SlideShare a Scribd company logo
1 of 68
Download to read offline
Small Animal Transporter
MSE 499 Senior Design Final Report
Ben Reardon
Daina Gwyn
Ebrahim Zuaiter
Mikal Hayes
April 22, 2013
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Abstract:	
  
	
  
The	
  care	
  and	
  shipping	
  of	
  lab	
  mice	
  has	
  become	
  a	
  major	
  concern	
  for	
  scientist	
  
and	
  veterinarians	
  alike	
  because	
  of	
  the	
  health	
  and	
  safety	
  threats	
  posed	
  on	
  animals	
  
during	
   shipping.	
   	
   It	
   is	
   important	
   to	
   design	
   a	
   shipping	
   container	
   that	
   provides	
  
ultimate	
   comfort	
   to	
   reduce	
   heat	
   stresses	
   during	
   transit	
   as	
   well	
   as	
   a	
   sterilized,	
  
humidity	
   free	
   environment	
   for	
   maximum	
   pathogen	
   resistance.	
   During	
   the	
  
preliminary	
  phase	
  a	
  solid	
  design	
  concept	
  was	
  developed	
  to	
  ensure	
  the	
  concerns	
  and	
  
safety	
  regulations	
  were	
  addressed.	
  	
  During	
  the	
  final	
  manufacturing	
  design,	
  careful	
  
attention	
  was	
  given	
  to	
  the	
  material	
  selection	
  of	
  the	
  container,	
  the	
  passive	
  cooling	
  
system	
   for	
   the	
   unit	
   and	
   the	
   proper	
   implementation	
   of	
   new	
   technologies	
   such	
   as	
  
biodegradable	
   phase	
   change	
   material.	
   	
   Different	
   material	
   considerations	
   will	
   be	
  
discussed	
  outlining	
  the	
  reasons	
  why	
  one	
  would	
  be	
  superior	
  over	
  the	
  other	
  for	
  the	
  
manufactured	
  design	
  verses	
  the	
  prototyped	
  design.	
  Calculations,	
  thermal	
  and	
  FEA	
  
analysis	
  will	
  be	
  presented	
  along	
  with	
  a	
  complete	
  profile	
  for	
  a	
  marketable	
  unit.	
  	
  
  2	
  
Table	
  of	
  Contents	
  
Abstract:	
  .....................................................................................................................................	
  1	
  
Introduction	
  ..............................................................................................................................	
  4	
  
Problem	
  Statement	
  ............................................................................................................	
  6	
  
The	
  Client	
  &	
  Interaction	
  ...................................................................................................	
  7	
  
Brainstorming	
  &	
  Alternate	
  Designs	
  ..................................................................................	
  7	
  
Method	
  Selection	
  &	
  Ranking	
  .........................................................................................	
  11	
  
The	
  Peltier	
  Effect	
  of	
  Cooling	
  ..............................................................................................	
  12	
  
The	
  History	
  and	
  Equation	
  of	
  the	
  Peltier	
  Effect	
  .......................................................	
  13	
  
Active	
  vs.	
  Passive	
  Cooling	
  ...................................................................................................	
  14	
  
The	
  advantages	
  of	
  using	
  active	
  cooling:	
  ....................................................................	
  15	
  
The	
  disadvantages	
  of	
  using	
  the	
  active	
  cooling:	
  ......................................................	
  15	
  
Material	
  Considerations	
  .....................................................................................................	
  15	
  
Polypropylene	
  ....................................................................................................................	
  15	
  
ABS	
  .........................................................................................................................................	
  16	
  
Polycarbonate	
  ....................................................................................................................	
  16	
  
Space	
  Accessible	
  Composite	
  (SAC)	
  ..............................................................................	
  17	
  
Acrylic	
  ...................................................................................................................................	
  17	
  
Final	
  Material	
  Choices	
  .....................................................................................................	
  18	
  
The	
  Phase	
  Change	
  Material	
  ...........................................................................................	
  19	
  
CES	
  Material	
  Analysis	
  ..........................................................................................................	
  20	
  
Stages	
  of	
  Design	
  .....................................................................................................................	
  20	
  
Design	
  &	
  Construction	
  .........................................................................................................	
  22	
  
Physical	
  Components	
  ......................................................................................................	
  22	
  
Valspar	
  Reflective	
  Paint	
  .................................................................................................	
  25	
  
Heat	
  Transfer	
  Principles	
  ............................................................................................	
  25	
  
Definitions	
  of	
  key	
  terms:	
  ............................................................................................	
  26	
  
Selection	
  of	
  coatings	
  ....................................................................................................	
  26	
  
Electrical	
  Components	
  ....................................................................................................	
  27	
  
Electrical	
  Schematic	
  .....................................................................................................	
  28	
  
Lithium	
  Battery	
  .............................................................................................................	
  28	
  
Microcontroller	
  .............................................................................................................	
  29	
  
Temperature	
  &	
  Humidity	
  Sensor	
  ............................................................................	
  30	
  
Computer	
  Fan	
  ................................................................................................................	
  31	
  
Thermoelectric	
  Cooling	
  System	
  ...............................................................................	
  32	
  
USB	
  Temperature	
  &	
  Humidity	
  Datalogger	
  ...........................................................	
  32	
  
GPS	
  Datalogger	
  ..............................................................................................................	
  34	
  
Bill	
  of	
  Materials	
  .................................................................................................................	
  34	
  
  3	
  
Large	
  Container	
  Equations	
  ........................................................................................	
  34	
  
Acrylic	
  Cage	
  Equations	
  ...............................................................................................	
  35	
  
Bio	
  PCM	
  Equations	
  .......................................................................................................	
  35	
  
FEA	
  Analysis	
  ............................................................................................................................	
  36	
  
Thermal	
  Analysis	
  ..................................................................................................................	
  37	
  
The	
  Thermal	
  Environment	
  ............................................................................................	
  37	
  
Thermal	
  Stresses	
  ..............................................................................................................	
  37	
  
Thermal	
  Profile	
  of	
  the	
  Design	
  .......................................................................................	
  38	
  
Conduction	
  ..........................................................................................................................	
  43	
  
Safety	
  &	
  Shipping	
  Regulations	
  ..........................................................................................	
  44	
  
The	
  Animal	
  Welfare	
  Act	
  (AWA)	
  ....................................................................................	
  47	
  
The	
  Lacey	
  Act	
  .....................................................................................................................	
  47	
  
Semester	
  2	
  The	
  Building	
  Process	
  ....................................................................................	
  48	
  
Manufactures	
  Final	
  Material	
  Selection	
  ..........................................................................	
  48	
  
Aluminum	
  Honeycomb	
  ...................................................................................................	
  48	
  
Curv®	
  ........................................................................................................................................	
  49	
  
The	
  AeroPlaz™	
  Honeycomb	
  ...............................................................................................	
  51	
  
Electronic	
  Components	
  .......................................................................................................	
  54	
  
Final	
  Design:	
  .......................................................................................................................	
  54	
  
Changes	
  from	
  Original	
  Design:	
  .........................................................................................	
  58	
  
Electronic	
  Changes	
  Recommended	
  Due	
  to	
  Testing:	
  ..............................................	
  58	
  
Testing	
  ......................................................................................................................................	
  62	
  
Conclusion	
  ...............................................................................................................................	
  65	
  
References:	
  ..............................................................................................................................	
  67	
  
Appendix	
  ..................................................................................................................................	
  68	
  
CES	
  Material	
  Index	
  Graphs	
  ............................................................................................	
  68	
  
CES	
  Mechanical	
  &	
  Thermal	
  Property	
  Tables	
  ...........................................................	
  68	
  
FEA	
  Analysis	
  Data	
  .............................................................................................................	
  68	
  
Final	
  Gant	
  Chart	
  ................................................................	
  Error!	
  Bookmark	
  not	
  defined.	
  
Resources	
  ............................................................................................................................	
  68	
  
  4	
  
Introduction	
  
	
  
The	
   purpose	
   of	
   this	
   project	
   is	
   to	
   develop	
   an	
   active	
   temperature	
   controlled	
  
shipping	
  container	
  that	
  provides	
  a	
  stable	
  temperature	
  and	
  humidity	
  environment	
  
for	
  rodents	
  and	
  small	
  exotic	
  animals.	
  	
  In	
  the	
  initial	
  development	
  stages	
  the	
  team	
  has	
  
narrowed	
  down	
  a	
  design	
  based	
  on	
  the	
  needs	
  of	
  the	
  customers	
  and	
  the	
  problems	
  that	
  
arise	
  as	
  a	
  result	
  of	
  using	
  the	
  current	
  design.	
  	
  	
  
	
  
Rodents	
   used	
   in	
   research	
   are	
   currently	
   transported	
   inside	
   HEPA-­‐filtered	
  
shipping	
  containers	
  of	
  various	
  sizes.	
  	
  When	
  the	
  shipping	
  containers	
  are	
  placed	
  in	
  
unregulated	
   conditions	
   during	
   transit,	
   hypothermic	
   and	
   hyperthermia	
   events	
   can	
  
occur	
  that	
  are	
  sometimes	
  fatal.	
  	
  Survival	
  is	
  affected	
  by	
  many	
  environmental	
  factors,	
  
including	
  ambient	
  temperatures,	
  relative	
  humidity,	
  water	
  availability	
  and	
  exposure	
  
time.	
   	
   Providing	
   active	
   environmental	
   controls	
   on	
   the	
   shipping	
   container	
   would	
  
offer	
  stable	
  temperatures	
  and	
  reduce	
  humidity	
  during	
  uncontrolled	
  environmental	
  
conditions,	
  which	
  would	
  help	
  ensure	
  safe	
  passage	
  for	
  the	
  lab	
  mice.	
  	
  
	
  
When	
   starting	
   a	
   project	
   it	
   is	
   important	
   to	
   understand	
   the	
   customer	
   and	
  
market.	
  	
  After	
  much	
  research	
  and	
  investigation,	
  it	
  was	
  found	
  that	
  much	
  of	
  veterinary	
  
medicine	
  and	
  medical	
  experiments,	
  rely	
  on	
  mice.	
  	
  	
  
	
  
	
  
Figure	
  1:	
  Pie	
  chart	
  of	
  2010	
  usage	
  of	
  lab	
  mice	
  in	
  the	
  European	
  Union	
  [15].	
  
  5	
  
In	
  the	
  27	
  states	
  of	
  the	
  European	
  Union,	
  they	
  use	
  mice	
  60%	
  of	
  the	
  time	
  in	
  their	
  
laboratory	
  experiments	
  (Figure	
  1).	
  	
  In	
  the	
  United	
  States	
  it	
  is	
  estimated	
  that	
  85-­‐90%	
  
of	
  the	
  animals	
  used	
  in	
  medical	
  research	
  are	
  mice.	
  	
  The	
  vast	
  use	
  of	
  lab	
  mice	
  in	
  the	
  
United	
  States	
  has	
  not	
  led	
  to	
  them	
  not	
  being	
  counted	
  in	
  the	
  annual	
  statistics	
  that	
  the	
  
USDA	
  collects	
  on	
  the	
  use	
  of	
  animals	
  in	
  the	
  United	
  States;	
  nor	
  are	
  they	
  covered	
  under	
  
the	
  Animal	
  Welfare	
  Act.	
  	
  This	
  means	
  that	
  because	
  they	
  are	
  used	
  more	
  than	
  any	
  other	
  
animal,	
  their	
  use	
  is	
  not	
  regulated	
  and	
  they	
  do	
  not	
  have	
  protections	
  and	
  rights	
  that	
  
other	
  animals	
  would	
  have.	
  	
  	
  
	
  
	
  
	
  
Figure	
  2:	
  Pie	
  chart	
  illustrating	
  the	
  percentage	
  of	
  mice	
  used	
  in	
  the	
  US	
  in	
  2010	
  [16].	
  
	
  
From	
  Figure	
  2	
  it	
  is	
  estimated	
  that	
  mice	
  account	
  for	
  95%	
  of	
  animals	
  used	
  in	
  medical	
  
research	
  in	
  the	
  US.	
  	
  Precise	
  statistics	
  are	
  not	
  available	
  because	
  the	
  Animal	
  Welfare	
  
Act	
  does	
  not	
  protect	
  lab	
  mice,	
  but	
  this	
  amounts	
  to	
  approximately	
  25	
  million	
  a	
  year	
  
being	
  used.	
  
	
  
Mice	
  are	
  used	
  in	
  research	
  study	
  for	
  various	
  diseases:	
  
• Tuberculosis	
  	
  
• Cancer	
  
• Parkinson	
  
• Hypertension	
  
• Obesity	
  
• Diabetes	
  
• And	
  more	
  
	
  
	
  
  6	
  
There	
  is	
  not	
  a	
  disease	
  that	
  lab	
  mice	
  have	
  not	
  been	
  a	
  part	
  of.	
  	
  A	
  recent	
  article	
  was	
  
published	
  analyzing	
  the	
  use	
  of	
  mice	
  in	
  experiments	
  to	
  study	
  every	
  disease.	
  	
  It	
  stated	
  
a	
  danger	
  is	
  being	
  done	
  when	
  researchers	
  use	
  one	
  animal	
  to	
  study	
  all	
  disease	
  and	
  
fears	
  that	
  much	
  advancement	
  is	
  being	
  missed	
  because	
  of	
  the	
  lack	
  of	
  versatility	
  done	
  
in	
   the	
   choice	
   of	
   animal.	
   	
   Whatever	
   it	
   may	
   be,	
   the	
   fact	
   is	
   clear	
   that	
   mice	
   are	
   used	
  
extensively	
  in	
  the	
  industry	
  and	
  developing	
  a	
  product	
  that	
  protects	
  the	
  investments	
  
made	
  in	
  these	
  animals	
  has	
  become	
  our	
  number	
  one	
  priority.	
  	
  Understanding	
  the	
  use	
  
and	
  importance	
  of	
  these	
  animals	
  to	
  our	
  lives	
  and	
  disease	
  advancement,	
  helps	
  us	
  to	
  
tailor	
   a	
   product	
   that	
   satisfies	
   the	
   goals	
   of	
   the	
   industry	
   and	
   offers	
   a	
   solution	
   in	
  
shipping	
  these	
  animals	
  amongst	
  researcher	
  safely.	
  	
  
	
  
Problem	
  Statement	
  
	
  
The	
   current	
   design	
   being	
   used	
   to	
   transport	
   lab	
   animals	
   offers	
   one	
   major	
  
concern;	
   it	
   does	
   not	
   have	
   any	
   mechanisms	
   in	
   place	
   to	
   control	
   the	
   temperature,	
  
which	
  in	
  turn	
  will	
  regulate	
  the	
  humidity	
  and	
  circulate	
  the	
  air	
  for	
  the	
  mice.	
  
	
  
Figure	
  3:	
  The	
  Jackson	
  Laboratory	
  patented	
  shipping	
  container	
  for	
  lab	
  mice	
  [1].	
  
	
  
It	
  is	
  a	
  container	
  that	
  is	
  made	
  out	
  of	
  an	
  all	
  plastic	
  (ABS)	
  construction	
  with	
  
holes	
  on	
  each	
  side	
  and	
  the	
  top	
  to	
  promote	
  airflow.	
  	
  If	
  the	
  mice	
  are	
  shipped	
  in	
  this	
  
container	
  during	
  extreme	
  heat,	
  the	
  container	
  will	
  hold	
  the	
  heat	
  inside	
  which	
  yields	
  
the	
  fatal	
  conditions	
  the	
  veterinarians	
  and	
  scientist	
  fear.	
  	
  This	
  current	
  design	
  poses	
  
the	
  following	
  challenges:	
  
	
  
• Creating	
  a	
  proper	
  temperature	
  mechanism	
  that	
  is	
  battery	
  powered	
  long	
  enough	
  to	
  
sustain	
  animals	
  for	
  up	
  to	
  a	
  week.	
  
• Creating	
   a	
   proper	
   temperature	
   mechanism	
   that	
   is	
   sensor	
   controlled	
   through	
   a	
  
thermostat.	
  
• Creating	
  a	
  shipping	
  container	
  that	
  holds	
  up	
  to	
  10	
  small	
  mice	
  and	
  separates	
  males	
  
from	
   females	
   and	
   provides	
   even	
   distribution	
   of	
   food	
   while	
   limiting	
   exposure	
   to	
  
diseases	
  
  7	
  
• Developing	
  the	
  proper	
  fan	
  and	
  installation	
  system	
  that	
  controls	
  humidity	
  within	
  the	
  
unit.	
  
• Adhere	
  to	
  shipping	
  regulations	
  
	
  
The	
  Client	
  &	
  Interaction	
  
	
  
The	
   initial	
   client	
   and	
   consultation	
   has	
   been	
   with	
   Dr.	
   Joan	
   Cadillac.	
   	
   Dr.	
  
Cadillac	
   is	
   the	
   Sr.	
   Clinical	
   Lab	
   Animal	
   Veterinarian	
   for	
   the	
   Animal	
   Resources	
  
Program	
  at	
  the	
  UAB	
  Research	
  Building.	
  	
  Dr.	
  Cadillac	
  provides	
  oversight	
  of	
  the	
  animal	
  
medical	
   services	
   for	
   the	
   UAB	
   research	
   animal	
   colonies.	
  	
   She	
   also	
   oversees	
   the	
  
importation	
   and	
   quarantine	
   of	
   all	
   incoming	
   rodents	
   from	
   non-­‐commercial	
  
vendors.	
  	
  	
  Dr.	
  Cadillac	
  received	
  her	
  degree	
  in	
  veterinary	
  medicine	
  from	
  Kansas	
  State	
  
University.	
  	
  She	
  completed	
  her	
  residency	
  training	
  and	
  received	
  a	
  Masters	
  of	
  Public	
  
Health	
   from	
   the	
   University	
   of	
   Michigan.	
  	
   Dr.	
   Cadillac	
   serves	
   as	
   a	
   diplomat	
   of	
   the	
  
American	
  College	
  of	
  Laboratory	
  Animal	
  Medicine	
  and	
  has	
  over	
  19	
  years’	
  experience	
  
in	
  veterinary	
  medicine.	
  	
  	
  
	
  
Dr.	
  Cadillac	
  serves	
  as	
  mentor	
  and	
  client	
  in	
  this	
  project	
  based	
  on	
  her	
  extensive	
  
knowledge	
   of	
   the	
   industry	
   as	
   vast	
   amount	
   of	
   experience	
   in	
   the	
   proper	
  
transportation	
  of	
  lab	
  mice	
  and	
  other	
  lab	
  animals.	
  	
  When	
  asked	
  why	
  this	
  project	
  was	
  
so	
  important	
  to	
  researchers	
  and	
  veterinary	
  medicine,	
  Dr.	
  Cadillac	
  responded	
  that	
  
proper	
   transporting	
   units	
   are	
   important	
   to	
   the	
   field	
   of	
   animal	
   research	
   because	
  
numerous	
   animals	
   are	
   transported	
   between	
   institutions	
   (both	
   domestic	
   and	
  
international),	
   and	
   due	
   to	
   a	
   recent	
   spike	
   in	
   transportation	
   issues,	
   animals	
  
sometimes	
  die	
  during	
  transport.	
  	
  Dr.	
  Cadillac	
  has	
  made	
  it	
  clear	
  that	
  her	
  goal	
  and	
  her	
  
aim	
  are	
  to	
  work	
  closely	
  with	
  us	
  to	
  see	
  this	
  project	
  till	
  the	
  end	
  to	
  ensure	
  its	
  success.	
  	
  
	
  
There	
  was	
  several	
  design	
  constraints	
  that	
  were	
  made	
  presented	
  to	
  the	
  design	
  
team.	
  One	
  of	
  them	
  was	
  to	
  avoid	
  paying	
  the	
  heavy	
  shipping	
  costs	
  to	
  rent	
  out	
  a	
  climate	
  
controlled	
   vehicles	
   to	
   transport	
   the	
   animals	
   which	
   cost	
   upward	
   of	
   thousands	
   of	
  
dollars	
  per	
  shipping	
  container.	
  Another	
  limitation	
  is	
  to	
  make	
  the	
  material	
  where	
  the	
  
rodents	
  aren’t	
  able	
  to	
  chew	
  their	
  way	
  out.	
  Finally,	
  the	
  when	
  rodents	
  are	
  shipped,	
  
they	
   are	
   regulated	
   to	
   a	
   certain	
   amount	
   of	
   living	
   space	
   during	
   their	
   journey,	
   as	
  
evidenced	
  by	
  Animal	
  Welfare	
  Act	
  in	
  table	
  12.	
  
Brainstorming	
  &	
  Alternate	
  Designs	
  
	
  
Our	
  approach	
  into	
  this	
  design	
  during	
  the	
  preliminary	
  stages	
  was	
  unanimous,	
  
such	
   that	
   the	
   current	
   container	
   being	
   used	
   is	
   inferior	
   and	
   insufficient.	
   After	
  
countless	
  debates	
  and	
  critical	
  thinking,	
  it	
  was	
  determined	
  that	
  the	
  approach	
  to	
  this	
  
is	
  that	
  each	
  member	
  in	
  this	
  group	
  does	
  initial	
  sketches	
  of	
  what	
  they	
  think	
  would	
  be	
  
beneficial	
  to	
  the	
  group	
  design.	
  It	
  was	
  concluded	
  that	
  the	
  best	
  approach	
  to	
  this	
  design	
  
is	
  to	
  implement	
  an	
  exterior	
  temperature	
  change	
  structure	
  with	
  the	
  interior	
  being	
  
held	
  up	
  by	
  the	
  cages	
  for	
  the	
  animals.	
  This	
  would	
  substantially	
  cut	
  down	
  the	
  cost	
  of	
  
shipping	
   by	
   eliminating	
   the	
   need	
   to	
   ship	
   it	
   via	
   critical	
   freight.	
   This	
   would	
   save	
  
  8	
  
tremendously	
  by	
  eradicating	
  the	
  climate	
  controlled	
  vehicles,	
  and	
  handling	
  extreme	
  
care	
   because	
   of	
   the	
   soft	
   plastic	
   and	
   cardboard	
   material	
   being	
   used	
   right	
   now	
   for	
  
these	
   rodents.	
   Our	
   idea	
   is	
   to	
   construct	
   containers	
   that	
   would	
   be	
   made	
   out	
   of	
  
extreme	
   durability	
   and	
   strength	
   to	
   withstand	
   impact	
   and	
   the	
   duration	
   of	
   the	
  
journey.	
  Also,	
  in	
  each	
  of	
  the	
  member’s	
  sketches,	
  there	
  is	
  a	
  self-­‐sufficient	
  device	
  that	
  
can	
   help	
   control	
   the	
   temperature.	
   Each	
   member	
   in	
   the	
   design	
   team	
   had	
   different	
  
components	
  that	
  were	
  taken	
  from	
  their	
  preliminary	
  sketches’	
  and	
  incorporated	
  into	
  
the	
  final	
  design.	
  	
