SlideShare a Scribd company logo
1 of 48
Generation Of Diverse Molecular Complexity
From Cyclooctatetraene
Marquette University
By
Mohamed El Mansy
04/03/2014
Diversity-oriented synthesis
 Preparation of structurally complex and
diverse compounds from simple starting
materials.
Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett., 2000, 2, 709-712.
How to generate molecular
diversity?
 Reagent-based approach
Common starting material
 Substrate-based
approach
Common reagents
Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology, 2013 John Wiley & Sons, Inc.
Cyclooctatetraene (COT)
 Simple compound C8H8.
 Commercially available.
Reppe, W.; Schichting, O.; Klager, K.; Toepel, T. Ann 1948, 560, 1-92. Barnes, C. E. U.S. Patent 2 579
106, 1951.
Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Comm. 1975, 829-830.
Reaction of (COT)Fe(CO)3 with electrophiles
El= H+
El= PhCO+
Broadley, K.; Connelly, N. G.; Graham, P. G.; Howard, J. A. K.; Risse, W.; Whiteley, M. W.; Woodward, P. J. Chem. Soc. Dalton
Charles, A. D.; Diversi, P.; Johnson, B. F. G.; Karlin, K. D.; Lewis, Rivera, A. V.; Scheldrick, G. M. J. Organomet. Chem.
1977, 128, C31-C34.
Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962,
4821-4829.
Mechanism for formation
Broadley, K.; Connelly, N. G.; Graham, P. G.; Howard, J. A. K.; Risse, W.; Whiteley, M. W.; Woodward, P. J. Chem. Soc. Dalton
Charles, A. D.; Diversi, P.; Johnson, B. F. G.; Karlin, K. D.; Lewis, Rivera, A. V.; Scheldrick, G. M. J. Organomet. Chem.
1977, 128, C31-C34.
El= H+
El= PhCO+
Objectives
Glycosidic bond
 The glycosidic bond is very stable towards
hydrolysis.
 Glycosidase enzymes catalyze the hydrolysis
reaction. glycosidic linkage.
http://www.chem.qmul.ac.uk/iupac/2carb/33.ht
Glycosidase inhibitors
Hydrolysis of glycosidic bond with retention of configuration at anomeric carbon.
Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11-18.
Examples of known aminocyclitols
Hooper, R. In “Aminoglycoside Antibiotics”; Umezawa, H., Hooper, I. R., Eds.; Springer, Berlin,
1981; p 7.
Girard, E.; Desvergnes, V.; Tarnus, C.; Landais, Y. Org. Biomol. Chem. 2010, 8,
5628–5634.
Casiraghi, G. et. Al. J. Org. Chem., 2003, 68, 5881-5885.
Aminocycloheptitols: Previous work
Casiraghi, G. et. Al. J. Org. Chem., 2003, 68, 5881-5885.
12 steps , overall yield is 23 %.
One optically pure compound
Girard, E.; Desvergnes, V.; Tarnus, C.; Landais, Y. Org. Biomol. Chem. 2010, 8,
Aminocycloheptitols: Previous work
11 steps , overall yield is 15 %
Racemic product
Our work
=2.73ppm=2.11ppm
11 steps, 26% overall yield
11 steps , overall yield is 15 %
Racemic product
12 steps , overall yield is 23 %
One optically pure compound
Org. Biomol. Chem. 2010, 8, 5628–5634. J. Org. Chem., 2003, 68, 5881-5885.
Optically active tetraols


 


 



 

