SlideShare a Scribd company logo
1 of 45
Download to read offline
EFFECTS	
  OF	
  DIETARY	
  PROTEIN	
  AND	
  AEROBIC	
  EXERCISE	
  ON	
  FUNCTIONAL	
  
CONNECTIVITY	
  IN	
  BRAIN	
  REWARD	
  CENTERS:	
  A	
  RESTING-­‐STATE	
  fMRI	
  STUDY	
  
	
  
	
  
By	
  
	
  
Lexie	
  Buchs	
  
	
  
	
  
	
  
	
  
A	
  Thesis	
  Submitted	
  in	
  Partial	
  Fulfillment	
  
Of	
  the	
  Requirements	
  for	
  an	
  Undergraduate	
  Degree	
  with	
  Honors	
  
(Dietetics)	
  
	
  
The	
  College	
  of	
  Health	
  and	
  Human	
  Sciences	
  
Purdue	
  University	
  
May	
  2015	
  
West	
  Lafayette,	
  Indiana	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Approved	
  by:	
  
	
  
	
  
	
  
Reader:	
  	
  
Richard	
  Mattes,	
  Ph.D.	
  
	
  
	
  
Reader:	
  	
  
Tara	
  Henagan,	
  Ph.D.	
  
	
  
___________________________________________________________________	
  
Honors	
  Research	
  Mentor:	
  
Wayne	
  Campbell,	
  PhD	
  
	
  
  2	
  
ABSTRACT	
  
	
  
The	
  Salience	
  Network	
  (SN)	
  interprets	
  internal	
  and	
  external	
  stimuli	
  for	
  emotion,	
  
homeostatic	
  regulation,	
  and	
  reward.	
  The	
  Default	
  Mode	
  Network	
  (DMN)	
  reflects	
  resting	
  
state	
  brain	
  activity.	
  Previous	
  data	
  have	
  demonstrated	
  a	
  disruption	
  of	
  these	
  networks	
  in	
  
obesity.	
  The	
  purpose	
  of	
  this	
  study	
  was	
  to	
  examine	
  the	
  effects	
  of	
  dietary	
  protein	
  and	
  aerobic	
  
exercise	
  on	
  resting	
  state	
  activity	
  in	
  the	
  SN	
  and	
  DMN	
  using	
  functional	
  Magnetic	
  Resonance	
  
Imaging	
  (fMRI)	
  in	
  8	
  women	
  ages	
  18-­‐45	
  years	
  old	
  with	
  a	
  BMI	
  of	
  30	
  to	
  40	
  kg/m2.	
  On	
  testing	
  
days,	
  breakfast	
  and	
  lunch	
  were	
  identical	
  while	
  dinner	
  meals	
  varied	
  in	
  protein	
  (Normal	
  
Protein:	
  15%	
  vs.	
  High	
  Protein:	
  30%	
  of	
  energy	
  as	
  protein).	
  Total	
  energy	
  intake	
  on	
  testing	
  
days	
  was	
  prescribed	
  at	
  approximately	
  80%	
  of	
  the	
  participants’	
  estimated	
  daily	
  energy	
  
requirements	
  to	
  stimulate	
  one	
  day	
  of	
  moderate	
  energy	
  restriction.	
  Participants	
  completed	
  
a	
  pre-­‐dinner	
  scan	
  five	
  hours	
  after	
  lunch.	
  After	
  the	
  pre	
  dinner	
  scan,	
  subjects	
  either	
  rested	
  or	
  
exercised	
  for	
  30	
  minutes	
  at	
  60%	
  of	
  their	
  estimated	
  VO2max.	
  Dinner	
  was	
  consumed	
  
immediately	
  after	
  exercise	
  or	
  rest.	
  The	
  postprandial	
  fMRI	
  scan	
  was	
  completed	
  one	
  hour	
  
after	
  dinner.	
  The	
  independent	
  component	
  analysis	
  did	
  not	
  reveal	
  a	
  SN	
  but	
  did	
  reveal	
  a	
  
DMN.	
  However,	
  DMN	
  activity	
  was	
  not	
  influenced	
  by	
  meal	
  consumption,	
  acute	
  aerobic	
  
exercise,	
  or	
  the	
  amount	
  of	
  protein	
  at	
  dinner.	
  Resting	
  state	
  brain	
  activity	
  may	
  not	
  be	
  
influenced	
  by	
  acute	
  interventions	
  and	
  therefore	
  long	
  term	
  inventions	
  may	
  be	
  necessary	
  for	
  
normalizing	
  resting-­‐state	
  neural	
  activity	
  in	
  obese	
  women.	
  	
  
	
  
	
   	
  
  3	
  
ACKNOWLEDGEMENTS	
  
	
   I	
  would	
  like	
  to	
  thank	
  Dr.	
  Campbell	
  for	
  his	
  guidance	
  and	
  support	
  throughout	
  this	
  
project	
  and	
  for	
  giving	
  me	
  many	
  opportunities	
  to	
  learn	
  about	
  research.	
  Thank	
  you	
  to	
  Drew	
  
Sayer	
  for	
  patiently	
  mentoring	
  me	
  and	
  for	
  all	
  of	
  his	
  help	
  with	
  this	
  project.	
  Without	
  your	
  
guidance	
  and	
  direction,	
  I	
  would	
  not	
  have	
  been	
  able	
  to	
  complete	
  the	
  honors	
  degree.	
  Thank	
  
you	
  to	
  Greg	
  Tamer	
  for	
  completing	
  the	
  data	
  analysis	
  and	
  for	
  providing	
  his	
  expertise	
  
throughout	
  the	
  study.	
  I	
  would	
  also	
  like	
  to	
  thank	
  the	
  study	
  participants	
  for	
  their	
  dedication	
  
and	
  compliance	
  to	
  this	
  study.	
  This	
  study	
  was	
  funded	
  by	
  the	
  Indiana	
  CTSI.	
  
	
  
  4	
  
TABLE	
  OF	
  CONTENTS	
  
	
  
Abstract	
  …………………………………………………………………………………………………………..…………….2	
  
Acknowledgements	
  ………………………………………………………………………………………..………………3	
  
List	
  of	
  Tables	
  and	
  Figures	
  …………………………………………………………………………….………………...5	
  
Introduction	
  ………………..…………………………………………………………………………….………………......6	
  
Subjects	
  and	
  Methods	
  …………………………………………………………………………..…………………..........9	
  
Results	
  ……………………………………………………………………………..............................................................12	
  
Discussion	
  ……………………………………………………………………………......................................................13	
  
References	
  ……………………………………………………………………………......................................................17	
  
Appendix	
  …………………………………………………………………………….........................................................26	
  
	
   	
  
  5	
  
	
  
LIST	
  OF	
  TABLES	
  AND	
  FIGURES	
  
Table	
  1:	
  Subject	
  Characteristics.…………………………………………………………………………………….19	
  
Table	
  2:	
  Dinner	
  (High	
  Protein	
  or	
  Normal	
  Protein)	
  …………………………………………………………20	
  
Figure	
  1:	
  Study	
  Design	
  …………………………………………………………………………………….……………22	
  
Figure	
  2:	
  Default	
  Mode	
  Network	
  …………………………………………………………………...………………23	
  
Figure	
  3.	
  Pre-­‐Meal	
  Default	
  Mode	
  Network	
  Activity………………………………………...……………….24	
  
Figure	
  4.	
  1-­‐Hour	
  Post-­‐Meal	
  Default	
  Mode	
  Network	
  Activity……………………………………..……..25	
  
	
  
	
  
	
   	
  
  6	
  
INTRODUCTION	
  
Increased	
  activity	
  in	
  a	
  brain	
  region	
  results	
  in	
  a	
  locally	
  increased	
  blood	
  response	
  in	
  
that	
  area	
  and	
  also	
  an	
  increased	
  ratio	
  of	
  oxygenated	
  to	
  deoxygenated	
  blood.	
  Functional	
  
Magnetic	
  Resonance	
  Imaging	
  (fMRI)	
  scan	
  detects	
  the	
  difference	
  of	
  magnetization	
  in	
  
oxygen-­‐rich	
  versus	
  oxygen-­‐poor	
  blood	
  [1].	
  The	
  resultant	
  blood	
  flow	
  response	
  is	
  detected	
  
by	
  the	
  fMRI	
  scan	
  as	
  an	
  increase	
  in	
  the	
  blood-­‐oxygen-­‐level-­‐dependent	
  (BOLD)	
  contrast,	
  and	
  
this	
  is	
  used	
  as	
  a	
  marker	
  of	
  brain	
  activity.	
  	
  
The	
  human	
  brain	
  is	
  organized	
  into	
  networks	
  and	
  the	
  intrinsic	
  activity	
  of	
  these	
  
networks	
  can	
  be	
  measured	
  in	
  the	
  resting	
  state	
  using	
  fMRI.	
  These	
  networks	
  are	
  important,	
  
because	
  it	
  is	
  becoming	
  increasingly	
  evident	
  that	
  they	
  are	
  organizational	
  features	
  of	
  the	
  
brain	
  [2].	
  The	
  Salience	
  Network	
  (SN)	
  and	
  the	
  Default	
  Mode	
  Network	
  (DMN)	
  are	
  two	
  
networks	
  that	
  have	
  been	
  shown	
  to	
  be	
  associated	
  with	
  feeding	
  behavior.	
  The	
  DMN	
  consists	
  
of	
  the	
  posterior	
  cingulate	
  cortex,	
  cuneus/precuneus,	
  medial	
  prefrontal	
  cortex,	
  medial	
  
temporal	
  lobe,	
  and	
  inferior	
  parietal	
  cortices.	
  The	
  SN	
  consists	
  of	
  the	
  anterior	
  cingulate	
  
cortex	
  and	
  insula.	
  The	
  DMN	
  reflects	
  baseline	
  brain	
  function	
  in	
  the	
  resting	
  state.	
  The	
  SN	
  
reflects	
  feeding	
  behavior	
  and	
  reward	
  and	
  involves	
  assessing	
  internal	
  and	
  external	
  stimuli.	
  
