	
  Microbial	
  Population	
  
Distributions	
  in	
  Flushed	
  Dairy	
  Manure	
  and	
  Implications	
  on	
  Anaerobic	
  Digestion	
  
Technology.”	
  Journal	
  of	
  Chemical	
  Technology	
  &	
  Biotechnology	
  86	
  (1):	
  145–52.	
  
doi:10.1002/jctb.2484.	
  
	
  
Gangagni,	
  R.A.,	
  B.	
  Gandu,	
  K.	
  Sandhya,	
  K.	
  Kranti,	
  S.	
  Ahuja,	
  Y	
  V.	
  Swamy.	
  2013.	
  “Decentralized	
  
Application	
  of	
  Anaerobic	
  Digesters	
  in	
  Small	
  Poultry	
  Farms:	
  Performance	
  Analysis	
  of	
  
 
	
   	
  34	
  
High	
  Rate	
  Self	
  Mixed	
  Anaerobic	
  Digester	
  and	
  Conventional	
  Fixed	
  Dome	
  Anaerobic	
  
Digester.”	
  Bioresource	
  Technology	
  144:	
  121–27.	
  doi:10.1016/j.biortech.2013.06.076.	
  
	
  
Gangagni,	
  R.A.,	
  B.	
  Gandu,	
  Y.V.	
  Swamy.	
  2012.	
  “Mass	
  Transfer	
  Dynamics	
  of	
  Ammonia	
  in	
  High	
  
Rate	
  Biomethanation	
  of	
  Poultry	
  Litter	
  Leachate.”	
  Bioresource	
  Technology,	
  Special	
  
Issue:	
  Innovative	
  Researches	
  on	
  Algal	
  Biomass,	
  109:	
  234–38.	
  
doi:10.1016/j.biortech.2011.12.136.	
  
	
  
Gangagni,	
  R.A.,	
  S.S.	
  Prakash,	
  J.	
  Joseph,	
  A.R.	
  Reddy,	
  P.	
  N.	
  Sarma.	
  2011.	
  “Multi	
  Stage	
  High	
  Rate	
  
Biomethanation	
  of	
  Poultry	
  Litter	
  with	
  Self	
  Mixed	
  Anaerobic	
  Digester.”	
  Bioresource	
  
Technology	
  102	
  (2):	
  729–35.	
  doi:10.1016/j.biortech.2010.08.069.	
  
	
  
Gilchrist,	
  M.J.,	
  C.	
  Greko,	
  D.B.	
  Wallinga,	
  G.W.	
  Beran,	
  D.G.	
  Riley,	
  P.S.	
  Thorne.	
  2007.	
  “The	
  
Potential	
  Role	
  of	
  Concentrated	
  Animal	
  Feeding	
  Operations	
  in	
  Infectious	
  Disease	
  
Epidemics	
  and	
  Antibiotic	
  Resistance.”	
  Environmental	
  Health	
  Perspectives	
  115	
  (2):	
  
313–16.	
  doi:10.1289/ehp.8837.	
  
	
  
Guštin,	
  S.,	
  R.	
  Marinšek-­‐Logar.	
  2011.	
  “Effect	
  of	
  pH,	
  Temperature	
  and	
  Air	
  Flow	
  Rate	
  on	
  the	
  
Continuous	
  Ammonia	
  Stripping	
  of	
  the	
  Anaerobic	
  Digestion	
  Effluent.”	
  Process	
  Safety	
  
and	
  Environmental	
  Protection	
  89	
  (1):	
  61–66.	
  doi:10.1016/j.psep.2010.11.001.	
  
	
  
Hansen,	
  K.H.,	
  I.	
  Angelidaki,	
  B.K.	
  Ahring.	
  1998.	
  “Anaerobic	
  Digestion	
  of	
  Swine	
  Manure:	
  
Inhibition	
  by	
  Ammonia.”	
  Water	
  Research	
  32	
  (1):	
  5–12.	
  doi:10.1016/S0043-­‐
1354(97)00201-­‐7.	
  
	
  
Hao,	
  L.,	
  F.	
  Lü,	
  L.	
  Li,	
  Q.	
  Wu,	
  L.	
  Shao,	
  P.	
  He.	
  2013.	
  “Self-­‐Adaption	
  of	
  Methane-­‐Producing	
  
Communities	
  to	
  pH	
  Disturbance	
  at	
  Different	
  Acetate	
  Concentrations	
  by	
  Shifting	
  
Pathways	
  and	
  Population	
  Interaction.”	
  Bioresource	
  Technology	
  140:	
  319–27.	
  
doi:10.1016/j.biortech.2013.04.113.	
  
	
  
Kayhanian,	
  M.	
  1994.	
  “Performance	
  of	
  a	
  High-­‐Solids	
  Anaerobic-­‐Digestion	
  Process	
  Under	
  
Various	
  Ammonia	
  Concentrations.”	
  Journal	
  of	
  Chemical	
  Technology	
  and	
  
Biotechnology	
  59	
  (4):	
  349–52.	
  doi:10.1002/jctb.280590406.	
  
	
  
Kelleher,	
  B.P.,	
  J.J.	
  Leahy,	
  A.M.	
  Henihan,	
  T.	
  F.	
  O’Dwyer,	
  D.	
  Sutton,	
  M.J.	
  Leahy.	
  2002.	
  “Advances	
  
in	
  Poultry	
  Litter	
  Disposal	
  Technology	
  –	
  a	
  Review.”	
  Bioresource	
  Technology,	
  Reviews	
  
Issue,	
  83	
  (1):	
  27–36.	
  doi:10.1016/S0960-­‐8524(01)00133-­‐X.	
  
	
  
Paul Gamble Thesis
Paul Gamble Thesis
Paul Gamble Thesis
Paul Gamble Thesis

More Related Content

Similar to Paul Gamble Thesis

A. muganga research on cow urine
A. muganga research on cow urineA. muganga research on cow urine
A. muganga research on cow urineAdrianusMuganga
 
Cobo et al. nutrient balances in african land use systems across different ...
Cobo et al.   nutrient balances in african land use systems across different ...Cobo et al.   nutrient balances in african land use systems across different ...
Cobo et al. nutrient balances in african land use systems across different ...Adam Ga
 
Food preparation affects on nutritional quality
Food preparation affects on nutritional qualityFood preparation affects on nutritional quality
Food preparation affects on nutritional qualityGabrielle Bruckner
 
Final Anaerobic Capstone Report SP15
Final Anaerobic Capstone Report SP15Final Anaerobic Capstone Report SP15
Final Anaerobic Capstone Report SP15August Steinhilber
 
Food preservation methodology report
Food preservation methodology reportFood preservation methodology report
Food preservation methodology reportAlvino rock
 
UN; Summary of Field and Laboratory Testing for the Biosand Filter
UN;  Summary of Field and Laboratory Testing for the Biosand Filter  UN;  Summary of Field and Laboratory Testing for the Biosand Filter
UN; Summary of Field and Laboratory Testing for the Biosand Filter D2Z
 
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter waste
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter wasteFrom (bio)mass to (bio)gas - or, how to best utilize urban slaughter waste
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter wasteILRI
 
Wastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaWastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaHeather Troutman
 
Utilization of pre aerated sludge in activated sludge process
Utilization of pre aerated sludge in activated sludge processUtilization of pre aerated sludge in activated sludge process
Utilization of pre aerated sludge in activated sludge processeSAT Journals
 
JERRY COMPLETEPROJECT PDF
JERRY COMPLETEPROJECT PDFJERRY COMPLETEPROJECT PDF
JERRY COMPLETEPROJECT PDFJERRY ABU
 
A Review on Juice and Pedigree Making Machine
A Review on Juice and Pedigree Making MachineA Review on Juice and Pedigree Making Machine
A Review on Juice and Pedigree Making MachineIRJET Journal
 
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...IRJET Journal
 
Enhancement of aerobic biodegradation process of organic waste
Enhancement of aerobic biodegradation process of organic wasteEnhancement of aerobic biodegradation process of organic waste
Enhancement of aerobic biodegradation process of organic wasteIRJET Journal
 
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...MDoguche
 

Similar to Paul Gamble Thesis (20)

Carpenter Thesis - Accepted
Carpenter Thesis - AcceptedCarpenter Thesis - Accepted
Carpenter Thesis - Accepted
 
Avery Gottfried - ME thesis 2009
Avery Gottfried - ME thesis 2009Avery Gottfried - ME thesis 2009
Avery Gottfried - ME thesis 2009
 
A. muganga research on cow urine
A. muganga research on cow urineA. muganga research on cow urine
A. muganga research on cow urine
 
Cobo et al. nutrient balances in african land use systems across different ...
Cobo et al.   nutrient balances in african land use systems across different ...Cobo et al.   nutrient balances in african land use systems across different ...
Cobo et al. nutrient balances in african land use systems across different ...
 
Food preparation affects on nutritional quality
Food preparation affects on nutritional qualityFood preparation affects on nutritional quality
Food preparation affects on nutritional quality
 
Final Anaerobic Capstone Report SP15
Final Anaerobic Capstone Report SP15Final Anaerobic Capstone Report SP15
Final Anaerobic Capstone Report SP15
 
Food preservation methodology report
Food preservation methodology reportFood preservation methodology report
Food preservation methodology report
 
UN; Summary of Field and Laboratory Testing for the Biosand Filter
UN;  Summary of Field and Laboratory Testing for the Biosand Filter  UN;  Summary of Field and Laboratory Testing for the Biosand Filter
UN; Summary of Field and Laboratory Testing for the Biosand Filter
 
Literature Review
Literature ReviewLiterature Review
Literature Review
 
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter waste
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter wasteFrom (bio)mass to (bio)gas - or, how to best utilize urban slaughter waste
From (bio)mass to (bio)gas - or, how to best utilize urban slaughter waste
 
F04915660
F04915660F04915660
F04915660
 
Bk34390394
Bk34390394Bk34390394
Bk34390394
 
ACT Report 673
ACT Report 673ACT Report 673
ACT Report 673
 
Wastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, GhanaWastewater Management with Anaerobic Digestion Accra, Ghana
Wastewater Management with Anaerobic Digestion Accra, Ghana
 
Utilization of pre aerated sludge in activated sludge process
Utilization of pre aerated sludge in activated sludge processUtilization of pre aerated sludge in activated sludge process
Utilization of pre aerated sludge in activated sludge process
 
JERRY COMPLETEPROJECT PDF
JERRY COMPLETEPROJECT PDFJERRY COMPLETEPROJECT PDF
JERRY COMPLETEPROJECT PDF
 
A Review on Juice and Pedigree Making Machine
A Review on Juice and Pedigree Making MachineA Review on Juice and Pedigree Making Machine
A Review on Juice and Pedigree Making Machine
 
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...
IRJET- Use of Natural and Artificial Multimedia Filter as an Adsorbent for Fi...
 