Anobick Sar
Optical purity
(>94% d.e.)
(>96% d.e.)
=6.22
ppm
=6.31
ppm
11 steps, 15% overall
yield
11 steps, 12% overall
Bicyclic cyclitols
Kelebekli, L.; Kara, Y.; Balci, M.; Carbohydrate Res., 2005, 340, 1940-1948.
Kara, Y.; Balci, M. Tetrahedron, 2003, 59, 2063-2066.
Sengu, M.; Menzek, A.; Sahin, E.; Arik, M.; Saracoglu, N. Tetrahedron, 2008, 64, 7289–7294
Wang,Y.; Bennet, A. Org. Biomol. Chem., 2007, 5, 1731–1738
Synthesis of Bicyclicdiene
Exhaustive Dihydroxylation
Monohydroxylation
Fürst-Plattner Rule
Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32,
275.
Disfavored by 5 Kcal/mol
Epoxide opens to trans diaxial
Epoxide ring opening
Epoxidation
Mechanism of Enone formation
Ring Expansion Mechanism
Formation of endoperoxide
Kishi model
Kornblum–DeLaMare
rearrangement
Preparation of
Epoxyendoperoxide
Ring Contraction
Proposed Ring Contraction
Mechanism
Generated Tetraols
 Out of 16 possible isomers, we synthesized 8.
 Assignments were made by NMR and single crystal X-ray
diffraction.
Testing of the generated
tetraols
 β-Glucosidase was selected as enzyme to be
initially testing the protected bicyclic tetraols.
 Validation of assay is done by using different
enzyme concentrations.
 Testing a known inhibitor and reproduce inhibition
data.
determined colorimetrically
Glucosidase Validation Curve
y = 0.0002x + 0.0132
R² = 0.9995
y = 2E-05x - 0.0028
R² = 0.9676
y = 0.0005x + 0.029
R² = 0.9991
y = 0.0009x + 0.0635
R² = 0.9984
y = 0.0012x + 0.0959
R² = 0.9974
y = 0.0022x + 0.1012
R² = 0.9989
y = 0.0017x + 0.1217
R² = 0.9993
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0 50 100 150 200 250
Absorbance(406nm)
Time (s)
Glucosidase Validation Curve
6…
Assay Results
-5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
M M L 2 8 6 _ f1 D o s e R e s p o n s e (4 p t)
lo g ([X ],M )
%Act
IC50=1.68mM
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
6 0
7 0
8 0
9 0
1 0 0
1 1 0
M M L 2 8 6 _ f2 D o s e R e s p o n s e
lo g ([X ],M )
%Activity
IC50= 156.8µM
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
M M L 3 2 6 _ f2 D o s e R e s p o n s e
lo g ([X ],M )
%Activity
IC50= 41.66µM
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
M M L 2 7 8 _ f2 D o s e R e s p o n s e
lo g ([X ],M )
%Act.
IC50= 1.904mM
Assay Results
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
M M L 2 9 2 _ f1 D o s e R e s p o n s e
lo g ([X ],M )
%Activity
IC50= 430µM
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
1 2 0
M M L 2 1 6 D o s e R e s p o n s e
lo g ([X ],M )
%Act.
IC50= 914.2µM
Assay Results
-5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
7 0
8 0
9 0
1 0 0
1 1 0
M M L 2 7 8 _ f2 D o s e R e s p o n s e
lo g ([X ],M )
%Act.
IC50= 1.904mM
-5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5
6 0
7 0
8 0
9 0
1 0 0
1 1 0
1 2 0
M M L 3 1 6 _ f2 D o s e R e s p o n s e - T ria l II (4 -p t)
lo g ([X ],M )
%Act.
IC50=74.76µM
Assay Results
Formation of polycyclic structures
using olefin metathesis approach
M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
Formation of polycyclic structures
using olefin metathesis approach
M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
Hoye, T.; Jeon, J.; Tennakoon, M. Angew. Chem. Int. Ed. 2011, 50,
Conclusion
Acknowledgment
Supervisor
Professor William A. Donaldson
Committee members
Professor Daniel Sem
Professor Chae S. Yi
Professor Christopher Dockendorff
Generation of Diverse Molecular Complexity from Cyclooctatetraene

More Related Content

Similar to Generation of Diverse Molecular Complexity from Cyclooctatetraene

Expansion of indolizine chemical space -Dirgha.pptx
Expansion of indolizine chemical space -Dirgha.pptxExpansion of indolizine chemical space -Dirgha.pptx
Expansion of indolizine chemical space -Dirgha.pptxDr. Dirgha Raj Joshi
 
BioNanoparticle Production static edit
BioNanoparticle Production static editBioNanoparticle Production static edit
BioNanoparticle Production static editJoshua Thomas
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...IJERA Editor
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...IJERA Editor
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...Arkansas State University
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinoneDaniel Teoh Tan
 
ISFragkopoulos - Seminar on Electrochemical Promotion
ISFragkopoulos - Seminar on Electrochemical PromotionISFragkopoulos - Seminar on Electrochemical Promotion
ISFragkopoulos - Seminar on Electrochemical PromotionIoannis S. Fragkopoulos
 
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGSTUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGArghya_D
 
Essential Biology: Making ATP Workbook (SL Core only)
Essential Biology: Making ATP Workbook (SL Core only)Essential Biology: Making ATP Workbook (SL Core only)
Essential Biology: Making ATP Workbook (SL Core only)Stephen Taylor
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopyBMRS Meeting
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1enpi275
 
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)4 methyl-1 h--15-benzodiazepin-23_h_-one (1)
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)alamianouar2019
 
Facile Access to Multi-functionalized indolizines-dirgha.pptx
Facile Access to Multi-functionalized indolizines-dirgha.pptxFacile Access to Multi-functionalized indolizines-dirgha.pptx
Facile Access to Multi-functionalized indolizines-dirgha.pptxDr. Dirgha Raj Joshi
 