Previous	
  studies	
  have	
  found	
  activation	
  of	
  the	
  DMN	
  and	
  SN	
  to	
  be	
  increased	
  in	
  overweight	
  
and	
  obese	
  individuals	
  in	
  comparison	
  to	
  lean	
  individuals	
  [2].	
  Results	
  from	
  previous	
  studies	
  
have	
  led	
  to	
  the	
  idea	
  that	
  abnormal	
  or	
  increased	
  activation	
  in	
  these	
  networks	
  may	
  
contribute	
  to	
  overeating,	
  and	
  there	
  is	
  also	
  a	
  correlation	
  between	
  obesity	
  and	
  activation	
  of	
  
these	
  networks	
  [3].	
  Understanding	
  these	
  networks	
  in	
  overweight	
  and	
  obese	
  individuals	
  
and	
  how	
  acute	
  and	
  long-­‐term	
  changes	
  in	
  network	
  activity	
  are	
  associated	
  with	
  food	
  intake	
  
  7	
  
behavior	
  would	
  be	
  helpful	
  when	
  strategizing	
  how	
  to	
  normalize	
  network	
  activity	
  to	
  reduce	
  
overeating.	
  
Moderate	
  increases	
  in	
  dietary	
  protein	
  [4]	
  and	
  exercise	
  [13]	
  are	
  common	
  strategies	
  
for	
  weight	
  control	
  and	
  therefore	
  may	
  represent	
  potential	
  interventions	
  for	
  normalizing	
  
resting	
  activity	
  in	
  obese	
  individuals.	
  For	
  example,	
  a	
  6-­‐month	
  exercise	
  intervention	
  
decreased	
  resting	
  state	
  activity	
  in	
  the	
  DMN	
  although	
  the	
  intervention	
  did	
  not	
  change	
  
resting	
  state	
  activity	
  in	
  the	
  SN	
  [2].	
  However,	
  the	
  effects	
  of	
  acute	
  exercise	
  on	
  the	
  resting	
  
state	
  activity	
  of	
  the	
  SN	
  and	
  DMN,	
  or	
  whether	
  dietary	
  protein	
  modulates	
  resting	
  state	
  
activity	
  of	
  these	
  networks,	
  have	
  not	
  been	
  investigated.	
  The	
  purpose	
  of	
  this	
  study	
  is	
  to	
  
investigate	
  the	
  acute	
  effects	
  of	
  aerobic	
  exercise	
  and	
  dietary	
  protein	
  on	
  the	
  resting	
  state	
  
activity	
  in	
  the	
  SN	
  and	
  DMN.	
  	
  
The	
  broad	
  aim	
  of	
  the	
  study	
  is	
  to	
  determine	
  the	
  acute	
  effects	
  of	
  dietary	
  protein	
  intake	
  
and	
  aerobic	
  exercise	
  on	
  resting	
  state	
  activity	
  in	
  the	
  SN	
  and	
  DMN	
  of	
  obese	
  women.	
  Our	
  
decision	
  to	
  include	
  only	
  obese	
  women	
  was	
  guided	
  by	
  previous	
  research	
  demonstrating	
  
greater	
  neural	
  responses	
  to	
  visual	
  food	
  cues	
  in	
  obese	
  compared	
  to	
  healthy-­‐weight	
  
individuals	
  [5-­‐10]	
  and	
  also	
  in	
  women	
  compared	
  to	
  men	
  [11].	
  We	
  hypothesize	
  that	
  network	
  
resting	
  state	
  activity	
  will	
  be	
  decreased	
  1-­‐hour	
  after	
  consuming	
  dinner	
  compared	
  to	
  the	
  pre	
  
dinner	
  assessment.	
  	
  We	
  further	
  hypothesized	
  that	
  a	
  high	
  protein	
  dinner	
  will	
  elicit	
  a	
  greater	
  
reduction	
  in	
  resting	
  state	
  activity	
  compared	
  to	
  a	
  normal	
  protein	
  dinner.	
  Acute	
  aerobic	
  
exercise	
  will	
  result	
  in	
  a	
  relatively	
  greater	
  resting	
  state	
  activity	
  compared	
  to	
  rest.	
  	
  	
  
	
  
	
  
	
  
  8	
  
The	
  rank	
  order	
  of	
  resting	
  state	
  SN	
  and	
  DMN	
  activity	
  under	
  all	
  conditions	
  and	
  time	
  points	
  is	
  
hypothesized	
  to	
  be:	
  
NPEx	
  >	
  NPR	
  >	
  HPEx	
  >	
  HPR	
  
NPR:	
  Normal	
  Protein/Rest	
  
HPR:	
  High	
  Protein/Rest	
  
NPEx:	
  Normal	
  Protein/Exercise	
  
HPEx:	
  High	
  Protein/Exercise	
  
	
   	
  
  9	
  
SUBJECTS	
  AND	
  METHODS	
  
Subjects	
  
	
   Potential	
  participants	
  were	
  recruited	
  from	
  public	
  advertisements	
  (flyers).	
  Study	
  
inclusion	
  was	
  based	
  on	
  the	
  following	
  criteria:	
  1)	
  Women	
  ages	
  18-­‐45	
  years;	
  2)	
  body	
  mass	
  
index	
  between	
  (BMI)	
  30-­‐40	
  km/m2;	
  3)	
  non-­‐smoking;	
  4)	
  not	
  diabetic;	
  5)	
  not	
  pregnant	
  or	
  
lactating;	
  6)	
  weight	
  stable	
  (±	
  3kg)	
  for	
  3	
  months;	
  7)	
  not	
  severely	
  claustrophobic;	
  8)	
  and	
  
willing	
  to	
  eat	
  study	
  food.	
  Due	
  to	
  the	
  use	
  of	
  the	
  MRI	
  scanner,	
  participants	
  with	
  implanted	
  
pacemakers	
  and/or	
  automated	
  defibrillators	
  or	
  any	
  ferromagnetic	
  metal	
  implanted	
  in	
  their	
  
body	
  were	
  excluded	
  from	
  the	
  study.	
  
	
   There	
  were	
  41	
  total	
  contacts,	
  of	
  which	
  11	
  women	
  were	
  screened	
  for	
  inclusion	
  
criteria.	
  Of	
  these,	
  9	
  women	
  were	
  approved	
  and	
  began	
  the	
  study.	
  Eight	
  women	
  completed	
  all	
  
study	
  procedures.	
  	
  	
  
	
   The	
  Purdue	
  Biomedical	
  Institutional	
  Review	
  Board	
  approved	
  all	
  study	
  procedures.	
  
All	
  subjects	
  provided	
  written	
  informed	
  consent	
  regarding	
  purpose,	
  procedures,	
  and	
  
potential	
  risks	
  of	
  the	
  study.	
  Each	
  subject	
  received	
  monetary	
  compensation	
  for	
  
participation.	
  	
  
Baseline	
  Assessments	
  
	
   BMI	
  (kg/m2)	
  was	
  determined	
  by	
  measuring	
  the	
  participants	
  weight	
  and	
  height.	
  
These	
  measurements	
  were	
  completed	
  at	
  the	
  Clinical	
  Research	
  Center	
  at	
  Purdue	
  University.	
  	
  
	
   The	
  YMCA	
  cycle	
  sub-­‐maximal	
  exercise	
  test	
  was	
  used	
  to	
  estimate	
  each	
  participant’s	
  
maximal	
  oxygen	
  consumption.15	
  	
  
	
  
	
  
  10	
  
Experimental	
  Design	
  and	
  Procedures	
  
	
   The	
  study	
  consisted	
  of	
  five	
  testing	
  days	
  for	
  each	
  participant.	
  On	
  the	
  first	
  testing	
  day	
  
the	
  sub-­‐maximal	
  exercise	
  test	
  was	
  completed.	
  The	
  remaining	
  four	
  testing	
  days	
  were	
  
completed	
  in	
  random	
  order	
  and	
  each	
  testing	
  day	
  was	
  separated	
  by	
  at	
  least	
  seven	
  days.	
  The	
  
following	
  four	
  experimental	
  conditions	
  were	
  evaluated:	
  normal	
  dietary	
  protein	
  with	
  rest	
  
(NPR),	
  high	
  dietary	
  protein	
  with	
  rest	
  (HPR),	
  normal	
  dietary	
  protein	
  with	
  exercise	
  (NPEx),	
  
and	
  high	
  dietary	
  protein	
  with	
  exercise	
  (HPEx).	
  On	
  testing	
  days,	
  breakfast	
  and	
  lunch	
  were	
  
consumed	
  in	
  the	
  metabolic	
  research	
  kitchen	
  and	
  dinner	
  consumed	
  at	
  the	
  Purdue	
  MRI	
  
Facility.	
  Breakfast,	
  lunch,	
  and	
  dinner	
  provided	
  approximately	
  20%,	
  30%,	
  and	
  30%	
  of	
  the	
  
participants	
  estimated	
  energy	
  requirement,	
  respectively.	
  Total	
  meals	
  provided	
  to	
  the	
  
participants	
  included	
  approximately	
  80%	
  of	
  the	
  estimated	
  daily	
  energy	
  requirement	
  to	
  
simulate	
  one	
  day	
  of	
  moderate	
  energy	
  restriction.	
  Breakfast	
  and	
  lunch	
  were	
  identical	
  on	
  all	
  
testing	
  days	
  but	
  dinner	
  meals	
  varied	
  in	
  macronutrient	
  distribution.	
  The	
  macronutrient	
  
distribution	
  of	
  breakfast	
  and	
  lunch	
  were	
  15%	
  protein,	
  60%	
  carbohydrate,	
  and	
  25%	
  fat.	
  The	
  
normal	
  protein	
  (NP)	
  dinners	
  were	
  15%	
  protein,	
  60%	
  carbohydrate,	
  and	
  25%	
  fat,	
  while	
  the	
  
high	
  protein	
  (HP)	
  dinner	
  provided	
  30%	
  of	
  energy	
  as	
  protein,	
  45%	
  carbohydrate,	
  and	
  25%	
  
fat.,	
  	
  (Table	
  2)	
  .	
  Subjects	
  were	
  blinded	
  to	
  the	
  protein	
  level	
  of	
  the	
  dinner	
  meals.	
  	