  
	
  
	
  
Figure	
  4:	
  These	
  preliminary	
  sketches	
  are	
  for	
  the	
  housing	
  units	
  for	
  the	
  interior	
  and	
  exterior	
  views.	
  
	
  
In	
  Figure	
  4,	
  the	
  approach	
  was	
  to	
  build	
  an	
  outer	
  cooling	
  system	
  case	
  which	
  
would	
  have	
  handles	
  on	
  the	
  sides	
  to	
  pick	
  up	
  and	
  have	
  a	
  door	
  that	
  opens	
  up	
  from	
  the	
  
top.	
  The	
  unit	
  will	
  be	
  insulated	
  with	
  phase	
  changing	
  material	
  to	
  absorb	
  the	
  heat.	
  Also,	
  
a	
   computer	
   fan	
   will	
   be	
   used	
   that	
   will	
   act	
   as	
   an	
   exhaust	
   to	
   help	
   circulate	
   air	
  
throughout	
  the	
  case.	
  It	
  will	
  all	
  be	
  powered	
  by	
  a	
  small	
  rechargeable	
  battery.	
  	
  Finally,	
  
there	
   will	
   be	
   two	
   different	
   thermostats,	
   one	
   that	
   will	
   detail	
   the	
   clients	
   of	
   the	
  
temperature	
  outside	
  the	
  housing	
  unit,	
  and	
  the	
  second	
  one	
  will	
  be	
  used	
  to	
  trigger	
  a	
  
resistor	
  for	
  the	
  exhaust	
  fan	
  to	
  kick	
  in	
  if	
  it	
  falls	
  below	
  a	
  certain	
  threshold.	
  The	
  phase	
  
changing	
   material	
   concept	
   was	
   adopted	
   for	
   the	
   final	
   design,	
   as	
   well	
   as	
   the	
  
thermostats,	
   and	
   the	
   computer	
   fan	
   exhaust	
   fan.	
   However	
   the	
   case	
   itself	
   was	
  
discarded	
  due	
  to	
  discomfort	
  of	
  opening	
  up	
  a	
  latch	
  that	
  may	
  get	
  in	
  the	
  way.	
  Also	
  the	
  
material	
   that	
   was	
   desired	
   to	
   make	
   the	
   case	
   out	
   of,	
   plastic	
   storage	
   case	
  
(thermoplastic)	
  would	
  end	
  up	
  being	
  too	
  heavy	
  for	
  the	
  client	
  to	
  carry.	
  
  9	
  
	
  
Figure	
  5:	
  These	
  preliminary	
  sketches	
  are	
  for	
  the	
  housing	
  units	
  for	
  the	
  interior	
  and	
  exterior	
  views.	
  
	
  
In	
  Figure	
  5,	
  the	
  approach	
  was	
  to	
  design	
  a	
  housing	
  unit	
  that	
  will	
  contain	
  mesh	
  
style	
  bins	
  to	
  hold	
  the	
  animals	
  and	
  their	
  food.	
  The	
  mesh	
  promotes	
  air	
  flow	
  to	
  the	
  
animals.	
  Also,	
  the	
  unit	
  would	
  be	
  made	
  out	
  of	
  plastic	
  material	
  with	
  phase	
  changing	
  
material	
   incorporated.	
   The	
   design	
   itself	
   will	
   have	
   three	
   different	
   shelves,	
   to	
  
segregate	
   the	
   animals	
   to	
   prevent	
   breeding	
   and	
   interaction.	
   It	
   will	
   be	
   divided	
   to	
  
males,	
  females,	
  and	
  exotic	
  creatures.	
  The	
  door	
  will	
  be	
  one	
  that	
  opens	
  from	
  the	
  side	
  
with	
  a	
  hatch	
  to	
  provide	
  extra	
  air	
  tight	
  security.	
  The	
  concept	
  of	
  segregation	
  for	
  the	
  
animals	
   to	
   prevent	
   breeding	
   and	
   spreading	
   diseases	
   was	
   taken	
   from	
   this	
  
preliminary	
  sketch	
  and	
  incorporated	
  into	
  the	
  final	
  design.	
  Also	
  the	
  idea	
  of	
  having	
  a	
  
door	
  that	
  opens	
  from	
  the	
  side	
  prevents	
  any	
  accidents	
  and	
  constant	
  observation	
  over	
  
all	
  of	
  the	
  animals	
  and	
  easy	
  removal	
  of	
  the	
  cages.	
  However	
  the	
  overall	
  design	
  was	
  not	
  
used	
   because	
   the	
   mesh	
   style	
   bins	
   for	
   the	
   cages	
   will	
   not	
   be	
   strong	
   enough	
   to	
  
withstand	
  the	
  forces	
  erected	
  by	
  the	
  creatures	
  inside.	
  Also,	
  the	
  container	
  itself	
  made	
  
out	
  of	
  plastic	
  will	
  not	
  be	
  used	
  because	
  it	
  would	
  not	
  be	
  durable	
  enough	
  to	
  withstand	
  
the	
  journey	
  of	
  shipment,	
  as	
  well	
  as	
  being	
  too	
  heavy.	
  
	
  
  10	
  
	
  
Figure	
  6:	
  These	
  preliminary	
  sketches	
  are	
  for	
  the	
  housing	
  units	
  for	
  the	
  interior	
  and	
  exterior	
  views.	
  
	
  
In	
   Figure	
   6,	
   the	
   method	
   in	
   this	
   preliminary	
   design	
   is	
   to	
   keep	
   the	
   existing	
  
rodent	
   cages	
   that	
   are	
   being	
   used	
   in	
   today’s	
   market,	
   and	
   just	
   design	
   an	
   exterior	
  
housing	
  container.	
  Some	
  of	
  the	
  things	
  that	
  he	
  incorporates	
  are	
  an	
  HVAC	
  system	
  to	
  
regulate	
   humidity.	
   A	
   computer	
   fan	
   with	
   heat	
   sink	
   for	
   cooling,	
   and	
   heat	
   reflective	
  
material	
   on	
   the	
   outside.	
   Durable	
   plastic	
   is	
   the	
   material	
   that	
   will	
   be	
   used	
   for	
   the	
  
housing	
  unit,	
  as	
  well	
  as	
  highly	
  insulated	
  material	
  within	
  the	
  casing.	
  The	
  concept	
  of	
  
having	
  air	
  flow	
  inside	
  the	
  housing	
  unit	
  for	
  additional	
  ventilation	
  was	
  used	
  for	
  the	
  
final	
  design.	
  Also,	
  a	
  HVAC	
  system	
  is	
  going	
  to	
  be	
  used	
  a	
  hybrid	
  in	
  the	
  final	
  stages,	
  
except	
   it	
   will	
   be	
   replaced	
   with	
   a	
   thermo-­‐electric	
   system	
   in	
   the	
   final	
   design.	
   The	
  
concept	
  is	
  still	
  the	
  same.	
  However	
  it	
  was	
  concluded	
  in	
  the	
  critical	
  design	
  report	
  that,	
  
the	
  existing	
  plastic	
  casings	
  is	
  not	
  ideal	
  for	
  the	
  rodents	
  because	
  it	
  doesn’t	
  provide	
  
enough	
  ventilation	
  as	
  well	
  as	
  temperature	
  controlled	
  climates.	
  Also,	
  stacking	
  plastic	
  
cases	
  on	
  top	
  of	
  each	
  other	
  isn’t	
  ideal	
  as	
  indicated	
  in	
  this	
  preliminary	
  sketch,	
  because	
  
it	
  may	
  prevent	
  airflow	
  going	
  in	
  from	
  each	
  cage.	
  
  11	
  
	
  
Figure	
  7:	
  These	
  preliminary	
  sketches	
  are	
  for	
  the	
  housing	
  units	
  for	
  the	
  interior	
  and	
  exterior	
  views.	
  
	
  
In	
   Figure	
   7,	
   this	
   design	
   shows	
   different	
   views	
   with	
   several	
   air	
   vent	
   and	
  
channels	
  for	
  air	
  to	
  flow	
  freely	
  to	
  circulate	
  fresh	
  air	
  from	
  the	
  outside.	
  Mikal	
  also	
  adds	
  
in	
  a	
  fan	
  on	
  the	
  lid	
  to	
  combat	
  humidity	
  which	
  is	
  a	
  huge	
  problem	
  in	
  certain	
  places	
  
around	
  the	
  world.	
  Some	
  of	
  the	
  concepts	
  were	
  added	
  into	
  the	
  final	
  design	
  such	
  as	
  
cross	
   ventilation	
   that	
   is	
   much	
   more	
   ideal	
   then	
   the	
   current	
   market	
   design.	
   The	
  
reason	
  is	
  because	
  more	
  air	
  flows	
  and	
  circulates	
  fresh	
  air	
  to	
  fight	
  humidity.	
  The	
  fan	
  
on	
  the	
  lid	
  was	
  used	
  for	
  the	
  final	
  design	
  to	
  help	
  ease	
  the	
  burden	
  and	
  drainage	
  of	
  a	
  
potential	
  battery	
  that	
  will	
  be	
  used	
  to	
  power	
  the	
  thermal	
  electric	
  system.	
  The	
  overall	
  
exterior	
  unit	
  was	
  discarded	
  because	
  it	
  doesn’t	
  solve	
  the	
  problem	
  of	
  having	
  enough	
  
space	
  for	
  the	
  rodents	
  to	
  being	
  shipped	
  across	
  the	
  world.	
  	
  	
  
Method	
  Selection	
  &	
  Ranking	
  
	
  
	
   Method	
  selection	
  was	
  taken	
  between	
  the	
  original	
  designs	
  compared	
  to	
  using	
  
an	
  exterior	
  housing	
  unit	
  that	
  is	
  climate	
  controlled.	
  The	
  results	
  depicted	
  in	
  Table	
  1	
  
show	
  that	
  by	
  having	
  an	
  exterior	
  housing	
  unit	
  that	
  is	
  climate	
  controlled	
  makes	
  more	
  
sense	
  than	
  going	
  by	
  what	
  it	
  is	
  in	
  the	
  current	
  market.	
  Table	
  2	
  depicts	
  the	
  method	
  
selection	
  for	
  cages	
  whether	
  or	
  not	
  having	
  isolated	
  rodent	
  cages	
  from	
  the	
  container	
  
rather	
  than	
  putting	
  all	
  the	
  animals	
  inside	
  the	
  same	
  unit.	
  It	
  is	
  shown	
  that	
  by	
  having	
  
separate	
   rodent	
   cages	
   to	
   eliminate	
   breeding,	
   diseases	
   and	
   interaction,	
   as	
   well	
   as	
  
giving	
  the	
  client	
  more	
  comfort	
  ability.	
  Table	
  3	
  describes	
  the	
  idea	
  of	
  having	
  a	
  phase	
  
changing	
  material	
  or	
  not,	
  but	
  it	
  is	
  shown	
  that	
  the	
  criteria	
  for	
  having	
  phase	
  changing	
  
material	
  is	
  extremely	
  important	
  to	
  control	
  temperature	
  and	
  humidity.	
  
	
  
	
  
	
  
	
  
	
  
  12	
  
Table	
  1:	
  	
  Method	
  Selection	
  of	
  Unit	
  
	
  	
   	
  	
   Original	
  Plastic	
  Container	
   Temperature	
  Regulated	
  Exterior	
  Housing	
  
Criteria	
   Weighting	
   Relative	
  Compliance	
   Weighted	
  Value	
   Relative	
  Compliance	
   Weighted	
  Value	
  
Cost	
   5	
   2	
   5	
   5	
   25	
  
Acquirement	
  Difficulty	
   3	
   1	
   3	
   2	
   6	
  
Weight	
   4	
   3	
   12	
   5	
   20	
  
Production	
  Difficulty	
   2	
   1	
   2	
   1	
   2	
  
Production	
  Length	
   1	
   2	
   2	
   1	
   2	
  
Functionality	
   6	
   4	
   24	
   6	
   36	
  
Totals	
   	
  	
   	
  	
   48	
   	
  	
   91	
  
	
  
Table	
  2:	
  	
  Method	
  Selection	
  of	
  Cages	
  
	
  	
   	
  	
   No	
  Separate	
  Rodent	
  Cage	
   Separate	
  Rodent	
  Cage	
  
Criteria	
   Weighting	
   Relative	
  Compliance	
   Weighted	
  Value	
   Relative	
  Compliance	
   Weighted	
  Value	
  
Cost	
   1	
   2	
   2	
   2	
   2	
  
Acquirement	
  Difficulty	
   5	
   1	
   5	
   4	
   20	
  
Weight	
   2	
   3	
   6	
   3	
   6	
  
Production	
  Difficulty	
   4	
   1	
   4	
   5	
   20	
  
Production	
  Length	
   3	
   2	
   6	
   1	
   3	
  
Functionality	
   6	
   4	
   24	
   6	
   36	
  
Totals	
   	
  	
   	
  	
   47	
   	
  	
   87	
  
	
  
Table	
  3:	
  	
  Method	
  Selection	
  of	
  Phase	
  Changing	
  Material	
  
	
  	
   	
  	
   No	
  Phase	
  Changing	
  Material	
   Phase	
  Changing	
  Material	
  
Criteria	
   Weighting	
   Relative	
  Compliance	
   Weighted	
  Value	
   Relative	
  Compliance	
   Weighted	
  Value	
  
Cost	
   5	
   5	
   25	
   5	
   25	
  
Acquirement	
  Difficulty	
   3	
   1	
   3	
   2	
   6	
  
Weight	
   4	
   5	
   20	
   5	
   20	
  
Production	
  Difficulty	
   2	
   1	
   2	
   1	
   2	
  
Production	
  Length	
   1	
   1	
   1	
   1	
   1	
  
Functionality	
   6	
   1	
   6	
   6	
   36	
  
Totals	
   	
  	
   	
  	
   57	
   	
  	
   90	
  
	
  
The	
  Peltier	
  Effect	
  of	
  Cooling	
  
	
  
For	
  the	
  new	
  design,	
  the	
  Peltier	
  effect	
  of	
  cooling	
  was	
  utilized	
  because	
  it	
  is	
  a	
  
trusted	
   method	
   for	
   solid	
   state	
   cooling	
   systems	
   and	
   conventional	
   refrigeration	
  
techniques	
  known	
  as	
  thermoelectric	
  cooling.	
  	
  These	
  solid-­‐state	
  cooling	
  systems	
  use	
  
a	
  thermoelectric	
  device	
  that	
  consists	
  of	
  a	
  heat	
  sink,	
  semiconductor	
  and	
  DC	
  power.	
  	
  
The	
   semiconductor	
   component	
   is	
   soldered	
   between	
   two	
   ceramic	
   plates,	
   with	
  
bismuth	
  telluride	
  particles	
  sandwiched	
  in	
  between	
  the	
  plates,	
  Figure	
  8.	
  	
  This	
  unit	
  is	
  
  13	
  
then	
   doped	
   to	
   create	
   N-­‐P	
   junctions	
   or	
   semiconductors	
   with	
   charge	
   carriers	
   of	
  
different	
  polarity	
  as	
  seen	
  in	
  Figure	
  8.	
  	
  The	
  negative	
  electrons	
  in	
  the	
  n-­‐type	
  semi-­‐
conductor	
  will	
  be	
  drawn	
  towards	
  the	
  positive	
  holes	
  in	
  the	
  p-­‐type	
  semi-­‐	
  conductor	
  
and	
   vice	
   versa.	
   	
   These	
   charge	
   carries	
   will	
   subsequently	
   diffuse	
   until	
   thermal	
  
equilibrium	
  is	
  reached.	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
Figure	
  8:	
  (a)	
  Thermoelectric	
  cooling	
  schematic	
  based	
  on	
  the	
  Peltier	
  effect	
  using	
  n-­‐type	
  and	
  p-­‐type	
  
semiconductors	
  (b)	
  A	
  p-­‐n	
  couple	
  can	
  be	
  used	
  as	
  a	
  thermoelectric	
  couple	
  based	
  on	
  the	
  Peltier	
  effect	
  
(left)	
  or	
  a	
  thermoelectric	
  generator	
  based	
  on	
  the	
  Seebeck	
  effect	
  (right).	
  [7].	
  
	
  
The	
   purpose	
   of	
   a	
   temperature	
   control	
   system	
   is	
   to	
   maintain	
   a	
   device	
   at	
   a	
  
constant	
  temperature.	
  	
  Solid-­‐state	
  cooling	
  systems	
  have	
  no	
  moving	
  parts.	
  For	
  that	
  
reason,	
  they	
  offer	
  high	
  reliability	
  and	
  low	
  maintenance	
  over	
  other	
  types	
  of	
  cooling	
  
or	
  heating	
  devices.	
  Solid-­‐state	
  cooling	
  systems	
  offer	
  low	
  noise	
  performance	
  and	
  are	
  
ideal	
   for	
   use	
   in	
   medical	
   offices,	
   laboratories	
   and	
   all	
   other	
   places	
   where	
   noise	
  
reduction	
  is	
  a	
  factor.	
  Solid-­‐state	
  cooling	
  systems	
  are	
  ecologically	
  clean	
   -­‐	
   no	
  other	
  
types	
  of	
  refrigerants	
  (CFC,	
  HCFC	
  or	
  even	
  HFC)	
  are	
  involved	
  in	
  the	
  process.	
  	
  	
  
	
  
The	
  History	
  and	
  Equation	
  of	
  the	
  Peltier	
  Effect	
  
	
  
The	
   Peltier	
   effect	
   is	
   the	
   presence	
   of	
   heat	
   at	
   an	
   electrified	
   junction	
   of	
   two	
  
different	
   metals	
   and	
   is	
   named	
   for	
   French	
   physicist	
   Jean-­‐Charles	
   Peltier,	
   who	
  
discovered	
  it	
  in	
  1834.	
  When	
  a	
  current	
  is	
  made	
  to	
  flow	
  through	
  a	
  junction	
  composed	
  
of	
  materials	
  A	
  and	
  B,	
  heat	
  is	
  generated	
  at	
  the	
  upper	
  junction	
  at	
  T2,	
  and	
  absorbed	
  at	
  
the	
  lower	
  junction	
  at	
  T1.	
  The	
  Peltier	
  heat	
   𝑄	
  absorbed	
  by	
  the	
  lower	
  junction	
  per	
  unit	
  
time	
  is	
  equal	
  to:	
  
𝑄 = Π!" 𝐼 = (Π! − Π!)  𝐼	
  
	
  
Where	
   ΠAB	
   is	
   the	
   Peltier	
   coefficient	
   for	
   the	
   thermocouple	
   composed	
   of	
  
materials	
  A	
  and	
  B	
  and	
  ΠA	
  (ΠB)	
  is	
  the	
  Peltier	
  coefficient	
  of	
  material	
  A	
  (B).	
  Π	
  varies	
  
with	
  the	
  material's	
  temperature	
  and	
  its	
  specific	
  composition:	
  p-­‐type	
  silicon	
  typically	
  
has	
   a	
   positive	
   Peltier	
   coefficient	
   below	
   ~550	
   K,	
   but	
   n-­‐type	
   silicon	
   is	
   typically	
  
negative.	
  
(a)	
   (b)	
  
  14	
  
The	
  Peltier	
  coefficients	
  represent	
  how	
  much	
  heat	
  current	
  is	
  carried	
  per	
  unit	
  
charge	
  through	
  a	
  given	
  material.	
  Since	
  charge	
  current	
  must	
  be	
  continuous	
  across	
  a	
  
junction,	
   the	
   associated	
   heat	
   flow	
   will	
   develop	
   a	
   discontinuity	
   if	
   ΠA	
   and	
   ΠB	
   are	
  
different.	
   Depending	
   on	
   the	
   magnitude	
   of	
   the	
   current,	
   heat	
   must	
   accumulate	
   or	
  
deplete	
  at	
  the	
  junction	
  due	
  to	
  a	
  non-­‐zero	
  divergence	
  there	
  caused	
  by	
  the	
  carriers	
  
attempting	
  to	
  return	
  to	
  the	
  equilibrium	
  that	
  existed	
  before	
  the	
  current	
  was	
  applied	
  
by	
  transferring	
  energy	
  from	
  one	
  connector	
  to	
  another.	
  
Active	
  vs.	
  Passive	
  Cooling	
  
	
  
Passive	
   temperature	
   control	
   applies	
   to	
   packages	
   that	
   do	
   not	
   have	
   any	
  
intelligence	
  to	
  regulate	
  the	
  cooling	
  process.	
  	
  	
  The	
  phase	
  change	
  material	
  (PCM)	
  used	
  
in	
   passive	
   systems	
   is	
   always	
   cooling	
   no	
   matter	
   what	
   the	
   internal	
   temperature	
   is.	
  	
  
The	
  system	
  is	
  designed	
  based	
  on	
  the	
  premise	
  that	
  the	
  heat	
  leaking	
  into	
  the	
  package	
  
will	
  be	
  approximately	
  equal	
  to	
  the	
  cooling	
  capacity	
  of	
  the	
  phase	
  change	
  material	
  in	
  
the	
  package.	
  	
  The	
  equilibrium	
  condition	
  resulting	
  from	
  this	
  situation	
  will	
  keep	
  the	
  
internal	
  temperature	
  within	
  the	
  desired	
  temperature	
  range.	
  	
  	
  
	
  
Active	
  temperature	
  control	
  applies	
  to	
  packages	
  that	
  have	
  intelligence	
  to	
  start	
  
and	
  stop	
  cooling	
  based	
  on	
  the	
  internal	
  temperature	
  of	
  the	
  package.	
  
Active	
  temperature	
  control	
  packages	
  fall	
  into	
  the	
  following	
  types:	
  
	
  
• Uses	
  a	
  compressor.	
  	
  A	
  thermostat	
  starts	
  and	
  stops	
  the	
  compressor	
  to	
  regulate	
  
the	
  temperature.	
  This	
  package	
  is	
  battery	
  powered.	
  
• Uses	
   a	
   fan	
   to	
   circulate	
   air	
   over	
   dry	
   ice	
   or	
   frozen	
   water	
   containers.	
  	
   A	
  
thermostat	
  starts	
  and	
  stops	
  the	
  fan	
  to	
  regulate	
  the	
  temperature.	
  This	
  package	
  
is	
  battery	
  powered.	
  
• Uses	
  a	
  mechanical	
  thermal	
  switch	
  to	
  control	
  cooling	
  using	
  frozen	
  water	
  as	
  
the	
   cooling	
   medium.	
  	
   A	
   thermostat	
   causes	
   a	
   mechanical	
   thermal	
   switch	
   to	
  
open	
  or	
  close	
  a	
  thermal	
  conduction	
  conduit	
  to	
  regulate	
  the	
  temperature.	
  This	
  
package	
  does	
  not	
  require	
  battery	
  power.	
  
	
  
Passive	
  temperature	
  cooling	
  is	
  a	
  poor	
  solution	
  for	
  high	
  value	
  payloads	
  on	
  
international	
   shipments.	
   	