Enhancement of aerobic biodegradation process of organic waste
Enhancement of aerobic biodegradation process of organic wasteEnhancement of aerobic biodegradation process of organic waste
Enhancement of aerobic biodegradation process of organic waste
 
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...
OPTIMIZATION OF SOLID STATE FERMENTATION PROCESS ON AGRO-INDUSTRIAL BY-PRODUC...
 

Paul Gamble Thesis

  • 1. METHANE  PRODUCTION  ANALYSIS  OF  INHIBITED  POULTRY  DIGESTION   EFFLUENT  AFTER  DILUTION  AND  AMMONIA  VOLATILIZATION             By   PAUL  FOSTER  GAMBLE           A  thesis  submitted  in  partial  fulfillment  of   the  requirements  for  the  degree  of   MASTER  OF  SCIENCE  IN  ENGINEERING         WASHINGTON  STATE  UNIVERSITY   Voiland  College  of  Engineering  and  Architecture   AUGUST  2015   ©Copyright  by  PAUL  FOSTER  GAMBLE,  2015   All  Rights  Reserved    
  • 2.                                                                         ©Copyright  by  PAUL  FOSTER  GAMBLE,  2015   All  Rights  Reserved      
  • 3.      ii                     To  the  Faculty  of  Washington  State  University:     The  members  of  the  Committee  appointed  to  examine  the  thesis  of  PAUL  FOSTER   GAMBLE  find  it  satisfactory  and  recommend  that  it  be  accepted.                 ________________________________________________________                 Pius  Ndegwa,  Ph.D.,  Chair                       ________________________________________________________                 Craig  Frear,  Ph.D.                     ________________________________________________________                 Troy  Peters,  Ph.D.                          
  • 4.      iii   ACKNOWLEDGMENT   I’d  like  to  thank  my  committee  members  Dr.  Pius  Ndegwa,  Dr.  Craig  Frear,  and  Dr.  Troy   Peters.    Dr.  Ndegwa:  thank  you  for  the  effort  you  put  into  my  written  thesis  and  your   continued  patience  and  support  to  get  this  thesis  right.    Dr.  Frear:  thank  you  for  a  very   interesting  thesis  topic  and  finding  financial  support  for  the  time  I  had  it.    Dr.  Peters:  thank   you  for  your  flexibility  in  this  process.    Thank  you  Dr.  Stockle  and  administrative  staff  at   Biological  Systems  Engineering  for  your  hard  work  and  diligence  to  direct  me  through  the   thesis  process.    Thanks  Jonathan  Lomber  for  your  help  in  the  lab.     Thank  you  Andgar  Corporation  in  part  for  your  financial  support.     Thanks  to  my  friends  and  mentors  in  Pullman  who  listened  to  me  talk  about  my  process   through  my  thesis;  I  wouldn’t  have  made  it  without  you.     And  thank  you  to  my  family.    I  appreciate  your  encouragement  and  honest  candor.         I  love  and  appreciate  you  all!              
  • 5.      iv   METHANE  PRODUCTION  ANALYSIS  OF  INHIBITED  POULTRY  DIGESTION     EFFLUENT  AFTER  DILUTION  AND  AMMONIA  VOLATILIZATION   Abstract     by  Paul  Foster  Gamble,  M.S.   Washington  State  University   August  2015     Chair:  Pius  M.  Ndegwa     This  study  was  conducted  using  manure  waste  from  a  concentrated  animal  feeding   operation  (CAFO)  that  consisted  of  1.5  million  chicken  egg-­‐laying  at  facility  in  Ohio  in  the   Mid-­‐West  of  the  United  States,  which  operated  a  mesophilic,  plug  flow  anaerobic  digester   (AD)  to  handle  its  poultry  litter  waste.    The  AD  had  become  sour  (inhibited),  most  probably   due  to  elevated  levels  of  ammonia,  and  its  gas  production  had  dropped  to  40%  of  its  initial   gas  levels.     Economic  efficiencies  in  CAFOs  are  realized  through  integration  of  scale,  mechanization,   and  technology  in  order  to  produce  affordable  animal  products  for  consumption.    However,   as  CAFOs  continue  to  increase  in  size  and  concentrate  geographically,  animal  feeds  no   longer  comes  from  only  the  surrounding  land  but  some  have  to  be  imported.    The  imported   feeds  have  led  to  CAFOs  being  net  nutrient  positive  (difference  between  imported  nutrients   and  nutrients  used  within  the  CAFOs  after  nutrients  are  applied  on  available  land  at   desired  agronomic  rates).  Such  scenarios  heighten  environmental  concerns  if  these  excess  
  • 6.      v   nutrients  leach  to  groundwater  or  run-­‐off  to  surface  water  masses,  especially  if  they  are  not   properly  managed.    Traditionally,  poultry  CAFOs  dispose  of  their  manure  waste  via  either   land  application  or  export,  but  they  have  been  exploring  AD  as  an  alternative  option.         The  Ohio  poultry  manure  anaerobic  digester  (AD)  was  built  to  handle  its  poultry  litter  in   order  to  tap  into  AD’s  beneficial  attributes  including:  stabilization  and  reduction  of  manure   waste,  production  of  a  stable  organic  soil  conditioner  and/  or  liquid  fertilizer,  and   production  of  a  combustible,  renewable  biogas.    Yet  the  recycling  of  the  digester’s  effluent   back  into  the  digester  as  influent  led  to  the  persistence  of  ammonia,  a  known  inhibitor  of   digester  microbial  ecology  at  higher  levels.    The  goal  of  this  research  was  to  investigate   operation  restoration  of  this  sour  AD  via  two  treatments  at  various  dilutions:  1)  aeration  of   the  digester’s  ammonia-­‐inhibited  contents,  and  2)  coupling  aeration  and  heat  treatment  of   the  digester’s  ammonia-­‐inhibited  contents.         The  results  of  this  study  suggest  that  both  aeration  and  dilution  treatments  are  effective   methods  of  conditioning  inhibited  digester’s  effluent  and  thus  restoring  normal  operations   of  an  inhibited  digester.          
  • 7.      vi   TABLE  OF  CONTENTS     ACKNOWLEDGEMENTS……………………………………………………………………………...   iii   ABSTRACT………………………………………………………………………………………………….   iv-­‐v   LIST  OF  TABLES………………………………………………………………………………………….   viii   LIST  OF  FIGURES  ………………………………………………………………………………….........   ix-­‐x   DEDICATION………………………………………………………………………………………………   xi       CHAPTER  1       INTRODUCTION  AND  BACKGROUND……………………...……………………….……….......   1          1.1  Concentrated  Animal  Feeding  Operations  (CAFOs)………………………………   1          1.2  Purpose  of  CAFO  waste  handling…………………………………………………………   2          1.3  Known  Environmental  Effects  of  CAFOs………………………………………………   4          1.4  Effective  Land  Application…………………………………………………………………..   6          1.5  Anaerobic  Digestion  (AD)  in  CAFOs……………………………………………………..   6       CHAPTER  2       METHANE  PRODUCTION  ANALYSIS  OF  INHIBITED  POULTRY  DIGESTION   EFFLUENT  AFTER  DILUTION  AND  AMMONIA  VOLATILIZATION…………………     8          2.1  Abstract……………………………………………………………………………………………..   8          2.2  Introduction……………………………………………………………………………………….   9          2.3  Methods  and  Materials……………………………………………………………………….   12                  2.3.1  Farm  Operation…………………………………………………………………………….   12  
  • 8.      vii                  2.3.2  Effluent  Used  In  Experiment…………………………………………………………..   13                  2.3.3  Experimental  Design……………………………………………………………………..   13                  2.3.4  Methane  Production  Analysis………………………………………………………...   14                  2.3.5  Laboratory  Analysis………………………………………………………………………   15          2.4  Results  and  Discussion………………………………………………………………………..   16                  2.4.1  Effects  of  Dilution  on  TS  and  VS  of  Influent……………………………………..   16                  2.4.2  Initial  TAN-­‐N  Levels  According  to  Effluent  Type………………………..........   16                  2.4.3  Inhibition  Test……………………………………………………………………………….   18                  2.4.4  Methane  Production  within  Treatments……………………………………........   23                  2.4.5  Effect  of  Dilution  on  Specific  Methane  Yield…………………………………….   25                  2.4.6  Effect  of  Treatment  on  Specific  Methane  Yield…………………………….......   26                  2.4.7  Effect  of  Dilution  on  Volumetric  Methane  Yield………………………………   27                  2.4.8  Effect  of  Treatment  on  Volumetric  Methane  Yield…………………………..   28          2.5  Conclusions………………………………………………………………………………………..     30          2.6  Recommendations………………………………………………………………………….......   31          2.7  References………………………………………………………………………………………….     32          
  • 9.      viii   LIST  OF  TABLES     Table  2.1:  Basic  characteristics  of  treatment  samples  and  poultry  litter  used   in   this   study   (all   effluents   were   extracted   from   an   inhibited   digester  between  September  and  October,  2011)………………………….       13   Table   2.2:Effectiveness   of   dilution   on   total   solids   and   volatile   solids   distribution……………………………………………………………………………….     16   Table  2.3:  Characteristics  of  seed  and  effluent  samples  before  and  after   anaerobic  digestions  during  the  BMPs  determination…………………     17   Table  2.4:  Literature  values  for  poultry  manure  and  poultry  litter  bio-­‐ methane  potentials……………………………………………………………………...     19                