  Dietary	
  fat	
  
intake	
  was	
  held	
  constant	
  and	
  carbohydrate	
  intakes	
  adjusted	
  to	
  offset	
  differences	
  in	
  protein	
  
intake	
  for	
  the	
  HP	
  and	
  NP	
  dinners.	
  On	
  two	
  of	
  the	
  four	
  testing	
  days	
  participants	
  pedaled	
  on	
  a	
  
cycle	
  ergometer	
  for	
  30	
  minutes	
  at	
  60%	
  of	
  their	
  VO2max.	
  On	
  the	
  other	
  two	
  testing	
  days	
  
participants	
  rested	
  for	
  30	
  minutes	
  in	
  a	
  waiting	
  room	
  at	
  the	
  MRI	
  facility.	
  Participants	
  
arrived	
  at	
  the	
  Purdue	
  MRI	
  Facility	
  on	
  each	
  of	
  the	
  four	
  testing	
  days	
  at	
  5	
  pm.	
  The	
  study	
  
design	
  is	
  found	
  in	
  Figure	
  1.	
  	
  
  11	
  
Appetite	
  Questionnaire:	
  On	
  testing	
  days,	
  participants	
  rated	
  their	
  appetite	
  (hunger	
  and	
  
fullness)	
  every	
  hour	
  from	
  8am	
  until	
  5pm	
  as	
  well	
  as	
  immediately	
  before	
  and	
  after	
  1)	
  
consumption	
  of	
  meals,	
  2)	
  the	
  exercise/sedentary	
  activity,	
  and	
  3)	
  fMRI	
  scans.	
  Appetite	
  was	
  
rated	
  using	
  a	
  100-­‐mm	
  quasilogarithmic	
  visual	
  analog	
  scale,	
  with	
  descriptors	
  ranging	
  from	
  
“barely	
  detectable”	
  to	
  “strongest	
  sensation	
  imaginable	
  of	
  any	
  kind”	
  [12].	
  
Brain	
  Scan	
  using	
  fMRI:	
  Participants	
  lay	
  in	
  a	
  supine	
  position	
  and	
  closed	
  their	
  eyes	
  with	
  no	
  
external	
  interaction	
  but	
  were	
  instructed	
  to	
  stay	
  awake.	
  Participants	
  were	
  scanned	
  in	
  a	
  3	
  
Tesla	
  MRI	
  scanner	
  (GE	
  Signa	
  HDx).	
  The	
  entire	
  head	
  was	
  scanned,	
  and	
  the	
  areas	
  of	
  interest	
  
were	
  the	
  SN	
  and	
  DMN.	
  
Statistical	
  Analysis:	
  Independent	
  Component	
  Analysis	
  (ICA)	
  was	
  utilized	
  to	
  identify	
  
resting	
  state	
  networks	
  (SN	
  and	
  DMN).	
  This	
  analysis	
  was	
  completed	
  using	
  the	
  AFNI	
  
software	
  (available	
  from:	
  http://afni.nimh.nih.gov/).	
  Repeated	
  measure	
  ANOVA	
  (Mixed	
  
Procedure)	
  was	
  used	
  to	
  examine	
  main	
  effects	
  of	
  exercise	
  (exercise	
  vs.	
  rest),	
  protein	
  (high	
  
vs.	
  normal),	
  time	
  (before	
  vs.	
  60	
  minutes	
  after	
  dinner),	
  and	
  all	
  interactions	
  on	
  resting	
  state	
  
networks.	
  	
  These	
  analyses	
  were	
  completed	
  using	
  SAS	
  (Version	
  9.2).	
  All	
  data	
  are	
  presented	
  
as	
  mean	
  ±	
  SEM.	
  Statistical	
  significance	
  was	
  assigned	
  when	
  P	
  <	
  0.05	
  and	
  Tukey-­‐Kramer	
  
adjustment	
  was	
  used	
  for	
  post-­‐hoc	
  analyses	
  as	
  needed.	
  	
  
	
   	
  
  12	
  
RESULTS	
  
Subject	
  Characteristics	
  
According	
  to	
  our	
  inclusion	
  criteria,	
  the	
  8	
  women	
  who	
  completed	
  the	
  study	
  
procedures	
  were	
  29	
  ±	
  3	
  years	
  old	
  and	
  had	
  an	
  average	
  BMI	
  of	
  35	
  ±	
  1.1	
  kg/m2	
  (Table	
  1).	
  	
  	
  
Salience	
  Network	
  
After	
  analyzing	
  the	
  resting	
  state	
  scans,	
  the	
  ICA	
  did	
  not	
  reveal	
  a	
  SN.	
  
Default	
  Mode	
  Network	
  
The	
  DMN	
  was	
  revealed	
  and	
  is	
  shown	
  in	
  Figure	
  2.	
  There	
  was	
  no	
  change	
  in	
  DMN	
  
activity	
  among	
  interventions	
  indicating	
  that	
  the	
  high	
  protein	
  dinner	
  versus	
  normal	
  protein	
  
dinner,	
  aerobic	
  exercise	
  versus	
  rest	
  did	
  not	
  have	
  independent	
  or	
  interactive	
  effects	
  on	
  
network	
  activities	
  (Figure	
  3	
  and	
  Figure	
  4).	
  The	
  ANOVA	
  model	
  demonstrated	
  trend	
  
(unadjusted	
  p=0.0454,	
  adjusted	
  p=0.1134)	
  for	
  an	
  increase	
  in	
  DMN	
  activity	
  1-­‐hour	
  after	
  
eating	
  when	
  subjects	
  rested	
  before	
  dinner.	
  However,	
  this	
  was	
  not	
  statistically	
  confirmed	
  
after	
  correcting	
  for	
  multiple	
  comparisons.	
  
	
  
	
  
	
   	
  
  13	
  
DISCUSSION	
   	
  	
  
The	
  present	
  study	
  evaluated	
  the	
  effects	
  of	
  protein	
  consumption	
  and	
  aerobic	
  exercise	
  
on	
  the	
  acute	
  activity	
  of	
  two	
  resting-­‐state	
  reward	
  networks,	
  the	
  SN	
  and	
  DMN.	
  Acute	
  changes	
  
in	
  these	
  two	
  networks	
  have	
  never	
  been	
  studied.	
  We	
  hypothesized	
  there	
  would	
  be	
  a	
  general	
  
meal-­‐induced	
  reduction	
  in	
  SN	
  and	
  DMN	
  activity	
  60	
  minutes	
  after	
  dinner.	
  We	
  further	
  
hypothesized	
  that	
  a	
  high	
  protein	
  dinner	
  would	
  result	
  in	
  a	
  greater	
  reduction	
  in	
  resting	
  state	
  
activity	
  compared	
  to	
  a	
  normal	
  protein	
  dinner.	
  Acute	
  aerobic	
  exercise	
  would	
  result	
  in	
  a	
  
relatively	
  greater	
  resting	
  state	
  activity	
  compared	
  to	
  rest.	
  	
  	
  
	
   These	
  hypotheses	
  were	
  based	
  on	
  previous	
  research	
  showing	
  dietary	
  protein	
  [4]	
  and	
  
aerobic	
  exercise	
  [5]	
  influencing	
  subjective	
  appetite	
  sensations.	
  Previous	
  research	
  has	
  
shown	
  that	
  acute	
  higher	
  protein	
  diets	
  increase	
  satiety	
  in	
  comparison	
  to	
  lower	
  protein	
  diets	
  
and	
  this	
  results	
  in	
  a	
  decreased	
  energy	
  intake	
  [4].	
  A	
  long-­‐term	
  high	
  protein	
  diet	
  has	
  been	
  
shown	
  to	
  result	
  in	
  weight	
  loss	
  [16].	
  The	
  relationship	
  between	
  dietary	
  induced	
  
thermogenesis	
  and	
  satiety	
  [4],	
  specifically	
  because	
  the	
  thermic	
  effect	
  of	
  protein	
  is	
  greater	
  
then	
  fat	
  and	
  carbohydrate,	
  may	
  be	
  the	
  reasoning	
  behind	
  dietary	
  protein’s	
  satiating	
  effects.	
  	
  
	
   Previous	
  research	
  has	
  also	
  demonstrated	
  that	
  aerobic	
  exercise	
  influences	
  subjective	
  
appetite	
  and	
  energy	
  balance,	
  though	
  the	
  results	
  are	
  sometimes	
  conflicting	
  [13].	
  Further,	
  it	
  
has	
  been	
  suggested	
  that	
  exercise	
  effects	
  on	
  appetite	
  may	
  differ	
  in	
  men	
  versus	
  women;	
  
specifically	
  exercise	
  has	
  a	
  tendency	
  to	
  increase	
  hunger	
  in	
  women	
  relative	
  to	
  men	
  [13].	
  
Sensations	
  of	
  appetite	
  may	
  be	
  influenced	
  by	
  activity	
  in	
  DMN	
  and	
  SN-­‐related	
  brain	
  
structures	
  [2,14].	
  	
  Also,	
  exercise	
  training	
  has	
  previously	
  been	
  shown	
  to	
  decrease	
  DMN	
  
activity	
  [2].	
  This	
  did	
  not	
  occur	
  in	
  this	
  study,	
  but	
  instead	
  there	
  were	
  no	
  significant	
  changes	
  
in	
  DMN	
  activity	
  after	
  meal	
  consumption	
  and	
  among	
  interventions.	
  These	
  results	
  suggest	
  
  14	
  
that	
  acute	
  interventions	
  may	
  not	
  influence	
  resting	
  state	
  brain	
  activity	
  and	
  therefore	
  long-­‐
term	
  inventions	
  may	
  be	
  necessary	
  for	
  normalizing	
  resting-­‐state	
  neural	
  activity	
  in	
  obese	
  
women.	
  Another	
  possibility	
  is	
  that	
  greater	
  intensity,	
  duration,	
  and	
  caloric	
  expenditure	
  of	
  
exercise	
  may	
  be	
  necessary	
  to	
  elicit	
  acute	
  changes	
  in	
  brain	
  activity.	
  	
  
	
   Looking	
  at	
  Figures	
  3	
  and	
  4,	
  it	
  seems	
  that	
  primarily	
  the	
  high	
  protein	
  with	
  rest	
  
condition	
  drove	
  the	
  trend	
  for	
  an	
  increase	
  of	
  DMN	
  activity	
  on	
  resting	
  days.	
  These	
  results	
  are	
  
contrary	
  to	
  our	
  hypothesis	
  of	
  a	
  greater	
  reduction	
  of	
  DMN	
  activity	
  with	
  a	
  high	
  protein	
  meal.	
  