   The	
   package	
   does	
   not	
   have	
   the	
   intelligence	
   to	
   make	
  
adjustments	
   for	
   different	
   ambient	
   environments.	
  	
   Probably	
   the	
   most	
   challenging	
  
shipment	
  is	
  to	
  ship	
  from	
  the	
  northern	
  hemisphere	
  to	
  the	
  southern	
  hemisphere	
  or	
  
vice	
   versa	
   in	
   February.	
  	
   The	
   reason	
   is	
   because	
   of	
   the	
   opposite	
   seasons	
   both	
  
hemispheres	
   experience	
   at	
   all	
   times.	
   While	
   winter	
   in	
   North	
   America	
   during	
  
February,	
   South	
   America	
   experiences	
   summer	
   during	
   February.	
   The	
   exposure	
   of	
  
such	
   contrast	
   different	
   climates	
   for	
   the	
   rodents	
   could	
   be	
   stressful	
   and	
   lead	
   to	
  
trauma	
   and	
   heat	
   stress.	
   This	
   will	
   be	
   an	
   international	
   shipment	
   of	
   several	
   days	
  
including	
  customs	
  clearance.	
  	
  On	
  the	
  other	
  hand,	
  an	
  active	
  temperature	
  controlled	
  
package	
  has	
  the	
  intelligence	
  to	
  stop	
  cooling	
  when	
  the	
  internal	
  temperature	
  is	
  low	
  
and	
  to	
  start	
  cooling	
  when	
  the	
  internal	
  temperature	
  rises.	
  	
  The	
  pack	
  out	
  protocol	
  for	
  
an	
  active	
  temperature	
  controlled	
  package	
  is	
  the	
  same	
  for	
  any	
  shipment	
  since	
  the	
  
package	
  adjust	
  its	
  cooling	
  or	
  heating	
  automatically.	
  
  15	
  
	
  
For	
   relatively	
   low	
   value	
   domestic	
   shipments	
   in	
   predictable	
   shipping	
  
situations,	
   the	
   passive	
   shipping	
   container	
   is	
   still	
   a	
   viable	
   option.	
  	
   However,	
   for	
  
international	
  shipments	
  where	
  the	
  shipping	
  situation	
  becomes	
  unpredictable	
  with	
  
customs	
   delays	
   or	
   long	
   2-­‐week	
   deliveries	
   and	
   the	
   temperature	
   differences	
   from	
  
environment	
  to	
  environment	
  may	
  be	
  more	
  challenging,	
  it	
  was	
  evident	
  that	
  an	
  active	
  
temperature	
  control	
  system	
  was	
  needed.	
  
The	
  advantages	
  of	
  using	
  active	
  cooling:	
  
• No	
  moving	
  parts	
  
• Do	
  not	
  require	
  the	
  use	
  of	
  chlorofluorocarbons	
  
• Safe	
  for	
  the	
  environment,	
  inherently	
  reliable,	
  and	
  virtually	
  maintenance	
  free	
  
• Can	
  be	
  operated	
  in	
  any	
  orientation	
  
	
  
The	
  disadvantages	
  of	
  using	
  the	
  active	
  cooling:	
  
• Cannot	
   simultaneously	
   have	
   low	
   cost	
   and	
   high	
   power	
   efficiency.	
   Many	
  
researchers	
  and	
  companies	
  are	
  trying	
  to	
  develop	
  Peltier	
  coolers	
  that	
  are	
  both	
  
cheap	
  and	
  efficient.	
  
Material	
  Considerations	
  
	
  
When	
   selecting	
   material	
   for	
   the	
   active	
   controlled	
   shipping	
   container,	
   it	
   is	
  
important	
   to	
   analyze	
   choices	
   based	
   on	
   cost	
   and	
   application	
   efficiency.	
   	
   We	
   have	
  
narrowed	
   it	
   down	
   to	
   a	
   few	
   tried	
   and	
   tested	
   materials	
   that	
   are	
   known	
   for	
  
performance	
  in	
  units	
  that	
  use	
  lab	
  products	
  for	
  transporting	
  or	
  those	
  are	
  reliable	
  in	
  
properties	
  that	
  require	
  thermal	
  sensitivities.	
  	
  We	
  would	
  need	
  to	
  choose	
  three	
  of	
  the	
  
material	
  choices	
  we	
  have	
  narrowed	
  it	
  down	
  to.	
  	
  Two	
  of	
  the	
  choices	
  will	
  be	
  for	
  the	
  
main	
   housing,	
   and	
   the	
   other	
   for	
   the	
   internal	
   cases	
   that	
   house	
   the	
   mice.	
   A	
  
comparison	
   of	
   properties	
   for	
   all	
   the	
   materials	
   in	
   the	
   Appendix	
   to,	
   refer	
   to	
  
throughout	
  the	
  project	
  and	
  material	
  selection	
  process.	
  
Polypropylene	
  
	
  
Polypropylene	
  is	
  a	
  thermoplastic	
  that	
  is	
  manufactured	
  from	
  propylene	
  gas	
  in	
  
presence	
  of	
  a	
  catalyst	
  such	
  as	
  titanium	
  chloride.	
  It	
  is	
  a	
  by-­‐product	
  of	
  the	
  oil	
  refining	
  
processes	
  as	
  well.	
  	
  Polypropylene	
  is	
  highly	
  crystalline	
  and	
  most	
  commercial	
  grades	
  
are	
   isotactic	
   or	
   geometrical	
   in	
   structure	
   which	
   is	
   opposite	
   to	
   an	
   amorphous	
  
thermoplastics,	
  which	
  lacks	
  long	
  range	
  order,	
  such	
  as	
  polystyrene,	
  PVC,	
  polyamides,	
  
etc.,	
  also	
  known	
  as	
  atactic.	
  
	
  
Polypropylene	
  is	
  normally	
  tough	
  and	
  flexible,	
  especially	
  when	
  copolymerized	
  
with	
   ethylene.	
   This	
   allows	
   polypropylene	
   to	
   be	
   used	
   as	
   an	
   engineering	
   plastic,	
  
competing	
  with	
  materials	
  such	
  as	
  ABS.	
  	
  Polypropylene	
  has	
  good	
  resistance	
  to	
  fatigue	
  
and	
  is	
  reasonably	
  economical.	
  	
  It	
  can	
  be	
  made	
  translucent	
  when	
  uncolored	
  but	
  is	
  not	
  
as	
  readily	
  made	
  transparent	
  as	
  polystyrene	
  and	
  acrylic.	
  	
  	
  
  16	
  
Polypropylene	
  is	
  lightweight	
  and	
  has	
  lowest	
  density	
  (0.90-­‐0.92	
  g/cm3)	
  of	
  the	
  resins	
  
used	
  in	
  packaging	
  as	
  seen	
  in	
  TABLE	
  4.	
  	
  	
  
	
  
	
  
	
  TABLE	
  4:	
  Density	
  and	
  melt	
  index	
  comparison	
  of	
  polypropylene	
  and	
  polyethylene.	
  
	
   Polymer	
  Melt	
  Index	
   Density	
  (gr/ml)	
  
LDPE	
  (Low	
  Density	
  Polyethylene)	
   0.2	
  -­‐	
  20.0	
   0.916	
  -­‐	
  0.930	
  
HDPE	
  (High	
  Density	
  Polyethylene)	
   0.2	
  -­‐	
  25.0	
   0.950	
  -­‐	
  0.960	
  
Polypropylene	
   2.0	
  -­‐	
  50.0	
   0.910	
  -­‐	
  0.928	
  
Polypropylene	
   was	
   considered	
   for	
   several	
   reasons	
   in	
   being	
   our	
   premiere	
  
choice	
  of	
  material	
  for	
  our	
  housing	
  for	
  several	
  reasons:	
  
	
  
• It	
  is	
  excellent	
  in	
  resistance	
  to	
  stress	
  and	
  high	
  resistant	
  to	
  cracking	
  (i.e.	
  it	
  has	
  high	
  
tensile	
  and	
  compressive	
  strength)	
  
• High	
  operational	
  temperatures	
  with	
  a	
  melting	
  point	
  of	
  160°C	
  
• Excellent	
  dielectric	
  properties	
  
• It	
   is	
   highly	
   resistant	
   to	
   most	
   alkalis	
   and	
   acid,	
   organic	
   solvents,	
   degreasing	
   agents	
  
and	
  electrolytic	
  attack.	
  On	
  the	
  contrary	
  is	
  less	
  resistance	
  to	
  aromatic,	
  aliphatic	
  and	
  
chlorinated	
  solvents	
  and	
  UV.	
  	
  
• It	
  is	
  non-­‐toxic	
  and	
  is	
  used	
  in	
  thermo	
  cooler	
  applications	
  
• A	
  non-­‐staining	
  material	
  
• Plus	
  it’s	
  easy	
  to	
  produce,	
  assemble	
  and	
  its	
  economical	
  	
  
	
  
ABS	
  
	
  
Acrylonitrile	
   butadiene	
   styrene	
   (ABS)	
   is	
   a	
   type	
   of	
   acrylic	
   that	
   is	
   tough,	
  
resilient	
  and	
  easily	
  molded.	
  	
  It	
  is	
  usually	
  opaque,	
  although	
  some	
  grades	
  can	
  now	
  be	
  
transparent	
   and	
   it	
   can	
   be	
   given	
   vivid	
   colors.	
   	
   ABS	
   –	
   PVC	
   alloys	
   are	
   tougher	
   than	
  
standard	
   ABS	
   and	
   in	
   self-­‐extinguishing	
   grades,	
   are	
   used	
   for	
   the	
   casing	
   of	
   power	
  
tools.	
  	
  ABS	
  has	
  the	
  highest	
  impact	
  resistance	
  of	
  all	
  the	
  polymers.	
  	
  By	
  adding	
  glass	
  
fiber	
  the	
  rigidity	
  can	
  be	
  increased	
  dramatically	
  which	
  may	
  prove	
  beneficial	
  in	
  our	
  
unit.	
   	
   If	
   we	
   use	
   this	
   as	
   our	
   housing	
   material	
   it	
   would	
   need	
   a	
   protective	
   coating	
  
because	
  sunlight	
  causes	
  yellowing	
  and	
  loss	
  of	
  strength.	
  	
  The	
  good	
  news	
  is,	
  if	
  we	
  use	
  
this	
  material,	
  we	
  will	
  have	
  the	
  manufacturing	
  processes	
  of	
  extrusion,	
  compression	
  
molding	
  or	
  vacuum	
  thermo	
  forming	
  available	
  to	
  us.	
  	
  	
  
	
  
Polycarbonate	
  
	
  
Polycarbonate	
  is	
  a	
  clear,	
  colorless	
  polymer	
  used	
  extensively	
  for	
  engineering	
  
and	
  optical	
  applications.	
  It	
  is	
  available	
  commercially	
  in	
  both	
  pellet	
  and	
  sheet	
  form.	
  
Outstanding	
   properties	
   include	
   impact	
   strength	
   and	
   scratch	
   resistance.	
   The	
   most	
  
serious	
   deficiencies	
   though	
   are	
   poor	
   weather	
   ability	
   and	
   chemical	
   resistance.	
  	
  
Typical	
  properties	
  include:	
  
  17	
  
	
  
• Glass transition temperature: 145°
C.
• Melting temperature: 225°
C.
• Amorphous density at 25°
C: 1.20 g/cm3
.
• Molecular weight of repeat unit: 254.3 g/mol.	
  
	
  
Space	
  Accessible	
  Composite	
  (SAC)	
  
	
  
Space	
  Accessible	
  Composite	
  is	
  a	
  glass	
  epoxy	
  made	
  of	
  woven	
  glass	
  fibers	
  and	
  a	
  
non-­‐woven	
  glass	
  core	
  that	
  is	
  then	
  combined	
  with	
  the	
  epoxy	
  resin.	
  	
  This	
  material	
  is	
  
highly	
  used	
  in	
  the	
  electronics	
  industry	
  for	
  products	
  like	
  printed	
  circuit	
  boards	
  for	
  
cellular	
  phones	
  and	
  computers.	
  	
  The	
  properties	
  of	
  the	
  material	
  are	
  listed	
  in	
  Table	
  5	
  
and	
  a	
  full	
  list	
  from	
  CES	
  is	
  available	
  in	
  the	
  appendix	
  as	
  well.	
  	
  SAC	
  is	
  attractive	
  to	
  us	
  
because	
  it	
  is	
  flame	
  retardant,	
  a	
  low	
  moisture	
  absorber;	
  it’s	
  very	
  high	
  in	
  strength	
  and	
  
very	
  low	
  in	
  weight	
  and	
  cost.	
  	
  
	
  
Table	
  5:	
  	
  ASTM	
  properties	
  of	
  space	
  accessible	
  composite	
  
Specifications	
  of	
  Space	
  Accessible	
  Composite	
  
Compressive	
  
Yield	
  
Strength	
  
8.00	
  MPa	
   1160	
  psi	
   ASTM	
  
C365	
  
Shear	
  
Modulus	
  
12.0	
  Mpa	
   1740	
  psi	
   ASTM	
  
C273	
  
Shear	
  
Strength	
  
1.50	
  Mpa	
   218	
  psi	
   ASTM	
  
C273	
  
	
  
Glass	
   epoxy	
   materials	
   can	
   operate	
   under	
   heavy	
   electrical	
   and	
   mechanical	
  
stress	
   as	
   well	
   as	
   high	
   temperatures.	
   	
   According	
   to	
   our	
   FEA	
   and	
   thermal	
   analysis	
  
found	
   later	
   on	
   in	
   this	
   paper,	
   it	
   is	
   shown	
   that	
   we	
   need	
   a	
   material	
   to	
   withstand	
  
temperatures	
  of	
  over	
  110°F	
  and	
  the	
  glass	
  epoxy	
  has	
  a	
  thermal	
  resistance	
  well	
  above	
  
that	
  to	
  329°F.	
  	
  	
  
	
  
Acrylic	
  	
  
	
  
Although	
   not	
   as	
   strong	
   as	
   polycarbonate,	
   acrylic	
   poses	
   some	
   benefits	
   that	
  
makes	
  it	
  a	
  good	
  contender	
  for	
  use	
  as	
  our	
  material	
  of	
  choice	
  for	
  the	
  inside	
  rodent	
  
container.	
  	
  Keep	
  in	
  mind	
  the	
  inside	
  rodent	
  container	
  will	
  have	
  holes	
  throughout	
  for	
  
air	
  circulation	
  and	
  will	
  be	
  the	
  container	
  that	
  the	
  receiver	
  keeps;	
  this	
  is	
  discussed	
  
more	
  in	
  the	
  design	
  and	
  construction	
  section	
  of	
  this	
  report.	
  	
  Since	
  acrylic	
  is	
  as	
  hard	
  as	
  
polymers	
   go	
   then	
   we	
   wanted	
   to	
   plot	
   the	
   hardness	
   versus	
   the	
   maximum	
   service	
  
temperature	
  in	
  CES.	
  	
  The	
  material	
  may	
  not	
  be	
  comfortable	
  enough	
  for	
  the	
  mice	
  to	
  lie	
  
in	
  for	
  up	
  to	
  two	
  weeks.	
  However	
  the	
  comfort	
  ability	
  of	
  the	
  mice	
  will	
  be	
  dictated	
  later	
  
  18	
  
in	
  the	
  paper,	
  about	
  how	
  the	
  importance	
  of	
  reducing	
  stress,	
  trauma,	
  and	
  heat	
  stroke	
  
on	
  the	
  mice.	
  
	
  
Final	
  Material	
  Choices	
  
	
  
The	
  initial	
  housing	
  construction	
  of	
  our	
  design	
  was	
  slated	
  to	
  be	
  made	
  out	
  of	
  a	
  
aluminum	
   honeycomb	
   sandwiched	
   between	
   ¼	
   inch	
   Curv®	
   sheets.	
   	
   This	
   material	
  
was	
   chosen	
   because	
   it	
   is	
   strong	
   lightweight	
   and	
   freely	
   available	
   to	
   us.	
   	
   The	
   time	
  
devoted	
  to	
  design,	
  papers	
  and	
  meetings	
  has	
  sacrificed	
  the	
  time	
  spent	
  on	
  fundraising	
  
so	
  we	
  resolved	
  to	
  just	
  use	
  the	
  $600	
  budget	
  and	
  gain	
  as	
  many	
  donations	
  as	
  possible.	
  	
  
This	
  design	
  just	
  recently	
  received	
  $5000	
  in	
  grant	
  money,	
  if	
  an	
  appropriate	
  prototype	
  
can	
  be	
  made	
  by	
  the	
  end	
  of	
  January	
  using	
  the	
  Space	
  Accessible	
  Composite	
  as	
  well	
  as	
  
Polycarbonate	
   that	
   was	
   donated	
   to	
   the	
   project.	
   Mentors	
   and	
   investors	
   have	
  
requested	
  to	
  expedite	
  the	
  delivery	
  of	
  a	
  prototype	
  so	
  therefore	
  we	
  will	
  begin	
  building	
  
December	
  17th.	
  	
  We	
  will	
  use	
  the	
  thermo	
  forming	
  process	
  to	
  construct	
  the	
  container	
  
and	
  will	
  be	
  able	
  to	
  use	
  an	
  array	
  of	
  materials,	
  test	
  them	
  and	
  decide	
  on	
  the	
  best.	
  	
  We	
  
will	
  still	
  begin	
  with	
  the	
  space	
  accessible	
  composite.	
  	
  We	
  will	
  also	
  use	
  Curv®	
  and	
  a	
  
polypropylene	
  honeycomb	
  because	
  it	
  has	
  a	
  density	
  that	
  is	
  17	
  times	
  lower	
  than	
  the	
  
density	
   for	
   the	
   SAC	
   material.	
   	
   	
   The	
   fact	
   that	
   weight	
   reduction	
   is	
   one	
   of	
   our	
   main	
  
objectives,	
  makes	
  the	
  Curv®	
  and	
  polypropylene	
  honeycomb	
  very	
  attractive	
  to	
  use	
  in	
  
our	
  final	
  working	
  unit.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  19	
  
	
  
The	
  Phase	
  Change	
  Material	
  
	
  
	
  
	
  
Figure	
  9:	
  The	
  bioPCM	
  (phase	
  change	
  material)	
  used	
  for	
  insulation	
  in	
  the	
  animal	
  transporter	
  unit.	
  
	
  
The	
  BioPCM™	
  is	
  the	
  key	
  ingredient	
  for	
  the	
  active	
  cooling	
  container.	
  	
  It	
  is	
  the	
  
one	
  material	
  we	
  are	
  certain	
  of	
  at	
  this	
  point	
  in	
  the	
  preliminary	
  design	
  process.	
  	
  The	
  
BioPCM™	
   is	
   insulation	
   with	
   pockets	
   of	
   phase-­‐changing	
   material	
   (soy-­‐based	
  
chemicals	
  that	
  change	
  from	
  liquid	
  to	
  solid	
  and	
  back	
  again	
  at	
  different	
  temperatures,	
  
allowing	
  the	
  material	
  to	
  absorb	
  and	
  release	
  heat).	
  Its	
  performance	
  is	
  comparable	
  to	
  
that	
   of	
   the	
   thermal	
   mass	
   of	
   12"-­‐thick	
   concrete.	
   The	
   product	
   increases	
   the	
   time	
   it	
  
takes	
  for	
  a	
  building	
  to	
  warm	
  up	
  or	
  cool	
  down.	
  	
  BioPCM™	
  is	
  easily	
  integrated	
  into	
  
existing	
   designs.	
   	
   The	
   product	
   can	
   be	
   easily	
   trimmed	
   around	
   wall	
   outlets	
   and	
  
fixtures	
  with	
  scissors	
  or	
  a	
  utility	
  knife.	
  	
  BioPCM™	
  has	
  a	
  thermal	
  storage	
  capacity	
  of	
  
approximately	
  190	
  joules	
  per	
  gram,	
  or	
  180	
  BTU	
  per	
  kg.	
  	
  This	
  capacity	
  is	
  reflected	
  in	
  
the	
  thermal	
  analysis	
  and	
  FEA	
  provided	
  in	
  the	
  appendix	
  
	
  
This	
   product	
   stores	
   the	
   equivalent	
   of	
   a	
  574-­‐Watt	
   air	
   conditioner	
   or	
   heater	
  
placed	
   in	
   each	
   square	
   meter	
   of	
   wall	
   and	
   ceiling	
   space	
   running	
   for	
   one	
   hour	
  
continuously.	
   	
   While	
   acting	
   as	
   an	
   air	
   conditioner,	
   its	
   peak	
   resistance	
   to	
   heating	
  
begins	
   at	
   21.1	
   °C	
   and	
   it	
   has	
   completely	
   reached	
   capacity	
   at	
   25	
   °C,	
   all	
   the	
   while	
  
keeping	
  the	
  area	
  cool.	
  	
  While	
  acting	
  as	
  a	
  heater,	
  its	
  peak	
  resistance	
  to	
  cooling	
  begins	
  
  20	
  
at	
  25	
  °C	
  and	
  it	
  has	
  completely	
  discharged	
  all	
  of	
  its	
  stored	
  heat	
  by	
  21.1	
  °C,	
  all	
  the	
  
while	
   keeping	
   the	
   area	
   warm.	
   This	
   phase	
   changing	
   material	
   absorbs	
   heat	
   which	
  
expands	
  the	
  pellets	
  that	
  it	
  contains,	
  and	
  releases	
  the	
  heat	
  if	
  the	
  temperature	
  is	
  lower	
  
than	
  target	
  (21.1	
  °C).	
  (The	
  product	
  is	
  sold	
  in	
  bags;	
  each	
  bag	
  covers	
  1m2	
  and	
  weighs	
  
9.8	
  kg	
  per	
  bag.	
  	
  Each	
  bag	
  cost	
  $195	
  -­‐	
  $230	
  depending	
  on	
  the	
  vendor	
  you	
  order	
  from.	
  	
  
Fabral,	
   a	
   national	
   company	
   based	
   out	
   of	
   Atlanta,	
   GA	
   has	
   graciously	
   decided	
   to	
  
sponsor	
  our	
  project	
  and	
  donate	
  the	
  BioPCM™	
  to	
  us.	
  	
  	
  
CES	
  Material	
  Analysis	
  	
  
	
  
Using	
  the	
  CES	
  EduPack	
  software	
  we	
  were	
  able	
  to	
  plot	
  the	
  properties	
  of	
  each	
  
material	
  and	
  compare	
  them	
  for	
  best	
  fit	
  to	
  our	
  application.	
  See	
  graphs	
  in	
  Appendices	
  
for	
  all	
  materials.	
  
Stages	
  of	
  Design	
  
	
  
Manufacturing	
   is	
   the	
   process	
   of	
   converting	
   raw	
   materials	
   into	
   products;	
   it	
  
incorporates	
   the	
   design	
   and	
   manufacturing	
   of	
   goods	
   using	
   various	
   production	
  
methods	
  and	
  techniques.	
  	