  • 10.      ix   LIST  OF  FIGURES     Figure  2.1:  The  experiment  consisted  of  three  treatments:  Aeration  Effluent   (AE),  Heat  and  Aeration  (HAE),  and  control  (Inhibited  Effluent  IE)   each  at  four  dilutions  (6%,  20%,  40%,  &  60%).    Acclimated  Seed  at   20%  by  volume  supplemented  with  4.45  g  chicken  litter  per  100   mL  substrate  was  used  as  the  seed  in  this   study…………………………………………..                 14   Figure  2.2:  Concentrations  of  TAN  at  different  dilutions  of  the  treatment   samples  and  the  Seed…………………………………………………………………..     18   Figure  2.3:  Effect  of  dilution  of  inhibited  digester’s  effluent  on  TAN  and   specific  methane  yield………………………………………………………………….     20   Figure  2.4:  Specific  methane  yields  of  each  of  the  treated  effluents,  the   control  (inhibited  effluent),  and  the  Seed……………………………………..         24   Figure  2.5:  Volumetric  methane  yields  of  each  of  the  treated  effluents,  the   control  (inhibited  effluent),  and  the  Seed…................................................     25   Figure  2.6:  Effect  of  dilution  on  methane  yield  (same  letters  above  each   cluster  denote  statistical  similarity,  while  the  converse  is  also   true)……………………………………………………………………………………………         26   Figure  2.7:  Comparison  of  specific  methane  yields  across  treatments  (same   letters  above  the  clusters  denote  statistical  similarity,  while  the   converse  is  true;  Aeration  and  the  Seed  had  statistically  higher   specific  yield  than  the  Inhibited  Effluent  and  the  Heat  and  Aerated          
  • 11.      x   Effluent)……………………………………………………………………………………...   27   Figure  2.8:  Comparison  of  volumetric  methane  yields  at  various  dilutions.……   28   Figure  2.9:  Effect  of  treatments  (aeration  or  combined  heating  and  aeration)   on  volumetric  methane  yield  compared  to  the  Seed  and  Inhibited   Effluent……………………………………………………………………………………...           29        
  • 12.      xi   DEDICATION     This  thesis  is  dedicated  to  my  Grandparents:  Gene,  Katie,  Leonard,  and  Vera.         I  appreciate  your  love  of  goodness,  loyalty,  and  of  each  other  you  instilled  in  all  of  us.    I   hope  to  make  you  proud  in  this  life.      
  • 13.      1   Chapter  1.  Introduction  and  Background       1.1  Concentrated  Animal  Feeding  Operations  (CAFOs)       Concentrated  animal  feeding  operations  (CAFOs)  take  advantage  of  economies  of  scale  to   provide  various  animal  products  for  consumption  at  affordable  prices.    Between  1982  and   2002,  the  number  of  CAFOs  in  the  United  States  grew  by  approximately  230%.    In  addition   to  the  number  of  CAFOs  growth,  further  analysis  indicates  a  clear  trend  towards   geographic  concentration  of  animal  production,  and  more  animals  per  farm  (Williams,   Barker,  and  Sims,  1999;  Sims  et  al.,  2005;  Bradford  et  al.,  2008;  Mallin,  2000).    Similarly,   global  animal  inventory  has  increased,  as  has  global  demand  for  meat  products,  leading  to   an  increase  in  animal  production  worldwide  (Sims  et  al.,  2005).    The  poultry  industry,   specifically,  is  one  of  the  largest  and  fastest  growing  agro-­‐based  industries  in  the  world  due   to  increasing  demand  for  meat  and  eggs.    In  the  U.S.  in  2008,  the  broiler  industry  accounted   for  8.8  billion  birds.    The  estimated  manure  production,  from  those  birds,  was  44.4  million   tons,  representing  2.2  million  tons  of  N,  0.7  million  tons  of  P,  and  1.4  million  tons  of  K   (Bolan  et  al.,  2010).    These  historic  trends,  therefore,  have  resulted  in  larger  quantities  of   manures  in  concentrated  regions,  which  cannot  be  utilized  locally  without  posing  serious   threats  to  the  environment  unless  active  advanced  management  practices  are   incorporated.     In  general,  CAFOs  have  become  net  positive  nutrient  producer  as  their  sizes  have  grown   requiring  the  need  to  import  feed  (Williams,  Barker,  and  Sims,  1999;  Collins,  Murphy,  and   Bainbridge,  2000).    This  in  turn  has  decoupled  manure  management  with  land  nutrient  
  • 14.      2   needs  because  nutrients  exceed  the  surrounding  lands’  ability  to  uptake  them.    In  other   words,  feed  is  drawn  from  a  wide  area  while  manure  distribution  is  limited  to  a  small,  local   landmass.    Without  proper  and  deliberate  management,  the  industry  risks  re-­‐occurring   incidences  of  soil  accumulation  and  run-­‐off  of  N,  P,  and  other  pollutants  (Thorne,  2007),   gaseous  ammonia  volatilization  (Sims  et  al.,  2005),  and  other  adverse  environmental   impacts.         1.2  Purpose  of  CAFO  waste  handling     The  balance  of  nutrients  in  terms  of  input,  export,  and  land  assimilation  is  the  basis  for   proper  nutrient  and  runoff  management  at  CAFOs.    The  ultimate  manure  management  goal   is  to  develop  and  practice  nutrient  handling  practices  that  prevent  diffuse  nutrient   pollution,  and  to  think  in  terms  of  farm  and  watershed  nutrient  balances  (Sims  et  al.,  2005).     Nutrient  Management  Plans  (NMPs)  are  an  example  of  accounting  for  CAFO  nutrients,  and   are  developed  considering  all  nutrient  input  sources  such  as  manure,  fertilizer,  lagoon   water,  and  well  water.    Additionally,  they  consider  soil  surface  nutrient  content,  nutrient   volatilization,  nutrient  mineralization  rates,  and  plant  uptake  (Bradford  et  al.,  2008).1     The  most  effective  way  to  handle  nutrients  associated  with  manures  is  to  not  produce  them   in  the  first  place.    The  first  line  of  attack,  therefore,  is  manipulation  of  diet  to  maximize   animal  uptake  and  thus  reduce  total  nutrient  production  in  manures  (Bradford  et  al.,   2008).    The  most  obvious  option  of  handling  excess  manure  nutrient  is  to  export  them,  and                                                                                                                   1  NMPs  are  written  to  protect  surface  resources,  and  only  provide  limited  guidance  on  characterizing  and   protecting  ground  water  contamination  
  • 15.      3   this  approach  is,  in  general,  not  cost  effective.    In  some  cases,  however,  exporting  through   hauling  manure  waste  is  the  only  option  (Williams,  Barker,  and  Sims,  1999;  Kelleher  et  al.,   2002;  Sims  et  al.,  2005;  Liedl,  Bombardiere,  and  Chatfield,  2006;  Bradford  et  al.,  2008).         On  the  other  hand,  storage  of  manures  may  be  necessary  in  order  to  properly  handle  them   at  different  appropriate  periods.    Biological  processes  during  storage  are  continuous,  so   odors  and  other  gas  emissions  associated  with  the  anaerobic  conditions  of  the  piles  or   liquid  storages  are  constant  issues.    For  example,  if  litter  is  moist,  ammonia  is  emitted  from   the  production  or  storage  facility  while  if  the  litter  is  dry,  emissions  and  dust  particles  are   emitted  (Williams,  Barker,  and  Sims,  1999).    Whatever  type  of  storage  approach,  careful   management  practices  must  be  put  in  place.         Storage  lagoons  are  often  utilized  as  a  method  to  eliminate  nitrogen  through  volatilization   (Mallin,  2000).    Similar  to  watershed  science,  airshed  science  is  becoming  more  relevant  in   assessing  and  managing  the  effects  of  air  emissions  on  the  surrounding  environment   (Williams,  Barker,  and  Sims,  1999).    Volatilization  of  ammonia  from  storage  ponds  is  a   common  management  practice  to  reduce  an  operation’s  net  nitrogen  (Edwards  and  Daniel,   1992;  Burkholder  et  al.,  2007).    Once  the  ammonia  gas  volatilizes,  it  is  subsequently   deposited  through  wet  and  dry  adsorption  or  may  be  oxidized  to  nitrates.    Such  ammonia   volatilization  can  lead  to  10-­‐50%  external  nitrogen  loading  (Williams,  Barker,  and  Sims,   1999).    Similar  to  the  municipal  wastewater  industry,  volatilization  of  ammonia  to   ammonia  gas  and  the  conversion  of  ammonia  to  nitrogen  gas  are  some  of  the  main   strategies  to  reduce  nitrogen  in  the  wastewater  (Williams,  Barker,  and  Sims,  1999).    Yet  the  
  • 16.      4   method  is  not  without  its  flaws;  ammonia  emissions  have  an  inverse  relationship  between   source  distance  and  deposition  (Angus,  Hodge,  and  Sutton,  2006).    Thus,  ammonia   volatilization  simply  shifts  it  from  a  point  source  to  a  diffuse  source  of  pollution.         Storage  lagoons  are  not  designed  to  sustain  major  natural  disaster  events,  and  massive   one-­‐time  pollution  events  have  resulted  in  over-­‐flow  incidents,  spilling  manures  into   waterways  (Mallin,  2000;  Burkholder  et  al.,  2007).    Other  considerations  to  make  when   considering  storage  effectiveness  are  depth  of  the  water  table,  soil  structure  and   infiltration  rates,  and  CAFO  drainage  patterns  (Bradford  et  al.,  2008).    Once  the  decision  to   store  manure  is  made,  then  effective  land  application  of  the  stored  manure  becomes  the   focal  point.     1.3  Known  Environmental  Effects  of  CAFOs     In  1997,  the  US  Senate  Committee  on  Agriculture,  Nutrition,  and  Forestry  noted  that   pollutants  from  CAFOs  impaired  more  miles  of  US  rivers  than  all  other  industry  sources   and  municipal  sewers  combined  (Williams,  Barker,  and  Sims,  1999).    The  U,S.  animal   agriculture  accounted  for  133  million  tons  of  manure  per  year  (dry  weight),  representing   13-­‐fold  more  solid  waste  than  human  sanitary  waste  production  (Burkholder  et  al.,  2007).     Environmental  contamination  is  known  to  occur  when  land  application’s  sole  purpose  is   manure  disposal  rather  than  application  in  accordance  with  fertilizer  or  soil  amendment   agronomic  rates.    The  other  management  practice  that  contributes  to  polluting  waterways   is  application  of  manures  in  excess  or  under  poor  management  conditions  (Edwards  and  