However,	
  the	
  increase	
  in	
  DMN	
  activity	
  was	
  not	
  statistically	
  confirmed	
  after	
  correcting	
  for	
  
multiple	
  comparisons.	
  The	
  independent	
  component	
  analysis	
  did	
  not	
  reveal	
  a	
  SN,	
  and	
  
therefore	
  intervention	
  effects	
  on	
  SN	
  activity	
  could	
  not	
  be	
  evaluated.	
  	
  
	
   A	
  previous	
  study	
  assessed	
  the	
  effects	
  of	
  a	
  6-­‐month	
  exercise	
  training	
  intervention	
  on	
  
the	
  DMN	
  and	
  SN	
  in	
  overweight	
  and	
  obese	
  males	
  and	
  females.	
  DMN	
  activity	
  was	
  decreased	
  
following	
  the	
  6-­‐month	
  exercise-­‐training	
  program	
  relative	
  to	
  baseline.	
  However,	
  greater	
  fat	
  
mass	
  loss	
  was	
  associated	
  with	
  greater	
  reductions	
  in	
  DMN	
  activity	
  [2].	
  This	
  correlation	
  
between	
  fat	
  loss	
  and	
  DMN	
  activity	
  cannot	
  be	
  used	
  to	
  infer	
  causality.	
  It	
  is	
  possible	
  that	
  
exercise	
  training	
  and	
  improvements	
  in	
  fitness	
  reduced	
  DMN	
  activity.	
  Conversely,	
  exercise	
  
training	
  may	
  decrease	
  fat	
  mass,	
  which	
  may	
  also	
  decrease	
  DMN	
  activity.	
  	
  Our	
  results	
  show	
  
that	
  acute	
  aerobic	
  exercise,	
  which	
  did	
  not	
  influence	
  overall	
  fitness	
  level	
  or	
  fat	
  mass,	
  did	
  not	
  
influence	
  DMN	
  activity.	
  These	
  results	
  suggest	
  that	
  modulation	
  of	
  resting	
  state	
  brain	
  activity	
  
may	
  be	
  driven	
  by	
  adaptations	
  to	
  chronic	
  exercise	
  training	
  rather	
  than	
  acute	
  exercise.	
  	
  
	
   The	
  resting	
  state	
  SN	
  and	
  DMN	
  are	
  important	
  because	
  they	
  process	
  homeostatic	
  
information.	
  The	
  DMN	
  is	
  specifically	
  associated	
  with	
  self-­‐monitoring	
  behavior	
  [3]	
  and	
  is	
  
more	
  active	
  during	
  interoceptive	
  processing,	
  which	
  is	
  related	
  to	
  processing	
  of	
  internal	
  
  15	
  
stimuli.	
  The	
  SN	
  is	
  associated	
  with	
  the	
  reward	
  system	
  and	
  shows	
  greater	
  activation	
  when	
  an	
  
individual	
  is	
  anticipating	
  food	
  consumption	
  [3].	
  We	
  expected	
  to	
  observe	
  a	
  SN	
  because	
  
previous	
  studies	
  have	
  revealed	
  this	
  network	
  using	
  the	
  same	
  standard	
  techniques	
  [2,	
  3,	
  11].	
  
However	
  our	
  analysis	
  did	
  not	
  reveal	
  this	
  network.	
  	
  
Strengths	
  and	
  Limitations	
  
	
   The	
  strengths	
  of	
  this	
  study	
  include	
  extensive	
  dietary	
  controls	
  and	
  supervised	
  
exercise	
  sessions	
  to	
  ensure	
  adherence	
  to	
  our	
  diet	
  and	
  exercise	
  interventions.	
  All	
  subjects	
  
were	
  blinded	
  to	
  the	
  protein	
  content	
  of	
  the	
  meals,	
  so	
  any	
  cognitive	
  biases	
  were	
  avoided.	
  	
  
Our	
  small	
  homogenous	
  group	
  of	
  subjects,	
  obese	
  young	
  women,	
  is	
  a	
  limitation.	
  A	
  
larger	
  subject	
  group	
  may	
  provide	
  greater	
  statistical	
  power	
  to	
  detect	
  a	
  SN	
  and	
  changes	
  in	
  
DMN	
  activity	
  among	
  interventions.	
  Including	
  a	
  more	
  heterogeneous	
  group	
  of	
  men	
  and	
  
various	
  age	
  groups	
  would	
  increase	
  the	
  generalizability	
  of	
  these	
  findings.	
  Inclusion	
  of	
  a	
  
normal	
  weight	
  group	
  would	
  enable	
  comparisons	
  of	
  resting	
  state	
  brain	
  activity	
  in	
  normal	
  
weight	
  versus	
  obese	
  women.	
  Also	
  this	
  would	
  allow	
  an	
  investigation	
  of	
  whether	
  weight	
  
status	
  influences	
  acute	
  effects	
  of	
  exercise	
  and	
  meal	
  consumption	
  on	
  resting	
  state	
  brain	
  
activity.	
  In	
  this	
  study,	
  scanning	
  was	
  completed	
  in	
  the	
  evenings,	
  beginning	
  at	
  5pm;	
  whereas	
  
most	
  existing	
  research	
  completed	
  resting	
  state	
  scanning	
  in	
  the	
  morning.	
  This	
  may	
  have	
  
influenced	
  our	
  results,	
  however	
  further	
  research	
  is	
  needed	
  to	
  confirm	
  time	
  of	
  day	
  effects.	
  	
  
Further	
  Research	
  
	
   Since	
  this	
  pilot	
  study	
  was	
  the	
  first	
  to	
  test	
  and	
  analyze	
  the	
  effect	
  of	
  protein	
  
consumption	
  and	
  aerobic	
  exercise	
  on	
  acute	
  activity	
  in	
  these	
  reward	
  networks,	
  further	
  
research	
  should	
  be	
  done	
  to	
  confirm	
  that	
  there	
  is	
  no	
  change	
  in	
  activity	
  from	
  these	
  
interventions.	
  Further	
  research	
  should	
  especially	
  be	
  done	
  with	
  a	
  larger	
  subject	
  group,	
  
  16	
  
along	
  with	
  both	
  men	
  and	
  women	
  of	
  varying	
  BMI’s.	
  Previous	
  research	
  showed	
  decreased	
  
reward	
  network	
  activity	
  in	
  a	
  6-­‐month	
  exercise	
  training	
  intervention	
  [2],	
  therefore	
  further	
  
research	
  should	
  be	
  done	
  to	
  determine	
  at	
  what	
  time	
  point	
  exercise	
  training	
  begins	
  to	
  
decrease	
  network	
  activity.	
  	
  
Conclusion	
  
In	
  conclusion,	
  neither	
  high	
  protein	
  meals	
  nor	
  aerobic	
  exercise	
  had	
  acute	
  effects	
  on	
  
DMN	
  activity	
  in	
  obese	
  women	
  ages	
  18-­‐45	
  years	
  old.	
  Conclusions	
  cannot	
  be	
  made	
  regarding	
  
the	
  effects	
  of	
  dietary	
  protein	
  or	
  exercise	
  on	
  SN	
  activity.	
  Acute	
  dietary	
  protein	
  and	
  aerobic	
  
exercise	
  may	
  not	
  be	
  modulators	
  of	
  resting-­‐state	
  neural	
  activity	
  in	
  obese	
  women	
  and	
  
therefore	
  may	
  not	
  be	
  effective	
  strategies	
  for	
  decreasing	
  resting-­‐state	
  neural	
  activity	
  in	
  
obese	
  women.	
  
	
   	
  
  17	
  
REFERENCES	
  
	
  
	
  
1.	
   Huettel,	
  S.A.,	
  A.W.	
  Song,	
  and	
  G.	
  McCarthy,	
  Functional	
  magnetic	
  resonance	
  imaging.	
  
2nd	
  ed.	
  2008,	
  Sunderland,	
  Mass.:	
  Sinauer	
  Associates.	
  xvi,	
  542	
  p.	
  
2.	
   McFadden,	
  K.L.,	
  et	
  al.,	
  Effects	
  of	
  exercise	
  on	
  resting-­‐state	
  default	
  mode	
  and	
  salience	
  
network	
  activity	
  in	
  overweight/obese	
  adults.	
  Neuroreport,	
  2013.	
  24(15):	
  p.	
  866-­‐71.	
  
3.	
   Garcia-­‐Garcia,	
  I.,	
  et	
  al.,	
  Alterations	
  of	
  the	
  salience	
  network	
  in	
  obesity:	
  A	
  resting-­‐state	
  
fMRI	
  study.	
  Hum	
  Brain	
  Mapp,	
  2012.	
  
4.	
   Halton,	
  T.L.	
  and	
  F.B.	
  Hu,	
  The	
  effects	
  of	
  high	
  protein	
  diets	
  on	
  thermogenesis,	
  satiety	
  and	
  
weight	
  	
  
loss:	
  a	
  critical	
  review.	
  J	
  Am	
  Coll	
  Nutr,	
  2004.	
  23(5):	
  p.	
  373-­‐85.	
  
5.	
   Martin,	
  L.E.,	
  et	
  al.,	
  Neural	
  mechanisms	
  associated	
  with	
  food	
  motivation	
  in	
  obese	
  and	
  
healthy	
  
weight	
  adults.	
  Obesity	
  (Silver	
  Spring),	
  2010.	
  18(2):	
  p.	
  254-­‐60.	
  
6.	
   Karhunen,	
  L.J.,	
  et	
  al.,	
  Regional	
  cerebral	
  blood	
  flow	
  during	
  food	
  exposure	
  in	
  obese	
  and	
  
normal-­‐	
  
weight	
  women.	
  Brain,	
  1997.	
  120	
  (	
  Pt	
  9):	
  p.	
  1675-­‐84.	
  
7.	
   Rothemund,	
  Y.,	
  et	
  al.,	
  Differential	
  activation	
  of	
  the	
  dorsal	
  striatum	
  by	
  high-­‐calorie	
  
visual	
  food	
  	
  
stimuli	
  in	
  obese	
  individuals.	
  Neuroimage,	
  2007.	
  37(2):	
  p.	
  410-­‐21.	
  