  Use	
  of	
  quality	
  and	
  precision	
  must	
  be	
  held	
  into	
  account	
  
into	
  this	
  project	
  at	
  every	
  stage,	
  from	
  design	
  to	
  assembly.	
  For	
  designing	
  the	
  small	
  
animal	
   container,	
   the	
   10	
   stages	
   of	
   the	
   Engineering	
   Design	
   Process	
   will	
   be	
  
implemented	
   to	
   complete	
   the	
   course	
   of	
   designing	
   this	
   project.	
   The	
   first	
   stage	
   is	
  
identifying	
  the	
  problem,	
  which	
  uses	
  critical	
  thinking	
  to	
  thoroughly	
  understand	
  the	
  
background	
   of	
   the	
   problem.	
   The	
   problem	
   can	
   be	
   traced	
   to	
   the	
   original	
   rodent	
  
container	
   called	
   HEPA-­‐filtered	
   shipping	
   containers.	
   The	
   container	
   is	
   placed	
   in	
  
unregulated	
  conditions,	
  hypothermic	
  and	
  hyperthermia	
  events	
  that	
  occur	
  that	
  could	
  
lead	
  to	
  fatality.	
  These	
  rodents	
  are	
  very	
  delicate	
  and	
  don’t	
  have	
  the	
  ability	
  to	
  sustain	
  
in	
  conditions	
  that	
  are	
  not	
  ideal	
  to	
  them.	
  
	
  
This	
   leads	
   to	
   the	
   second	
   stage,	
   defining	
   working	
   criteria	
   and	
   goals.	
   There	
  
must	
   be	
   established	
   preliminary	
   goals,	
   and	
   developing	
   criteria	
   that	
   are	
   ideal	
   to	
  
make	
  sure	
  these	
  animals	
  make	
  it	
  to	
  their	
  destination.	
  Survival	
  is	
  affected	
  by	
  many	
  
environmental	
   factors.	
   Therefore,	
   the	
   criteria	
   for	
   this	
   project	
   are	
   to	
   set	
   ambient	
  
temperatures,	
   relative	
   humidity,	
   water	
   availability,	
   and	
   exposure	
   time	
   for	
   the	
  
rodents.	
   By	
   providing	
   active	
   environmental	
   controls	
   on	
   the	
   shipping	
   container,	
   it	
  
will	
   then	
   offer	
   stable	
   temperatures	
   and	
   humidity	
   during	
   uncontrolled	
  
environmental	
   l	
   conditions.	
   The	
   task	
   with	
   setting	
   the	
   temperature	
   criteria	
   is	
  
creating	
  a	
  temperature	
  mechanism	
  that	
  is	
  battery	
  powered	
  long	
  enough	
  to	
  sustain	
  
animals	
  for	
  up	
  to	
  a	
  week	
  with	
  a	
  sensor.	
  	
  Another	
  criterion	
  that	
  is	
  taken	
  into	
  account	
  
is	
   developing	
   a	
   shipping	
   container	
   that	
   holds	
   up	
   to	
   10	
   small	
   mice	
   or	
   4	
   rats	
   and	
  
separates	
   the	
   gender	
   apart.	
   The	
   next	
   criteria	
   are	
   to	
   develop	
   the	
   proper	
   fan	
   and	
  
installation	
   system	
   that	
   controls	
   humidity	
   within	
   the	
   unit.	
   Finally,	
   the	
   most	
  
important	
  criteria	
  are	
  to	
  ensure	
  a	
  safe	
  and	
  healthy	
  journey	
  for	
  the	
  animals	
  traveling.	
  	
  
	
  
  21	
  
The	
   third	
   stage	
   of	
   the	
   engineering	
   design	
   process	
   is	
   researching	
   and	
  
gathering	
  data	
  by	
  staying	
  regularly	
  with	
  the	
  working	
  criteria	
  while	
  researching.	
  It	
  
was	
   concluded	
   with	
   extensive	
   research,	
   that	
   most	
   rodents	
   find	
   the	
   temperatures	
  
most	
  hospitable	
  for	
  living	
  is	
  between	
  70◦F-­‐80◦F.	
  Also,	
  it	
  was	
  discovered	
  that	
  rodents	
  
have	
  a	
  harder	
  time	
  being	
  able	
  to	
  chew	
  metal	
  and	
  composites,	
  rather	
  than	
  plastics	
  is	
  
the	
  current	
  norm	
  shipping	
  container	
  being	
  used	
  currently.	
  In	
  addition,	
  battery	
  packs	
  
can	
  be	
  executed	
  onto	
  fans,	
  and	
  tracking	
  devices	
  to	
  increase	
  the	
  duration	
  of	
  these	
  
electronics	
  during	
  the	
  journey.	
  	
  Research	
  also	
  shows	
  that	
  companies	
  want	
  to	
  try	
  and	
  
cut	
   down	
   the	
   cost	
   as	
   much	
   possible,	
   therefore	
   that	
   has	
   to	
   be	
   taken	
   into	
   account	
  
when	
  building	
  for	
  this	
  project.	
  Recyclable,	
  energy	
  saving	
  techniques,	
  rental	
  rather	
  
than	
   buy,	
   are	
   all	
   preferable	
   methods	
   for	
   companies	
   to	
   save	
   money.	
   After	
   several	
  
days	
   of	
   researching	
   and	
   compiling	
   all	
   the	
   data,	
   ideas	
   start	
   to	
   pop	
   up	
   to	
   produce	
  
several	
  potential	
  concepts	
  for	
  the	
  project.	
  
	
  
This	
  leads	
  to	
  the	
  fourth	
  stage,	
  which	
  is	
  brainstorming	
  and	
  generating	
  creative	
  
ideas	
  for	
  the	
  project.	
  One	
  idea	
  was	
  to	
  create	
  temperature	
  controlled	
  housing	
  for	
  the	
  
current	
   shipping	
   container	
   that	
   incorporates	
   batteries,	
   cooling	
   system,	
   and	
  
installation	
  and	
  fan.	
  That	
  approach	
  would	
  surprisingly	
  decrease	
  the	
  shipping	
  cost	
  
for	
  the	
  customer,	
  because	
  they	
  wouldn’t	
  have	
  to	
  pay	
  for	
  the	
  refrigerated	
  trucking	
  
cost.	
  	
  Another	
  idea	
  was	
  developing	
  a	
  maze	
  with	
  passages	
  for	
  mice	
  and	
  rats	
  to	
  roam	
  
free,	
   while	
   there	
   are	
   several	
   small	
   computer	
   fans	
   along	
   the	
   walls	
   to	
   keep	
   them	
  
cooled.	
  A	
  third	
  idea	
  that	
  was	
  proposed	
  was	
  to	
  have	
  ice	
  packs	
  to	
  keep	
  the	
  animals	
  
cooled,	
  or	
  a	
  modified	
  air	
  conditioning	
  unit.	
  	
  
	
  
With	
   careful	
   analysis	
   of	
   potential	
   solution,	
   developing	
   models,	
   the	
   final	
  
design	
  chosen	
  is	
  to	
  build	
  is	
  to	
  construct	
  an	
  exterior	
  housing	
  material	
  made	
  out	
  of	
  
metals	
  and	
  composite	
  material	
  painted	
  with	
  heated	
  reflective	
  painting.	
  The	
  interior	
  
of	
   the	
   housing	
   material	
   will	
   be	
   equipped	
   with	
   recyclable	
   bio	
   phase	
   changing	
  
material	
   to	
   keep	
   the	
   temperature	
   inside	
   the	
   housing	
   under	
   relative	
   room	
  
temperature	
  70◦F-­‐80◦F.	
  The	
  housing	
  can	
  be	
  accessible	
  with	
  a	
  door	
  that	
  opens	
  with	
  
hinges.	
  Inside	
  the	
  frame	
  of	
  the	
  housing,	
  is	
  a	
  thermostatic	
  fan	
  with	
  dual	
  speed	
  option	
  
equipped	
   with	
   a	
   thermostat	
   that	
   has	
   a	
   resistor	
   that	
   triggers	
   when	
   a	
   certain	
  
temperature	
  is	
  achieved.	
  	
  	
  
	
  
The	
  fans	
  sole	
  purpose	
  is	
  to	
  circulate	
  the	
  air	
  and	
  keep	
  humidity	
  out	
  through	
  
ventilation	
  ports.	
  Also,	
  equipped	
  with	
  the	
  entire	
  housing	
  equipment	
  is	
  a	
  GPS	
  tracker	
  
device,	
   which	
   enables	
   the	
   client	
   to	
   track	
   the	
   shipment	
   wherever	
   they	
   may	
   be.	
   It	
  
would	
  be	
  accessible	
  through	
  email,	
  or	
  whatever	
  is	
  convenient.	
  Also	
  available	
  inside	
  
the	
  housing	
  unit,	
  is	
  a	
  shock	
  logger,	
  which	
  will	
  be	
  able	
  to	
  record	
  pressure,	
  humidity,	
  
and	
  temperature	
  of	
  the	
  environment	
  throughout	
  the	
  duration	
  of	
  the	
  journey.	
  	
  
	
  
Implementing	
   and	
   commercialization	
   is	
   done	
   with	
   company	
   sponsorships.	
  
Fabral,	
  will	
  be	
  providing	
  the	
  recyclable	
  phase	
  changing	
  material,	
  and	
  as	
  well	
  as	
  the	
  
heat	
   reflective	
   paint.	
   	
   Also,	
   Piedmont	
   Plastics	
   will	
   be	
   providing	
   the	
   composite	
  
materials	
  necessary	
  to	
  build	
  the	
  device.	
  The	
  GPS,	
  thermostatic	
  fan,	
  and	
  the	
  shock	
  
logger	
   will	
   be	
   purchased	
   from	
   a	
   third	
   party	
   vendor,	
   put	
   into	
   the	
   housing	
   unit	
   to	
  
record	
  data	
  and	
  keep	
  the	
  animals	
  comfortable.	
  The	
  cages	
  used	
  to	
  hold	
  the	
  rodents	
  
  22	
  
will	
  be	
  made	
  completely	
  of	
  acrylic	
  to	
  ensure	
  cheap,	
  light,	
  recyclable	
  metal,	
  yet	
  very	
  
durable	
   and	
   tough	
   to	
   handle	
   the	
   animals.	
   The	
   cages	
   will	
   have	
   holes	
   to	
   ensure	
  
breathing	
   and	
   ventilation	
   for	
   the	
   rodents.	
   The	
   cages	
   will	
   be	
   designed	
   through	
  
precision	
   forging	
   and	
   laser	
   precision	
   through	
   precision	
   forging;	
   special	
   dies	
   are	
  
made	
   to	
   increase	
   accuracy	
   than	
   in	
   ordinary	
   impression-­‐die	
   forging.	
   	
   The	
   housing	
  
unit	
  will	
  be	
  designed	
  with	
  extrusion,	
  which	
  will	
  induct	
  production	
  of	
  long	
  lengths	
  of	
  
solid	
   or	
   hollow	
   products	
   with	
   constant	
   cross	
   section;	
   the	
   product	
   is	
   then	
   cut	
   to	
  
desired	
  lengths.	
  The	
  labor	
  and	
  operator	
  skill	
  is	
  usually	
  very	
  low.	
  
	
  
Commercialization	
   rights	
   will	
   be	
   handed	
   over	
   to	
   shipping	
   companies	
   that	
  
will	
   rent	
   out	
   these	
   devices	
   to	
   clients	
   in	
   need	
   of	
   transporting	
   rodents.	
   Both	
   the	
  
shipping	
   companies	
   and	
   the	
   clients	
   sending	
   out	
   animals	
   will	
   have	
   a	
   positive	
  
outcome.	
  This	
  gives	
  the	
  clients	
  shipping	
  animals	
  a	
  cheaper	
  option	
  of	
  being	
  able	
  to	
  
rent	
   equipment	
   and	
   sending	
   them	
   back,	
   without	
   being	
   responsible	
   for	
   buying	
   or	
  
creating	
  containers	
  to	
  house	
  the	
  rodents.	
  Also,	
  the	
  patrons	
  will	
  be	
  saving	
  hundreds	
  
for	
  not	
  paying	
  refrigerated	
  trucks	
  to	
  pick	
  the	
  animals	
  and	
  deliver	
  them.	
  As	
  for	
  the	
  
shipping	
  companies,	
  it	
  gives	
  the	
  company	
  a	
  gateway	
  of	
  a	
  whole	
  world	
  of	
  potential	
  
customers	
   to	
   tap	
   into	
   giving	
   the	
   customers	
   the	
   ability	
   to	
   rent	
   out	
   their	
   product	
  
ensures	
  money,	
  as	
  well	
  as	
  shipping	
  charged	
  to	
  the	
  customer.	
  This	
  device	
  can	
  be	
  used	
  
into	
  the	
  military	
  industry	
  for	
  shipping	
  food,	
  or	
  experiments	
  around	
  the	
  world.	
  This	
  
can	
  also	
  be	
  used	
  for	
  space	
  industries	
  to	
  ship	
  experiments	
  and	
  other	
  testing.	
  There	
  is	
  
a	
  limitless	
  amount	
  of	
  ways	
  to	
  maximize	
  and	
  commercialize	
  this	
  product.	
  	
  
Design	
  &	
  Construction	
  
Physical	
  Components	
  
	
  
The	
   physical	
   components	
   of	
   the	
   system	
   include	
   the	
   polypropylene	
   main	
  
casing	
  with	
  a	
  door.	
  	
  The	
  phase-­‐change	
  material	
  will	
  insulate	
  not	
  only	
  the	
  casing	
  but	
  
will	
  also	
  be	
  inside	
  the	
  door.	
  	
  The	
  housing	
  will	
  have	
  hollow	
  walls	
  to	
  allow	
  space	
  to	
  
insert	
   out	
   the	
   phase-­‐change	
   material	
   as	
   shown	
   in	
   Figure	
   10	
   shown	
   below.	
   	
   The	
  
phase-­‐change	
  insulation	
  is	
  an	
  innovative	
  and	
  effective	
  way	
  to	
  insulate	
  the	
  housing.	
  	
  	
  
	
   The	
   polypropylene	
   will	
   provide	
   a	
   hard,	
   lightweight	
   shell	
   to	
   protect	
   the	
  
animals	
   and	
   the	
   electrical	
   components	
   from	
   any	
   accidents	
   that	
   may	
   occur	
   while	
  
shipping.	
  	
  The	
  polypropylene	
  was	
  all	
  chosen	
  due	
  to	
  its	
  affordability.	
  
  23	
  
	
  
Figure	
  10:	
  Insulation	
  of	
  the	
  phase	
  change	
  material	
  in	
  the	
  walls	
  of	
  the	
  active	
  cooling	
  container.	
  
The	
  door	
  must	
  ensure	
  an	
  airtight	
  seal	
  to	
  keep	
  a	
  steady	
  temperature	
  inside	
  
the	
  unit.	
  	
  To	
  accomplish	
  this,	
  the	
  door	
  will	
  be	
  equipped	
  with	
  a	
  rubber	
  seal	
  common	
  
to	
   a	
   lot	
   of	
   refrigeration	
   units	
   to	
   ensure	
   no	
   air	
   is	
   escaping	
   or	
   entering	
   the	
   unit	
  
through	
  cracks	
  in	
  the	
  door	
  jam.	
  	
  The	
  door	
  will	
  also	
  have	
  rubber	
  latches	
  that	
  will	
  
leave	
  no	
  doubt	
  of	
  a	
  tight	
  seal	
  throughout	
  the	
  shipment.	
  	
  Both	
  of	
  these	
  features	
  are	
  
pointed	
  out	
  in	
  Figure	
  11.	
  
	
  
	
  
Figure	
  11:	
  Creo	
  schematic	
  of	
  the	
  door	
  assembly	
  with	
  arrows	
  pointing	
  to	
  the	
  seal	
  around	
  the	
  door	
  
and	
  the	
  custom	
  designed	
  rubber	
  latches.	
  
To	
  allow	
  for	
  more	
  floor	
  space	
  the	
  container	
  will	
  be	
  able	
  to	
  function	
  upright,	
  
or	
  on	
  its	
  side,	
  as	
  shown	
  in	
  Figure	
  12.	
  	
  For	
  mice,	
  the	
  carrier	
  would	
  be	
  upright	
  with	
  a	
  
shelf.	
   	
   Mice	
   are	
   smaller	
   in	
   size	
   so	
   there	
   will	
   be	
   a	
   shelf,	
   so	
   that	
   two	
   separate	
  
containers	
  can	
  be	
  stacked	
  one	
  on	
  top	
  of	
  the	
  other.	
  	
  If	
  the	
  carrier	
  is	
  set	
  on	
  its	
  side,	
  
with	
  the	
  air	
  vents	
  aiming	
  upward,	
  then	
  there	
  will	
  be	
  more	
  floor	
  space	
  to	
  transport	
  a	
  
larger	
  number	
  of	
  rats.	
  
	
  
  24	
  
	
  
Figure	
  12:	
  Showing	
  the	
  versatility	
  of	
  the	
  unit	
  to	
  convert	
  to	
  mice	
  (left)	
  and	
  rat	
  (right)	
  configuration.	
  
	
  
The	
  size	
  of	
  the	
  rodent	
  carrier	
  needs	
  to	
  be	
  large	
  enough	
  to	
  hold	
  enough	
  to	
  
house	
  a	
  substantial	
  number	
  of	
  rodents.	
  	
  However	
  the	
  size	
  of	
  the	
  container	
  must	
  not	
  
be	
  so	
  large	
  that	
  it	
  is	
  impossible	
  to	
  transport	
  (refer	
  to	
  TABLE	
  12).	
  	
  To	
  accommodate	
  
these	
  two	
  constraints	
  the	
  carrier	
  size	
  is	
  30	
  inches	
  tall	
  with	
  a	
  24x24	
  inch	
  base.	
  	
  	
  
	
  
From	
  TABLE	
  12	
  there	
  will	
  be	
  plenty	
  of	
  volume	
  to	
  safely,	
  and	
  legally	
  ship	
  a	
  
large	
  number	
  of	
  animals.	
  	
  Currently	
  the	
  mice	
  containers	
  have	
  an	
  18x18	
  inch	
  base,	
  or	
  
324	
  square	
  inches.	
  	
  With	
  this	
  amount	
  of	
  floor	
  space	
  each	
  container	
  could	
  safely	
  hold	
  
21	
  large	
  mice	
  (>25	
  grams),	
  and	
  since	
  there	
  are	
  2	
  containers	
  that	
  would	
  allow	
  for	
  42	
  
mice	
   to	
   be	
   shipped	
   per	
   climate	
   controlled	
   carrier.	
   	
   Originally	
   the	
   container	
   was	
  
designed	
  to	
  be	
  10	
  inches	
  tall,	
  from	
  TABLE	
  12	
  this	
  value	
  could	
  be	
  cut	
  in	
  half.	
  	
  This	
  
would	
  allow	
  for	
  more	
  shelves	
  to	
  potentially	
  be	
  added	
  to	
  the	
  housing,	
  and	
  therefore	
  
more	
  animals	
  per	
  carrier	
  could	
  be	
  shipped.	
  
	
   	
  
The	
  rat	
  containers	
  have	
  a	
  24x18	
  inch	
  base	
  or	
  432	
  inches2.	
  	
  Since	
  large	
  rats	
  
require	
  70	
  square	
  inches	
  of	
  floor	
  space	
  per	
  animal,	
  this	
  equates	
  to	
  6	
  large	
  rats	
  per	
  
container.	
  	
  	
  Once	
  again	
  since	
  the	
  rats	
  only	
  require	
  a	
  height	
  of	
  7”,	
  it	
  would	
  also	
  be	
  
possible	
  to	
  put	
  a	
  shelf	
  with	
  another	
  container	
  for	
  rats.	
  	
  A	
  carrier	
  could	
  potentially	
  
hold	
  up	
  to	
  12	
  large	
  rats	
  per	
  shipment.	
  
	
  
	
  
  25	
  
	
  
Figure	
  13:	
  New	
  active	
  cooling	
  container	
  (a)	
  vs.	
  the	
  original	
  passive	
  cooling	
  container	
  (b).	
  
Originally,	
   the	
   carrier	
   was	
   intended	
   to	
   house	
   the	
   current	
   rodent	
   transport	
  
boxes.	
  	
  However,	
  the	
  original	
  boxes	
  did	
  not	
  utilize	
  the	
  space	
  to	
  its	
  full	
  potential.	
  	
  The	
  
new	
  acrylic	
  container	
  will	
  improve	
  on	
  the	
  current	
  design.	
  	
  There	
  will	
  be	
  holes	
  cut	
  
into	
  the	
  acrylic,	
  Figure	
  13a,	
  which	
  will	
  provide	
  improved	
  airflow	
  over	
  the	
  current	
  
shipping	
  containers	
  Figure	
  13b,	
  which	
  use	
  mesh	
  walls	
  for	
  airflow.	
  	
  With	
  the	
  larger	
  
holes	
  moisture	
  inside	
  the	
  container	
  will	
  no	
  longer	
  be	
  an	
  issue.	
  
	
  
The	
  door	
  of	
  the	
  container	
  is	
  small	
  so	
  that	
  the	
  mice	
  cannot	
  jump	
  out,	
  which	
  
can	
   be	
   an	
   issue	
   when	
   removing	
   the	
   animals	
   due	
   to	
   their	
   elevated	
   anxiety.	
   	
   The	
  
bottom	
  of	
  the	
  container	
  must	
  be	
  solid	
  with	
  no	
  holes	
  because	
  the	
  animals	
  require	
  
enough	
   food	
   and	
   water	
   to	
   survive	
   during	
   their	
   transit.	
   	
   The	
   new	
   design	
   for	
   the	
  
shipping	
  containers	
  will	
  improve	
  airflow	
  (Figure	
  14)	
  in	
  a	
  cross	
  ventilation	
  style,	
  and	
  
provide	
  better	
  utilization	
  of	
  the	
  space	
  inside	
  the	
  carrier.	
  
	
  
Figure	
  14:	
  Schematic	
  of	
  cross	
  ventilation	
  vs.	
  single-­‐sided	
  ventilation	
  which	
  stifles	
  airflow.	
  
