SlideShare a Scribd company logo
1 of 1
Download to read offline
 	
  	
  	
  
	
  
Matthew	
  KimA,	
  Kristen	
  Procko*	
  and	
  Stephen	
  F.	
  Martin‡	
  
A	
  
=	
  Synthesis	
  and	
  Biological	
  Recognition,	
  *	
  =	
  Research	
  Educator,	
  ‡	
  =	
  Principal	
  Investigator	
  	
  	
  	
  
	
  
	
  
	
  The	
  main	
  goal	
  of	
  this	
  study	
  is	
  to	
  determine	
  the	
  thermodynamics	
  of	
  protein-­‐
ligand	
  interactions	
  to	
  the	
  stream’s	
  target	
  protein,	
  the	
  mouse	
  major	
  urinary	
  
protein-­‐I	
  (MUP-­‐I),	
  which	
  functions	
  in	
  the	
  protection,	
  transport,	
  and	
  slow	
  
release	
  of	
  pheromones.	
  Studying	
  MUP-­‐I	
  can	
  introduce	
  a	
  more	
  clear	
  
understanding	
  of	
  the	
  unorthodox	
  non-­‐classical	
  hydrophobic	
  effect,	
  in	
  which	
  
the	
  protein-­‐ligand	
  interaction	
  is	
  driven	
  enthalpically	
  as	
  opposed	
  to	
  
entropically.	
  This	
  sparked	
  interest	
  in	
  structurally	
  changing	
  various	
  ligands	
  in	
  
order	
  to	
  study	
  the	
  thermodynamic	
  behavior	
  arising	
  from	
  their	
  interactions	
  to	
  
MUP-­‐I.	
  An	
  analogue	
  of	
  a	
  high-­‐binding	
  ligand,	
  2-­‐sec-­‐butyldihydrothiazole	
  
(SBT),	
  was	
  synthesized.	
  It	
  was	
  predicted	
  that	
  because	
  of	
  the	
  analog’s	
  unique	
  
structure,	
  an	
  increase	
  in	
  the	
  enthalpic	
  stabilization	
  could	
  occur,	
  leading	
  to	
  a	
  
higher	
  binding	
  afRinity	
  than	
  that	
  of	
  SBT.	
  	
  
General	
  characteristics:	
  
§  Functions	
  in	
  the	
  protection,	
  transport,	
  and	
  slow	
  release	
  of	
  pheromones	
  
§  Single	
  α-­‐helix	
  and	
  eight	
  β-­‐sheets	
  
§  Forms	
  hydrophobic	
  barrel	
  
§  Active	
  sites	
  hydrated	
  with	
  two	
  water	
  molecules	
  
§  Exhibits	
  hydrophobic	
  effect	
  
Important	
  active	
  site	
  characteristics:	
  
§  Hydrogen	
  bond	
  network	
  consists	
  of	
  Phe56,	
  Leu58,	
  and	
  Tyr138	
  
§  Van	
  der	
  Waals	
  interactions	
  with	
  multiple	
  residues	
  in	
  the	
  active	
  site:	
  
§  Leu72,	
  Val100,	
  Phe108,	
  Leu121,	
  leu123,	
  and	
  Leu134	
  	
  
	
  
•  Ligand	
  is	
  normally	
  introduced	
  incrementally	
  into	
  a	
  solution	
  of	
  
MUP-­‐I;	
  the	
  heat	
  released	
  upon	
  binding	
  is	
  recorded.	
  
	
  
•  Free	
  energy	
  is	
  determined	
  through	
  values	
  derived	
  from	
  the	
  Gibbs	
  
free	
  energy	
  equation,	
  ΔG	
  =	
  ΔH	
  –	
  TΔS	
  =	
  -­‐RT(lnKa).	
  	
