SlideShare a Scribd company logo
1 of 10
Semiconductores Intrinsecos y Dopados
QUE ES UN SEMICONDUCTOR . Un semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p²
Semiconductores Intrinsecos Es un cristal de silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 0,7 eV y 0,3 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargasnegativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (25ºc): ni(Si) = 1.5 1010cm-3ni(Ge) = 2.5 1013cm-3Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas.  Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
SEMICONDUTOR DOPADO
Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente  a través del circuito Ahora bien, esta corriente que aparece es de muy pequeño valor, pues son pocos los electrones que podemos arrancar de los enlaces entre los átomos de silicio. Para aumentar el valor de dicha corriente tenemos dos posiblidades: Aplicar una tensión de valor superior Introducir previamente en el semiconductor electrones o huecos desde el exterior La primera solución no es factible pues, aún aumentando mucho el valor de la tensión aplicada, la corriente que aparece no es de suficiente valor. La solución  elegida es la segunda. En este segundo caso se dice que el semiconductor está "dopado". El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores. Semiconductor tipo P Semiconductor tipo N
Producidos artificialmente, añadiendo al semiconductor átomos con valencia 3. Estas “impurezas” añadidas producen huecos en el semiconductor ya que uno de los cuatro vecinos no completa su enlace. Como estas impurezas producen un hueco que acepta electrones se le conocen como “Aceptoras”. Como los huecos producidos por las impurezas aceptoras se comportan como cargas positivas, a estos semiconductores se les conoce como tipo p. La concentración de impurezas aceptoras se representa con el símbolo NA. También es posible añadir al semiconductor impurezas con valencia 5. Estos átomos comparten cuatro electrones con los vecinos y les sobra uno que con muy poca energía térmica se convierte en un electrón libre.  A los semiconductores dopados con estas impurezas “Donadoras” de electrones ( negativas ) se les conoce como tipo n. La concentración de impurezas donadoras se representa con el símbolo ND.

More Related Content

What's hot

Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
yuri2211
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
magonsal
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
Cristhian Sanchez Leyva
 

What's hot (19)

Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SemiconductoresUPT
SemiconductoresUPTSemiconductoresUPT
SemiconductoresUPT
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Viewers also liked

Deber cusco gabriel
Deber cusco gabrielDeber cusco gabriel
Deber cusco gabriel
cuscogabriel
 
ARG slideshow
ARG slideshowARG slideshow
ARG slideshow
mrsmedley
 
Artículo II la forma de la ciudad
Artículo II  la forma de la ciudadArtículo II  la forma de la ciudad
Artículo II la forma de la ciudad
Ninon Vlug
 
Revolució tecnológica
Revolució tecnológicaRevolució tecnológica
Revolució tecnológica
DayanaRodas
 
Aprenestadistica
AprenestadisticaAprenestadistica
Aprenestadistica
CREAMAT
 
Schluss mit den diätgerüchten! leseprobe
Schluss mit den diätgerüchten!   leseprobeSchluss mit den diätgerüchten!   leseprobe
Schluss mit den diätgerüchten! leseprobe
praktikant-neudenken-media
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
Gean Rojas
 
A Flor de Lótus - Lotus Flower
A Flor de Lótus - Lotus FlowerA Flor de Lótus - Lotus Flower
A Flor de Lótus - Lotus Flower
Assinoê Oliveira
 

Viewers also liked (20)

Deber cusco gabriel
Deber cusco gabrielDeber cusco gabriel
Deber cusco gabriel
 
Part 1
Part 1Part 1
Part 1
 
Kelley School
Kelley SchoolKelley School
Kelley School
 
Boza Urteaga
Boza  UrteagaBoza  Urteaga
Boza Urteaga
 
3.2. La radio especializada
3.2. La radio especializada3.2. La radio especializada
3.2. La radio especializada
 
LAS TICS
LAS TICSLAS TICS
LAS TICS
 
ARG slideshow
ARG slideshowARG slideshow
ARG slideshow
 
FHTM Overview
FHTM OverviewFHTM Overview
FHTM Overview
 
Pitch5
Pitch5Pitch5
Pitch5
 
Artículo II la forma de la ciudad
Artículo II  la forma de la ciudadArtículo II  la forma de la ciudad
Artículo II la forma de la ciudad
 