  • 17.      5   Daniel,  1992;  Williams,  Barker,  and  Sims,  1999;  Burkholder  et  al.,  2007).    Over  application   leads  to  either  migration  of  nutrients,  causing  problems  elsewhere,  or  to  nutrient-­‐ accumulation  if  they  don’t  migrate  (Edwards  and  Daniel,  1992;  Williams,  Barker,  and  Sims,   1999).    Proper  manure  management  should  account  for  soil  properties,  contaminant   properties,  hydraulic  loading  characteristics,  and  crop  management,  all  of  which  determine   the  magnitude  of  contaminant  run-­‐off  (Burkholder  et  al.,  2007).         Nitrogen  is  mobile  in  both  ammonium  and  nitrate  forms,  and  the  impacts  on  surface  water   sources  and  wildlife  have  been  well  documented  in  many  agricultural  areas  in  the  U.S.   (Burkholder  et  al.,  2007).    Ammonia  originating  in  CAFOs  may  end  up  be  being  toxic  to   many  organisms  through  a  variety  of  mechanisms  (Mallin,  2000),  the  most  common  being   eutrophication.    Eutrophication  is  the  decrease  in  dissolved  oxygen  due  to  bacteria   oxidation  of  fecal  or  plant  matter,  which  has  obvious  repercussions  to  aquatic  species   (Williams,  Barker,  and  Sims,  1999;  Kelleher  et  al.,  2002).    Algal  blooms  usually  account  for   the  plant  matter  in  waterways,  whose  concentrations  can  be  toxic  to  species.    Additionally,   settling  of  algal  blooms  after  death  consumes  all  oxygen  as  bacteria  degrade  the  algal   matter.    Fecal  matter  has  the  same  bacterial  effect  (Mallin,  2000).    Impacts  of  waste  from   CAFOs  have  been  documented  as  far  as  30  km  downstream  from  point  of  entry  into  surface   waters  (Burkholder  et  al.,  2007).     In  addition  to  macro-­‐nutrients,  there  are  a  number  of  compounds  and  bacteria  that  are  also   associated  with  CAFOs:  hydrogen  sulfide  and  ammonia  gas  can  pose  health  threats  to  farm-­‐ workers  and  animals  (Williams,  Barker,  and  Sims,  1999);  endocrine  and  reproductive  
  • 18.      6   systems  disrupters  are  found  in  feedlot  effluents  (Whitehead  et  al.,  2004);  pathogens  are  a   concern  after  raw  deposition  (El-­‐Hadidi  and  Al-­‐Turki,  2007);  and  the  use  of  nontherapeutic   anti-­‐microbial  growth  promoters  has  intensified  the  risk  for  more  resistant   microorganisms  (Burkholder  et  al.,  2007;  Gilchrist  et  al.,  2007)  .     1.4  Effective  Land  Application     Most  litter  produced  from  poultry  operations  is  land  applied  (Williams,  Barker,  and  Sims,   1999;  Bolan  et  al.,  2010).    Land  application  is  an  effective  means  of  manure  management   when  method  of  application,  timing  of  application,  and  rate  of  application  are  considered.     Yet  it  is  difficult  to  optimize  agronomic  rates  due  to  the  heterogeneous  nature  of  manure  as   opposed  to  commercial,  inorganic  fertilizers;  so  manures  are  often  applied  in  excess  to   compensate  for  the  variability.    Nevertheless,  organic  material  in  manures  offer  positive   benefits  to  soils.    They  are  a  valuable  source  of  plant  nutrients,  increased  soil  organic   matter,  increased  water-­‐holding  capacity,  improved  oxygen  diffusion  rate,  and  aggregated   stability  in  soils.    Numerous  crops  have  thrived  when  the  soil  salinity  concentrations  didn’t   get  too  high  (Bolan  et  al.,  2010).    Although  land  application  has  its  place  in  CAFO  nutrient   management,  the  poultry  industry’s  environmental  impacts  have  stimulated  interest  in   cleaner  and  safer  disposal  options  (Kelleher  et  al.,  2002).     1.5  Anaerobic  digestion  (AD)  in  CAFOs     Anaerobic  digestion  is  a  technology  utilized  at  CAFOs  for  numerous  reasons,  but  the  main   ones  are  that  the  process:  stabilizes  and  reduces  manure  waste,  produces  a  stable  organic  
  • 19.      7   soil  conditioner  and/  or  liquid  fertilizer,  and  produces  a  combustible,  renewable  biogas   (Sakar,  Yetilmezsoy,  and  Kocak,  2009;  Zhang  et  al.,  2011).    Additionally,  it  is  an  effective   method  of  sanitation  through  pathogen  reduction  via  substrate  consumption  (Yongabi,   Harris,  and  Lewis,  2009).    This  technology,  however,  has  not  received  wide-­‐spread   adoption  most  probably  because  of  unfavorable  economics,  low  biogas  yields  for  litter-­‐ based  systems,  and  technical  operational  difficulties  (Williams,  Barker,  and  Sims,  1999).         Nutrient  recovery  (more  specifically  ammonia  volatilization)  is  a  good  tool  for  balancing  of   nutrients,  beyond  its  effect  on  the  AD  process.    Nutrient  recovery  extracts  nutrients  from   the  AD  effluent,  which  alleviates  the  inhibition  associated  with  TAN  accumulation.     Simultaneously,  nutrient  recovery  acts  as  a  nutrient  extraction  process,  both  reducing  the   amount  of  nitrogen  to  be  land  applied  while  also  producing  a  nitrogen  product  that  can  be   exported.    The  ability  to  export  nutrients  enables  CAFOs  the  potential  to  increase  animal   density  (animals  per  unit  area).    In  this  context,  AD  as  a  technology  reaches  far  beyond  its   ability  to  reduce  the  mass  of  solid  waste  or  produce  a  combustible  biogas;  it  is  a   management  practice  with  the  capability  to  regulate  the  macronutrients  applied  to  a  farm’s   footprint,  and  to  a  watershed  (Sims  et  al.,  2005).          
  • 20.      8   Chapter  2:  Methane  Production  Analysis  of  Inhibited  Poultry  Litter   Digestion  Effluent  after  Dilution  and  Ammonia  Volatilization     2.1  Abstract       This  study  was  conducted  using  inhibited  poultry  waste  from  a  1.5  million  chicken  egg   laying  facility  in  Ohio  in  the  Mid-­‐West  of  the  United  States,  which  operated  a  mesophilic,   plug  flow  anaerobic  digester  (AD)  to  handle  its  poultry  litter  waste.    After  two  years  of  re-­‐ circulating  the  AD’s  effluent  as  influent,  gas  production  dropped  to  40%  of  initial  gas  levels   with  effluent  accumulating  in  excess  of  8,000  mg  total  ammonia  nitrogen  (TAN)/L.    Tests   were  conducted  to  condition  the  inhibited  digester’s  content  via  three  treatments:  aeration   of  effluent  (AE),  combined  heat  and  aeration  of  effluent  (HAE),  and  dilution  (60%,  40%,   20%  and  6%).    The  effects  of  these  treatments  were  determined  using  bio-­‐methane   potentials  (BMPs)  after  each  treatment.    The  specific  methane  yield  of  the  IE6%  at  57  mL   CH4/g  VSin  indicated  that  digester’s  contents  were  significantly  inhibited.    Conversely,  the   IE  diluted  to  80%  (referred  to  as  the  Seed)  achieved  a  specific  methane  yield  of  1,053  mL   CH4/g  VSin  (1.68%  TS,  2,017  mg  TAN/L).    Dilution  of  the  effluent  treatments,  in  general,   enhanced  the  specific  methane  yield  but  not  the  volumetric  methane  yield.    The  AE   treatment  resulted  in  higher  specific/  volumetric  methane  yields  than  both  the  HAE  and  IE   treatments.    The  results  of  this  study  suggest  that  both  aeration  and  dilution  treatments  are   effective  methods  of  conditioning  inhibited  digester’s  effluent  and  thus  restoring  normal   operations  of  an  inhibited  digester.      
  • 21.      9   2.2  Introduction       Concentrated  animal  feeding  operations  (CAFOs)  have  become  the  norm  for  the  United   States’  livestock  and  poultry  industries  and  have  advanced  economic  efficiencies  by   integrating  scale,  mechanization,  and  technology  into  their  operations.    But  with  this   economy  of  scale,  operational  dilemmas  such  as  manure  management  and  nutrient  run-­‐off   have  become  more  poignant  (Williams,  Barker,  and  Sims,  1999;  Sims  et  al.,  2005).    As  a   result,  land  application  of  manures  has  had  to  consider  soil  surface  nutrient  content,   nutrient  volatilization,  nutrient  mineralization  rates,  and  plant  uptake  (Bradford  et  al.,   2008).    Similarly,  resources  that  have  not  been  traditionally  limited  including  energy  usage,   transportation  fuels,  and  water,  require  more  informed  consideration.    As  CAFOs  have   increased  in  size  and  concentrated  geographically,  animal  feeds  no  longer  comes  from  only   the  surrounding  land  but  some  have  to  be  imported.    This  leads  into  CAFOs  being  nutrient   net  positive  (difference  between  imported  nutrients  and  nutrients  used  within  the  CAFOs   after  nutrients  are  applied  on  available  land  at  desired  agronomic  rates)  (Williams,  Barker,   and  Sims,  1999;  Collins,  Murphy,  and  Bainbridge,  2000).     Traditionally,  CAFOs  have  land-­‐applied  its  manures/  litter  (Bradford  et  al.,  2008;  Williams,   Barker,  and  Sims,  1999;  Mallin,  2000;  Kelleher  et  al.,  2002).    Whereas  dairy  CAFOs  have   been  more  apt  to  apply  on-­‐site  handling  technologies  such  as  anaerobic  digestion,  poultry   operations  have  been  more  reluctant  to  add  water  to  solid  manure  because  it  adds   complexity  to  the  operation.    This  technology,  therefore,  is  more  common  in  dairy  and   swine  CAFOs,  which  produce  liquid  manures  or  manure  slurries.      