8.	
   Stice,	
  E.,	
  et	
  al.,	
  Relation	
  of	
  reward	
  from	
  food	
  intake	
  and	
  anticipated	
  food	
  intake	
  to	
  
obesity:	
  a	
  	
  
functional	
  magnetic	
  resonance	
  imaging	
  study.	
  J	
  Abnorm	
  Psychol,	
  2008.	
  117(4):	
  p.	
  
924-­‐35.	
  
9.	
   Horstmann,	
  A.,	
  et	
  al.,	
  Obesity-­‐Related	
  Differences	
  between	
  Women	
  and	
  Men	
  in	
  Brain	
  
Structure	
  	
  
and	
  Goal-­‐Directed	
  Behavior.	
  Front	
  Hum	
  Neurosci,	
  2011.	
  5:	
  p.	
  58.	
  
10.	
   Goldstone,	
  A.P.,	
  et	
  al.,	
  Fasting	
  biases	
  brain	
  reward	
  systems	
  towards	
  high-­‐calorie	
  foods.	
  
Eur	
  J	
  	
  
Neurosci,	
  2009.	
  30(8):	
  p.	
  1625-­‐35.	
  
11.	
   Cornier,	
  M.A.,	
  et	
  al.,	
  Sex-­‐based	
  differences	
  in	
  the	
  behavioral	
  and	
  neuronal	
  responses	
  to	
  
food.	
  	
  
Physiol	
  Behav,	
  2010.	
  99(4):	
  p.	
  538-­‐43.	
  
12.	
   Stubbs,	
  R.J.,	
  et	
  al.,	
  The	
  use	
  of	
  visual	
  analogue	
  scales	
  to	
  assess	
  motivation	
  to	
  eat	
  in	
  
human	
  subjects:	
  a	
  review	
  of	
  their	
  reliability	
  and	
  validity	
  with	
  an	
  evaluation	
  of	
  new	
  
hand-­‐held	
  computerized	
  systems	
  for	
  temporal	
  tracking	
  of	
  appetite	
  ratings.	
  Br	
  J	
  Nutr,	
  
2000.	
  84(4):	
  p.	
  405-­‐15.	
  
13.	
  	
   Stensel,	
  D.,	
  Exercise,	
  appetite	
  and	
  appetite-­‐regulating	
  hormones:	
  implications	
  for	
  food	
  
intake	
  and	
  weight	
  control.	
  Ann	
  Nutr	
  Metab,	
  2010.	
  57	
  Suppl	
  2:	
  p.	
  36-­‐42.	
  
14.	
   Tregellas,	
  J.R.,	
  et	
  al.,	
  Altered	
  default	
  network	
  activity	
  in	
  obesity.	
  Obesity	
  (Silver	
  
Spring),	
  2011.	
  19(12):	
  p.	
  2316-­‐21.	
  
15.	
  	
   Thompson,	
  W.R.,	
  N.F.	
  Gordon,	
  and	
  L.S.	
  Pescatello,	
  eds.	
  ACSM's	
  Guidelines	
  for	
  
Exercise	
  Testing	
  and	
  Prescription.	
  8th	
  Edition	
  ed.	
  2010,	
  Lippincott	
  Williams	
  &	
  
Wilkins:	
  Philadelphia,	
  PA.	
  
16.	
  	
   Wycherley,	
  T.P.,	
  L.J.	
  Moran,	
  P.M.	
  Clifton,	
  M.	
  Noakes,	
  and	
  G.D.	
  Brinkworth,	
  Effects	
  of	
  
  18	
  
	
   energy-­‐restricted	
  high-­‐protein,	
  low-­‐fat	
  compared	
  with	
  standard-­‐protein,	
  low-­‐fat	
  diets:	
  
	
   a	
  meta-­‐analysis	
  of	
  randomized	
  controlled	
  trials.	
  Am	
  J	
  Clin	
  Nutr,	
  2012.	
  96(6):	
  p.	
  1281-­‐
	
   98.	
  
	
  
	
   	
  
  19	
  
TABLES	
  AND	
  FIGURES	
  
	
  
	
  
Table	
  1.	
  Subject	
  Characteristics	
  	
  
	
   	
  
  20	
  
Table	
  2.	
  Dinner	
  (High	
  Protein	
  or	
  Normal	
  Protein)	
  Macronutrient	
  Composition1	
  	
  
	
  
Property High Protein Meal Normal Protein Meal
Total Energy (kcals) 811.9 811.9
Protein (g, % Energy) 60.9, 30% 30.4, 15%
Carbohydrate (g, %
Energy)
91.3, 45% 121.8, 60%
Fat (g, % Energy) 22.6 25% 22.6, 25%
	
  
	
  
1All	
  values	
  are	
  mean	
  ±	
  SEM.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
  21	
  
Figure1:	
  Study	
  Design.	
  Schematic	
  of	
  testing	
  day	
  procedures.	
  	
  
	
  
Figure	
  2:	
  Default	
  Mode	
  Network.	
  AFNI	
  was	
  used	
  to	
  create	
  statistical	
  parametric	
  maps	
  to	
  
depict	
  resting	
  state	
  Default	
  Mode	
  Network	
  activity	
  with	
  all	
  sessions	
  combined	
  (n=64	
  total	
  
sessions).	
  	
  
	
  
Figure	
  3:	
  Pre-­‐Meal	
  Default	
  Mode	
  Network	
  Activity.	
  All	
  values	
  are	
  mean	
  ±	
  SEM.	
  Repeated	
  
measures	
  ANOVA	
  (MIXED	
  Procedures,	
  SAS,	
  version	
  9.2)	
  was	
  used	
  to	
  test	
  for	
  differences	
  in	
  
Default	
  Mode	
  Network	
  Activity	
  on	
  the	
  4	
  testing	
  days.	
  Default	
  Mode	
  Activity	
  was	
  not	
  
different	
  on	
  these	
  testing	
  days.	
  	
  
Abbreviations:	
  NPR,	
  Normal	
  Protein/Rest;	
  HPR,	
  High	
  Protein/Rest;	
  NPEx,	
  Normal	
  
Protein/Exercise;	
  HPEx,	
  High	
  Protein/Exercise	
  
	
  
Figure	
  4:	
  Post-­‐Meal	
  Default	
  Mode	
  Network	
  Activity.	
  All	
  values	
  are	
  mean	
  ±	
  SEM.	
  Repeated	
  
measures	
  ANOVA	
  (MIXED	
  Procedures,	
  SAS,	
  version	
  9.2)	
  was	
  used	
  to	
  test	
  for	
  differences	
  in	
  
Default	
  Mode	
  Network	
  Activity	
  on	
  the	
  4	
  testing	
  days.	
  Default	
  Mode	
  Activity	
  was	
  not	
  
different	
  on	
  these	
  testing	
  days.	
  	
  
Abbreviations:	
  NPR,	
  Normal	
  Protein/Rest;	
  HPR,	
  High	
  Protein/Rest;	
  NPEx,	
  Normal	
  
Protein/Exercise;	
  HPEx,	
  High	
  Protein/Exercise	
  
	
   	
  
  22	
  
	
  
Figure	
  1.	
  Study	
  Design	
  
	
  
	
  
	
  
	
  
	
   	
  
  23	
  
Figure	
  2.	
  Default	
  Mode	
  Network	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
  24	
  
Figure	
  3.	
  Pre-­‐Meal	
  Default	
  Mode	
  Network	
  Activity	
  
	
  
	
   	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  DMNActivity(z-score)
NPR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  HPR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NPEx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  HPEx	
  
Pre-­‐Meal	
  Default	
  Mode	
  Network	
  Activity	
  
  25	
  
Figure	
  4.	
  1-­‐Hour	
  Post-­‐Meal	
  Default	
  Mode	
  Network	
  Activity	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
	
  DMN	
  Activity	
  (z-­‐score)	
  
NPR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  HPR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NPEx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  HPEx	
  
1-­‐Hour	
  Post-­‐Meal	
  Default	
  Mode	
  Network	
  Activity	
  
  26	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
APPENDICES	
  
	
   	
  
  27	
  
	
  
	
  
	
  
	
  
	
  
APPENDIX	
  1	
  
	
  
Recruitment	
  Flyer	
  
  28	
  
Women Ages 18 to 45	
  
Needed for a Research
Study
Prof. Wayne Campbell
Department of Nutrition Science, Purdue University
We are looking for overweight women who would like to volunteer for
a research study evaluating whether exercise performed before dinner
affects brain activity in response to viewing pictures of food.
Participants will be compensated $200 for completing this study.
INTERESTED VOLUNTEERS SHOULD BE:
ü Female
ü Age: 18 to 45
ü Overweight
ü Not Smoking
ü Not Pregnant
Measurements taken during the study will include brain activity using
functional magnetic resonance imaging, questionnaires about
appetite, and a blood draw.
FOR MORE INFORMATION, contact
Drew @ (765) 494-8313 or Email: sayer@purdue.edu
Department of Nutrition Science, Purdue University; West Lafayette,
IN 47907
	
  
	
   	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
Drew	
  
sayer@purdue.edu	
  
765-­‐494-­‐8313	
  
John
apolzan@purdue.edu
765-496-6480
	
  
  29	
  
	
  
	
  
	
  
	
  
	
  
APPENDIX	
  2	
  
	
  
Consent	
  Form	
  
	
  
	
   	
  
  31	
  
	
  
	
  
	
  
	
  
	
  
APPENDIX	
  3	
  
	
  
Appetite	
  Questionnaire	
  
	
  
	
   	
  
  32	
  
APPETITE LOG Study code:___________
Please place one mark on each scale that best reflects your answer to each of the
following questions at this time.
1. How strong is your feeling of hunger? 1. ____
Not at all Extremely
2. How strong is your feeling of fullness? 2. ____
Not at all Extremely
3. How strong is your desire to eat? 3. ____
Not at all Extremely
4. How strong is your “urge to eat”? 4. ____
Not at all Extremely
5. How strong is your preoccupation with thoughts of food? 5. ____
Not at all Extremely
6. How strong is your feeling of thirst? 6. ____
Not at all Extremely
  33	
  