Valspar	
  Reflective	
  Paint	
  
	
  
Heat	
  Transfer	
  Principles	
  
The radiation balance for a semitransparent medium averaged over the entire spectrum is,
ρ + α + τ = 1
Where
ρ = reflectivity;   α = absorptivity;   τ = transmissivity  (all  are  unitless)
(a)	
   (b)	
  
  26	
  
If the medium is opaque, there is no transmission, and absorption and reflection are
surface processes for which
α + ρ = 1;   when  τ = 0
Also, Kirchhoff’s law states that in an isothermal enclosure, the total hemispherical
emissivity is approximately equal to its total hemispherical absorptivity, or
ε ≅ α
The net rate of radiation heat transfer from the surface, is
q = εσA T!
!
− T!"#
!
; Watts
Where
ε = emissivity;   σ = Stefan − Boltzman  constant; A = area  of  container
T! = Temperature  of  the  surface;  T!"# = Temperature  of  the  surrounding
The group is looking for a coating for a container that will not absorb much heat.
Therefore, we want to
minimize  q  for  both  T! > T!"!  and  T! < T!"# .
Also, the group wants the coating to reflect solar rays. Therefore, we want to
Minimize  α  and  maximize  ρ  in  the  equation  α = 1 − ρ.    
Note: we  want  to  minimize  ε  also  since  α ≅ ε
Satisfying the above conditions will result in a bright and shiny surface.
Definitions	
  of	
  key	
  terms:	
  
Absorption: The process of converting radiation intercepted by matter to internal thermal
energy.
Absorptivity: Fraction of the incident radiation absorbed by matter.
Hemispherical: Modifier referring to all directions in the space above a surface.
Kirchhoff’s law: Relation between emission and absorption properties for surfaces
irradiated by a blackbody at the same temperature.
Radiation: Energy transfer by electromagnetic waves
Reflection: The process of redirection of radiation incident on a surface.
Reflectivity: Fraction of the incident radiation reflected by matter.
Semitransparent: Refers to a medium in which radiation absorption is a volumetric
process.
Stefan-Boltzmann law: Emissive power of a blackbody.
Transmission: The process of thermal radiation passing through matter.
Transmissivity: Fraction of the incident radiation transmitted by matter.
Selection	
  of	
  coatings	
  
The following chart shows the reflectivity and absorptivity for various coatings.
	
  
  27	
  
	
  
	
  
	
  
Table	
  6:	
  Material	
  Composition	
  chart	
  for	
  reflectivity	
  and	
  absorptivity	
  	
  
	
  
An aluminum coating (highly polished finish) was selected due to:
• High reflectivity, 0.96
• Low absorptivity, 0.04
• Low price, $0.91
The aluminum coating would be in the form of paint because of ease of application and
long life of the application with proper maintenance. The paint selected is “Valspar
Heavy Duty Aluminum Paint”. This paint is bright and reflective and is non-toxic when
it dries. A primer would be needed in order for the paint to stick to the plastic container.
The primer selected is “Rust-Oleum Plastic Primer”. This primer is specialized for
applying a coat of paint to plastics.
	
  
Electrical	
  Components	
  
	
  
The	
   electrical	
   components	
   that	
   will	
   be	
   included	
   in	
   the	
   design	
   are	
   the	
  
microcontroller,	
  temperature/humidity	
  sensor,	
  fan,	
  and	
  battery.	
  	
  There	
  will	
  also	
  be	
  
a	
  temperature	
  data-­‐logger	
  and	
  GPS	
  system	
  included,	
  these	
  components	
  will	
  act	
  as	
  
stand-­‐alone	
   devices.	
   	
   The	
   microcontroller	
   will	
   be	
   the	
   brains	
   of	
   the	
   electrical	
  
components.	
  	
  It	
  will	
  be	
  able	
  to	
  gather	
  information	
  from	
  the	
  temper/humidity	
  sensor,	
  
and	
   then	
   take	
   that	
   information	
   and	
   activate	
   or	
   deactivate	
   the	
   other	
   devices	
  
(thermoelectric	
  device/fan).	
  
	
  
Most	
   of	
   the	
   time	
   spent	
   during	
   flight	
   the	
   phase-­‐change	
   material	
   should	
  
provide	
   ample	
   insulation	
   to	
   maintain	
   an	
   internal	
   temperature	
   inside	
   the	
   desired	
  
range.	
  	
  Analyzing	
  the	
  thermo	
  profile	
  from	
  Figures	
  23	
  and	
  24	
  that	
  was	
  obtained	
  from	
  
previous	
   shipments,	
   the	
   problem	
   areas	
   occur	
   during	
   layovers	
   and	
   international	
  
shipping.	
  	
  During	
  these	
  times	
  there	
  possibly	
  could	
  be	
  a	
  need	
  for	
  active	
  cooling.	
  	
  This	
  
Material Composition Cost (USD/lb) Emissivity (ε) Absorbtivity (α) Reflectivity (ρ)
Highly polished, Film 0.91 0.04 0.04 0.96
Foil, bright 0.91 0.07 0.07 0.93
Anodized 0.91 0.82 0.82 0.18
Chromium Polished or plated 1.15 0.10 0.10 0.90
Copper Highly polished 3.54 0.03 0.03 0.97
Highly polished, Film 779.89 0.03 0.03 0.97
Foil, bright 779.89 0.07 0.07 0.93
Silver Polished 15.31 0.02 0.02 0.98
Black (Parsons) ~30.00/gallon 0.98 0.98 0.02
White, acrylic ~30.00/gallon 0.90 0.90 0.10
White, zinc oxide ~30.00/gallon 0.92 0.92 0.08
Aluminum
Gold
Paints
  28	
  
is	
  when	
  the	
  thermoelectric	
  air	
  conditioner	
  would	
  turn	
  on.	
  	
  The	
  electric	
  thermostat	
  
will	
  gather	
  information	
  on	
  the	
  temperature	
  inside	
  the	
  case,	
  and	
  if	
  the	
  temperature	
  
rises	
   too	
   high,	
   trigger	
   the	
   thermoelectric	
   air	
   conditioner	
   to	
   power	
   on.	
   	
   The	
  
thermoelectric	
  AC	
  functions	
  mainly	
  as	
  a	
  safety	
  net,	
  to	
  ensure	
  there	
  is	
  no	
  situation	
  
within	
  the	
  limitations	
  of	
  the	
  design	
  that	
  the	
  carrier	
  cannot	
  handle.	
  
	
  
Electrical	
  Schematic	
  
	
  
	
  
Figure	
  15:	
  Electrical	
  Schematic	
  
	
  
	
   Figure	
   15	
   is	
   an	
   example	
   of	
   how	
   all	
   the	
   electrical	
   could	
   potentially	
   be	
  
connected	
  to	
  the	
  pin	
  configuration	
  to	
  microcontroller.	
  	
  The	
  position	
  of	
  the	
  ground,	
  
power,	
  input,	
  and	
  output	
  pins	
  will	
  not	
  be	
  known	
  until	
  the	
  microcontroller	
  arrives,	
  
this	
   is	
   just	
   an	
   example	
   for	
   visualization.	
   	
   There	
   will	
   be	
   ample	
   open	
   pins	
   for	
   any	
  
upgrades	
   to	
   design.	
   	
   One	
   example	
   is	
   an	
   outer	
   temperature	
   display.	
   	
   The	
   24	
   pin	
  
configuration	
   should	
   provide	
   more	
   than	
   enough	
   pins	
   to	
   accommodate	
   any	
   more	
  
future	
  additions	
  to	
  the	
  electrical	
  components.	
  	
  
	
  
Lithium	
  Battery	
  
	
  
The	
  K2	
  Energy	
  K2B12V7E	
  12V	
  7Ah	
  Lithium	
  Iron	
  Phosphate	
  Battery	
  [8]	
  is	
  the	
  
ideal	
   battery	
   for	
   this	
   project.	
   	
   Its	
   lightweight,	
   battery-­‐life,	
   safety	
   standards	
   and	
  
volumetric	
  dimensions	
  were	
  reasons	
  this	
  style	
  of	
  batter	
  was	
  chosen.	
  	
  LiFePO4	
  are	
  a	
  
little	
   more	
   expensive	
   than	
   the	
   lead-­‐acid	
   battery,	
   but	
   with	
   that	
   cost	
   comes	
  
performance	
  and	
  a	
  smaller,	
  more	
  lightweight	
  battery.	
  	
  The	
  more	
  volume	
  that	
  can	
  be	
  
conserved	
  can	
  potentially	
  house	
  more	
  rodents,	
  and	
  the	
  lighter	
  in	
  weight	
  the	
  design	
  
makes	
  it	
  easier	
  to	
  transport.	
  	
  All	
  the	
  other	
  electric	
  components	
  will	
  be	
  run	
  off	
  the	
  
  29	
  
battery,	
  so	
  that	
  the	
  system	
  is	
  a	
  stand-­‐alone	
  system.	
  The	
  specifications	
  are	
  displayed	
  
in	
  Table	
  7.	
  
	
  
Figure	
  16:	
  12V	
  7Ah	
  Lithium	
  Iron	
  Phosphate	
  Battery	
  [8]	
  
	
  
Table	
  7:	
  	
  12V	
  7Ah	
  Lithium	
  Iron	
  Phosphate	
  Battery	
  [8]	
  
Specifications	
  
Terminals	
   F2-­‐1/4	
  inches	
  
Volts	
   12	
  
Amp	
  Hours	
   7	
  
Length	
   5.94	
  inches	
  
Width	
   2.53	
  inches	
  
Height	
   3.83	
  inches	
  
Weight	
   1.98	
  pounds	
  
Chemistry	
   LiFeP04	
  Lithium	
  Iron	
  Phosphate	
  
	
  
Microcontroller	
  
	
  
The	
   BasicX-­‐24	
   microcontroller	
   was	
   the	
   optimal	
   microcontroller	
   for	
   our	
  
design.	
  	
  The	
  cost	
  was	
  affordable	
  at	
  $49.95,	
  and	
  the	
  simplicity	
  in	
  which	
  the	
  coding	
  is	
  
compiled	
  for	
  the	
  device	
  was	
  another	
  factor	
  in	
  choosing	
  this	
  microcontroller.	
  	
  This	
  
microcontroller	
  will	
  provide	
  ample	
  input	
  and	
  output	
  pins	
  for	
  controlling	
  the	
  fan	
  and	
  
thermoelectric	
  device,	
  and	
  any	
  future	
  improvement	
  that	
  are	
  made,	
  for	
  example	
  an	
  
outer	
   LED	
   display	
   of	
   the	
   temperature.	
   	
   A	
   kit	
   for	
   this	
   microcontroller	
   will	
   also	
   be	
  
purchased	
  ($129.95)	
  to	
  provide	
  examples	
  of	
  code,	
  a	
  circuit	
  board,	
  and	
  software;	
  this	
  
price	
  will	
  also	
  include	
  the	
  microcontroller	
  itself.	
  
  30	
  
	
  
Figure	
  17:	
  BasicX24	
  Microcontroller	
  [9]	
  
	
  
Temperature	
  &	
  Humidity	
  Sensor	
  
	
   	
  
	
   The	
   temperature/humidity	
   sensor	
   provides	
   a	
   way	
   to	
   measure	
   the	
   temperature	
  
and	
   transmit	
   that	
   data	
   electronically	
   to	
   the	
   microcontroller.	
   	
   The	
   way	
   the	
   device	
  
works	
  is	
  relates	
  temperature	
  and	
  humidity	
  to	
  voltage.	
  The	
  sensor	
  will	
  connect	
  to	
  an	
  
input	
  pin	
  to	
  the	
  microcontroller	
  and	
  output	
  a	
  voltage	
  that	
  the	
  microcontroller	
  can	
  
measure.	
  	
  Once	
  the	
  voltage	
  exceeds	
  the	
  maximum	
  voltage,	
  the	
  microcontroller	
  will	
  
turn	
   on	
   the	
   thermoelectric	
   device	
   to	
   control	
   temperature,	
   or	
   the	
   fan	
   to	
   control	
  
humidity.	
   	
   The	
   maximum	
   temperature	
   the	
   animals	
   prefer	
   is	
   79o	
   Fahrenheit.	
   The	
  
specifications	
  are	
  displayed	
  in	
  Table	
  8.	
  
	
  
Figure	
  18:	
  DFRobot	
  DHT11	
  Temperature	
  and	
  Humidity	
  Sensor	
  [10]	
  
	
  
	
  
Table	
  8:	
  	
  DFRobot	
  DHT11	
  Temperature	
  and	
  Humidity	
  Sensor	
  [10]	
  
	
  
Specifications	
  
Supply	
  Voltage	
   +5	
  voltage	
  
Temperature	
  range	
   0-­‐50◦C	
  error	
  of	
  ±	
  2◦C	
  	
  
Humidity	
  	
   20-­‐90%	
  RH	
  ±	
  5%	
  RH	
  error	
  
Relative	
  humidity	
  and	
  temperature	
  measurement	
  
  31	
  
Display	
  of	
  Data	
   Digital	
  output	
  
Stability	
   Excellent	
  long	
  term	
  
Compatible	
   interchangeable	
  
	
  
	
  
Computer	
  Fan	
  
	
  
	
   	
   A	
  fan	
  is	
  not	
  only	
  needed	
  to	
  circulate	
  fresh	
  oxygen	
  into	
  the	
  transporter,	
  but	
  
also	
  to	
  reduce	
  humidity	
  through	
  the	
  ventilation	
  holes	
  located	
  in	
  the	
  side	
  of	
  the	
  outer	
  
container.	
  	
  The	
  fan	
  chosen	
  was	
  the	
  ADDA	
  AD0612LB-­‐A70GL.	
  	
  This	
  fan	
  was	
  chosen	
  
due	
  to	
  its	
  low	
  power	
  consumption,	
  so	
  the	
  battery	
  life	
  can	
  be	
  preserved	
  in	
  the	
  event	
  
that	
  the	
  thermoelectric	
  device	
  needs	
  to	
  be	
  activated.	
  	
  The	
  current	
  needed	
  to	
  power	
  
the	
  fan	
  is	
  0.08A	
  and	
  a	
  voltage	
  of	
  0.96V	
  [11].	
  This	
  fan	
  will	
  be	
  connected	
  to	
  an	
  output	
  
pin	
  on	
  the	
  microcontroller.	
  	
  If	
  the	
  humidity	
  rises	
  above	
  the	
  desired	
  level,	
  the	
  fan	
  will	
  
then	
  be	
  turned	
  on.	
  	
  The	
  microcontroller	
  will	
  also	
  be	
  programmed	
  to	
  activate	
  the	
  fan	
  
using	
  a	
  time	
  delay	
  to	
  ensure	
  the	
  animals	
  are	
  breathing	
  fresh	
  air.	
  The	
  specifications	
  
are	
  displayed	
  in	
  Table	
  9.	
  
	
  
Figure	
  19:	
  The	
  ADDA	
  AD0612LB-­‐A70GL	
  fan	
  [11]	
  
	
  
	
  
	
  
Specifications	
  
Manufacture	
   ADDA	
  
Product	
  Category	
   Fans	
  &	
  Blowers	
  
Product	
   Fans	
  
Current	
  type	
   DC	
  
  32	
  
Airflow	
   13.2	
  CFM	
  
Bearing	
  type	
   Ball	
  
Noise	
   16.1	
  dBA	
  
Speed	
   2500	
  RPM	
  
Power	
  rating	
   0.5	
  W	
  
Frame	
  dimensions	
   60	
   mm	
   x	
   25	
   mm	
   x	
  
60	
  mm	
  
Series	
   AD6025	
  
Supply	
  Voltage	
   12	
  V	
  
Table	
  9:	
  Computer	
  Fan	
  ADDA	
  AD0612LB-­‐A70G	
  [11]	
  
	
  
	
  
	
  
Thermoelectric	
  Cooling	
  System	
  
	
  
	
   The	
  transporter	
  will	
  also	
  have	
  a	
  thermoelectric	
  cooling	
  module	
  incorporated	
  in	
  
the	
  design.	
  	
  The	
  phase	
  changing	
  material	
  should	
  provide	
  ample	
  insulation	
  for	
  our	
  
purposes,	
  but	
  if	
  the	
  temperature	
  goes	
  above	
  the	
  rodents	
  thermal	
  comfort	
  zone	
  then	
  
the	
   microcontroller	
   will	
   activate	
   the	
   thermoelectric	
   device.	
   	
   The	
   thermoelectric	
  
device	
  will	
  act	
  as	
  a	
  safety	
  net	
  in	
  cases	
  in	
  which	
  the	
  phase	
  change	
  material	
  is	
  unable	
  
to	
  maintain	
  the	
  desired	
  temperature.	
  	
  
	
  
	
  
Figure	
  20:	
  Thermoelectric	
  device	
  [12]	
  
	
  
USB	
  Temperature	
  &	
  Humidity	
  Datalogger	
  
	
  
	
   The	
  installed	
  temperature	
  and	
  humidity	
  data	
  logger	
  can	
  operate	
  independently	
  of	
  
the	
  rest	
  of	
  the	
  unit.	
  	
  This	
  device	
  will	
  enable	
  the	
  customer	
  the	
  ability	
  to	
  see	
  if	
  the	
  
rodents	
   ever	
   experienced	
   temperatures	
   outside	
   of	
   their	
   comfort	
   zone.	
   	
   The	
   data	
  
logger	
  can	
  be	
  hooked	
  to	
  computer	
  via	
  a	
  USB.	
  	
  The	
  user	
  can	
  then	
  program	
  the	
  data	
  
  33	
  
logger	
  to	
  collect	
  the	
  temperature	
  and	
  humidity	
  data	
  every	
  10s	
  or	
  every	
  12	
  hours.	
  	
  
This	
   feature	
   will	
   hold	
   the	
   shippers	
   accountable	
   for	
   their	
   shipping	
   practices.	
   The	
  
specifications	
  are	
  displayed	
  in	
  Table	
  10.	
  
	
  
	
  
Figure	
  21:	
  Temperature	
  and	
  Data	
  Logger	
  [13]	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Table	
  10:	
  USB	
  Temperature	
  &	
  Humidity	
  Datalogger	
  [13]	
  
Specifications	
  
Product	
  Type	
   Temperature/Humidity	
  Datalogger	
  
Temp	
  range	
   -­‐31	
  to	
  176◦F(-­‐35	
  to	
  80◦C)	
  
Temp	
  accuracy	
   ±0.9◦F(±0.5◦C)	
  
Humidity	
  accuracy	
   ±3%	
  
Logging	
  intervals	
   Once	
  every	
  10	
  sec	
  to	
  12	
  hours	
  
Memory	
  	
   32,764	
  data	
  points	
  
Power	
   3.6	
  V	
  lithium	
  battery	
  
Dimensions	
   3	
  inches	
  L	
  x	
  1	
  inch	
  W	
  
Connection	
   USB	
  
Battery	
  life	
   1	
  year	
  
	
  
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans
SDFinal Compiled Report Animal Trans

More Related Content

What's hot

Diesel to Solar
Diesel to SolarDiesel to Solar
Diesel to SolarEAI
 
Oil and gas production handbook 2009
Oil and gas production handbook 2009Oil and gas production handbook 2009
Oil and gas production handbook 2009luuguxd
 
The Design and Build of Biodigester Toilet
The Design and Build of Biodigester Toilet The Design and Build of Biodigester Toilet
The Design and Build of Biodigester Toilet Natasha Rayan
 
001 itil v3_service_strategy
001 itil v3_service_strategy001 itil v3_service_strategy
001 itil v3_service_strategydcoolwarrior27
 

What's hot (7)

Thesis 03082015
Thesis 03082015Thesis 03082015
Thesis 03082015
 
Diesel to Solar
Diesel to SolarDiesel to Solar
Diesel to Solar
 
Oil and gas production handbook 2009
Oil and gas production handbook 2009Oil and gas production handbook 2009
Oil and gas production handbook 2009
 
The Design and Build of Biodigester Toilet
The Design and Build of Biodigester Toilet The Design and Build of Biodigester Toilet
The Design and Build of Biodigester Toilet
 
Oil and-gas-production-handbook
Oil and-gas-production-handbookOil and-gas-production-handbook
Oil and-gas-production-handbook
 
001 itil v3_service_strategy
001 itil v3_service_strategy001 itil v3_service_strategy
001 itil v3_service_strategy
 
Clancy95barriers geetal
Clancy95barriers geetalClancy95barriers geetal
Clancy95barriers geetal
 

Viewers also liked

Zorgeloosleven
ZorgelooslevenZorgeloosleven
ZorgelooslevenChak Tang
 
Analyzing Farm Subsidies
Analyzing Farm SubsidiesAnalyzing Farm Subsidies
Analyzing Farm SubsidiesKevin Davis
 
NIEHS_presentation_slidestaaffe_508
NIEHS_presentation_slidestaaffe_508NIEHS_presentation_slidestaaffe_508
NIEHS_presentation_slidestaaffe_508Ellen Taaffe
 
Republic of-maldives
Republic of-maldivesRepublic of-maldives
Republic of-maldivesJanyces
 
Landslides
LandslidesLandslides
LandslidesJanyces
 
Webinar-Modern Pay for Performance
Webinar-Modern Pay for PerformanceWebinar-Modern Pay for Performance
Webinar-Modern Pay for PerformanceReid Wilson
 
Pulmonary tuberculosis
Pulmonary tuberculosisPulmonary tuberculosis
Pulmonary tuberculosisJezza Agagas
 
Internationalization process of the university of missouri
Internationalization process of the university of missouriInternationalization process of the university of missouri
Internationalization process of the university of missouriPatrick Arsenault, RCIC 🍁
 
Suplemento Más Autos Enero
Suplemento Más Autos EneroSuplemento Más Autos Enero
Suplemento Más Autos EneroEduardo Fuentes
 
Diseño y Tecnologia de Cocinas
Diseño y Tecnologia de CocinasDiseño y Tecnologia de Cocinas
Diseño y Tecnologia de CocinasEduardo Fuentes
 

Viewers also liked (13)

Zorgeloosleven
ZorgelooslevenZorgeloosleven
Zorgeloosleven
 
Más Autos mayo
Más Autos mayoMás Autos mayo
Más Autos mayo
 
Más Autos mayo
Más Autos mayoMás Autos mayo
Más Autos mayo
 
Analyzing Farm Subsidies
Analyzing Farm SubsidiesAnalyzing Farm Subsidies
Analyzing Farm Subsidies
 
NIEHS_presentation_slidestaaffe_508
NIEHS_presentation_slidestaaffe_508NIEHS_presentation_slidestaaffe_508
NIEHS_presentation_slidestaaffe_508
 
Republic of-maldives
Republic of-maldivesRepublic of-maldives
Republic of-maldives
 
Landslides
LandslidesLandslides
Landslides
 
Webinar-Modern Pay for Performance
Webinar-Modern Pay for PerformanceWebinar-Modern Pay for Performance
Webinar-Modern Pay for Performance
 
Pulmonary tuberculosis
Pulmonary tuberculosisPulmonary tuberculosis
Pulmonary tuberculosis
 
Internationalization process of the university of missouri
Internationalization process of the university of missouriInternationalization process of the university of missouri
Internationalization process of the university of missouri
 
Suplemento Más Autos Enero
Suplemento Más Autos EneroSuplemento Más Autos Enero
Suplemento Más Autos Enero
 
Diseño y Tecnologia de Cocinas
Diseño y Tecnologia de CocinasDiseño y Tecnologia de Cocinas
Diseño y Tecnologia de Cocinas
 
Plan de Negocio
Plan de NegocioPlan de Negocio
Plan de Negocio
 

Similar to SDFinal Compiled Report Animal Trans

Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...Vergil Weatherford, P.E.
 