  
•  Change	
  in	
  free	
  energy	
  (ΔG),	
  which	
  is	
  inRluenced	
  by	
  the	
  change	
  in	
  
enthalpy	
  (ΔH)	
  and	
  change	
  in	
  entropy	
  (ΔS),	
  reveals	
  the	
  driving	
  
forces	
  for	
  a	
  particular	
  ligand’s	
  binding	
  to	
  the	
  active	
  site	
  of	
  MUP-­‐I.	
  
S
N
Leu72
Leu134
Phe108
Val100
Ala121
H
O
H
O
H O
H
O
H O
Leu58
Tyr138
Leu123
NH
NH
Phe56
Abstract1	
  
Mouse	
  Major	
  Urinary	
  Protein	
  –	
  I1,3,4	
  
Observed	
  Trends4	
   Isothermal	
  Titration	
  Calorimetry	
  (ITC)2,3	
  
ITC	
  Data	
  
Acknowledgements	
  
References:	
  1Timm,	
  D.E.;	
  Baker,	
  L.J.;	
  Mueller,	
  H.;	
  Zidek,	
  L.;	
  Novotny,	
  M.V.	
  Structural	
  basis	
  of	
  pheromone	
  binding	
  to	
  mouse	
  major	
  urinary	
  protein	
  (MUP-­‐I).	
  Protein	
  Sci.	
  2001,	
  10,	
  997-­‐1004.	
  2Pierce,	
  M.M.;	
  Raman,	
  C.S.;	
  Nall,	
  B.T.	
  Isothermal	
  Titration	
  Calorimetry	
  of	
  Protein-­‐Protein	
  Interactions.	
  Methods	
  1999,	
  19,	
  213-­‐221.	
  3Homans,	
  W.S.	
  Water,	
  water	
  everywhere	
  –	
  except	
  where	
  it	
  matters?	
  Drug	
  discovery	
  today	
  2007,	
  12,	
  13-­‐14.	
  4Sharrow,	
  S.D.;	
  Novotny,	
  M.V.;	
  Stone,	
  M.	
  J.	
  Thermodynamic	
  analysis	
  
of	
  binding	
  between	
  mouse	
  major	
  urinary	
  protein-­‐I	
  and	
  the	
  pheromone	
  2-­‐sec-­‐	
  butyl-­‐4,5-­‐dihydrothiazole.	
  Biochemistry	
  2003,	
  42,	
  6302-­‐6309.	
  5Jin,	
  Sarah.	
  The	
  University	
  of	
  Texas,	
  Austin,	
  TX.	
  4,5-­‐Dihydro-­‐2-­‐phenylthiazole,	
  2010.	
  6Azarm,	
  Kristopher.	
  The	
  University	
  of	
  Texas,	
  Austin,	
  TX.	
  Elucidating	
  the	
  Thermodynamics	
  of	
  Binding	
  of	
  2-­‐(Pyridin-­‐3-­‐yl)-­‐4,5-­‐dihydrothiazole,	
  2011.	
  	
  
	
  	
  
N
S HS
H2N
DBH
Reflux, 7 min. 100 oC
N
S
N
4 5 6
Synthetic	
  Route	
  
S
N
S
N
1 2
S
N N
3
Past	
  Studies5,6	
  

More Related Content

What's hot

Ch02 Drug Receptor Interactions And Pharmacodynamics
Ch02 Drug Receptor Interactions And PharmacodynamicsCh02 Drug Receptor Interactions And Pharmacodynamics
Ch02 Drug Receptor Interactions And Pharmacodynamics
axix
 
Protein ligand interaction 1
Protein ligand interaction 1Protein ligand interaction 1
Protein ligand interaction 1
dhanamram
 
Tfa_N-methylation
Tfa_N-methylationTfa_N-methylation
Tfa_N-methylation
Jordan Gipe
 

What's hot (20)

Paper 1 Navisraj
Paper 1 NavisrajPaper 1 Navisraj
Paper 1 Navisraj
 
Final poster (002)
Final poster (002)Final poster (002)
Final poster (002)
 
Role of receptors in drug design
Role of receptors in drug designRole of receptors in drug design
Role of receptors in drug design
 