7. How strong is your desire to eat something salty? 7. ____
Not at all Extremely
8. How strong is your desire to eat something fatty? 8. ____
Not at all Extremely
9. How strong is your desire to eat something sweet? 9. ____
Not at all Extremely
10.The shakiness of your hand is… 10. ____
Not at all Extremely
11.How strong is your grip? 11. ____
Not at all Extremely
12.How itchy is your scalp? 12. ____
Not at all Extremely
	
  
  34	
  
	
  
	
  
	
  
	
  
	
  
	
  
APPENDIX	
  4	
  
	
  
YMCA	
  Submaximal	
  Protocol	
  
	
  
	
  
	
  
	
  
	
   	
  
  35	
  
YMCA	
  Submaximal	
  Protocol	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
1st	
  Stage	
  
150	
  kgm	
  (0.5	
  kp)	
  
HR:	
  <80	
  
HR:	
  _____	
  
750	
  kgm	
  
(2.5	
  kp)	
  
HR:	
  _____	
  
900	
  kgm	
  
(3.0	
  kp)	
  
HR:	
  _____	
  
1050	
  kgm	
  
(3.5	
  kp)	
  
HR:	
  _____	
  
HR:	
  80-­‐89	
  
HR:	
  _____	
  
600	
  kgm	
  
(2.0	
  kp)	
  
HR:	
  _____	
  
750	
  kgm	
  
(2.5	
  kp)	
  
HR:	
  _____	
  
900	
  kgm	
  
(3.0	
  kp)	
  
HR:	
  _____	
  
HR:	
  90-­‐100	
  
HR:	
  _____	
  
450	
  kgm	
  
(1.5	
  kp)	
  
HR:	
  _____	
  
600	
  kgm	
  
(2.0	
  kp)	
  
HR:	
  _____	
  
750	
  kgm	
  
(2.5	
  kp)	
  
HR:	
  _____	
  
HR:	
  >100	
  
HR:	
  _____	
  
300	
  kgm	
  
(1.0	
  kp)	
  
HR:	
  _____	
  
450	
  kgm	
  
(1.5	
  kp)	
  
HR:	
  _____	
  
600	
  kgm	
  
(2.0	
  kp)	
  
HR:	
  _____	
  
  36	
  
	
  
	
  
	
  
	
  
	
  
	
  
APPENDIX	
  5	
  
	
  
Resume	
  
	
  
	
  
	
  
	
  
	
   	
  
  37	
  
Lexie Buchs
Education
Purdue University – West Lafayette, IN 10/2011 – Present
Bachelor of Science degree with Honors, Major: Dietetics, GPA: 3.40
Study Abroad - Dublin Institute of Technology – Dublin, Ireland 1/2014 – 5/2014
Adult and Child First Aid/CPR/AED Certified
Blood Born Pathogen Certified
Work Experience
Wiley Dining Court – Purdue University 10/2014 – Present
Food Preparation, Food Service, Meal Preparation, Cleaning and Sanitation
Campbell Nutrition Science Lab – Purdue University 5/2014 – Present
MRI Secondary Operator, Data Entry into Microsoft Excel, Miscellaneous Lab Work
Metabolic Kitchen – Purdue University 5/2014 - 8/2014
Data Entry, Food Preparation for scientific research studies
Buffalo Wild Wings – Auburn, IN 5/2012 - 8/2012
Waitress, Cashier, Greeter, Cleaning and Sanitation
Auburn Community Pool – Auburn, IN 5/10 - 8/10 & 5/11 - 8/11
Lifeguard, Swim Lesson Instructor
Brown House Restaurant – Auburn, IN 3/2010 - 7/2010
Cook, Cashier, Food Service, Cleaning and Sanitation
Volunteer Experience
Data Collection for a Pantry Study in a Purdue University Nutrition Lab Fall 2014
Completed 24-hour recalls with study participants and entered data into Microsoft Excel
Lafayette Soup Kitchen Fall 2014
Serve and Prepare Food
Mentor at the Ireland Pre-Departure Meeting 11/20/2014
Assisting students in finding housing, and preparing students to leave for Ireland
Mentor at the Study Abroad Fair 9/10/2014
Advocating to interested students about the perks of studying abroad and answering questions
Ecuador Medical Mission Trip 12/15/2012 - 12/23/2012
Assisted doctors and nurses in hospitals and visited children in orphanages
Delta Zeta Painted Turtle 5K – Benefitting the Starkey Hearing Foundation 4/27/2013
Organized and participated in the race event
Delta Zeta Turtle Tug - Benefitting the Painted Turtle Camp 10/2011 & 10/2012
Organized the competition, Team Leader
Delta Zeta ‘Bowlarama’ - Benefitting the Starkey Hearing Foundation 4/2011
Organized the tournament, facilitated the event
Organizations & Societies Accomplishments & Awards
Academy of Nutrition & Dietetics Honors Society.org
Purdue University Nutrition Society Phi Sigma Theta Honors Society
Purdue University Caduceus Club National Society of Collegiate Scholars
Saint Michael’s Church Parishioner Intel International Science Fair
1st
Place Air force Award 2011, Competitor 2010 & 2011
4546 Cr 16 Waterloo, IN 46793 Ÿ 260 908 1652 Ÿ lbuchs@purdue.edu
	
  

More Related Content

Viewers also liked

Web services with soap
Web services with soapWeb services with soap
Web services with soapKhan625
 
Digital Health & Wellness Summit @ Mobile World Congress 2016
Digital Health & Wellness Summit @ Mobile World Congress 2016Digital Health & Wellness Summit @ Mobile World Congress 2016
Digital Health & Wellness Summit @ Mobile World Congress 20163GDR
 
Emp booking form [1987636]
Emp booking form [1987636]Emp booking form [1987636]
Emp booking form [1987636]James Hall
 
Бизнес-коллоквиум с пользой для команды и компании — Роман Квартальнов
Бизнес-коллоквиум с пользой для команды и компании — Роман КвартальновБизнес-коллоквиум с пользой для команды и компании — Роман Квартальнов
Бизнес-коллоквиум с пользой для команды и компании — Роман КвартальновZephyrlab
 
СEE SECR 2016 — Экспресс-аудит дизайна
СEE SECR 2016 — Экспресс-аудит дизайнаСEE SECR 2016 — Экспресс-аудит дизайна
СEE SECR 2016 — Экспресс-аудит дизайнаZephyrlab
 
Сервис емейл рассылок на Drupal 7
Сервис емейл рассылок на Drupal 7Сервис емейл рассылок на Drupal 7
Сервис емейл рассылок на Drupal 7DrupalSPB
 
Creative Advertising | Hunters school
Creative Advertising | Hunters schoolCreative Advertising | Hunters school
Creative Advertising | Hunters schoolOleg Palchinsky
 
Коробка инструментов как и из чего делать лонгриды и презентации
Коробка инструментов  как и из чего делать лонгриды и презентацииКоробка инструментов  как и из чего делать лонгриды и презентации
Коробка инструментов как и из чего делать лонгриды и презентацииDmitry Abramov
 
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an GWAVA
 

Viewers also liked (14)

Himne di Arezzo
Himne di ArezzoHimne di Arezzo
Himne di Arezzo
 
Internet and business
Internet and businessInternet and business
Internet and business
 
Web services with soap
Web services with soapWeb services with soap
Web services with soap
 
Digital Health & Wellness Summit @ Mobile World Congress 2016
Digital Health & Wellness Summit @ Mobile World Congress 2016Digital Health & Wellness Summit @ Mobile World Congress 2016
Digital Health & Wellness Summit @ Mobile World Congress 2016
 
Emp booking form [1987636]
Emp booking form [1987636]Emp booking form [1987636]
Emp booking form [1987636]
 
Pronouns and verb to be
Pronouns   and  verb to bePronouns   and  verb to be
Pronouns and verb to be
 
Бизнес-коллоквиум с пользой для команды и компании — Роман Квартальнов
Бизнес-коллоквиум с пользой для команды и компании — Роман КвартальновБизнес-коллоквиум с пользой для команды и компании — Роман Квартальнов
Бизнес-коллоквиум с пользой для команды и компании — Роман Квартальнов
 
СEE SECR 2016 — Экспресс-аудит дизайна
СEE SECR 2016 — Экспресс-аудит дизайнаСEE SECR 2016 — Экспресс-аудит дизайна
СEE SECR 2016 — Экспресс-аудит дизайна
 
Maven
Maven Maven
Maven
 
Сервис емейл рассылок на Drupal 7
Сервис емейл рассылок на Drupal 7Сервис емейл рассылок на Drupal 7
Сервис емейл рассылок на Drupal 7
 
26.posterior palatal seal
26.posterior palatal seal26.posterior palatal seal
26.posterior palatal seal
 
Creative Advertising | Hunters school
Creative Advertising | Hunters schoolCreative Advertising | Hunters school
Creative Advertising | Hunters school
 
Коробка инструментов как и из чего делать лонгриды и презентации
Коробка инструментов  как и из чего делать лонгриды и презентацииКоробка инструментов  как и из чего делать лонгриды и презентации
Коробка инструментов как и из чего делать лонгриды и презентации
 
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an
GWAVACon 2015: GWAVA + MVP: GoBD und Compliance - was geht mich das an
 

Similar to Honors thesis - Final Draft

Exploring obesity and feeding behavior using functional MRI
Exploring obesity and feeding behavior using functional MRIExploring obesity and feeding behavior using functional MRI
Exploring obesity and feeding behavior using functional MRIHyung Jin Choi
 
Food Coma or Postprandial Hypersomnolence
Food Coma or Postprandial HypersomnolenceFood Coma or Postprandial Hypersomnolence
Food Coma or Postprandial HypersomnolenceMS Trust
 
Cannabinoids Effect on Food Intake_Why Pot Gives You Munchies
Cannabinoids Effect on Food Intake_Why Pot Gives You MunchiesCannabinoids Effect on Food Intake_Why Pot Gives You Munchies
Cannabinoids Effect on Food Intake_Why Pot Gives You MunchiesNeel Patel
 