Revolució tecnológica
Revolució tecnológicaRevolució tecnológica
Revolució tecnológica
 
Educação: Arte, Aplicação, Tecnologia e Ferramentas de Suporte
Educação: Arte, Aplicação, Tecnologia e Ferramentas de SuporteEducação: Arte, Aplicação, Tecnologia e Ferramentas de Suporte
Educação: Arte, Aplicação, Tecnologia e Ferramentas de Suporte
 
CIRCUFERENCIA
CIRCUFERENCIACIRCUFERENCIA
CIRCUFERENCIA
 
Aprenestadistica
AprenestadisticaAprenestadistica
Aprenestadistica
 
ICT presentation
ICT presentationICT presentation
ICT presentation
 
Schluss mit den diätgerüchten! leseprobe
Schluss mit den diätgerüchten!   leseprobeSchluss mit den diätgerüchten!   leseprobe
Schluss mit den diätgerüchten! leseprobe
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Sesion 1 Modulo II
Sesion 1 Modulo IISesion 1 Modulo II
Sesion 1 Modulo II
 
Actividades de aprendizaje
Actividades de aprendizajeActividades de aprendizaje
Actividades de aprendizaje
 
A Flor de Lótus - Lotus Flower
A Flor de Lótus - Lotus FlowerA Flor de Lótus - Lotus Flower
A Flor de Lótus - Lotus Flower
 

Similar to Semiconductores (15)

SEMICONDUCTORES - FISICA ELECTRONICA
SEMICONDUCTORES - FISICA ELECTRONICASEMICONDUCTORES - FISICA ELECTRONICA
SEMICONDUCTORES - FISICA ELECTRONICA
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores final
Semiconductores finalSemiconductores final
Semiconductores final
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Recently uploaded

Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 

Recently uploaded (20)

Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 

Semiconductores

  • 2. QUE ES UN SEMICONDUCTOR . Un semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p²
  • 3.
  • 4. Semiconductores Intrinsecos Es un cristal de silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 0,7 eV y 0,3 eV para el silicio y el germanio respectivamente.
  • 5. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargasnegativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p
  • 6. siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (25ºc): ni(Si) = 1.5 1010cm-3ni(Ge) = 2.5 1013cm-3Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
  • 7.
  • 9. Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente a través del circuito Ahora bien, esta corriente que aparece es de muy pequeño valor, pues son pocos los electrones que podemos arrancar de los enlaces entre los átomos de silicio. Para aumentar el valor de dicha corriente tenemos dos posiblidades: Aplicar una tensión de valor superior Introducir previamente en el semiconductor electrones o huecos desde el exterior La primera solución no es factible pues, aún aumentando mucho el valor de la tensión aplicada, la corriente que aparece no es de suficiente valor. La solución elegida es la segunda. En este segundo caso se dice que el semiconductor está "dopado". El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores. Semiconductor tipo P Semiconductor tipo N
  • 10. Producidos artificialmente, añadiendo al semiconductor átomos con valencia 3. Estas “impurezas” añadidas producen huecos en el semiconductor ya que uno de los cuatro vecinos no completa su enlace. Como estas impurezas producen un hueco que acepta electrones se le conocen como “Aceptoras”. Como los huecos producidos por las impurezas aceptoras se comportan como cargas positivas, a estos semiconductores se les conoce como tipo p. La concentración de impurezas aceptoras se representa con el símbolo NA. También es posible añadir al semiconductor impurezas con valencia 5. Estos átomos comparten cuatro electrones con los vecinos y les sobra uno que con muy poca energía térmica se convierte en un electrón libre. A los semiconductores dopados con estas impurezas “Donadoras” de electrones ( negativas ) se les conoce como tipo n. La concentración de impurezas donadoras se representa con el símbolo ND.