Ch02 Drug Receptor Interactions And Pharmacodynamics
Ch02 Drug Receptor Interactions And PharmacodynamicsCh02 Drug Receptor Interactions And Pharmacodynamics
Ch02 Drug Receptor Interactions And Pharmacodynamics
 
Chapter 31-energy-and-enzymes-mcgraw-hill-higher-education, from Millar and H...
Chapter 31-energy-and-enzymes-mcgraw-hill-higher-education, from Millar and H...Chapter 31-energy-and-enzymes-mcgraw-hill-higher-education, from Millar and H...
Chapter 31-energy-and-enzymes-mcgraw-hill-higher-education, from Millar and H...
 
Enzyme kinetics by kk sahu sir
Enzyme kinetics by kk sahu sirEnzyme kinetics by kk sahu sir
Enzyme kinetics by kk sahu sir
 
Receptor seminar by Dr.Mahi Yeruva
Receptor seminar by Dr.Mahi YeruvaReceptor seminar by Dr.Mahi Yeruva
Receptor seminar by Dr.Mahi Yeruva
 
Enzyme
EnzymeEnzyme
Enzyme
 
Protein ligand interaction 1
Protein ligand interaction 1Protein ligand interaction 1
Protein ligand interaction 1
 
Drug receptors
Drug receptorsDrug receptors
Drug receptors
 
Effect of substituents and functions on drug structure activity relationships
Effect of substituents and functions on drug structure activity relationshipsEffect of substituents and functions on drug structure activity relationships
Effect of substituents and functions on drug structure activity relationships
 
Structure Activity Relationship of Antipsychotic Drug
Structure Activity Relationship of Antipsychotic Drug Structure Activity Relationship of Antipsychotic Drug
Structure Activity Relationship of Antipsychotic Drug
 
Receptor pharmacology Uttam & Renoo
Receptor pharmacology Uttam & RenooReceptor pharmacology Uttam & Renoo
Receptor pharmacology Uttam & Renoo
 
Polymer drug interactions
Polymer drug interactionsPolymer drug interactions
Polymer drug interactions
 
Hill equation and plot
Hill equation and plotHill equation and plot
Hill equation and plot
 
Allos enz lec 6
Allos enz lec 6Allos enz lec 6
Allos enz lec 6
 
Sandipayan_enzyme inhibition_seminar
Sandipayan_enzyme inhibition_seminarSandipayan_enzyme inhibition_seminar
Sandipayan_enzyme inhibition_seminar
 
Tfa_N-methylation
Tfa_N-methylationTfa_N-methylation
Tfa_N-methylation
 
Lung Function Age Test BMJ
Lung Function Age Test BMJLung Function Age Test BMJ
Lung Function Age Test BMJ
 
20160501_Final
20160501_Final20160501_Final
20160501_Final
 

Similar to 2014 Undergraduate Research Forum Poster

Poster Dunstatter, A and Cisneros, C FINAL
Poster Dunstatter, A and Cisneros, C FINALPoster Dunstatter, A and Cisneros, C FINAL
Poster Dunstatter, A and Cisneros, C FINAL
Caroline Cisneros
 
Postranslational Modification
Postranslational ModificationPostranslational Modification
Postranslational Modification
Bahaddin Ahmad
 
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λStructural Mechanism for the Fidelity Modulation of DNA Polymerase λ
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ
Mu-Sen Liu
 
Dissecting NOS electronics_Biochem J 2013
Dissecting NOS electronics_Biochem J 2013Dissecting NOS electronics_Biochem J 2013
Dissecting NOS electronics_Biochem J 2013
Luciana Hannibal, Ph.D.
 