M.Johnston PhD Thesis Final proof 2014
M.Johnston PhD Thesis Final proof 2014M.Johnston PhD Thesis Final proof 2014
M.Johnston PhD Thesis Final proof 2014Michael Johnston
 
Pmr buzz magazine aug 2020 rt all
Pmr buzz magazine aug 2020 rt  allPmr buzz magazine aug 2020 rt  all
Pmr buzz magazine aug 2020 rt allmrinal joshi
 
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014Molly Roepke
 
Dissertation Final 24-08 RAB
Dissertation Final 24-08 RABDissertation Final 24-08 RAB
Dissertation Final 24-08 RABRobert Ballantine
 
Manual therapy techniques
Manual therapy techniquesManual therapy techniques
Manual therapy techniquesSana Rai
 
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]Hyung Jin Choi
 
NEUROPLASTICITY.pptx
NEUROPLASTICITY.pptxNEUROPLASTICITY.pptx
NEUROPLASTICITY.pptxJemimah John
 
Effects of core stability training on older.pdf
Effects of core stability training on older.pdfEffects of core stability training on older.pdf
Effects of core stability training on older.pdfOdiSan4
 
Cognitive Benefits of Exercise for Children and Teens
Cognitive Benefits of Exercise for Children and TeensCognitive Benefits of Exercise for Children and Teens
Cognitive Benefits of Exercise for Children and TeensMark Dreher PhD
 
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...SharpBrains
 
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY i
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY    i  EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY    i
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY i EvonCanales257
 

Similar to Honors thesis - Final Draft (20)

Final Report - v3b - ld
Final Report - v3b - ldFinal Report - v3b - ld
Final Report - v3b - ld
 
Exploring obesity and feeding behavior using functional MRI
Exploring obesity and feeding behavior using functional MRIExploring obesity and feeding behavior using functional MRI
Exploring obesity and feeding behavior using functional MRI
 
Food Coma or Postprandial Hypersomnolence
Food Coma or Postprandial HypersomnolenceFood Coma or Postprandial Hypersomnolence
Food Coma or Postprandial Hypersomnolence
 
URS Poster 2015
URS Poster 2015URS Poster 2015
URS Poster 2015
 
Cannabinoids Effect on Food Intake_Why Pot Gives You Munchies
Cannabinoids Effect on Food Intake_Why Pot Gives You MunchiesCannabinoids Effect on Food Intake_Why Pot Gives You Munchies
Cannabinoids Effect on Food Intake_Why Pot Gives You Munchies
 
Science and performance
Science and performanceScience and performance
Science and performance
 
M.Johnston PhD Thesis Final proof 2014
M.Johnston PhD Thesis Final proof 2014M.Johnston PhD Thesis Final proof 2014
M.Johnston PhD Thesis Final proof 2014
 
Pmr buzz magazine aug 2020 rt all
Pmr buzz magazine aug 2020 rt  allPmr buzz magazine aug 2020 rt  all
Pmr buzz magazine aug 2020 rt all
 
Assignment 4
Assignment 4Assignment 4
Assignment 4
 
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014
 
Dissertation Final 24-08 RAB
Dissertation Final 24-08 RABDissertation Final 24-08 RAB
Dissertation Final 24-08 RAB
 
Manual therapy techniques
Manual therapy techniquesManual therapy techniques
Manual therapy techniques
 
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]
우리 뇌는 식욕을 어떻게 조절할까? [2016 대한청소년정신의학회 추계학술대회]
 
NEUROPLASTICITY.pptx
NEUROPLASTICITY.pptxNEUROPLASTICITY.pptx
NEUROPLASTICITY.pptx
 
Effects of core stability training on older.pdf
Effects of core stability training on older.pdfEffects of core stability training on older.pdf
Effects of core stability training on older.pdf
 
Cognitive Benefits of Exercise for Children and Teens
Cognitive Benefits of Exercise for Children and TeensCognitive Benefits of Exercise for Children and Teens
Cognitive Benefits of Exercise for Children and Teens
 
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...
Virtual lecture: 25 Must-Know Facts to Harness Neuroplasticity & Technology F...
 
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY i
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY    i  EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY    i
EFFECTS OF REST INTERVALS ON NEUROMUSCULAR ACTIVITY i
 
Efficacy of Dual Task Training to Improve Functional Gait Performance in Idio...
Efficacy of Dual Task Training to Improve Functional Gait Performance in Idio...Efficacy of Dual Task Training to Improve Functional Gait Performance in Idio...
Efficacy of Dual Task Training to Improve Functional Gait Performance in Idio...
 