J.rser.2016.07.038
J.rser.2016.07.038J.rser.2016.07.038
J.rser.2016.07.038akdasivri
 
Energy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping MallEnergy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping MallAristotelisGiannopoulos
 
A review of emerging technologies for food refrigeration applications
A review of emerging technologies for food refrigeration applicationsA review of emerging technologies for food refrigeration applications
A review of emerging technologies for food refrigeration applicationsYaniraCParedes
 
Biomass
BiomassBiomass
BiomassLieuqn
 
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIAREGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIAPT carbon indonesia
 
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...Andrea Porter
 
Liquid phase alkylation of benzene with-ethylene
Liquid phase alkylation of benzene with-ethyleneLiquid phase alkylation of benzene with-ethylene
Liquid phase alkylation of benzene with-ethyleneLê Thành Phương
 
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...Phil Carr
 
Comparative assessment and safety issues in state of the art hydrogen product...
Comparative assessment and safety issues in state of the art hydrogen product...Comparative assessment and safety issues in state of the art hydrogen product...
Comparative assessment and safety issues in state of the art hydrogen product...NavalKoralkarChemica
 
Cool Roofs Compendium
Cool Roofs CompendiumCool Roofs Compendium
Cool Roofs CompendiumTony Loup
 
IRENA End-of-Life Solar PV Panels
IRENA End-of-Life Solar PV PanelsIRENA End-of-Life Solar PV Panels
IRENA End-of-Life Solar PV PanelsNigel Marc Roberts
 
End of-life management solar photovoltaic panels 2016 irena
End of-life management  solar photovoltaic panels 2016 irenaEnd of-life management  solar photovoltaic panels 2016 irena
End of-life management solar photovoltaic panels 2016 irenaAlpha
 

Similar to SDFinal Compiled Report Animal Trans (20)

CDP FINAL REPORT
CDP FINAL REPORTCDP FINAL REPORT
CDP FINAL REPORT
 
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
 
S E I Passive House
S E I Passive HouseS E I Passive House
S E I Passive House
 
J.rser.2016.07.038
J.rser.2016.07.038J.rser.2016.07.038
J.rser.2016.07.038
 
Upwind - Design limits and solutions for very large wind turbines
Upwind - Design limits and solutions for very large wind turbinesUpwind - Design limits and solutions for very large wind turbines
Upwind - Design limits and solutions for very large wind turbines
 
Biodiesel_MQP_FINAL
Biodiesel_MQP_FINALBiodiesel_MQP_FINAL
Biodiesel_MQP_FINAL
 
Energy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping MallEnergy Systems Optimization Of A Shopping Mall
Energy Systems Optimization Of A Shopping Mall
 
Solvay pocket manual
Solvay pocket manualSolvay pocket manual
Solvay pocket manual
 
A review of emerging technologies for food refrigeration applications
A review of emerging technologies for food refrigeration applicationsA review of emerging technologies for food refrigeration applications
A review of emerging technologies for food refrigeration applications
 
Biomass
BiomassBiomass
Biomass
 
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIAREGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA
REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA
 
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...
Author S Personal Copy Peptide-Based Biopolymers In Biomedicine And Biotechno...
 
Liquid phase alkylation of benzene with-ethylene
Liquid phase alkylation of benzene with-ethyleneLiquid phase alkylation of benzene with-ethylene
Liquid phase alkylation of benzene with-ethylene
 
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...
SSTRM - StrategicReviewGroup.ca - Workshop 2: Power/Energy and Sustainability...
 
Comparative assessment and safety issues in state of the art hydrogen product...
Comparative assessment and safety issues in state of the art hydrogen product...Comparative assessment and safety issues in state of the art hydrogen product...
Comparative assessment and safety issues in state of the art hydrogen product...
 
Bioteksa Model For Technology And Innovation Management
Bioteksa Model For Technology And Innovation ManagementBioteksa Model For Technology And Innovation Management
Bioteksa Model For Technology And Innovation Management
 
Cool Roofs Compendium
Cool Roofs CompendiumCool Roofs Compendium
Cool Roofs Compendium
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
IRENA End-of-Life Solar PV Panels
IRENA End-of-Life Solar PV PanelsIRENA End-of-Life Solar PV Panels
IRENA End-of-Life Solar PV Panels
 
End of-life management solar photovoltaic panels 2016 irena
End of-life management  solar photovoltaic panels 2016 irenaEnd of-life management  solar photovoltaic panels 2016 irena
End of-life management solar photovoltaic panels 2016 irena
 