  • 22.      10     Perhaps  more  indicative  for  the  lack  of  historic  widespread  utilization  of  anaerobic   technology  application  to  poultry  manure  is  unfavorable  economics  and  the  inhibition  of   digester  performance  related  to  the  manure’s  high  ammonia  content  (Williams,  Barker,  and   Sims,  1999).    While  high  ammonia  is  not  ideal  for  anaerobic  digestion,  there  are  a  number   of  reasons  to  develop  the  ability  to  overcome  the  inhibitory  dilemmas  such  as  low  gas   production,  water  scarcity,  bio-­‐nutrient  generation,  and  alleviation  of  pollution  (Kelleher  et   al.,  2002).       Dilution  and  C:N  adjustments  are  the  simplest  means  to  alleviate  ammonia-­‐inhibition.     Bujoczek  et  al.  (2000)  noted  that  the  common  approach  traditionally  was  to  dilute  manure   to  0.5%–3%  solids,  but  the  resulting  large  volume  of  waste  makes  this  method   economically  unattractive.    Nielsen  and  Angelidaki  (2008)  also  stabilized  an  ammonia-­‐ inhibited  digester  through  dilution.    Resch  et  al.  (2011)  recommended  a  C:N  ratio  between   16:1-­‐25:1,  and  promoted  adjusting  the  C:N  ratio  in  high  protein  substrates  to  overcome   inhibition.    Co-­‐digestion,  through  C:N  ratio  adjustment,  has  also  has  shown  promising   results  (Yangin-­‐Gomec  and  Ozturk,  2013;  Y.  Zhang  et  al.,  2011;  Sharma,  Espinosa-­‐Solares,   and  Huber,  2013).         Another  approach  for  increased  process  stabilization  is  ammonia  volatilization.    A  number   of  experiments  have  examined  various  forms  of  ammonia  volatilization  for  improved   control  and  enhancement  of  biogas  production.    Zhang  et  al  (2012)  pretreated  piggery   wastewater  by  increasing  the  pH  with  sodium  hydroxide  and  achieved  methane  production  
  • 23.      11   of  0.75  CH4/L  d  and  0.57  CH4/L  d  at  pH  of  9.5  and  10,  respectively,  an  increase  over  the   control  of  0.23  CH4/L  d.    Using  biogas  as  the  stripping  medium  within  a  digester,   Abouelenien  et  al.  (2010)  were  able  to  extract  65.6%  of  total  N  as  ammonia  while  Serna-­‐ Maza,  Heaven,  and  Banks  (2014)  achieved  48%  TAN  removal  at  70°C  and  pH  10.    Resch  et   al.  (2011)  increased  COD  degradation  by  55%  when  TKN  was  decreased  during  digestion   from  7.5  to  4.0  g    kg-­‐1.    Post-­‐digestion  ammonia  volatilization  also  has  been  studied  as  a   nutrient  removal  method  for  digester  effluent  (Guštin  and  Marinšek-­‐Logar,  2011;  Rico,   García,  and  Rico,  2011;  Gangagni  Rao,  Gandu,  and  Swamy,  2012).     Very  little  work  has  been  done  to  examine  the  effects  of  similar  conditioning  of  ammonia-­‐ inhibited  anaerobic  digester’s  effluent  in  order  to  resuscitate  a  sour  digester  under  the   stipulation  that  the  effluent  is  reused  either  in  part  or  as  the  sole  feed  substrate.    Lei  et  al.   (2007)  used  ammonia  stripping  via  air  stripping  and  pH  adjustment  to  pretreat  effluent  for   disposal,  but  were  less  concerned  with  the  treated  effluent’s  performance  when  recycled   back  into  the  digestion  system.    Little  else  has  been  examined  to  determine  methods  of   alleviating  chronically  ammonia-­‐inhibited  effluent  for  reuse  in  the  digester.    This   experiment  differs  from  previous  work  in  that  it  examined  treatments  to  a  chronically   inhibited  digester  as  opposed  to  the  majority  of  inhibition  studies  that  slowly  increased  the   amount  of  ammonia  to  inhibitory  levels  (Benabdallah  El  Hadj  et  al.,  2009;  Lay,  Li,  and   Noike,  1998;  Lü  et  al.,  2013;  Kayhanian,  1994;  Krylova  et  al.,  1997).    The  goal  of  this   research  was  to  investigate  operation  restoration  of  a  sour  anaerobic  digester  via  two   treatments  at  various  dilutions:  1)  aeration  of  the  digester’s  ammonia-­‐inhibited  contents,   and  2)  coupling  aeration  and  heat  treatment  of  the  digester’s  ammonia-­‐inhibited  contents.      
  • 24.      12   2.3  Methods  and  Materials       2.3.1  Farm  Operation       A  1.5  million  chicken  egg  laying  operation  in  Fort  Recovery,  OH,  United  States,  installed  an   axial-­‐mixed,  mesophilic,  plug-­‐flow  anaerobic  digester  (DVO  Inc.,  Chilton  WI)  for  production   of  combined  heat  and  power  on  the  farm.    Hydraulic  retention  time  (HRT)  of  the  digester   was  30-­‐35  days.    A  mix  of  poultry  litter  (PL),  egg  wash  water,  and  recycled  effluent  served   as  the  digester’s  influent  or  feed  substrate.     The  commercial  digester  during  the  period  of  study  was  in  a  state  of  inhibition  probably   due  to  being  overloaded  with  ammonia.    Total  ammonia  nitrogen  (TAN)  had  accumulated   to  8,000  mg/L  within  the  digester,  while  biogas  had  dropped  to  40%  of  initial  production   levels  after  two  years  of  operation.    Addition  of  carbon  had  been  tried  as  a  means  to  reduce   inhibition,  but  was  not  a  sustainable  option  due  to  the  lack  of  a  long-­‐term,  viable  source.    A   subsequent  approach  was  to  centrifuge  out  most  of  the  suspended  solids  and  then  aerate   and  partially  strip  the  effluent  of  ammonia,  producing  an  aerated  effluent  (AE)  that  was   being  used  as  new  recycle  water.    The  process  consisted  of  98%  suspended  solids  removal   with  a  decanting  centrifuge,  followed  by  a  12-­‐hour  aeration  within  an  aeration  pit  fitted   with  12  diffusers  resulting  in  an  overall  aeration  rate  of  250  cfm.                
  • 25.      13   2.3.2  Effluent  Used  in  Experiment       Laboratory  experiments  utilized  farm  poultry  litter  (PL)  as  well  as  three  effluent   treatments,  either  sourced  from  treatments  at  the  farm  or  produced  within  the  laboratory.   The  treatments  in  the  laboratory  included  either  aeration  (AE)  or  combined  heating  and   aeration  (HAE)  of  the  inhibited  effluents  (IE).    All  samples  obtained  from  the  farm  were   composite,  random  samples  shipped  overnight  and  stored  at  4°C  until  use.    Table  2.1  shows   the  descriptions  and  properties  of  the  three  effluents  and  the  poultry  litter.       Table  2.1:  Basic  characteristics  of  treatment  samples  and  poultry  litter  used  in  this  study   (all  effluents  were  extracted  from  an  inhibited  digester  between  September  and  October,   2011).         2.3.3  Experimental  Design       Biological  methane  potential  (BMP)  studies  were  conducted  to  determine  the  degree  to   which  both  recycle  rate  and  treatment  of  recycle  effluent  impacts  inhibition  as  measured   by  biogas  production.    The  study  consisted  of  three  treatments:  Inhibited  Effluent  (IE),   Treatment( Effluent(Samples/( Poultry(Litter Eflluent(Description TS VS VS/TS TAN;N %(decrease(TAN( from(Inhibited( Effluent Inhibited)Effluent Effluent)from)poultry)digester) process:)30935)day)HRT,)C:N) 5.219)±0.022 3.088)±0.0161 59.16)±0.2678 8661)±3.888 9 Aerated)Effluent )Centrifuged)effluent)treated)in) aeration)chamber)adjoined)to) poultry)digester)with)an)HRT)of) 12)hours,)at)an)aeration)rate)of) 250)cfm 4.069)±0.3269 2.257)±0.01842 55.67)±3.865 6307)±25.66 27.2% Heated)and) Aerated)Effluent Trial)1)Effluent)aerated)in)lab) for)8)hrs)at)55°)C)at)aeration) rate)of)1)L)air)/)min/)L)effluent 4.625)±0.005888 2.57)±0.002988 55.57)±0.1236 3917)±14.74 54.8% Poultry)Litter Ohio)egg)laying)operation.)) Mostly)manure)with)some) feathers)and)egg)shells 53.09)±4.091 36.28)±4.153 68.2)±2.604
  • 26.      14   Aeration  Effluent  (AE),  and  Heat  and  Aeration  Effluent  (HAE)  each  with  four  dilutions  (6%,   20%,  40%,  &  60%)  as  outlined  in  Figure  2.1.    Acclimated  effluent  was  used  for  “seed”  and   represented  20%  of  the  flask  volume  (4.45  g  of  chicken  litter  was  added  per  100  mL  of   solution).    Dilution  values  were  chosen  to  straddle  4  g/L  TAN,  which  is  the  accepted   threshold  of  TAN  concentration  for  ammonia-­‐inhibited  digesters  (Hao  et  al.,  2013;  Smith  et   al.,  2014;  Angenent,  Sung,  and  Raskin,  2002;  Westerholm  et  al.,  2011;  Zhang,  Yuan,  and  Lu,   2014;  Westerholm  et  al.,  2011).       Figure  2.1:  The  experiment  consisted  of  three  treatments:  Aeration  Effluent  (AE),  Heat  and   Aeration  (HAE),  and  control  (Inhibited  Effluent,  IE)  each  at  four  dilutions  (6%,  20%,  40%,   &  60%).    Acclimated  seed  at  20%  by  volume  supplemented  with  4.45  g  chicken  litter  per   100  mL  substrate  was  used  as  the  seed  in  this  study.         2.3.4  Methane  Production  Analysis       A  modified  BMP  outlined  in  Frear  et  al.  (2011)  was  completed  using  a  AER-­‐200   respirometer  (AER-­‐200,  CES  Inc.,  USA).  Either  250  or  125  mL  bottles  (depending  on  
  • 27.      15   availability)  were  filled  with  prescribed  treatment  substrate,  and  the  headspace  (20%  of   bottle  volume)  was  purged  with  nitrogen  gas  for  10  minutes.    Potassium  hydroxide  was   used  in  solution  as  a  scrubbing  medium  to  purify  non-­‐methane  biogas  by  adsorbing  carbon   dioxide  and  hydrogen  sulfide.    Homogenous  mixing  was  provided  with  magnetic  stirring   bars,  and  mesophilic  temperatures  were  maintained  through  submersing  the  digestion   bottles  in  a  temperature  controlled  water  bath  at  35°C.    Methane  gas  production  was   automatically  logged  in  a  computer  every  5  min.    All  tests  were  conducted  in  either   triplicate  or  duplicate  and  were  terminated  once  methane  production  ceased,  which  was   between  30  and  45  days.         2.3.5  Laboratory  Analysis       The  laboratory  analyses  for  the  parameters  listed  below  were  conducted  using  either   Standard  Methods  (APHA,  2005,  particular  method  given  in  parentheses)  or  standard   Equipment  as  follows:  total  solids  (TS,  2540B),  volatile  solids  (VS,  2540E),  pH  (AB  15,   Accumet  Basic),  and  Total  Ammonia  Nitrogen  (TAN)  (Tecator  2300  Kjeltec  Analyzer,  Eden   Prairie,  MN,  USA;  4500-­‐NorgB;  4500NH3BC).      