SF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInalSF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInal
Steve Flynn
 
Approcci bioenergetici per la neuroprotezione nella malattia parkinsoniana
Approcci bioenergetici per la neuroprotezione nella malattia parkinsonianaApprocci bioenergetici per la neuroprotezione nella malattia parkinsoniana
Approcci bioenergetici per la neuroprotezione nella malattia parkinsoniana
MerqurioEditore_redazione
 
PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)
Marco Garza
 
Scan rate m ab-dsc
Scan rate  m ab-dscScan rate  m ab-dsc
Scan rate m ab-dsc
mganguly123
 
Comparitive modelling.
Comparitive modelling.Comparitive modelling.
Comparitive modelling.
Balvinder Kaur
 
Bustamante et al., 2015 (page1)
Bustamante et al., 2015 (page1)Bustamante et al., 2015 (page1)
Bustamante et al., 2015 (page1)
Hyunsun Park
 

Similar to 2014 Undergraduate Research Forum Poster (20)

Protein-Ligand Interaction (1).pptx
Protein-Ligand Interaction (1).pptxProtein-Ligand Interaction (1).pptx
Protein-Ligand Interaction (1).pptx
 
Poster Dunstatter, A and Cisneros, C FINAL
Poster Dunstatter, A and Cisneros, C FINALPoster Dunstatter, A and Cisneros, C FINAL
Poster Dunstatter, A and Cisneros, C FINAL
 
Postranslational Modification
Postranslational ModificationPostranslational Modification
Postranslational Modification
 
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λStructural Mechanism for the Fidelity Modulation of DNA Polymerase λ
Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ
 
2046-1682-6-1
2046-1682-6-12046-1682-6-1
2046-1682-6-1
 
Protein protein interaction
Protein protein interactionProtein protein interaction
Protein protein interaction
 
Dissecting NOS electronics_Biochem J 2013
Dissecting NOS electronics_Biochem J 2013Dissecting NOS electronics_Biochem J 2013
Dissecting NOS electronics_Biochem J 2013
 
IJPAB-2015-3-2-462-478
IJPAB-2015-3-2-462-478IJPAB-2015-3-2-462-478
IJPAB-2015-3-2-462-478
 
Ligand interaction by kk sahu
Ligand interaction by kk sahuLigand interaction by kk sahu
Ligand interaction by kk sahu
 
Post translational modification of protein
Post translational modification of proteinPost translational modification of protein
Post translational modification of protein
 
SF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInalSF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInal
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactions
 
Approcci bioenergetici per la neuroprotezione nella malattia parkinsoniana
Approcci bioenergetici per la neuroprotezione nella malattia parkinsonianaApprocci bioenergetici per la neuroprotezione nella malattia parkinsoniana
Approcci bioenergetici per la neuroprotezione nella malattia parkinsoniana
 
PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)
 
Scan rate m ab-dsc
Scan rate  m ab-dscScan rate  m ab-dsc
Scan rate m ab-dsc
 
Presentazione ii anno campana
Presentazione ii anno campanaPresentazione ii anno campana
Presentazione ii anno campana
 
Histone modification in living cells
Histone modification in living cellsHistone modification in living cells
Histone modification in living cells
 
Comparitive modelling.
Comparitive modelling.Comparitive modelling.
Comparitive modelling.
 
Bustamante et al., 2015 (page1)
Bustamante et al., 2015 (page1)Bustamante et al., 2015 (page1)
Bustamante et al., 2015 (page1)
 
Molecular Therapy Journal_Kavitha Reddy
Molecular Therapy Journal_Kavitha ReddyMolecular Therapy Journal_Kavitha Reddy
Molecular Therapy Journal_Kavitha Reddy
 