Similar to Generation of Diverse Molecular Complexity from Cyclooctatetraene (20)

Expansion of indolizine chemical space -Dirgha.pptx
Expansion of indolizine chemical space -Dirgha.pptxExpansion of indolizine chemical space -Dirgha.pptx
Expansion of indolizine chemical space -Dirgha.pptx
 
Open Journal of Chemistry
Open Journal of ChemistryOpen Journal of Chemistry
Open Journal of Chemistry
 
BioNanoparticle Production static edit
BioNanoparticle Production static editBioNanoparticle Production static edit
BioNanoparticle Production static edit
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
 
ISFragkopoulos - Seminar on Electrochemical Promotion
ISFragkopoulos - Seminar on Electrochemical PromotionISFragkopoulos - Seminar on Electrochemical Promotion
ISFragkopoulos - Seminar on Electrochemical Promotion
 
Aijrfans14 243
Aijrfans14 243Aijrfans14 243
Aijrfans14 243
 
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGSTUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
 
Essential Biology: Making ATP Workbook (SL Core only)
Essential Biology: Making ATP Workbook (SL Core only)Essential Biology: Making ATP Workbook (SL Core only)
Essential Biology: Making ATP Workbook (SL Core only)
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Presentation
PresentationPresentation
Presentation
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1
 
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)4 methyl-1 h--15-benzodiazepin-23_h_-one (1)
4 methyl-1 h--15-benzodiazepin-23_h_-one (1)
 
Ijaret 06 10_018
Ijaret 06 10_018Ijaret 06 10_018
Ijaret 06 10_018
 
Chalcones
ChalconesChalcones
Chalcones
 
Facile Access to Multi-functionalized indolizines-dirgha.pptx
Facile Access to Multi-functionalized indolizines-dirgha.pptxFacile Access to Multi-functionalized indolizines-dirgha.pptx
Facile Access to Multi-functionalized indolizines-dirgha.pptx
 