  • 28.      16   2.4  Results  and  Discussion       2.4.1  Effects  of  Dilution  on  TS  and  VS  of  Influent         Table  2.2  represents  the  characteristics  of  samples  of  each  treatment  after  dilution.    The   nearly  constant  ratio  of  the  VS  to  TS  ratio  after  dilution  indicates  evenly  distributed  VS  and   TS,  which  suggested  that  the  dilution  for  all  samples  were  accomplished  successfully.    The   TS  of  the  samples,  however,  were  higher  compared  to  the  TS  of  inhibited  effluent  due  to  the   addition  of  supplemental  solid  poultry  litter  to  each  of  the  other  samples.       Table  2.2:  Effectiveness  of  dilution  on  total  solids  and  volatile  solids  distribution.         2.4.2  Initial  TAN-­‐N  Levels  According  to  Effluent  Type       The  experimental  values  of  TAN  for  each  treatment  sample  were  staggered  and  straddled   the  4,000  mg/L  (Table  2.3),  which  is  the  often  cited  threshold  level  of  ammonia-­‐inhibited   anaerobic  digestion  (Hao  et  al.,  2013;  Smith  et  al.,  2014;  Angenent,  Sung,  and  Raskin,  2002;   Westerholm  et  al.,  2011;  Zhang,  Yuan,  and  Lu,  2014;  Westerholm  et  al.,  2011).    In  general,   Treatment Dilution TS  (%) VS  (%) VS/TS  (%/%) Seed Seed 1.682±0.33 1.134±0.15 62.82±2.53 60% 2.818±0.54 1.732±0.46 60.89±4.49 40% 4.744±0.42 3.058±0.41 64.27±3.01 20% 5.591±0.14 3.515±0.11 62.86±0.60 6% 5.918±0.72 3.671±0.56 61.81±2.146 60% 2.672±0.05 1.622±0.05 60.45±0.69 40% 3.727±0.18 2.275±0.15 60.69±0.75 20% 4.594±0.08 2.803±0.04 60.9±0.19 6% 4.826±0.36 2.9±0.26 60.07±1.01 60% 2.452±0.03 1.431±0.03 58.61±0.77 40% 3.507±0.01 2.038±0.00 58.19±0.82 20% 4.624±0.23 2.698±0.19 57.9±1.24 6% 5.148±0.28 3.007±0.23 57.93±0.89 Inhibited  Effluent Aerated  Effluent Heated  and  Aerated   Effluent
  • 29.      17   the  concentrations  of  TAN  increased  during  anaerobic  digestions/  incubation,  during   determination  of  BMPs,  presumably  following  mineralization  of  organic  nitrogen  to  TAN.     Table  2.3:  Characteristics  of  seed  and  effluent  samples  before  and  after  anaerobic   digestions  during  the  BMPs  determination.       Figure  2.2  shows  the  levels  of  average  initial  TAN  for  all  samples  at  different  dilution  levels.     Heat  and  Aeration  Effluent  (HAE)  had  significantly  less  TAN  than  the  Aeration  Effluent  (AE)   or  the  Inhibited  Effluent  (IE).    The  AE  process  reduced  the  initial  TAN  levels  of  the  IE  by   approximately  27%,  while  the  HAE  process  reduced  the  IE  by  approximately  55%,  which   was  almost  double  that  by  AE  process  only.             Treatment Dilution TAN-­‐N  Initial  (mg/L) TAN-­‐N  Final  (mg/L) %  Increase Seed Seed 2017±55.14 2722±449.3 34.93% 60% 3835±27.33 4169±552 8.70% 40% 5413±209.50 6278±94.4 15.98% 20% 7141±126.60 8061±63.15 12.88% 6% 8141±116.20 8756±590.3 7.55% 60% 3301±74.35 4297±287 30.16% 40% 4655±51.65 5698±187.5 22.41% 20% 5918±128.90 7065±122.4 19.38% 6% 6466±27.24 7811±141.4 20.81% 60% 2861±59.09 3302±22.98 15.42% 40% 3626±41.20 4245±147.8 17.06% 20% 4137±76.19 5118±136.1 23.71% 6% 4525±100.30 5358±617.7 18.40% Inhibited  Effluent Aerated  Effluent Heated  and  Aerated   Effluent
  • 30.      18     Figure  2.2:  Concentrations  of  TAN  at  different  dilutions  of  the  treatment  samples  and  the   Seed.     2.4.3  Inhibition  Test       This  experiment  was  conducted  to  test  if  either  the  aeration  treatment  or  combined  heat   and  aeration  treatment  of  effluent  from  a  sour,  full-­‐scale  anaerobic  digester  could  restore   the  digester  to  normal  operation.    The  first  task  was  to  establish,  in  the  lab,  whether  the   effluent  that  originated  from  the  full-­‐scale  digester  was  indeed  inhibited.    The  Inhibited   Effluent  (IE)  diluted  at  6%  (IE6)  was  used  in  this  test  to  mimic  the  inhibited  conditions  of   the  full-­‐scale  digester.    Table  2.4  presents  some  typical  values  of  poultry  litter  BMPs  for   comparison.    At  5.9%  TS,  IE6  had  a  specific  yield  of  57  mL  CH4/  g  VSin  at  a  TAN  value  of   8,141  mg/L,  which  was  significantly  lower  than  most  literature  BMPs,  confirming  that  the   effluent  was  indeed  from  an  inhibited  digester.         The  seed  BMP,  on  the  other  hand,  indicated  substantially  higher  values  of  specific  methane   yield  (1053  mL  CH4/g  VSin,  1.68%  TS,  2017  mg  TAN/  L)  than  the  literature  values  listed  in   0 20 40 60 80 0 2000 4000 6000 8000 10000 Dilution Rates TAN-N(mg/L) Inhibited Effluent Aerated Heat and Aeration Seed
  • 31.      19   Table  2.4.    The  gas  production  of  an  uninhibited  system  is  evidently  significantly  less  than   the  gas  production  from  that  of  an  inhibited  substrate  once  the  inhibition  is  alleviated.     Furthermore,  the  yield  may  be  a  function  of  both  the  time  the  substrate  was  under   inhibition,  and  the  extent  of  inhibition  mitigation  during  subsequent  treatment.    The  latter   effect  is  clearly  illustrated  in  Figure  2.3.     Table  2.4:  Literature  values  for  poultry  manure  and  poultry  litter  bio-­‐methane  potentials.       Specific  Methane  Yield     Description   Source  or  reference   140    mL  CH4/  g  VSin   Self-­‐mixed  anaerobic   digester,  poultry  litter.  10%   TS,  25  day  HRT   Gangagni  Rao  et  al.  (2013)   160  mL  CH4/  g  VS  reduced   3.5  kg  VS/  m3/day  13  day   HRT   Gangagni  Rao  et  al.  (2011)   245  mL  CH4/g  VSin  and  372  mL  CH4/g  VSin   29  day  HRT,  4%  VS  and  12   day  HRT,  1%  VS,   respectively   Webb  and  Hawkes  (1985)   320  mL  CH4/g  VSin   TAN  2,830  mg/L,   thermophilic  CSTR   Niu  et  al.  (2014)   195  and  157  mL  CH4/  g  VSin   Batch  initial  pH  8,  55°C;   treated  poultry  manure  and   mixture  treated  and  non-­‐ treated  manure,  respectively   Abouelenien  et  al.  (2010)   31  mL  CH4/  g  VSin   Sequential  batch  experiment   to  test  acclimated  bacterial   performance  in  high  TAN  of   8-­‐14  g-­‐N  kg-­‐1   Abouelenien  et  al.  (2009)   350–400   mL   CH4/g   VSinat   TAN   lower   than   5,000   mg/L;   300   mL   CH4/g   VSin   at   TAN   of   10,000   mg/L;   complete   inhibition   at   TAN   16,000  mg/L   12-­‐L,  mesophilic  CSTR.    30-­‐ day  HRT   Niu  et  al.  (2013)    
  • 32.      20     Figure  2.3:  Effect  of  dilution  of  inhibited  digester’s  effluent  on  TAN  and  specific  methane   yield.             Whereas  the  6%  dilution  in  the  IE  treatment  was  substantially  inhibited,  the  seed   treatment  that  was  80%  diluted  and  20%  acclimated  seed  (IE)  achieved  substantially   higher  methane  yields  (per  g  VSin)  than  those  observed  in  previous  BMPs  studies  of  poultry   manure  (Table  2.4).    These  results  agree  with  the  conclusions  of  Chen  et  al  (2008),  which   also  noted  BMP  values  vary  substantially  due  to  differences  in  the  consortium  of  anaerobic   microorganisms  and  substrate  composition.    In  general,  however,  the  higher  BMP  values   observed  with  inhibited  digestion  systems  may  be  attributed  to  proper  seed  acclimation,   VFA  accumulation,  and  changes  in  Archea  metabolic  pathways.         Early  inhibition  studies  set  the  tolerance  for  acclimated  Archea  at  4  g/L  TAN  (Angelidaki  I.,   Ellegaard  L.,  Ahring  B.  K.,  1993),  while  similar  studies  noted  lack  of  inhibition  of  acclimated   bacteria  that  were  7-­‐10  times  higher  in  NH3  tolerance  than  studies  that  didn’t  use  a  seed   acclimated  to  the  substrate  (Hansen,  Angelidaki,  and  Ahring  1998).    Similarly,  anaerobic  
  • 33.      21   systems  have  experienced  less  inhibition  after  extended  periods  of  operations,  indicating   microbial  adaptation  to  inhibitory  conditions  (Wang,  Hovland,  and  Bakke  2013).     Abouelenien,  Nakashimada,  and  Nishio  (2009)  further  identified  the  effectiveness  of   acclimated  seed  bacteria  by  conducting  nine  sequential  batch  studies,  where  a  portion  of   each  batch  was  added  to  the  next  as  seed.    Biogas  continued  to  increase  even  as  the   ammonia  concentration  increased.    Other  research  also  indicated  that  AD  systems  that   function  in  higher  TAN  levels  benefit  from  the  increased  buffering  capacity  associated  with   the  ammonium  ion  (Procházka  et  al.  2012).    The  Seed  in  this  study  was  effluent  from  a   digester  system  operating  for  two  years  under  inhibitory  conditions  being  loaded  with  the   poultry  litter  and  recycled  effluent  substrates  used  in  the  study,  and  therefore,  can  be   considered  acclimated.     There  is  also  evidence  in  the  literature  that  supports  this  study’s  elevated  methane   production  based  on  the  accumulation  of  volatile  fatty  acids  (VFA).    Wilson  et  al.  (2013)   reported  that  acclimated  bacteria  achieved  similar  rates  of  hydrolysis  at  5  g/L  TAN  to  the   baseline  values,  confirming  that  hydrolysis  isn’t  rate  limiting  in  TAN  inhibited  digestion   systems.    Elevated  ammonia  levels  are  well  documented  to  accumulate  VFA  (Resch  et  al.   2011),  with  longer  chain  VFA-­‐  propionic,  butyric  and  valeric  acids,  having  more  elevated   levels  in  the  more  highly  inhibited  systems  (Poggi-­‐Varaldo  et  al.  1997).    Other  studies   indicated  VFA  accumulation  at  higher  TAN  levels  (Bruni  et  al.  2013;  Niu  et  al.,  2014).    Niu  et   al.  (2013)  conducted  a  study  in  which  they  established  BMPs  for  a  chicken  manure   feedstock  at  TAN  concentrations  lower  than  5,000  mg/L,  then  increased  TAN  to  extreme   inhibitory  levels  (16,000  mg  TAN/L),  and  finally  diluted  the  substrate  after  the  extreme  