2014 Undergraduate Research Forum Poster

  • 1.           Matthew  KimA,  Kristen  Procko*  and  Stephen  F.  Martin‡   A   =  Synthesis  and  Biological  Recognition,  *  =  Research  Educator,  ‡  =  Principal  Investigator              The  main  goal  of  this  study  is  to  determine  the  thermodynamics  of  protein-­‐ ligand  interactions  to  the  stream’s  target  protein,  the  mouse  major  urinary   protein-­‐I  (MUP-­‐I),  which  functions  in  the  protection,  transport,  and  slow   release  of  pheromones.  Studying  MUP-­‐I  can  introduce  a  more  clear   understanding  of  the  unorthodox  non-­‐classical  hydrophobic  effect,  in  which   the  protein-­‐ligand  interaction  is  driven  enthalpically  as  opposed  to   entropically.  This  sparked  interest  in  structurally  changing  various  ligands  in   order  to  study  the  thermodynamic  behavior  arising  from  their  interactions  to   MUP-­‐I.  An  analogue  of  a  high-­‐binding  ligand,  2-­‐sec-­‐butyldihydrothiazole   (SBT),  was  synthesized.  It  was  predicted  that  because  of  the  analog’s  unique   structure,  an  increase  in  the  enthalpic  stabilization  could  occur,  leading  to  a   higher  binding  afRinity  than  that  of  SBT.     General  characteristics:   §  Functions  in  the  protection,  transport,  and  slow  release  of  pheromones   §  Single  α-­‐helix  and  eight  β-­‐sheets   §  Forms  hydrophobic  barrel   §  Active  sites  hydrated  with  two  water  molecules   §  Exhibits  hydrophobic  effect   Important  active  site  characteristics:   §  Hydrogen  bond  network  consists  of  Phe56,  Leu58,  and  Tyr138   §  Van  der  Waals  interactions  with  multiple  residues  in  the  active  site:   §  Leu72,  Val100,  Phe108,  Leu121,  leu123,  and  Leu134       •  Ligand  is  normally  introduced  incrementally  into  a  solution  of   MUP-­‐I;  the  heat  released  upon  binding  is  recorded.     •  Free  energy  is  determined  through  values  derived  from  the  Gibbs   free  energy  equation,  ΔG  =  ΔH  –  TΔS  =  -­‐RT(lnKa).     •  Change  in  free  energy  (ΔG),  which  is  inRluenced  by  the  change  in   enthalpy  (ΔH)  and  change  in  entropy  (ΔS),  reveals  the  driving   forces  for  a  particular  ligand’s  binding  to  the  active  site  of  MUP-­‐I.   S N Leu72 Leu134 Phe108 Val100 Ala121 H O H O H O H O H O Leu58 Tyr138 Leu123 NH NH Phe56 Abstract1   Mouse  Major  Urinary  Protein  –  I1,3,4   Observed  Trends4   Isothermal  Titration  Calorimetry  (ITC)2,3   ITC  Data   Acknowledgements   References:  1Timm,  D.E.;  Baker,  L.J.;  Mueller,  H.;  Zidek,  L.;  Novotny,  M.V.  Structural  basis  of  pheromone  binding  to  mouse  major  urinary  protein  (MUP-­‐I).  Protein  Sci.  2001,  10,  997-­‐1004.  2Pierce,  M.M.;  Raman,  C.S.;  Nall,  B.T.  Isothermal  Titration  Calorimetry  of  Protein-­‐Protein  Interactions.  Methods  1999,  19,  213-­‐221.  3Homans,  W.S.  Water,  water  everywhere  –  except  where  it  matters?  Drug  discovery  today  2007,  12,  13-­‐14.  4Sharrow,  S.D.;  Novotny,  M.V.;  Stone,  M.  J.  Thermodynamic  analysis   of  binding  between  mouse  major  urinary  protein-­‐I  and  the  pheromone  2-­‐sec-­‐  butyl-­‐4,5-­‐dihydrothiazole.  Biochemistry  2003,  42,  6302-­‐6309.  5Jin,  Sarah.  The  University  of  Texas,  Austin,  TX.  4,5-­‐Dihydro-­‐2-­‐phenylthiazole,  2010.  6Azarm,  Kristopher.  The  University  of  Texas,  Austin,  TX.  Elucidating  the  Thermodynamics  of  Binding  of  2-­‐(Pyridin-­‐3-­‐yl)-­‐4,5-­‐dihydrothiazole,  2011.         N S HS H2N DBH Reflux, 7 min. 100 oC N S N 4 5 6 Synthetic  Route   S N S N 1 2 S N N 3 Past  Studies5,6