z4
z4z4
z4
 

Generation of Diverse Molecular Complexity from Cyclooctatetraene

  • 1. Generation Of Diverse Molecular Complexity From Cyclooctatetraene Marquette University By Mohamed El Mansy 04/03/2014
  • 2. Diversity-oriented synthesis  Preparation of structurally complex and diverse compounds from simple starting materials. Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett., 2000, 2, 709-712.
  • 3. How to generate molecular diversity?  Reagent-based approach Common starting material  Substrate-based approach Common reagents Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology, 2013 John Wiley & Sons, Inc.
  • 4. Cyclooctatetraene (COT)  Simple compound C8H8.  Commercially available. Reppe, W.; Schichting, O.; Klager, K.; Toepel, T. Ann 1948, 560, 1-92. Barnes, C. E. U.S. Patent 2 579 106, 1951. Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Comm. 1975, 829-830.
  • 5. Reaction of (COT)Fe(CO)3 with electrophiles El= H+ El= PhCO+ Broadley, K.; Connelly, N. G.; Graham, P. G.; Howard, J. A. K.; Risse, W.; Whiteley, M. W.; Woodward, P. J. Chem. Soc. Dalton Charles, A. D.; Diversi, P.; Johnson, B. F. G.; Karlin, K. D.; Lewis, Rivera, A. V.; Scheldrick, G. M. J. Organomet. Chem. 1977, 128, C31-C34. Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 4821-4829.
  • 6. Mechanism for formation Broadley, K.; Connelly, N. G.; Graham, P. G.; Howard, J. A. K.; Risse, W.; Whiteley, M. W.; Woodward, P. J. Chem. Soc. Dalton Charles, A. D.; Diversi, P.; Johnson, B. F. G.; Karlin, K. D.; Lewis, Rivera, A. V.; Scheldrick, G. M. J. Organomet. Chem. 1977, 128, C31-C34. El= H+ El= PhCO+
  • 8. Glycosidic bond  The glycosidic bond is very stable towards hydrolysis.  Glycosidase enzymes catalyze the hydrolysis reaction. glycosidic linkage. http://www.chem.qmul.ac.uk/iupac/2carb/33.ht
  • 9. Glycosidase inhibitors Hydrolysis of glycosidic bond with retention of configuration at anomeric carbon. Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11-18.
  • 10. Examples of known aminocyclitols Hooper, R. In “Aminoglycoside Antibiotics”; Umezawa, H., Hooper, I. R., Eds.; Springer, Berlin, 1981; p 7. Girard, E.; Desvergnes, V.; Tarnus, C.; Landais, Y. Org. Biomol. Chem. 2010, 8, 5628–5634. Casiraghi, G. et. Al. J. Org. Chem., 2003, 68, 5881-5885.
  • 11. Aminocycloheptitols: Previous work Casiraghi, G. et. Al. J. Org. Chem., 2003, 68, 5881-5885. 12 steps , overall yield is 23 %. One optically pure compound
  • 12. Girard, E.; Desvergnes, V.; Tarnus, C.; Landais, Y. Org. Biomol. Chem. 2010, 8, Aminocycloheptitols: Previous work 11 steps , overall yield is 15 % Racemic product
  • 14. 11 steps, 26% overall yield 11 steps , overall yield is 15 % Racemic product 12 steps , overall yield is 23 % One optically pure compound Org. Biomol. Chem. 2010, 8, 5628–5634. J. Org. Chem., 2003, 68, 5881-5885.
  • 15. Optically active tetraols               Anobick Sar
  • 18. 11 steps, 15% overall yield 11 steps, 12% overall
  • 19. Bicyclic cyclitols Kelebekli, L.; Kara, Y.; Balci, M.; Carbohydrate Res., 2005, 340, 1940-1948. Kara, Y.; Balci, M. Tetrahedron, 2003, 59, 2063-2066. Sengu, M.; Menzek, A.; Sahin, E.; Arik, M.; Saracoglu, N. Tetrahedron, 2008, 64, 7289–7294 Wang,Y.; Bennet, A. Org. Biomol. Chem., 2007, 5, 1731–1738
  • 23. Fürst-Plattner Rule Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275. Disfavored by 5 Kcal/mol Epoxide opens to trans diaxial
  • 26. Mechanism of Enone formation
  • 27.
  • 28.
  • 35. Generated Tetraols  Out of 16 possible isomers, we synthesized 8.  Assignments were made by NMR and single crystal X-ray diffraction.
  • 36. Testing of the generated tetraols  β-Glucosidase was selected as enzyme to be initially testing the protected bicyclic tetraols.  Validation of assay is done by using different enzyme concentrations.  Testing a known inhibitor and reproduce inhibition data. determined colorimetrically
  • 37. Glucosidase Validation Curve y = 0.0002x + 0.0132 R² = 0.9995 y = 2E-05x - 0.0028 R² = 0.9676 y = 0.0005x + 0.029 R² = 0.9991 y = 0.0009x + 0.0635 R² = 0.9984 y = 0.0012x + 0.0959 R² = 0.9974 y = 0.0022x + 0.1012 R² = 0.9989 y = 0.0017x + 0.1217 R² = 0.9993 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0 50 100 150 200 250 Absorbance(406nm) Time (s) Glucosidase Validation Curve 6…
  • 38. Assay Results -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 M M L 2 8 6 _ f1 D o s e R e s p o n s e (4 p t) lo g ([X ],M ) %Act IC50=1.68mM -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 6 0 7 0 8 0 9 0 1 0 0 1 1 0 M M L 2 8 6 _ f2 D o s e R e s p o n s e lo g ([X ],M ) %Activity IC50= 156.8µM
  • 39. -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 M M L 3 2 6 _ f2 D o s e R e s p o n s e lo g ([X ],M ) %Activity IC50= 41.66µM -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 M M L 2 7 8 _ f2 D o s e R e s p o n s e lo g ([X ],M ) %Act. IC50= 1.904mM Assay Results
  • 40. -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 M M L 2 9 2 _ f1 D o s e R e s p o n s e lo g ([X ],M ) %Activity IC50= 430µM -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 M M L 2 1 6 D o s e R e s p o n s e lo g ([X ],M ) %Act. IC50= 914.2µM Assay Results
  • 41. -5 .5 -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 7 0 8 0 9 0 1 0 0 1 1 0 M M L 2 7 8 _ f2 D o s e R e s p o n s e lo g ([X ],M ) %Act. IC50= 1.904mM -5 .0 -4 .5 -4 .0 -3 .5 -3 .0 -2 .5 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 M M L 3 1 6 _ f2 D o s e R e s p o n s e - T ria l II (4 -p t) lo g ([X ],M ) %Act. IC50=74.76µM Assay Results
  • 42. Formation of polycyclic structures using olefin metathesis approach M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
  • 43. M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
  • 44. Formation of polycyclic structures using olefin metathesis approach M. F. El-Mansy , A. Sar , S. Chaudhury , N. J. Wallock and W. A. Donaldson , Org. Biomol. Chem.,
  • 45. Hoye, T.; Jeon, J.; Tennakoon, M. Angew. Chem. Int. Ed. 2011, 50,
  • 47. Acknowledgment Supervisor Professor William A. Donaldson Committee members Professor Daniel Sem Professor Chae S. Yi Professor Christopher Dockendorff

Editor's Notes

  1. An example of reagent based approach for creating DOS
  2. L-threose and Boc protected pyrrole building block