  • 34.      22   inhibitory  levels  to  4,000  mg  TAN/L.    The  initial  BMP  was  350–400  mL  biogas/g  VSin;  the   process  was  completely  inhibited  at  the  extreme  TAN  levels;  but  achieved  a  value  of  500   mL  biogas/g  VSin  after  dilution.    Similar  to  this  study,  the  Niu  et  al.  (2013)  study   demonstrated  an  increased  yield  potential  of  previously  inhibited  substrate  once  inhibitory   characteristics  are  alleviated.    Niu  et  al.  (2014)  noted  that  prolonged  accumulation  of  TAN   (over  6,000  mg/L)  resulted  in  elevated  levels  of  VFA  accumulation  in  the  digester  system  of   25,000  mg/L.    This  result  corroborates  the  potential  for  an  inhibited  system  to  accumulate   VFA  under  inhibited  conditions,  and  once  the  inhibited  conditions  are  alleviated,  provide  a   substrate  with  higher  methane  potential.         The  shift  of  methanogenic  pathways  in  ammonia/  ammonium  inhibited  anaerobic   environments,  and  the  Archea  that  drive  them,  has  been  well  documented  in  the  literature.     The  consensus  is  that  the  shift  from  the  aceticlastic  to  syntrophic  acetate  oxidation  (SAO)/   hydrogenotrophic  pathway  depends  on  how  acclimated  the  bacteria  are  to  elevated  levels   of  TAN,  but  happens  at  approximately  4  g/L  TAN  (Hao  et  al.,  2013;  Smith  et  al.,  2014;   Angenent,  Sung,  and  Raskin,  2002;  Westerholm  et  al.,  2011;  Zhang,  Yuan,  and  Lu,  2014;   Westerholm  et  al.,  2011).    The  energetics  between  acetotrophic  (aceticlastic)  and  SAO/   hydrogenotrophic  Archea  differ  as  do  their  tolerances  for  higher  pH  and  ammonium/   ammonia.    Energetically,  aceticlastic  methanogenesis  is  more  favorable  than  the   combination  of  syntrophic  acetate  oxidation  and  hydrogenotropic  methanogenesis,  with   their  ΔG  being  -­‐36.0  kj/mol  CH4  and  -­‐22.0  kj/mol  CH4  respectively  (Welte  and   Deppenmeier,  2014;  Dolfing,  2014).    But  SAO  and  hydrogenotrophic  Archea  consortium   have  exhibited  higher  tolerances  for  proton  imbalance,  thus  being  better  adapted  to  
  • 35.      23   elevated  TAN  and  pH  environs  (Smith  et  al.,  2014;  Angenent,  Sung,  and  Raskin,  2002;   Westerholm  et  al.,  2011).    With  the  shift  in  pathways  also  comes  a  decrease  in  acetate   degradation  efficiency.    Schnürer,  Zellner,  and  Svensson  (1999)  noted  the  decrease  was   substantially  lower  (10-­‐800  times)  when  SAO/  hydrogenotrophic  methanogenesis  was  the   dominant  acetate  degradation  pathway.    This  is  perhaps  related  to  the  difference  of   doubling  time  of  SAO  cultures  compared  to  aceticlastic  methanogens,  measured  at  28  days   and  2-­‐12  days  respectively  (A.  Schnürer  and  Nordberg,  2008).    In  addition  to  the  SAO/   hydrogenotrophic  Archea  being  more  tolerant  to  elevated  TAN,  their  slow  growth  rate  also   alludes  to  the  need  for  an  acclimated  seed  as  it  would  take  time  to  establish  substantial   population  levels.     In  summary,  proper  seed  acclimation,  VFA  accumulation  in  inhibited  systems,  and  shifts  in   Archea  pathways  as  a  result  of  increased  TAN  may  explain  the  significantly  different  BMPs   observed  from  the  Seed  and  inhibited  effluent  (IE6)  sample  used  in  this  study.         2.4.4  Methane  Production  within  Treatments       Methane  production  can  be  considered  in  terms  of  volatile  solids  input  or  in  terms  of  a  unit   volume  of  substrate,  which  in  this  study  was  100mL.    The  former  is  referred  to  as  specific   yield,  while  the  latter  is  the  volumetric  yield.    Specific  yield  normalizes  the  methane   production  to  volatile  solids  input  and  is  the  common  metric  used  within  the  scientific   community.    Volumetric  yield,  on  the  other  hand,  normalizes  methane  production  with   respect  to  the  substrate  volumetric  loading  into  the  digestion  vessel.    The  latter  is  more   useful  in  the  industry  for  engineering  designs  of  digesters.  
  • 36.      24       The  specific  methane  yields  for  each  of  the  treatments,  at  different  dilutions,  are  shown  in   Figure  2.4.    The  Aerated  Effluent  (AE)  resulted  in  significantly  higher  specific  methane   yields  than  either  the  Heated  and  Aerated  (HAE)  or  the  Inhibited  Effluent  (IE).    For  each   treatment,  dilution  further  enhanced  the  specific  methane  yields.       Figure  2.4:  Specific  methane  yield  of  each  of  the  treated  effluents,  the  control  (inhibited   effluent),  and  the  Seed.         Figure  2.5  show  the  volumetric  yield  for  all  treatments  at  different  dilution  levels.     Volumetric  methane  yield  is  a  relevant  design  parameter  that  takes  into  account  TS.    While   the  normalization  of  methane  to  VS  is  scientifically  standard,  it  often  undervalues  methane   production  at  high  solids.    The  gas  production  at  higher  solids  can  be  similar  to  that  of  a   lower  solid  trial,  but  have  a  lower  specific  yield  due  the  higher  VS.    Volumetric  yield  is  a   better  indicator  of  how  much  methane  a  treatment  will  effectively  yield.         0 20 40 60 80 0 500 1000 1500 Dilution Rates mLMethane/gVSin Inhibited Effluent Aerated Heat and Aeration Seed
  • 37.      25     Figure  2.5:  Volumetric  methane  yields  of  each  of  the  treated  effluents,  the  control   (inhibited  effluent),  and  the  Seed.         2.4.5  Effect  of  Dilution  on  Specific  Methane  Yield       The  specific  methane  yields  for  the  Seed  dilution  and  the  60%  dilution  were  statistically   higher  than  the  yields  from  the  6%,  20%,  and  40%  dilutions  (Figure  2.6).    As  the  dilution   increased,  both  TS  and  TAN  decreased  simultaneously.    For  both  the  60%  dilution  and  the   80%  seed  dilution,  the  TAN  levels  were  below  the  4,000  mg/L  threshold  for  the  onset  of   TAN  inhibition,  at  2,017  mg/L  and  3,391  mg/L,  respectively.    Below  this  level  of  TAN,  it  is   expected  that  the  more  energetically  favorable  aceticlastic  degradation  pathway  is   predominant.     0 20 40 60 80 0 500 1000 1500 2000 2500 Dilution Rates mLMethane/100mLSolution Inhibited Effluent Aerated Heat and Aeration Seed
  • 38.      26     Figure  2.6:  Effect  of  dilution  on  specific  methane  yield  (same  letters  above  each  cluster   denote  statistical  similarity,  while  the  converse  is  also  true).           2.4.6  Effect  of  Treatment  on  Specific  Methane  Yield       The  specific  methane  yields  for  both  the  AE  and  the  Seed  treatment  were  statistically   greater  than  those  for  either  the  HAE  Treatment  or  the  IE  Treatment  (Figure  2.7).    Since  the   levels  of  TAN  were  lower  in  the  HAE  than  in  the  AE,  these  results  suggest  that  the  heating   process  may  have  sterilized  or  killed  some  beneficial  Archea,  which  on  the  other  hand,   could  survive  the  aeration  process.    Further  work  to  elucidate  the  dynamics  and  fate  of  the   microbial  consortia  is  necessary.    Another  possible  explanation  for  these  results  is  the   potential  volatilization  of  short-­‐chained  VFA  during  the  heat-­‐treatment  process.    Future   studies  should  also  be  designed  to  test  this  stipulation.       6% 20% 40% 60% Seed:80% 0 500 1000 1500 2000 Dilution Rates mLMethane/gVSin a a a b b
  • 39.      27     Figure  2.7:  Comparison  of  specific  methane  yields  across  treatments  (same  letters  above   the  clusters  denote  statistical  similarity,  while  the  converse  is  true;  Aeration  and  the  Seed   had  statistically  higher  specific  yield  than  the  Inhibited  Effluent  and  the  Heat  and  Aeration   Effluent).       2.4.7  Effect  of  Dilution  on  Volumetric  Methane  Yield       Figure  2.8  shows  the  effect  of  dilution  on  volumetric  methane  yield.    Unlike  the  specific   methane  yield,  dilution  had  no  significant  effect  on  volumetric  yield.    These  results  suggest   that,  while  substrates  with  higher  solid  treatments  (less  diluted)  are  not  converted  to   methane  more  efficiently,  the  higher  solids  content  counterbalances  the  dilution  effect.         H eatand A eration A eration Inhibited Effluent Seed 0 500 1000 1500 2000 Effluent Treatment mLMethanegVSin b b a a
  • 40.      28     Figure  2.8:  Comparison  of  volumetric  methane  yields  at  various  dilutions.         2.4.8  Effect  of  Treatment  on  Volumetric  Methane  Yield     The  effects  of  treatments  on  methane  volumetric  yield  are  presented  in  Figure  2.9.    The  AE   treatment  resulted  in  significantly  higher  volumetric  methane  yield  than  the  other   treatments.    The  Seed  treatment,  however,  led  into  significantly  more  volumetric  methane   yield  than  the  HAE,  but  not  to  the  IE.    The  HAE  and  the  IE  showed  no  statistical  difference.     As  previously  noted,  the  heat-­‐treatment  process  most  probably  degraded  useful  microbial   consortium.         6% 20% 40% 60% Seed:80% 0 500 1000 1500 2000 2500 Dilution Rates mLMethane/100mLSolution a a a a a