SDFinal Compiled Report Animal Trans

  • 1. Small Animal Transporter MSE 499 Senior Design Final Report Ben Reardon Daina Gwyn Ebrahim Zuaiter Mikal Hayes April 22, 2013                     Abstract:     The  care  and  shipping  of  lab  mice  has  become  a  major  concern  for  scientist   and  veterinarians  alike  because  of  the  health  and  safety  threats  posed  on  animals   during   shipping.     It   is   important   to   design   a   shipping   container   that   provides   ultimate   comfort   to   reduce   heat   stresses   during   transit   as   well   as   a   sterilized,   humidity   free   environment   for   maximum   pathogen   resistance.   During   the   preliminary  phase  a  solid  design  concept  was  developed  to  ensure  the  concerns  and   safety  regulations  were  addressed.    During  the  final  manufacturing  design,  careful   attention  was  given  to  the  material  selection  of  the  container,  the  passive  cooling   system   for   the   unit   and   the   proper   implementation   of   new   technologies   such   as   biodegradable   phase   change   material.     Different   material   considerations   will   be   discussed  outlining  the  reasons  why  one  would  be  superior  over  the  other  for  the   manufactured  design  verses  the  prototyped  design.  Calculations,  thermal  and  FEA   analysis  will  be  presented  along  with  a  complete  profile  for  a  marketable  unit.    
  • 2.   2   Table  of  Contents   Abstract:  .....................................................................................................................................  1   Introduction  ..............................................................................................................................  4   Problem  Statement  ............................................................................................................  6   The  Client  &  Interaction  ...................................................................................................  7   Brainstorming  &  Alternate  Designs  ..................................................................................  7   Method  Selection  &  Ranking  .........................................................................................  11   The  Peltier  Effect  of  Cooling  ..............................................................................................  12   The  History  and  Equation  of  the  Peltier  Effect  .......................................................  13   Active  vs.  Passive  Cooling  ...................................................................................................  14   The  advantages  of  using  active  cooling:  ....................................................................  15   The  disadvantages  of  using  the  active  cooling:  ......................................................  15   Material  Considerations  .....................................................................................................  15   Polypropylene  ....................................................................................................................  15   ABS  .........................................................................................................................................  16   Polycarbonate  ....................................................................................................................  16   Space  Accessible  Composite  (SAC)  ..............................................................................  17   Acrylic  ...................................................................................................................................  17   Final  Material  Choices  .....................................................................................................  18   The  Phase  Change  Material  ...........................................................................................  19   CES  Material  Analysis  ..........................................................................................................  20   Stages  of  Design  .....................................................................................................................  20   Design  &  Construction  .........................................................................................................  22   Physical  Components  ......................................................................................................  22   Valspar  Reflective  Paint  .................................................................................................  25   Heat  Transfer  Principles  ............................................................................................  25   Definitions  of  key  terms:  ............................................................................................  26   Selection  of  coatings  ....................................................................................................  26   Electrical  Components  ....................................................................................................  27   Electrical  Schematic  .....................................................................................................  28   Lithium  Battery  .............................................................................................................  28   Microcontroller  .............................................................................................................  29   Temperature  &  Humidity  Sensor  ............................................................................  30   Computer  Fan  ................................................................................................................  31   Thermoelectric  Cooling  System  ...............................................................................  32   USB  Temperature  &  Humidity  Datalogger  ...........................................................  32   GPS  Datalogger  ..............................................................................................................  34   Bill  of  Materials  .................................................................................................................  34  
  • 3.   3   Large  Container  Equations  ........................................................................................  34   Acrylic  Cage  Equations  ...............................................................................................  35   Bio  PCM  Equations  .......................................................................................................  35   FEA  Analysis  ............................................................................................................................  36   Thermal  Analysis  ..................................................................................................................  37   The  Thermal  Environment  ............................................................................................  37   Thermal  Stresses  ..............................................................................................................  37   Thermal  Profile  of  the  Design  .......................................................................................  38   Conduction  ..........................................................................................................................  43   Safety  &  Shipping  Regulations  ..........................................................................................  44   The  Animal  Welfare  Act  (AWA)  ....................................................................................  47   The  Lacey  Act  .....................................................................................................................  47   Semester  2  The  Building  Process  ....................................................................................  48   Manufactures  Final  Material  Selection  ..........................................................................  48   Aluminum  Honeycomb  ...................................................................................................  48   Curv®  ........................................................................................................................................  49   The  AeroPlaz™  Honeycomb  ...............................................................................................  51   Electronic  Components  .......................................................................................................  54   Final  Design:  .......................................................................................................................  54   Changes  from  Original  Design:  .........................................................................................  58   Electronic  Changes  Recommended  Due  to  Testing:  ..............................................  58   Testing  ......................................................................................................................................  62   Conclusion  ...............................................................................................................................  65   References:  ..............................................................................................................................  67   Appendix  ..................................................................................................................................  68   CES  Material  Index  Graphs  ............................................................................................  68   CES  Mechanical  &  Thermal  Property  Tables  ...........................................................  68   FEA  Analysis  Data  .............................................................................................................  68   Final  Gant  Chart  ................................................................  Error!  Bookmark  not  defined.   Resources  ............................................................................................................................  68  
  • 4.   4   Introduction     The   purpose   of   this   project   is   to   develop   an   active   temperature   controlled   shipping  container  that  provides  a  stable  temperature  and  humidity  environment   for  rodents  and  small  exotic  animals.    In  the  initial  development  stages  the  team  has   narrowed  down  a  design  based  on  the  needs  of  the  customers  and  the  problems  that   arise  as  a  result  of  using  the  current  design.         Rodents   used   in   research   are   currently   transported   inside   HEPA-­‐filtered   shipping  containers  of  various  sizes.    When  the  shipping  containers  are  placed  in   unregulated   conditions   during   transit,   hypothermic   and   hyperthermia   events   can   occur  that  are  sometimes  fatal.    Survival  is  affected  by  many  environmental  factors,   including  ambient  temperatures,  relative  humidity,  water  availability  and  exposure   time.     Providing   active   environmental   controls   on   the   shipping   container   would   offer  stable  temperatures  and  reduce  humidity  during  uncontrolled  environmental   conditions,  which  would  help  ensure  safe  passage  for  the  lab  mice.       When   starting   a   project   it   is   important   to   understand   the   customer   and   market.    After  much  research  and  investigation,  it  was  found  that  much  of  veterinary   medicine  and  medical  experiments,  rely  on  mice.           Figure  1:  Pie  chart  of  2010  usage  of  lab  mice  in  the  European  Union  [15].  
  • 5.   5   In  the  27  states  of  the  European  Union,  they  use  mice  60%  of  the  time  in  their   laboratory  experiments  (Figure  1).    In  the  United  States  it  is  estimated  that  85-­‐90%   of  the  animals  used  in  medical  research  are  mice.    The  vast  use  of  lab  mice  in  the   United  States  has  not  led  to  them  not  being  counted  in  the  annual  statistics  that  the   USDA  collects  on  the  use  of  animals  in  the  United  States;  nor  are  they  covered  under   the  Animal  Welfare  Act.    This  means  that  because  they  are  used  more  than  any  other   animal,  their  use  is  not  regulated  and  they  do  not  have  protections  and  rights  that   other  animals  would  have.             Figure  2:  Pie  chart  illustrating  the  percentage  of  mice  used  in  the  US  in  2010  [16].     From  Figure  2  it  is  estimated  that  mice  account  for  95%  of  animals  used  in  medical   research  in  the  US.    Precise  statistics  are  not  available  because  the  Animal  Welfare   Act  does  not  protect  lab  mice,  but  this  amounts  to  approximately  25  million  a  year   being  used.     Mice  are  used  in  research  study  for  various  diseases:   • Tuberculosis     • Cancer   • Parkinson   • Hypertension   • Obesity   • Diabetes   • And  more      
  • 6.   6   There  is  not  a  disease  that  lab  mice  have  not  been  a  part  of.    A  recent  article  was   published  analyzing  the  use  of  mice  in  experiments  to  study  every  disease.    It  stated   a  danger  is  being  done  when  researchers  use  one  animal  to  study  all  disease  and   fears  that  much  advancement  is  being  missed  because  of  the  lack  of  versatility  done   in   the   choice   of   animal.     Whatever   it   may   be,   the   fact   is   clear   that   mice   are   used   extensively  in  the  industry  and  developing  a  product  that  protects  the  investments   made  in  these  animals  has  become  our  number  one  priority.    Understanding  the  use   and  importance  of  these  animals  to  our  lives  and  disease  advancement,  helps  us  to   tailor   a   product   that   satisfies   the   goals   of   the   industry   and   offers   a   solution   in   shipping  these  animals  amongst  researcher  safely.       Problem  Statement     The   current   design   being   used   to   transport   lab   animals   offers   one   major   concern;   it   does   not   have   any   mechanisms   in   place   to   control   the   temperature,   which  in  turn  will  regulate  the  humidity  and  circulate  the  air  for  the  mice.     Figure  3:  The  Jackson  Laboratory  patented  shipping  container  for  lab  mice  [1].     It  is  a  container  that  is  made  out  of  an  all  plastic  (ABS)  construction  with   holes  on  each  side  and  the  top  to  promote  airflow.    If  the  mice  are  shipped  in  this   container  during  extreme  heat,  the  container  will  hold  the  heat  inside  which  yields   the  fatal  conditions  the  veterinarians  and  scientist  fear.    This  current  design  poses   the  following  challenges:     • Creating  a  proper  temperature  mechanism  that  is  battery  powered  long  enough  to   sustain  animals  for  up  to  a  week.   • Creating   a   proper   temperature   mechanism   that   is   sensor   controlled   through   a   thermostat.   • Creating  a  shipping  container  that  holds  up  to  10  small  mice  and  separates  males   from   females   and   provides   even   distribution   of   food   while   limiting   exposure   to   diseases  
  • 7.   7   • Developing  the  proper  fan  and  installation  system  that  controls  humidity  within  the   unit.   • Adhere  to  shipping  regulations     The  Client  &  Interaction     The   initial   client   and   consultation   has   been   with   Dr.   Joan   Cadillac.     Dr.   Cadillac   is   the   Sr.   Clinical   Lab   Animal   Veterinarian   for   the   Animal   Resources   Program  at  the  UAB  Research  Building.    Dr.  Cadillac  provides  oversight  of  the  animal   medical   services   for   the   UAB   research   animal   colonies.     She   also   oversees   the   importation   and   quarantine   of   all   incoming   rodents   from   non-­‐commercial   vendors.      Dr.  Cadillac  received  her  degree  in  veterinary  medicine  from  Kansas  State   University.    She  completed  her  residency  training  and  received  a  Masters  of  Public   Health   from   the   University   of   Michigan.     Dr.   Cadillac   serves   as   a   diplomat   of   the   American  College  of  Laboratory  Animal  Medicine  and  has  over  19  years’  experience   in  veterinary  medicine.         Dr.  Cadillac  serves  as  mentor  and  client  in  this  project  based  on  her  extensive   knowledge   of   the   industry   as   vast   amount   of   experience   in   the   proper   transportation  of  lab  mice  and  other  lab  animals.    When  asked  why  this  project  was   so  important  to  researchers  and  veterinary  medicine,  Dr.  Cadillac  responded  that   proper   transporting   units   are   important   to   the   field   of   animal   research   because   numerous   animals   are   transported   between   institutions   (both   domestic   and   international),   and   due   to   a   recent   spike   in   transportation   issues,   animals   sometimes  die  during  transport.    Dr.  Cadillac  has  made  it  clear  that  her  goal  and  her   aim  are  to  work  closely  with  us  to  see  this  project  till  the  end  to  ensure  its  success.       There  was  several  design  constraints  that  were  made  presented  to  the  design   team.  One  of  them  was  to  avoid  paying  the  heavy  shipping  costs  to  rent  out  a  climate   controlled   vehicles   to   transport   the   animals   which   cost   upward   of   thousands   of   dollars  per  shipping  container.  Another  limitation  is  to  make  the  material  where  the   rodents  aren’t  able  to  chew  their  way  out.  Finally,  the  when  rodents  are  shipped,   they   are   regulated   to   a   certain   amount   of   living   space   during   their   journey,   as   evidenced  by  Animal  Welfare  Act  in  table  12.   Brainstorming  &  Alternate  Designs     Our  approach  into  this  design  during  the  preliminary  stages  was  unanimous,   such   that   the   current   container   being   used   is   inferior   and   insufficient.   After   countless  debates  and  critical  thinking,  it  was  determined  that  the  approach  to  this   is  that  each  member  in  this  group  does  initial  sketches  of  what  they  think  would  be   beneficial  to  the  group  design.  It  was  concluded  that  the  best  approach  to  this  design   is  to  implement  an  exterior  temperature  change  structure  with  the  interior  being   held  up  by  the  cages  for  the  animals.  This  would  substantially  cut  down  the  cost  of   shipping   by   eliminating   the   need   to   ship   it   via   critical   freight.   This   would   save  
  • 8.   8   tremendously  by  eradicating  the  climate  controlled  vehicles,  and  handling  extreme   care   because   of   the   soft   plastic   and   cardboard   material   being   used   right   now   for   these   rodents.   Our   idea   is   to   construct   containers   that   would   be   made   out   of   extreme   durability   and   strength   to   withstand   impact   and   the   duration   of   the   journey.  Also,  in  each  of  the  member’s  sketches,  there  is  a  self-­‐sufficient  device  that   can   help   control   the   temperature.   Each   member   in   the   design   team   had   different   components  that  were  taken  from  their  preliminary  sketches’  and  incorporated  into   the  final  design.         Figure  4:  These  preliminary  sketches  are  for  the  housing  units  for  the  interior  and  exterior  views.     In  Figure  4,  the  approach  was  to  build  an  outer  cooling  system  case  which   would  have  handles  on  the  sides  to  pick  up  and  have  a  door  that  opens  up  from  the   top.  The  unit  will  be  insulated  with  phase  changing  material  to  absorb  the  heat.  Also,   a   computer   fan   will   be   used   that   will   act   as   an   exhaust   to   help   circulate   air   throughout  the  case.  It  will  all  be  powered  by  a  small  rechargeable  battery.    Finally,   there   will   be   two   different   thermostats,   one   that   will   detail   the   clients   of   the   temperature  outside  the  housing  unit,  and  the  second  one  will  be  used  to  trigger  a   resistor  for  the  exhaust  fan  to  kick  in  if  it  falls  below  a  certain  threshold.  The  phase   changing   material   concept   was   adopted   for   the   final   design,   as   well   as   the   thermostats,   and   the   computer   fan   exhaust   fan.   However   the   case   itself   was   discarded  due  to  discomfort  of  opening  up  a  latch  that  may  get  in  the  way.  Also  the   material   that   was   desired   to   make   the   case   out   of,   plastic   storage   case   (thermoplastic)  would  end  up  being  too  heavy  for  the  client  to  carry.  
  • 9.   9     Figure  5:  These  preliminary  sketches  are  for  the  housing  units  for  the  interior  and  exterior  views.     In  Figure  5,  the  approach  was  to  design  a  housing  unit  that  will  contain  mesh   style  bins  to  hold  the  animals  and  their  food.  The  mesh  promotes  air  flow  to  the   animals.  Also,  the  unit  would  be  made  out  of  plastic  material  with  phase  changing   material   incorporated.   The   design   itself   will   have   three   different   shelves,   to   segregate   the   animals   to   prevent   breeding   and   interaction.   It   will   be   divided   to   males,  females,  and  exotic  creatures.  The  door  will  be  one  that  opens  from  the  side   with  a  hatch  to  provide  extra  air  tight  security.  The  concept  of  segregation  for  the   animals   to   prevent   breeding   and   spreading   diseases   was   taken   from   this   preliminary  sketch  and  incorporated  into  the  final  design.  Also  the  idea  of  having  a   door  that  opens  from  the  side  prevents  any  accidents  and  constant  observation  over   all  of  the  animals  and  easy  removal  of  the  cages.  However  the  overall  design  was  not   used   because   the   mesh   style   bins   for   the   cages   will   not   be   strong   enough   to   withstand  the  forces  erected  by  the  creatures  inside.  Also,  the  container  itself  made   out  of  plastic  will  not  be  used  because  it  would  not  be  durable  enough  to  withstand   the  journey  of  shipment,  as  well  as  being  too  heavy.    
  • 10.   10     Figure  6:  These  preliminary  sketches  are  for  the  housing  units  for  the  interior  and  exterior  views.     In   Figure   6,   the   method   in   this   preliminary   design   is   to   keep   the   existing   rodent   cages   that   are   being   used   in   today’s   market,   and   just   design   an   exterior   housing  container.  Some  of  the  things  that  he  incorporates  are  an  HVAC  system  to   regulate   humidity.   A   computer   fan   with   heat   sink   for   cooling,   and   heat   reflective   material   on   the   outside.   Durable   plastic   is   the   material   that   will   be   used   for   the   housing  unit,  as  well  as  highly  insulated  material  within  the  casing.  The  concept  of   having  air  flow  inside  the  housing  unit  for  additional  ventilation  was  used  for  the   final  design.  Also,  a  HVAC  system  is  going  to  be  used  a  hybrid  in  the  final  stages,   except   it   will   be   replaced   with   a   thermo-­‐electric   system   in   the   final   design.   The   concept  is  still  the  same.  However  it  was  concluded  in  the  critical  design  report  that,   the  existing  plastic  casings  is  not  ideal  for  the  rodents  because  it  doesn’t  provide   enough  ventilation  as  well  as  temperature  controlled  climates.  Also,  stacking  plastic   cases  on  top  of  each  other  isn’t  ideal  as  indicated  in  this  preliminary  sketch,  because   it  may  prevent  airflow  going  in  from  each  cage.  
  • 11.   11     Figure  7:  These  preliminary  sketches  are  for  the  housing  units  for  the  interior  and  exterior  views.     In   Figure   7,   this   design   shows   different   views   with   several   air   vent   and   channels  for  air  to  flow  freely  to  circulate  fresh  air  from  the  outside.  Mikal  also  adds   in  a  fan  on  the  lid  to  combat  humidity  which  is  a  huge  problem  in  certain  places   around  the  world.  Some  of  the  concepts  were  added  into  the  final  design  such  as   cross   ventilation   that   is   much   more   ideal   then   the   current   market   design.   The   reason  is  because  more  air  flows  and  circulates  fresh  air  to  fight  humidity.  The  fan   on  the  lid  was  used  for  the  final  design  to  help  ease  the  burden  and  drainage  of  a   potential  battery  that  will  be  used  to  power  the  thermal  electric  system.  The  overall   exterior  unit  was  discarded  because  it  doesn’t  solve  the  problem  of  having  enough   space  for  the  rodents  to  being  shipped  across  the  world.       Method  Selection  &  Ranking       Method  selection  was  taken  between  the  original  designs  compared  to  using   an  exterior  housing  unit  that  is  climate  controlled.  The  results  depicted  in  Table  1   show  that  by  having  an  exterior  housing  unit  that  is  climate  controlled  makes  more   sense  than  going  by  what  it  is  in  the  current  market.  Table  2  depicts  the  method   selection  for  cages  whether  or  not  having  isolated  rodent  cages  from  the  container   rather  than  putting  all  the  animals  inside  the  same  unit.  It  is  shown  that  by  having   separate   rodent   cages   to   eliminate   breeding,   diseases   and   interaction,   as   well   as   giving  the  client  more  comfort  ability.  Table  3  describes  the  idea  of  having  a  phase   changing  material  or  not,  but  it  is  shown  that  the  criteria  for  having  phase  changing   material  is  extremely  important  to  control  temperature  and  humidity.            
  • 12.   12   Table  1:    Method  Selection  of  Unit           Original  Plastic  Container   Temperature  Regulated  Exterior  Housing   Criteria   Weighting   Relative  Compliance   Weighted  Value   Relative  Compliance   Weighted  Value   Cost   5   2   5   5   25   Acquirement  Difficulty   3   1   3   2   6   Weight   4   3   12   5   20   Production  Difficulty   2   1   2   1   2   Production  Length   1   2   2   1   2   Functionality   6   4   24   6   36   Totals           48       91     Table  2:    Method  Selection  of  Cages           No  Separate  Rodent  Cage   Separate  Rodent  Cage   Criteria   Weighting   Relative  Compliance   Weighted  Value   Relative  Compliance   Weighted  Value   Cost   1   2   2   2   2   Acquirement  Difficulty   5   1   5   4   20   Weight   2   3   6   3   6   Production  Difficulty   4   1   4   5   20   Production  Length   3   2   6   1   3   Functionality   6   4   24   6   36   Totals           47       87     Table  3:    Method  Selection  of  Phase  Changing  Material           No  Phase  Changing  Material   Phase  Changing  Material   Criteria   Weighting   Relative  Compliance   Weighted  Value   Relative  Compliance   Weighted  Value   Cost   5   5   25   5   25   Acquirement  Difficulty   3   1   3   2   6   Weight   4   5   20   5   20   Production  Difficulty   2   1   2   1   2   Production  Length   1   1   1   1   1   Functionality   6   1   6   6   36   Totals           57       90     The  Peltier  Effect  of  Cooling     For  the  new  design,  the  Peltier  effect  of  cooling  was  utilized  because  it  is  a   trusted   method   for   solid   state   cooling   systems   and   conventional   refrigeration   techniques  known  as  thermoelectric  cooling.    These  solid-­‐state  cooling  systems  use   a  thermoelectric  device  that  consists  of  a  heat  sink,  semiconductor  and  DC  power.     The   semiconductor   component   is   soldered   between   two   ceramic   plates,   with   bismuth  telluride  particles  sandwiched  in  between  the  plates,  Figure  8.    This  unit  is  
  • 13.   13   then   doped   to   create   N-­‐P   junctions   or   semiconductors   with   charge   carriers   of   different  polarity  as  seen  in  Figure  8.    The  negative  electrons  in  the  n-­‐type  semi-­‐ conductor  will  be  drawn  towards  the  positive  holes  in  the  p-­‐type  semi-­‐  conductor   and   vice   versa.     These   charge   carries   will   subsequently   diffuse   until   thermal   equilibrium  is  reached.                   Figure  8:  (a)  Thermoelectric  cooling  schematic  based  on  the  Peltier  effect  using  n-­‐type  and  p-­‐type   semiconductors  (b)  A  p-­‐n  couple  can  be  used  as  a  thermoelectric  couple  based  on  the  Peltier  effect   (left)  or  a  thermoelectric  generator  based  on  the  Seebeck  effect  (right).  [7].     The   purpose   of   a   temperature   control   system   is   to   maintain   a   device   at   a   constant  temperature.    Solid-­‐state  cooling  systems  have  no  moving  parts.  For  that   reason,  they  offer  high  reliability  and  low  maintenance  over  other  types  of  cooling   or  heating  devices.  Solid-­‐state  cooling  systems  offer  low  noise  performance  and  are   ideal   for   use   in   medical   offices,   laboratories   and   all   other   places   where   noise   reduction  is  a  factor.  Solid-­‐state  cooling  systems  are  ecologically  clean   -­‐   no  other   types  of  refrigerants  (CFC,  HCFC  or  even  HFC)  are  involved  in  the  process.         The  History  and  Equation  of  the  Peltier  Effect     The   Peltier   effect   is   the   presence   of   heat   at   an   electrified   junction   of   two   different   metals   and   is   named   for   French   physicist   Jean-­‐Charles   Peltier,   who   discovered  it  in  1834.  When  a  current  is  made  to  flow  through  a  junction  composed   of  materials  A  and  B,  heat  is  generated  at  the  upper  junction  at  T2,  and  absorbed  at   the  lower  junction  at  T1.  The  Peltier  heat   𝑄  absorbed  by  the  lower  junction  per  unit   time  is  equal  to:   𝑄 = Π!" 𝐼 = (Π! − Π!)  𝐼     Where   ΠAB   is   the   Peltier   coefficient   for   the   thermocouple   composed   of   materials  A  and  B  and  ΠA  (ΠB)  is  the  Peltier  coefficient  of  material  A  (B).  Π  varies   with  the  material's  temperature  and  its  specific  composition:  p-­‐type  silicon  typically   has   a   positive   Peltier   coefficient   below   ~550   K,   but   n-­‐type   silicon   is   typically   negative.   (a)   (b)  
  • 14.   14   The  Peltier  coefficients  represent  how  much  heat  current  is  carried  per  unit   charge  through  a  given  material.  Since  charge  current  must  be  continuous  across  a   junction,   the   associated   heat   flow   will   develop   a   discontinuity   if   ΠA   and   ΠB   are   different.   Depending   on   the   magnitude   of   the   current,   heat   must   accumulate   or   deplete  at  the  junction  due  to  a  non-­‐zero  divergence  there  caused  by  the  carriers   attempting  to  return  to  the  equilibrium  that  existed  before  the  current  was  applied   by  transferring  energy  from  one  connector  to  another.   Active  vs.  Passive  Cooling     Passive   temperature   control   applies   to   packages   that   do   not   have   any   intelligence  to  regulate  the  cooling  process.      The  phase  change  material  (PCM)  used   in   passive   systems   is   always   cooling   no   matter   what   the   internal   temperature   is.     The  system  is  designed  based  on  the  premise  that  the  heat  leaking  into  the  package   will  be  approximately  equal  to  the  cooling  capacity  of  the  phase  change  material  in   the  package.    The  equilibrium  condition  resulting  from  this  situation  will  keep  the   internal  temperature  within  the  desired  temperature  range.         Active  temperature  control  applies  to  packages  that  have  intelligence  to  start   and  stop  cooling  based  on  the  internal  temperature  of  the  package.   Active  temperature  control  packages  fall  into  the  following  types:     • Uses  a  compressor.    A  thermostat  starts  and  stops  the  compressor  to  regulate   the  temperature.  This  package  is  battery  powered.   • Uses   a   fan   to   circulate   air   over   dry   ice   or   frozen   water   containers.     A   thermostat  starts  and  stops  the  fan  to  regulate  the  temperature.  This  package   is  battery  powered.   • Uses  a  mechanical  thermal  switch  to  control  cooling  using  frozen  water  as   the   cooling   medium.     A   thermostat   causes   a   mechanical   thermal   switch   to   open  or  close  a  thermal  conduction  conduit  to  regulate  the  temperature.  This   package  does  not  require  battery  power.     Passive  temperature  cooling  is  a  poor  solution  for  high  value  payloads  on   international   shipments.     The   package   does   not   have   the   intelligence   to   make   adjustments   for   different   ambient   environments.     Probably   the   most   challenging   shipment  is  to  ship  from  the  northern  hemisphere  to  the  southern  hemisphere  or   vice   versa   in   February.     The   reason   is   because   of   the   opposite   seasons   both   hemispheres   experience   at   all   times.   While   winter   in   North   America   during   February,   South   America   experiences   summer   during   February.   The   exposure   of   such   contrast   different   climates   for   the   rodents   could   be   stressful   and   lead   to   trauma   and   heat   stress.   This   will   be   an   international   shipment   of   several   days   including  customs  clearance.    On  the  other  hand,  an  active  temperature  controlled   package  has  the  intelligence  to  stop  cooling  when  the  internal  temperature  is  low   and  to  start  cooling  when  the  internal  temperature  rises.    The  pack  out  protocol  for   an  active  temperature  controlled  package  is  the  same  for  any  shipment  since  the   package  adjust  its  cooling  or  heating  automatically.  
  • 15.   15     For   relatively   low   value   domestic   shipments   in   predictable   shipping   situations,   the   passive   shipping   container   is   still   a   viable   option.     However,   for   international  shipments  where  the  shipping  situation  becomes  unpredictable  with   customs   delays   or   long   2-­‐week   deliveries   and   the   temperature   differences   from   environment  to  environment  may  be  more  challenging,  it  was  evident  that  an  active   temperature  control  system  was  needed.   The  advantages  of  using  active  cooling:   • No  moving  parts   • Do  not  require  the  use  of  chlorofluorocarbons   • Safe  for  the  environment,  inherently  reliable,  and  virtually  maintenance  free   • Can  be  operated  in  any  orientation     The  disadvantages  of  using  the  active  cooling:   • Cannot   simultaneously   have   low   cost   and   high   power   efficiency.   Many   researchers  and  companies  are  trying  to  develop  Peltier  coolers  that  are  both   cheap  and  efficient.   Material  Considerations     When   selecting   material   for   the   active   controlled   shipping   container,   it   is   important   to   analyze   choices   based   on   cost   and   application   efficiency.     We   have   narrowed   it   down   to   a   few   tried   and   tested   materials   that   are   known   for   performance  in  units  that  use  lab  products  for  transporting  or  those  are  reliable  in   properties  that  require  thermal  sensitivities.    We  would  need  to  choose  three  of  the   material  choices  we  have  narrowed  it  down  to.    Two  of  the  choices  will  be  for  the   main   housing,   and   the   other   for   the   internal   cases   that   house   the   mice.   A   comparison   of   properties   for   all   the   materials   in   the   Appendix   to,   refer   to   throughout  the  project  and  material  selection  process.   Polypropylene     Polypropylene  is  a  thermoplastic  that  is  manufactured  from  propylene  gas  in   presence  of  a  catalyst  such  as  titanium  chloride.  It  is  a  by-­‐product  of  the  oil  refining   processes  as  well.    Polypropylene  is  highly  crystalline  and  most  commercial  grades   are   isotactic   or   geometrical   in   structure   which   is   opposite   to   an   amorphous   thermoplastics,  which  lacks  long  range  order,  such  as  polystyrene,  PVC,  polyamides,   etc.,  also  known  as  atactic.     Polypropylene  is  normally  tough  and  flexible,  especially  when  copolymerized   with   ethylene.   This   allows   polypropylene   to   be   used   as   an   engineering   plastic,   competing  with  materials  such  as  ABS.    Polypropylene  has  good  resistance  to  fatigue   and  is  reasonably  economical.    It  can  be  made  translucent  when  uncolored  but  is  not   as  readily  made  transparent  as  polystyrene  and  acrylic.      