  • 41.      29     Figure  2.9:  Effect  of  treatments  (aeration  or  combined  heating  and  aeration)  on  volumetric   methane  yield  compared  to  the  Seed  and  Inhibited  Effluent.         There  are  valuable  ramifications,  based  on  the  results  of  this  study,  for  producers   processing  their  high  TAN  chicken  wastes  through  anaerobic  digestion.    Both  aeration  and   dilution  treatments  have  proven  as  effective  conditioning  methods  of  inhibited-­‐effluent   from  an  inhibited  or  sour  anaerobic  digester.    However,  water  is  a  valuable  resource,  which   also  exacerbates  effluent  volume  and  subsequent  management  issues.    The  less  the  water   that  is  introduced  into  an  anaerobic  digestion  system,  the  better  it  is  for  the  entire  poultry   operation.    On  the  other  hand,  aeration  treatment,  although  a  viable  choice,  is  not  only   expensive  but  also  may  result  in  negative  impacts  on  air  and  water  quality  issues.    A   thorough  economic  and  environmental  impact  assessment,  for  each  method,  is   recommended  to  guide  selection  of  the  approach  to  be  adopted.             H eatand A eration A eration Inhibited Effluent Seed 0 500 1000 1500 2000 2500 Effluent Treatment mLMethane/100mLSolution c b a ab
  • 42.      30   2.5  Conclusions       1. This  research  revealed  the  potential  for  higher  yield  of  methane  from  previously   ammonia-­‐inhibited  poultry  waste  effluent  from  an  anaerobic  digester  than  literature   BMPs  once  the  inhibited  conditions  were  alleviated.   2. The  aeration  treatment  of  previously  ammonia-­‐inhibited  poultry  waste  from  an   anaerobic  digester  significantly  enhanced  specific  methane  yield  more  than  either  the   combined  heat  and  aeration  treatment  or  the  inhibited  effluent.     3. For  each  treatment  (aeration,  combined  heat  and  aeration,  and  the  inhibited  effluent),   dilution  also  enhanced  the  specific  methane  yields.   4. Aeration  of  previously  ammonia-­‐inhibited  anaerobic  digestion  poultry  litter  effluent   significantly  enhanced  volumetric  methane  yields  more  than  the  combined  heating  and   aeration  of  the  ammonia-­‐inhibited  substrate.     5. Unlike  for  the  specific  methane  yield,  however,  dilution  of  ammonia-­‐inhibited   digester’s  effluent  had  no  significant  effect  on  volumetric  methane  yield.   6. Overall,  this  study  suggests  that  both  aeration  and  dilution  could  be  effective  methods   for  conditioning  previously  ammonia-­‐inhibited  anaerobic  digester’s  effluent  prior  to   re-­‐using  it  to  restore  digester’s  normal  operation.        
  • 43.      31   2.6  Recommendations     Future  work  should  be  directed  at:  1)  establishing  microbial  dynamics  and  fate  during  the   heating  and  aeration  processes,  2)  VFA  identification  and  their  potential  volatilization   during  the  heating  and  aeration  process,  and  3)  extent  of  VFA  accumulation  in  inhibited   anaerobic  digesters.      
  • 44.      32   2.7  References     Abouelenien,  F.,  W.  Fujiwara,  Y.  Namba,  M.  Kosseva,  N.  Nishio,  Y.  Nakashimada.  2010.   “Improved  Methane  Fermentation  of  Chicken  Manure  via  Ammonia  Removal  by   Biogas  Recycle.”  Bioresource  Technology  101  (16):  6368–73.   doi:10.1016/j.biortech.2010.03.071.     Abouelenien,  F.,  Y.  Nakashimada,  N.  Nishio.  2009.  “Dry  Mesophilic  Fermentation  of  Chicken   Manure  for  Production  of  Methane  by  Repeated  Batch  Culture.”  Journal  of  Bioscience   and  Bioengineering  107  (3):  293–95.  doi:10.1016/j.jbiosc.2008.10.009.     Angelidaki  I.,  L.  Ellegaard,  B.K.  Ahring.  1993.  “A  Mathematical  Model  for  Dynamic   Simulation  of  Anaerobic  Digestion  of  Complex  Substrates:  Focusing  on  Ammonia   Inhibition.”  Bioresources  and  Biotechnology  42:  159–66.     Angenent,  L.T.,  S.  Sung,  L.  Raskin.  2002.  “Methanogenic  Population  Dynamics  during   Startup  of  a  Full-­‐Scale  Anaerobic  Sequencing  Batch  Reactor  Treating  Swine  Waste.”   Water  Research  36  (18):  4648–54.  doi:10.1016/S0043-­‐1354(02)00199-­‐9.     Angus,  A.J.,  I.D.  Hodge,  M.A.  Sutton.  2006.  “Ammonia  Abatement  Strategies  in  Livestock   Production:  A  Case  Study  of  a  Poultry  Installation.”  Agricultural  Systems  89  (1):  204– 22.  doi:10.1016/j.agsy.2005.09.003.     Benabdallah  E.H.,  T.,  S.  Astals,  A.  Galí,  S.  Mace,  J.  Mata-­‐Álvarez.  2009.  “Ammonia  Influence  in   Anaerobic  Digestion  of  OFMSW.”  Water  Science  &  Technology  59  (6):  1153–58.   doi:10.2166/wst.2009.100.     Bolan,  N.S.,  A.A.  Szogi,  T.  Chuasavathi,  B.  Seshadri,  M.J.  Rothrock,  P.  Panneerselvam.  2010.   “Uses  and  Management  of  Poultry  Litter.”  World’s  Poultry  Science  Journal  66  (04):   673–98.  doi:10.1017/S0043933910000656.     Bradford,  S.A.,  E.  Segal,  W.  Zheng,  Q.  Wang,  S.R.  Hutchins.  2008.  “Reuse  of  Concentrated   Animal  Feeding  Operation  Wastewater  on  Agricultural  Lands.”  Journal  of   Environmental  Quality  37  (5):  S97–115.  doi:10.2134/jeq2007.0393.    
  • 45.      33   Bruni,  E.,  A.J.  Ward,  M.  Køcks,  A.  Feilberg,  A.P.S.  Adamsen,  A.P.  Jensen,  A.K.  Poulsen.  2013.   “Comprehensive  Monitoring  of  a  Biogas  Process  during  Pulse  Loads  with  Ammonia.”   Biomass  and  Bioenergy  56:  211–20.  doi:10.1016/j.biombioe.2013.05.002.     Bujoczek,  G.,  J.  Oleszkiewicz,  R.  Sparling,  S.  Cenkowski.  2000.  “High  Solid  Anaerobic   Digestion  of  Chicken  Manure.”  Journal  of  Agricultural  Engineering  Research  76  (1):   51–60.  doi:10.1006/jaer.2000.0529.     Burkholder,  J.,  B.  Libra,  P.  Weyer,  S.  Heathcote,  D.  Kolpin,  P  S.  Thorne,  M.  Wichman.  2007.   “Impacts  of  Waste  from  Concentrated  Animal  Feeding  Operations  on  Water  Quality.”   Environmental  Health  Perspectives  115  (2):  308–12.  doi:10.1289/ehp.8839.     Chen,  Y.,  J.J.  Cheng,  K.S.  Creamer.  2008.  “Inhibition  of  Anaerobic  Digestion  Process:  A   Review.”  Bioresource  Technology  99  (10):  4044–64.   doi:10.1016/j.biortech.2007.01.057.     Collins,  A.R.,  J.  Murphy,  D.  Bainbridge.  2000.  “Optimal  Loading  Rates  and  Economic   Analyses  for  Anaerobic  Digestion  of  Poultry  Waste.”  Journal  of  the  Air  &  Waste   Management  Association  50  (6):  1037–44.     Dolfing,  J.  2014.  “Thermodynamic  Constraints  on  Syntrophic  Acetate  Oxidation.”  Applied   and  Environmental  Microbiology  80  (4):  1539–41.  doi:10.1128/AEM.03312-­‐13.     Edwards,  D.R.,  T.C.  Daniel.  1992.  “Environmental  Impacts  of  on-­‐Farm  Poultry  Waste-­‐ Disposal  -­‐  a  Review.”  Bioresource  Technology  41  (1):  9–33.  doi:10.1016/0960-­‐ 8524(92)90094-­‐E.     El-­‐Hadidi,  Y.M.,  A.I.  Al-­‐Turki.  2007.  “Organic  Fertilizer  and  Biogas  Production  from  Poultry   Wastes.”  Journal  of  Food  Agriculture  &  Environment  5  (1):  228–33.     Frear,  C.,  Z.-­‐W.  Wang,  C.  Li,  and  S.  Chen.  2011.  “Biogas  Potential  and  Microbial  Population   Distributions  in  Flushed  Dairy  Manure  and  Implications  on  Anaerobic  Digestion   Technology.”  Journal  of  Chemical  Technology  &  Biotechnology  86  (1):  145–52.   doi:10.1002/jctb.2484.     Gangagni,  R.A.,  B.  Gandu,  K.  Sandhya,  K.  Kranti,  S.  Ahuja,  Y  V.  Swamy.  2013.  “Decentralized   Application  of  Anaerobic  Digesters  in  Small  Poultry  Farms:  Performance  Analysis  of  
  • 46.      34   High  Rate  Self  Mixed  Anaerobic  Digester  and  Conventional  Fixed  Dome  Anaerobic   Digester.”  Bioresource  Technology  144:  121–27.  doi:10.1016/j.biortech.2013.06.076.     Gangagni,  R.A.,  B.  Gandu,  Y.V.  Swamy.  2012.  “Mass  Transfer  Dynamics  of  Ammonia  in  High   Rate  Biomethanation  of  Poultry  Litter  Leachate.”  Bioresource  Technology,  Special   Issue:  Innovative  Researches  on  Algal  Biomass,  109:  234–38.   doi:10.1016/j.biortech.2011.12.136.     Gangagni,  R.A.,  S.S.  Prakash,  J.  Joseph,  A.R.  Reddy,  P.  N.  Sarma.  2011.  “Multi  Stage  High  Rate   Biomethanation  of  Poultry  Litter  with  Self  Mixed  Anaerobic  Digester.”  Bioresource   Technology  102  (2):  729–35.  doi:10.1016/j.biortech.2010.08.069.     Gilchrist,  M.J.,  C.  Greko,  D.B.  Wallinga,  G.W.  Beran,  D.G.  Riley,  P.S.  Thorne.  2007.  “The   Potential  Role  of  Concentrated  Animal  Feeding  Operations  in  Infectious  Disease   Epidemics  and  Antibiotic  Resistance.”  Environmental  Health  Perspectives  115  (2):   313–16.  doi:10.1289/ehp.8837.     Guštin,  S.,  R.  Marinšek-­‐Logar.  2011.  “Effect  of  pH,  Temperature  and  Air  Flow  Rate  on  the   Continuous  Ammonia  Stripping  of  the  Anaerobic  Digestion  Effluent.”  Process  Safety   and  Environmental  Protection  89  (1):  61–66.  doi:10.1016/j.psep.2010.11.001.     Hansen,  K.H.,  I.  Angelidaki,  B.K.  Ahring.  1998.  “Anaerobic  Digestion  of  Swine  Manure:   Inhibition  by  Ammonia.”  Water  Research  32  (1):  5–12.  doi:10.1016/S0043-­‐ 1354(97)00201-­‐7.     Hao,  L.,  F.  Lü,  L.  Li,  Q.  Wu,  L.  Shao,  P.  He.  2013.  “Self-­‐Adaption  of  Methane-­‐Producing   Communities  to  pH  Disturbance  at  Different  Acetate  Concentrations  by  Shifting   Pathways  and  Population  Interaction.”  Bioresource  Technology  140:  319–27.   doi:10.1016/j.biortech.2013.04.113.     Kayhanian,  M.  1994.  “Performance  of  a  High-­‐Solids  Anaerobic-­‐Digestion  Process  Under   Various  Ammonia  Concentrations.”  Journal  of  Chemical  Technology  and   Biotechnology  59  (4):  349–52.  doi:10.1002/jctb.280590406.     Kelleher,  B.P.,  J.J.  Leahy,  A.M.  Henihan,  T.  F.  O’Dwyer,  D.  Sutton,  M.J.  Leahy.  2002.  “Advances   in  Poultry  Litter  Disposal  Technology  –  a  Review.”  Bioresource  Technology,  Reviews   Issue,  83  (1):  27–36.  doi:10.1016/S0960-­‐8524(01)00133-­‐X.