  • 16.   16   Polypropylene  is  lightweight  and  has  lowest  density  (0.90-­‐0.92  g/cm3)  of  the  resins   used  in  packaging  as  seen  in  TABLE  4.            TABLE  4:  Density  and  melt  index  comparison  of  polypropylene  and  polyethylene.     Polymer  Melt  Index   Density  (gr/ml)   LDPE  (Low  Density  Polyethylene)   0.2  -­‐  20.0   0.916  -­‐  0.930   HDPE  (High  Density  Polyethylene)   0.2  -­‐  25.0   0.950  -­‐  0.960   Polypropylene   2.0  -­‐  50.0   0.910  -­‐  0.928   Polypropylene   was   considered   for   several   reasons   in   being   our   premiere   choice  of  material  for  our  housing  for  several  reasons:     • It  is  excellent  in  resistance  to  stress  and  high  resistant  to  cracking  (i.e.  it  has  high   tensile  and  compressive  strength)   • High  operational  temperatures  with  a  melting  point  of  160°C   • Excellent  dielectric  properties   • It   is   highly   resistant   to   most   alkalis   and   acid,   organic   solvents,   degreasing   agents   and  electrolytic  attack.  On  the  contrary  is  less  resistance  to  aromatic,  aliphatic  and   chlorinated  solvents  and  UV.     • It  is  non-­‐toxic  and  is  used  in  thermo  cooler  applications   • A  non-­‐staining  material   • Plus  it’s  easy  to  produce,  assemble  and  its  economical       ABS     Acrylonitrile   butadiene   styrene   (ABS)   is   a   type   of   acrylic   that   is   tough,   resilient  and  easily  molded.    It  is  usually  opaque,  although  some  grades  can  now  be   transparent   and   it   can   be   given   vivid   colors.     ABS   –   PVC   alloys   are   tougher   than   standard   ABS   and   in   self-­‐extinguishing   grades,   are   used   for   the   casing   of   power   tools.    ABS  has  the  highest  impact  resistance  of  all  the  polymers.    By  adding  glass   fiber  the  rigidity  can  be  increased  dramatically  which  may  prove  beneficial  in  our   unit.     If   we   use   this   as   our   housing   material   it   would   need   a   protective   coating   because  sunlight  causes  yellowing  and  loss  of  strength.    The  good  news  is,  if  we  use   this  material,  we  will  have  the  manufacturing  processes  of  extrusion,  compression   molding  or  vacuum  thermo  forming  available  to  us.         Polycarbonate     Polycarbonate  is  a  clear,  colorless  polymer  used  extensively  for  engineering   and  optical  applications.  It  is  available  commercially  in  both  pellet  and  sheet  form.   Outstanding   properties   include   impact   strength   and   scratch   resistance.   The   most   serious   deficiencies   though   are   poor   weather   ability   and   chemical   resistance.     Typical  properties  include:  
  • 17.   17     • Glass transition temperature: 145° C. • Melting temperature: 225° C. • Amorphous density at 25° C: 1.20 g/cm3 . • Molecular weight of repeat unit: 254.3 g/mol.     Space  Accessible  Composite  (SAC)     Space  Accessible  Composite  is  a  glass  epoxy  made  of  woven  glass  fibers  and  a   non-­‐woven  glass  core  that  is  then  combined  with  the  epoxy  resin.    This  material  is   highly  used  in  the  electronics  industry  for  products  like  printed  circuit  boards  for   cellular  phones  and  computers.    The  properties  of  the  material  are  listed  in  Table  5   and  a  full  list  from  CES  is  available  in  the  appendix  as  well.    SAC  is  attractive  to  us   because  it  is  flame  retardant,  a  low  moisture  absorber;  it’s  very  high  in  strength  and   very  low  in  weight  and  cost.       Table  5:    ASTM  properties  of  space  accessible  composite   Specifications  of  Space  Accessible  Composite   Compressive   Yield   Strength   8.00  MPa   1160  psi   ASTM   C365   Shear   Modulus   12.0  Mpa   1740  psi   ASTM   C273   Shear   Strength   1.50  Mpa   218  psi   ASTM   C273     Glass   epoxy   materials   can   operate   under   heavy   electrical   and   mechanical   stress   as   well   as   high   temperatures.     According   to   our   FEA   and   thermal   analysis   found   later   on   in   this   paper,   it   is   shown   that   we   need   a   material   to   withstand   temperatures  of  over  110°F  and  the  glass  epoxy  has  a  thermal  resistance  well  above   that  to  329°F.         Acrylic       Although   not   as   strong   as   polycarbonate,   acrylic   poses   some   benefits   that   makes  it  a  good  contender  for  use  as  our  material  of  choice  for  the  inside  rodent   container.    Keep  in  mind  the  inside  rodent  container  will  have  holes  throughout  for   air  circulation  and  will  be  the  container  that  the  receiver  keeps;  this  is  discussed   more  in  the  design  and  construction  section  of  this  report.    Since  acrylic  is  as  hard  as   polymers   go   then   we   wanted   to   plot   the   hardness   versus   the   maximum   service   temperature  in  CES.    The  material  may  not  be  comfortable  enough  for  the  mice  to  lie   in  for  up  to  two  weeks.  However  the  comfort  ability  of  the  mice  will  be  dictated  later  
  • 18.   18   in  the  paper,  about  how  the  importance  of  reducing  stress,  trauma,  and  heat  stroke   on  the  mice.     Final  Material  Choices     The  initial  housing  construction  of  our  design  was  slated  to  be  made  out  of  a   aluminum   honeycomb   sandwiched   between   ¼   inch   Curv®   sheets.     This   material   was   chosen   because   it   is   strong   lightweight   and   freely   available   to   us.     The   time   devoted  to  design,  papers  and  meetings  has  sacrificed  the  time  spent  on  fundraising   so  we  resolved  to  just  use  the  $600  budget  and  gain  as  many  donations  as  possible.     This  design  just  recently  received  $5000  in  grant  money,  if  an  appropriate  prototype   can  be  made  by  the  end  of  January  using  the  Space  Accessible  Composite  as  well  as   Polycarbonate   that   was   donated   to   the   project.   Mentors   and   investors   have   requested  to  expedite  the  delivery  of  a  prototype  so  therefore  we  will  begin  building   December  17th.    We  will  use  the  thermo  forming  process  to  construct  the  container   and  will  be  able  to  use  an  array  of  materials,  test  them  and  decide  on  the  best.    We   will  still  begin  with  the  space  accessible  composite.    We  will  also  use  Curv®  and  a   polypropylene  honeycomb  because  it  has  a  density  that  is  17  times  lower  than  the   density   for   the   SAC   material.       The   fact   that   weight   reduction   is   one   of   our   main   objectives,  makes  the  Curv®  and  polypropylene  honeycomb  very  attractive  to  use  in   our  final  working  unit.                                              
  • 19.   19     The  Phase  Change  Material         Figure  9:  The  bioPCM  (phase  change  material)  used  for  insulation  in  the  animal  transporter  unit.     The  BioPCM™  is  the  key  ingredient  for  the  active  cooling  container.    It  is  the   one  material  we  are  certain  of  at  this  point  in  the  preliminary  design  process.    The   BioPCM™   is   insulation   with   pockets   of   phase-­‐changing   material   (soy-­‐based   chemicals  that  change  from  liquid  to  solid  and  back  again  at  different  temperatures,   allowing  the  material  to  absorb  and  release  heat).  Its  performance  is  comparable  to   that   of   the   thermal   mass   of   12"-­‐thick   concrete.   The   product   increases   the   time   it   takes  for  a  building  to  warm  up  or  cool  down.    BioPCM™  is  easily  integrated  into   existing   designs.     The   product   can   be   easily   trimmed   around   wall   outlets   and   fixtures  with  scissors  or  a  utility  knife.    BioPCM™  has  a  thermal  storage  capacity  of   approximately  190  joules  per  gram,  or  180  BTU  per  kg.    This  capacity  is  reflected  in   the  thermal  analysis  and  FEA  provided  in  the  appendix     This   product   stores   the   equivalent   of   a  574-­‐Watt   air   conditioner   or   heater   placed   in   each   square   meter   of   wall   and   ceiling   space   running   for   one   hour   continuously.     While   acting   as   an   air   conditioner,   its   peak   resistance   to   heating   begins   at   21.1   °C   and   it   has   completely   reached   capacity   at   25   °C,   all   the   while   keeping  the  area  cool.    While  acting  as  a  heater,  its  peak  resistance  to  cooling  begins  
  • 20.   20   at  25  °C  and  it  has  completely  discharged  all  of  its  stored  heat  by  21.1  °C,  all  the   while   keeping   the   area   warm.   This   phase   changing   material   absorbs   heat   which   expands  the  pellets  that  it  contains,  and  releases  the  heat  if  the  temperature  is  lower   than  target  (21.1  °C).  (The  product  is  sold  in  bags;  each  bag  covers  1m2  and  weighs   9.8  kg  per  bag.    Each  bag  cost  $195  -­‐  $230  depending  on  the  vendor  you  order  from.     Fabral,   a   national   company   based   out   of   Atlanta,   GA   has   graciously   decided   to   sponsor  our  project  and  donate  the  BioPCM™  to  us.       CES  Material  Analysis       Using  the  CES  EduPack  software  we  were  able  to  plot  the  properties  of  each   material  and  compare  them  for  best  fit  to  our  application.  See  graphs  in  Appendices   for  all  materials.   Stages  of  Design     Manufacturing   is   the   process   of   converting   raw   materials   into   products;   it   incorporates   the   design   and   manufacturing   of   goods   using   various   production   methods  and  techniques.    Use  of  quality  and  precision  must  be  held  into  account   into  this  project  at  every  stage,  from  design  to  assembly.  For  designing  the  small   animal   container,   the   10   stages   of   the   Engineering   Design   Process   will   be   implemented   to   complete   the   course   of   designing   this   project.   The   first   stage   is   identifying  the  problem,  which  uses  critical  thinking  to  thoroughly  understand  the   background   of   the   problem.   The   problem   can   be   traced   to   the   original   rodent   container   called   HEPA-­‐filtered   shipping   containers.   The   container   is   placed   in   unregulated  conditions,  hypothermic  and  hyperthermia  events  that  occur  that  could   lead  to  fatality.  These  rodents  are  very  delicate  and  don’t  have  the  ability  to  sustain   in  conditions  that  are  not  ideal  to  them.     This   leads   to   the   second   stage,   defining   working   criteria   and   goals.   There   must   be   established   preliminary   goals,   and   developing   criteria   that   are   ideal   to   make  sure  these  animals  make  it  to  their  destination.  Survival  is  affected  by  many   environmental   factors.   Therefore,   the   criteria   for   this   project   are   to   set   ambient   temperatures,   relative   humidity,   water   availability,   and   exposure   time   for   the   rodents.   By   providing   active   environmental   controls   on   the   shipping   container,   it   will   then   offer   stable   temperatures   and   humidity   during   uncontrolled   environmental   l   conditions.   The   task   with   setting   the   temperature   criteria   is   creating  a  temperature  mechanism  that  is  battery  powered  long  enough  to  sustain   animals  for  up  to  a  week  with  a  sensor.    Another  criterion  that  is  taken  into  account   is   developing   a   shipping   container   that   holds   up   to   10   small   mice   or   4   rats   and   separates   the   gender   apart.   The   next   criteria   are   to   develop   the   proper   fan   and   installation   system   that   controls   humidity   within   the   unit.   Finally,   the   most   important  criteria  are  to  ensure  a  safe  and  healthy  journey  for  the  animals  traveling.      
  • 21.   21   The   third   stage   of   the   engineering   design   process   is   researching   and   gathering  data  by  staying  regularly  with  the  working  criteria  while  researching.  It   was   concluded   with   extensive   research,   that   most   rodents   find   the   temperatures   most  hospitable  for  living  is  between  70◦F-­‐80◦F.  Also,  it  was  discovered  that  rodents   have  a  harder  time  being  able  to  chew  metal  and  composites,  rather  than  plastics  is   the  current  norm  shipping  container  being  used  currently.  In  addition,  battery  packs   can  be  executed  onto  fans,  and  tracking  devices  to  increase  the  duration  of  these   electronics  during  the  journey.    Research  also  shows  that  companies  want  to  try  and   cut   down   the   cost   as   much   possible,   therefore   that   has   to   be   taken   into   account   when  building  for  this  project.  Recyclable,  energy  saving  techniques,  rental  rather   than   buy,   are   all   preferable   methods   for   companies   to   save   money.   After   several   days   of   researching   and   compiling   all   the   data,   ideas   start   to   pop   up   to   produce   several  potential  concepts  for  the  project.     This  leads  to  the  fourth  stage,  which  is  brainstorming  and  generating  creative   ideas  for  the  project.  One  idea  was  to  create  temperature  controlled  housing  for  the   current   shipping   container   that   incorporates   batteries,   cooling   system,   and   installation  and  fan.  That  approach  would  surprisingly  decrease  the  shipping  cost   for  the  customer,  because  they  wouldn’t  have  to  pay  for  the  refrigerated  trucking   cost.    Another  idea  was  developing  a  maze  with  passages  for  mice  and  rats  to  roam   free,   while   there   are   several   small   computer   fans   along   the   walls   to   keep   them   cooled.  A  third  idea  that  was  proposed  was  to  have  ice  packs  to  keep  the  animals   cooled,  or  a  modified  air  conditioning  unit.       With   careful   analysis   of   potential   solution,   developing   models,   the   final   design  chosen  is  to  build  is  to  construct  an  exterior  housing  material  made  out  of   metals  and  composite  material  painted  with  heated  reflective  painting.  The  interior   of   the   housing   material   will   be   equipped   with   recyclable   bio   phase   changing   material   to   keep   the   temperature   inside   the   housing   under   relative   room   temperature  70◦F-­‐80◦F.  The  housing  can  be  accessible  with  a  door  that  opens  with   hinges.  Inside  the  frame  of  the  housing,  is  a  thermostatic  fan  with  dual  speed  option   equipped   with   a   thermostat   that   has   a   resistor   that   triggers   when   a   certain   temperature  is  achieved.         The  fans  sole  purpose  is  to  circulate  the  air  and  keep  humidity  out  through   ventilation  ports.  Also,  equipped  with  the  entire  housing  equipment  is  a  GPS  tracker   device,   which   enables   the   client   to   track   the   shipment   wherever   they   may   be.   It   would  be  accessible  through  email,  or  whatever  is  convenient.  Also  available  inside   the  housing  unit,  is  a  shock  logger,  which  will  be  able  to  record  pressure,  humidity,   and  temperature  of  the  environment  throughout  the  duration  of  the  journey.       Implementing   and   commercialization   is   done   with   company   sponsorships.   Fabral,  will  be  providing  the  recyclable  phase  changing  material,  and  as  well  as  the   heat   reflective   paint.     Also,   Piedmont   Plastics   will   be   providing   the   composite   materials  necessary  to  build  the  device.  The  GPS,  thermostatic  fan,  and  the  shock   logger   will   be   purchased   from   a   third   party   vendor,   put   into   the   housing   unit   to   record  data  and  keep  the  animals  comfortable.  The  cages  used  to  hold  the  rodents  
  • 22.   22   will  be  made  completely  of  acrylic  to  ensure  cheap,  light,  recyclable  metal,  yet  very   durable   and   tough   to   handle   the   animals.   The   cages   will   have   holes   to   ensure   breathing   and   ventilation   for   the   rodents.   The   cages   will   be   designed   through   precision   forging   and   laser   precision   through   precision   forging;   special   dies   are   made   to   increase   accuracy   than   in   ordinary   impression-­‐die   forging.     The   housing   unit  will  be  designed  with  extrusion,  which  will  induct  production  of  long  lengths  of   solid   or   hollow   products   with   constant   cross   section;   the   product   is   then   cut   to   desired  lengths.  The  labor  and  operator  skill  is  usually  very  low.     Commercialization   rights   will   be   handed   over   to   shipping   companies   that   will   rent   out   these   devices   to   clients   in   need   of   transporting   rodents.   Both   the   shipping   companies   and   the   clients   sending   out   animals   will   have   a   positive   outcome.  This  gives  the  clients  shipping  animals  a  cheaper  option  of  being  able  to   rent   equipment   and   sending   them   back,   without   being   responsible   for   buying   or   creating  containers  to  house  the  rodents.  Also,  the  patrons  will  be  saving  hundreds   for  not  paying  refrigerated  trucks  to  pick  the  animals  and  deliver  them.  As  for  the   shipping  companies,  it  gives  the  company  a  gateway  of  a  whole  world  of  potential   customers   to   tap   into   giving   the   customers   the   ability   to   rent   out   their   product   ensures  money,  as  well  as  shipping  charged  to  the  customer.  This  device  can  be  used   into  the  military  industry  for  shipping  food,  or  experiments  around  the  world.  This   can  also  be  used  for  space  industries  to  ship  experiments  and  other  testing.  There  is   a  limitless  amount  of  ways  to  maximize  and  commercialize  this  product.     Design  &  Construction   Physical  Components     The   physical   components   of   the   system   include   the   polypropylene   main   casing  with  a  door.    The  phase-­‐change  material  will  insulate  not  only  the  casing  but   will  also  be  inside  the  door.    The  housing  will  have  hollow  walls  to  allow  space  to   insert   out   the   phase-­‐change   material   as   shown   in   Figure   10   shown   below.     The   phase-­‐change  insulation  is  an  innovative  and  effective  way  to  insulate  the  housing.         The   polypropylene   will   provide   a   hard,   lightweight   shell   to   protect   the   animals   and   the   electrical   components   from   any   accidents   that   may   occur   while   shipping.    The  polypropylene  was  all  chosen  due  to  its  affordability.  
  • 23.   23     Figure  10:  Insulation  of  the  phase  change  material  in  the  walls  of  the  active  cooling  container.   The  door  must  ensure  an  airtight  seal  to  keep  a  steady  temperature  inside   the  unit.    To  accomplish  this,  the  door  will  be  equipped  with  a  rubber  seal  common   to   a   lot   of   refrigeration   units   to   ensure   no   air   is   escaping   or   entering   the   unit   through  cracks  in  the  door  jam.    The  door  will  also  have  rubber  latches  that  will   leave  no  doubt  of  a  tight  seal  throughout  the  shipment.    Both  of  these  features  are   pointed  out  in  Figure  11.       Figure  11:  Creo  schematic  of  the  door  assembly  with  arrows  pointing  to  the  seal  around  the  door   and  the  custom  designed  rubber  latches.   To  allow  for  more  floor  space  the  container  will  be  able  to  function  upright,   or  on  its  side,  as  shown  in  Figure  12.    For  mice,  the  carrier  would  be  upright  with  a   shelf.     Mice   are   smaller   in   size   so   there   will   be   a   shelf,   so   that   two   separate   containers  can  be  stacked  one  on  top  of  the  other.    If  the  carrier  is  set  on  its  side,   with  the  air  vents  aiming  upward,  then  there  will  be  more  floor  space  to  transport  a   larger  number  of  rats.    
  • 24.   24     Figure  12:  Showing  the  versatility  of  the  unit  to  convert  to  mice  (left)  and  rat  (right)  configuration.     The  size  of  the  rodent  carrier  needs  to  be  large  enough  to  hold  enough  to   house  a  substantial  number  of  rodents.    However  the  size  of  the  container  must  not   be  so  large  that  it  is  impossible  to  transport  (refer  to  TABLE  12).    To  accommodate   these  two  constraints  the  carrier  size  is  30  inches  tall  with  a  24x24  inch  base.         From  TABLE  12  there  will  be  plenty  of  volume  to  safely,  and  legally  ship  a   large  number  of  animals.    Currently  the  mice  containers  have  an  18x18  inch  base,  or   324  square  inches.    With  this  amount  of  floor  space  each  container  could  safely  hold   21  large  mice  (>25  grams),  and  since  there  are  2  containers  that  would  allow  for  42   mice   to   be   shipped   per   climate   controlled   carrier.     Originally   the   container   was   designed  to  be  10  inches  tall,  from  TABLE  12  this  value  could  be  cut  in  half.    This   would  allow  for  more  shelves  to  potentially  be  added  to  the  housing,  and  therefore   more  animals  per  carrier  could  be  shipped.       The  rat  containers  have  a  24x18  inch  base  or  432  inches2.    Since  large  rats   require  70  square  inches  of  floor  space  per  animal,  this  equates  to  6  large  rats  per   container.      Once  again  since  the  rats  only  require  a  height  of  7”,  it  would  also  be   possible  to  put  a  shelf  with  another  container  for  rats.    A  carrier  could  potentially   hold  up  to  12  large  rats  per  shipment.      
  • 25.   25     Figure  13:  New  active  cooling  container  (a)  vs.  the  original  passive  cooling  container  (b).   Originally,   the   carrier   was   intended   to   house   the   current   rodent   transport   boxes.    However,  the  original  boxes  did  not  utilize  the  space  to  its  full  potential.    The   new  acrylic  container  will  improve  on  the  current  design.    There  will  be  holes  cut   into  the  acrylic,  Figure  13a,  which  will  provide  improved  airflow  over  the  current   shipping  containers  Figure  13b,  which  use  mesh  walls  for  airflow.    With  the  larger   holes  moisture  inside  the  container  will  no  longer  be  an  issue.     The  door  of  the  container  is  small  so  that  the  mice  cannot  jump  out,  which   can   be   an   issue   when   removing   the   animals   due   to   their   elevated   anxiety.     The   bottom  of  the  container  must  be  solid  with  no  holes  because  the  animals  require   enough   food   and   water   to   survive   during   their   transit.     The   new   design   for   the   shipping  containers  will  improve  airflow  (Figure  14)  in  a  cross  ventilation  style,  and   provide  better  utilization  of  the  space  inside  the  carrier.     Figure  14:  Schematic  of  cross  ventilation  vs.  single-­‐sided  ventilation  which  stifles  airflow.   Valspar  Reflective  Paint     Heat  Transfer  Principles   The radiation balance for a semitransparent medium averaged over the entire spectrum is, ρ + α + τ = 1 Where ρ = reflectivity;  α = absorptivity;  τ = transmissivity  (all  are  unitless) (a)   (b)  
  • 26.   26   If the medium is opaque, there is no transmission, and absorption and reflection are surface processes for which α + ρ = 1;  when  τ = 0 Also, Kirchhoff’s law states that in an isothermal enclosure, the total hemispherical emissivity is approximately equal to its total hemispherical absorptivity, or ε ≅ α The net rate of radiation heat transfer from the surface, is q = εσA T! ! − T!"# ! ; Watts Where ε = emissivity;  σ = Stefan − Boltzman  constant; A = area  of  container T! = Temperature  of  the  surface;  T!"# = Temperature  of  the  surrounding The group is looking for a coating for a container that will not absorb much heat. Therefore, we want to minimize  q  for  both  T! > T!"!  and  T! < T!"# . Also, the group wants the coating to reflect solar rays. Therefore, we want to Minimize  α  and  maximize  ρ  in  the  equation  α = 1 − ρ.     Note: we  want  to  minimize  ε  also  since  α ≅ ε Satisfying the above conditions will result in a bright and shiny surface. Definitions  of  key  terms:   Absorption: The process of converting radiation intercepted by matter to internal thermal energy. Absorptivity: Fraction of the incident radiation absorbed by matter. Hemispherical: Modifier referring to all directions in the space above a surface. Kirchhoff’s law: Relation between emission and absorption properties for surfaces irradiated by a blackbody at the same temperature. Radiation: Energy transfer by electromagnetic waves Reflection: The process of redirection of radiation incident on a surface. Reflectivity: Fraction of the incident radiation reflected by matter. Semitransparent: Refers to a medium in which radiation absorption is a volumetric process. Stefan-Boltzmann law: Emissive power of a blackbody. Transmission: The process of thermal radiation passing through matter. Transmissivity: Fraction of the incident radiation transmitted by matter. Selection  of  coatings   The following chart shows the reflectivity and absorptivity for various coatings.  
  • 27.   27         Table  6:  Material  Composition  chart  for  reflectivity  and  absorptivity       An aluminum coating (highly polished finish) was selected due to: • High reflectivity, 0.96 • Low absorptivity, 0.04 • Low price, $0.91 The aluminum coating would be in the form of paint because of ease of application and long life of the application with proper maintenance. The paint selected is “Valspar Heavy Duty Aluminum Paint”. This paint is bright and reflective and is non-toxic when it dries. A primer would be needed in order for the paint to stick to the plastic container. The primer selected is “Rust-Oleum Plastic Primer”. This primer is specialized for applying a coat of paint to plastics.   Electrical  Components     The   electrical   components   that   will   be   included   in   the   design   are   the   microcontroller,  temperature/humidity  sensor,  fan,  and  battery.    There  will  also  be   a  temperature  data-­‐logger  and  GPS  system  included,  these  components  will  act  as   stand-­‐alone   devices.     The   microcontroller   will   be   the   brains   of   the   electrical   components.    It  will  be  able  to  gather  information  from  the  temper/humidity  sensor,   and   then   take   that   information   and   activate   or   deactivate   the   other   devices   (thermoelectric  device/fan).     Most   of   the   time   spent   during   flight   the   phase-­‐change   material   should   provide   ample   insulation   to   maintain   an   internal   temperature   inside   the   desired   range.    Analyzing  the  thermo  profile  from  Figures  23  and  24  that  was  obtained  from   previous   shipments,   the   problem   areas   occur   during   layovers   and   international   shipping.    During  these  times  there  possibly  could  be  a  need  for  active  cooling.    This   Material Composition Cost (USD/lb) Emissivity (ε) Absorbtivity (α) Reflectivity (ρ) Highly polished, Film 0.91 0.04 0.04 0.96 Foil, bright 0.91 0.07 0.07 0.93 Anodized 0.91 0.82 0.82 0.18 Chromium Polished or plated 1.15 0.10 0.10 0.90 Copper Highly polished 3.54 0.03 0.03 0.97 Highly polished, Film 779.89 0.03 0.03 0.97 Foil, bright 779.89 0.07 0.07 0.93 Silver Polished 15.31 0.02 0.02 0.98 Black (Parsons) ~30.00/gallon 0.98 0.98 0.02 White, acrylic ~30.00/gallon 0.90 0.90 0.10 White, zinc oxide ~30.00/gallon 0.92 0.92 0.08 Aluminum Gold Paints
  • 28.   28   is  when  the  thermoelectric  air  conditioner  would  turn  on.    The  electric  thermostat   will  gather  information  on  the  temperature  inside  the  case,  and  if  the  temperature   rises   too   high,   trigger   the   thermoelectric   air   conditioner   to   power   on.     The   thermoelectric  AC  functions  mainly  as  a  safety  net,  to  ensure  there  is  no  situation   within  the  limitations  of  the  design  that  the  carrier  cannot  handle.     Electrical  Schematic       Figure  15:  Electrical  Schematic       Figure   15   is   an   example   of   how   all   the   electrical   could   potentially   be   connected  to  the  pin  configuration  to  microcontroller.    The  position  of  the  ground,   power,  input,  and  output  pins  will  not  be  known  until  the  microcontroller  arrives,   this   is   just   an   example   for   visualization.     There   will   be   ample   open   pins   for   any   upgrades   to   design.     One   example   is   an   outer   temperature   display.     The   24   pin   configuration   should   provide   more   than   enough   pins   to   accommodate   any   more   future  additions  to  the  electrical  components.       Lithium  Battery     The  K2  Energy  K2B12V7E  12V  7Ah  Lithium  Iron  Phosphate  Battery  [8]  is  the   ideal   battery   for   this   project.     Its   lightweight,   battery-­‐life,   safety   standards   and   volumetric  dimensions  were  reasons  this  style  of  batter  was  chosen.    LiFePO4  are  a   little   more   expensive   than   the   lead-­‐acid   battery,   but   with   that   cost   comes   performance  and  a  smaller,  more  lightweight  battery.    The  more  volume  that  can  be   conserved  can  potentially  house  more  rodents,  and  the  lighter  in  weight  the  design   makes  it  easier  to  transport.    All  the  other  electric  components  will  be  run  off  the  
  • 29.   29   battery,  so  that  the  system  is  a  stand-­‐alone  system.  The  specifications  are  displayed   in  Table  7.     Figure  16:  12V  7Ah  Lithium  Iron  Phosphate  Battery  [8]     Table  7:    12V  7Ah  Lithium  Iron  Phosphate  Battery  [8]   Specifications   Terminals   F2-­‐1/4  inches   Volts   12   Amp  Hours   7   Length   5.94  inches   Width   2.53  inches   Height   3.83  inches   Weight   1.98  pounds   Chemistry   LiFeP04  Lithium  Iron  Phosphate     Microcontroller     The   BasicX-­‐24   microcontroller   was   the   optimal   microcontroller   for   our   design.    The  cost  was  affordable  at  $49.95,  and  the  simplicity  in  which  the  coding  is   compiled  for  the  device  was  another  factor  in  choosing  this  microcontroller.    This   microcontroller  will  provide  ample  input  and  output  pins  for  controlling  the  fan  and   thermoelectric  device,  and  any  future  improvement  that  are  made,  for  example  an   outer   LED   display   of   the   temperature.     A   kit   for   this   microcontroller   will   also   be   purchased  ($129.95)  to  provide  examples  of  code,  a  circuit  board,  and  software;  this   price  will  also  include  the  microcontroller  itself.  
  • 30.   30     Figure  17:  BasicX24  Microcontroller  [9]     Temperature  &  Humidity  Sensor         The   temperature/humidity   sensor   provides   a   way   to   measure   the   temperature   and   transmit   that   data   electronically   to   the   microcontroller.     The   way   the   device   works  is  relates  temperature  and  humidity  to  voltage.  The  sensor  will  connect  to  an   input  pin  to  the  microcontroller  and  output  a  voltage  that  the  microcontroller  can   measure.    Once  the  voltage  exceeds  the  maximum  voltage,  the  microcontroller  will   turn   on   the   thermoelectric   device   to   control   temperature,   or   the   fan   to   control   humidity.     The   maximum   temperature   the   animals   prefer   is   79o   Fahrenheit.   The   specifications  are  displayed  in  Table  8.     Figure  18:  DFRobot  DHT11  Temperature  and  Humidity  Sensor  [10]       Table  8:    DFRobot  DHT11  Temperature  and  Humidity  Sensor  [10]     Specifications   Supply  Voltage   +5  voltage   Temperature  range   0-­‐50◦C  error  of  ±  2◦C     Humidity     20-­‐90%  RH  ±  5%  RH  error   Relative  humidity  and  temperature  measurement  
  • 31.   31   Display  of  Data   Digital  output   Stability   Excellent  long  term   Compatible   interchangeable       Computer  Fan         A  fan  is  not  only  needed  to  circulate  fresh  oxygen  into  the  transporter,  but   also  to  reduce  humidity  through  the  ventilation  holes  located  in  the  side  of  the  outer   container.    The  fan  chosen  was  the  ADDA  AD0612LB-­‐A70GL.    This  fan  was  chosen   due  to  its  low  power  consumption,  so  the  battery  life  can  be  preserved  in  the  event   that  the  thermoelectric  device  needs  to  be  activated.    The  current  needed  to  power   the  fan  is  0.08A  and  a  voltage  of  0.96V  [11].  This  fan  will  be  connected  to  an  output   pin  on  the  microcontroller.    If  the  humidity  rises  above  the  desired  level,  the  fan  will   then  be  turned  on.    The  microcontroller  will  also  be  programmed  to  activate  the  fan   using  a  time  delay  to  ensure  the  animals  are  breathing  fresh  air.  The  specifications   are  displayed  in  Table  9.     Figure  19:  The  ADDA  AD0612LB-­‐A70GL  fan  [11]         Specifications   Manufacture   ADDA   Product  Category   Fans  &  Blowers   Product   Fans   Current  type   DC  
  • 32.   32   Airflow   13.2  CFM   Bearing  type   Ball   Noise   16.1  dBA   Speed   2500  RPM   Power  rating   0.5  W   Frame  dimensions   60   mm   x   25   mm   x   60  mm   Series   AD6025   Supply  Voltage   12  V   Table  9:  Computer  Fan  ADDA  AD0612LB-­‐A70G  [11]         Thermoelectric  Cooling  System       The  transporter  will  also  have  a  thermoelectric  cooling  module  incorporated  in   the  design.    The  phase  changing  material  should  provide  ample  insulation  for  our   purposes,  but  if  the  temperature  goes  above  the  rodents  thermal  comfort  zone  then   the   microcontroller   will   activate   the   thermoelectric   device.     The   thermoelectric   device  will  act  as  a  safety  net  in  cases  in  which  the  phase  change  material  is  unable   to  maintain  the  desired  temperature.         Figure  20:  Thermoelectric  device  [12]     USB  Temperature  &  Humidity  Datalogger       The  installed  temperature  and  humidity  data  logger  can  operate  independently  of   the  rest  of  the  unit.    This  device  will  enable  the  customer  the  ability  to  see  if  the   rodents   ever   experienced   temperatures   outside   of   their   comfort   zone.     The   data   logger  can  be  hooked  to  computer  via  a  USB.    The  user  can  then  program  the  data  
  • 33.   33   logger  to  collect  the  temperature  and  humidity  data  every  10s  or  every  12  hours.     This   feature   will   hold   the   shippers   accountable   for   their   shipping   practices.   The   specifications  are  displayed  in  Table  10.       Figure  21:  Temperature  and  Data  Logger  [13]                     Table  10:  USB  Temperature  &  Humidity  Datalogger  [13]   Specifications   Product  Type   Temperature/Humidity  Datalogger   Temp  range   -­‐31  to  176◦F(-­‐35  to  80◦C)   Temp  accuracy   ±0.9◦F(±0.5◦C)   Humidity  accuracy   ±3%   Logging  intervals   Once  every  10  sec  to  12  hours   Memory     32,764  data  points   Power   3.6  V  lithium  battery   Dimensions   3  inches  L  x  1  inch  W   Connection   USB   Battery  life   1  year