Nihms111859
Nihms111859Nihms111859
Nihms111859
 

Honors thesis - Final Draft

  • 1. EFFECTS  OF  DIETARY  PROTEIN  AND  AEROBIC  EXERCISE  ON  FUNCTIONAL   CONNECTIVITY  IN  BRAIN  REWARD  CENTERS:  A  RESTING-­‐STATE  fMRI  STUDY       By     Lexie  Buchs           A  Thesis  Submitted  in  Partial  Fulfillment   Of  the  Requirements  for  an  Undergraduate  Degree  with  Honors   (Dietetics)     The  College  of  Health  and  Human  Sciences   Purdue  University   May  2015   West  Lafayette,  Indiana                                               Approved  by:         Reader:     Richard  Mattes,  Ph.D.       Reader:     Tara  Henagan,  Ph.D.     ___________________________________________________________________   Honors  Research  Mentor:   Wayne  Campbell,  PhD    
  • 2.   2   ABSTRACT     The  Salience  Network  (SN)  interprets  internal  and  external  stimuli  for  emotion,   homeostatic  regulation,  and  reward.  The  Default  Mode  Network  (DMN)  reflects  resting   state  brain  activity.  Previous  data  have  demonstrated  a  disruption  of  these  networks  in   obesity.  The  purpose  of  this  study  was  to  examine  the  effects  of  dietary  protein  and  aerobic   exercise  on  resting  state  activity  in  the  SN  and  DMN  using  functional  Magnetic  Resonance   Imaging  (fMRI)  in  8  women  ages  18-­‐45  years  old  with  a  BMI  of  30  to  40  kg/m2.  On  testing   days,  breakfast  and  lunch  were  identical  while  dinner  meals  varied  in  protein  (Normal   Protein:  15%  vs.  High  Protein:  30%  of  energy  as  protein).  Total  energy  intake  on  testing   days  was  prescribed  at  approximately  80%  of  the  participants’  estimated  daily  energy   requirements  to  stimulate  one  day  of  moderate  energy  restriction.  Participants  completed   a  pre-­‐dinner  scan  five  hours  after  lunch.  After  the  pre  dinner  scan,  subjects  either  rested  or   exercised  for  30  minutes  at  60%  of  their  estimated  VO2max.  Dinner  was  consumed   immediately  after  exercise  or  rest.  The  postprandial  fMRI  scan  was  completed  one  hour   after  dinner.  The  independent  component  analysis  did  not  reveal  a  SN  but  did  reveal  a   DMN.  However,  DMN  activity  was  not  influenced  by  meal  consumption,  acute  aerobic   exercise,  or  the  amount  of  protein  at  dinner.  Resting  state  brain  activity  may  not  be   influenced  by  acute  interventions  and  therefore  long  term  inventions  may  be  necessary  for   normalizing  resting-­‐state  neural  activity  in  obese  women.          
  • 3.   3   ACKNOWLEDGEMENTS     I  would  like  to  thank  Dr.  Campbell  for  his  guidance  and  support  throughout  this   project  and  for  giving  me  many  opportunities  to  learn  about  research.  Thank  you  to  Drew   Sayer  for  patiently  mentoring  me  and  for  all  of  his  help  with  this  project.  Without  your   guidance  and  direction,  I  would  not  have  been  able  to  complete  the  honors  degree.  Thank   you  to  Greg  Tamer  for  completing  the  data  analysis  and  for  providing  his  expertise   throughout  the  study.  I  would  also  like  to  thank  the  study  participants  for  their  dedication   and  compliance  to  this  study.  This  study  was  funded  by  the  Indiana  CTSI.    
  • 4.   4   TABLE  OF  CONTENTS     Abstract  …………………………………………………………………………………………………………..…………….2   Acknowledgements  ………………………………………………………………………………………..………………3   List  of  Tables  and  Figures  …………………………………………………………………………….………………...5   Introduction  ………………..…………………………………………………………………………….………………......6   Subjects  and  Methods  …………………………………………………………………………..…………………..........9   Results  ……………………………………………………………………………..............................................................12   Discussion  ……………………………………………………………………………......................................................13   References  ……………………………………………………………………………......................................................17   Appendix  …………………………………………………………………………….........................................................26      
  • 5.   5     LIST  OF  TABLES  AND  FIGURES   Table  1:  Subject  Characteristics.…………………………………………………………………………………….19   Table  2:  Dinner  (High  Protein  or  Normal  Protein)  …………………………………………………………20   Figure  1:  Study  Design  …………………………………………………………………………………….……………22   Figure  2:  Default  Mode  Network  …………………………………………………………………...………………23   Figure  3.  Pre-­‐Meal  Default  Mode  Network  Activity………………………………………...……………….24   Figure  4.  1-­‐Hour  Post-­‐Meal  Default  Mode  Network  Activity……………………………………..……..25          
  • 6.   6   INTRODUCTION   Increased  activity  in  a  brain  region  results  in  a  locally  increased  blood  response  in   that  area  and  also  an  increased  ratio  of  oxygenated  to  deoxygenated  blood.  Functional   Magnetic  Resonance  Imaging  (fMRI)  scan  detects  the  difference  of  magnetization  in   oxygen-­‐rich  versus  oxygen-­‐poor  blood  [1].  The  resultant  blood  flow  response  is  detected   by  the  fMRI  scan  as  an  increase  in  the  blood-­‐oxygen-­‐level-­‐dependent  (BOLD)  contrast,  and   this  is  used  as  a  marker  of  brain  activity.     The  human  brain  is  organized  into  networks  and  the  intrinsic  activity  of  these   networks  can  be  measured  in  the  resting  state  using  fMRI.  These  networks  are  important,   because  it  is  becoming  increasingly  evident  that  they  are  organizational  features  of  the   brain  [2].  The  Salience  Network  (SN)  and  the  Default  Mode  Network  (DMN)  are  two   networks  that  have  been  shown  to  be  associated  with  feeding  behavior.  The  DMN  consists   of  the  posterior  cingulate  cortex,  cuneus/precuneus,  medial  prefrontal  cortex,  medial   temporal  lobe,  and  inferior  parietal  cortices.  The  SN  consists  of  the  anterior  cingulate   cortex  and  insula.  The  DMN  reflects  baseline  brain  function  in  the  resting  state.  The  SN   reflects  feeding  behavior  and  reward  and  involves  assessing  internal  and  external  stimuli.   Previous  studies  have  found  activation  of  the  DMN  and  SN  to  be  increased  in  overweight   and  obese  individuals  in  comparison  to  lean  individuals  [2].  Results  from  previous  studies   have  led  to  the  idea  that  abnormal  or  increased  activation  in  these  networks  may   contribute  to  overeating,  and  there  is  also  a  correlation  between  obesity  and  activation  of   these  networks  [3].  Understanding  these  networks  in  overweight  and  obese  individuals   and  how  acute  and  long-­‐term  changes  in  network  activity  are  associated  with  food  intake  
  • 7.   7   behavior  would  be  helpful  when  strategizing  how  to  normalize  network  activity  to  reduce   overeating.   Moderate  increases  in  dietary  protein  [4]  and  exercise  [13]  are  common  strategies   for  weight  control  and  therefore  may  represent  potential  interventions  for  normalizing   resting  activity  in  obese  individuals.  For  example,  a  6-­‐month  exercise  intervention   decreased  resting  state  activity  in  the  DMN  although  the  intervention  did  not  change   resting  state  activity  in  the  SN  [2].  However,  the  effects  of  acute  exercise  on  the  resting   state  activity  of  the  SN  and  DMN,  or  whether  dietary  protein  modulates  resting  state   activity  of  these  networks,  have  not  been  investigated.  The  purpose  of  this  study  is  to   investigate  the  acute  effects  of  aerobic  exercise  and  dietary  protein  on  the  resting  state   activity  in  the  SN  and  DMN.     The  broad  aim  of  the  study  is  to  determine  the  acute  effects  of  dietary  protein  intake   and  aerobic  exercise  on  resting  state  activity  in  the  SN  and  DMN  of  obese  women.  Our   decision  to  include  only  obese  women  was  guided  by  previous  research  demonstrating   greater  neural  responses  to  visual  food  cues  in  obese  compared  to  healthy-­‐weight   individuals  [5-­‐10]  and  also  in  women  compared  to  men  [11].  We  hypothesize  that  network   resting  state  activity  will  be  decreased  1-­‐hour  after  consuming  dinner  compared  to  the  pre   dinner  assessment.    We  further  hypothesized  that  a  high  protein  dinner  will  elicit  a  greater   reduction  in  resting  state  activity  compared  to  a  normal  protein  dinner.  Acute  aerobic   exercise  will  result  in  a  relatively  greater  resting  state  activity  compared  to  rest.            
  • 8.   8   The  rank  order  of  resting  state  SN  and  DMN  activity  under  all  conditions  and  time  points  is   hypothesized  to  be:   NPEx  >  NPR  >  HPEx  >  HPR   NPR:  Normal  Protein/Rest   HPR:  High  Protein/Rest   NPEx:  Normal  Protein/Exercise   HPEx:  High  Protein/Exercise      
  • 9.   9   SUBJECTS  AND  METHODS   Subjects     Potential  participants  were  recruited  from  public  advertisements  (flyers).  Study   inclusion  was  based  on  the  following  criteria:  1)  Women  ages  18-­‐45  years;  2)  body  mass   index  between  (BMI)  30-­‐40  km/m2;  3)  non-­‐smoking;  4)  not  diabetic;  5)  not  pregnant  or   lactating;  6)  weight  stable  (±  3kg)  for  3  months;  7)  not  severely  claustrophobic;  8)  and   willing  to  eat  study  food.  Due  to  the  use  of  the  MRI  scanner,  participants  with  implanted   pacemakers  and/or  automated  defibrillators  or  any  ferromagnetic  metal  implanted  in  their   body  were  excluded  from  the  study.     There  were  41  total  contacts,  of  which  11  women  were  screened  for  inclusion   criteria.  Of  these,  9  women  were  approved  and  began  the  study.  Eight  women  completed  all   study  procedures.         The  Purdue  Biomedical  Institutional  Review  Board  approved  all  study  procedures.   All  subjects  provided  written  informed  consent  regarding  purpose,  procedures,  and   potential  risks  of  the  study.  Each  subject  received  monetary  compensation  for   participation.     Baseline  Assessments     BMI  (kg/m2)  was  determined  by  measuring  the  participants  weight  and  height.   These  measurements  were  completed  at  the  Clinical  Research  Center  at  Purdue  University.       The  YMCA  cycle  sub-­‐maximal  exercise  test  was  used  to  estimate  each  participant’s   maximal  oxygen  consumption.15        
  • 10.   10   Experimental  Design  and  Procedures     The  study  consisted  of  five  testing  days  for  each  participant.  On  the  first  testing  day   the  sub-­‐maximal  exercise  test  was  completed.  The  remaining  four  testing  days  were   completed  in  random  order  and  each  testing  day  was  separated  by  at  least  seven  days.  The   following  four  experimental  conditions  were  evaluated:  normal  dietary  protein  with  rest   (NPR),  high  dietary  protein  with  rest  (HPR),  normal  dietary  protein  with  exercise  (NPEx),   and  high  dietary  protein  with  exercise  (HPEx).  On  testing  days,  breakfast  and  lunch  were   consumed  in  the  metabolic  research  kitchen  and  dinner  consumed  at  the  Purdue  MRI   Facility.  Breakfast,  lunch,  and  dinner  provided  approximately  20%,  30%,  and  30%  of  the   participants  estimated  energy  requirement,  respectively.  Total  meals  provided  to  the   participants  included  approximately  80%  of  the  estimated  daily  energy  requirement  to   simulate  one  day  of  moderate  energy  restriction.  Breakfast  and  lunch  were  identical  on  all   testing  days  but  dinner  meals  varied  in  macronutrient  distribution.  The  macronutrient   distribution  of  breakfast  and  lunch  were  15%  protein,  60%  carbohydrate,  and  25%  fat.  The   normal  protein  (NP)  dinners  were  15%  protein,  60%  carbohydrate,  and  25%  fat,  while  the   high  protein  (HP)  dinner  provided  30%  of  energy  as  protein,  45%  carbohydrate,  and  25%   fat.,    (Table  2)  .  Subjects  were  blinded  to  the  protein  level  of  the  dinner  meals.    Dietary  fat   intake  was  held  constant  and  carbohydrate  intakes  adjusted  to  offset  differences  in  protein   intake  for  the  HP  and  NP  dinners.  On  two  of  the  four  testing  days  participants  pedaled  on  a   cycle  ergometer  for  30  minutes  at  60%  of  their  VO2max.  On  the  other  two  testing  days   participants  rested  for  30  minutes  in  a  waiting  room  at  the  MRI  facility.  Participants   arrived  at  the  Purdue  MRI  Facility  on  each  of  the  four  testing  days  at  5  pm.  The  study   design  is  found  in  Figure  1.    
  • 11.   11   Appetite  Questionnaire:  On  testing  days,  participants  rated  their  appetite  (hunger  and   fullness)  every  hour  from  8am  until  5pm  as  well  as  immediately  before  and  after  1)   consumption  of  meals,  2)  the  exercise/sedentary  activity,  and  3)  fMRI  scans.  Appetite  was   rated  using  a  100-­‐mm  quasilogarithmic  visual  analog  scale,  with  descriptors  ranging  from   “barely  detectable”  to  “strongest  sensation  imaginable  of  any  kind”  [12].   Brain  Scan  using  fMRI:  Participants  lay  in  a  supine  position  and  closed  their  eyes  with  no   external  interaction  but  were  instructed  to  stay  awake.  Participants  were  scanned  in  a  3   Tesla  MRI  scanner  (GE  Signa  HDx).  The  entire  head  was  scanned,  and  the  areas  of  interest   were  the  SN  and  DMN.   Statistical  Analysis:  Independent  Component  Analysis  (ICA)  was  utilized  to  identify   resting  state  networks  (SN  and  DMN).  This  analysis  was  completed  using  the  AFNI   software  (available  from:  http://afni.nimh.nih.gov/).  Repeated  measure  ANOVA  (Mixed   Procedure)  was  used  to  examine  main  effects  of  exercise  (exercise  vs.  rest),  protein  (high   vs.  normal),  time  (before  vs.  60  minutes  after  dinner),  and  all  interactions  on  resting  state   networks.    These  analyses  were  completed  using  SAS  (Version  9.2).  All  data  are  presented   as  mean  ±  SEM.  Statistical  significance  was  assigned  when  P  <  0.05  and  Tukey-­‐Kramer   adjustment  was  used  for  post-­‐hoc  analyses  as  needed.        
  • 12.   12   RESULTS   Subject  Characteristics   According  to  our  inclusion  criteria,  the  8  women  who  completed  the  study   procedures  were  29  ±  3  years  old  and  had  an  average  BMI  of  35  ±  1.1  kg/m2  (Table  1).       Salience  Network   After  analyzing  the  resting  state  scans,  the  ICA  did  not  reveal  a  SN.   Default  Mode  Network   The  DMN  was  revealed  and  is  shown  in  Figure  2.  There  was  no  change  in  DMN   activity  among  interventions  indicating  that  the  high  protein  dinner  versus  normal  protein   dinner,  aerobic  exercise  versus  rest  did  not  have  independent  or  interactive  effects  on   network  activities  (Figure  3  and  Figure  4).  The  ANOVA  model  demonstrated  trend   (unadjusted  p=0.0454,  adjusted  p=0.1134)  for  an  increase  in  DMN  activity  1-­‐hour  after   eating  when  subjects  rested  before  dinner.  However,  this  was  not  statistically  confirmed   after  correcting  for  multiple  comparisons.          
  • 13.   13   DISCUSSION       The  present  study  evaluated  the  effects  of  protein  consumption  and  aerobic  exercise   on  the  acute  activity  of  two  resting-­‐state  reward  networks,  the  SN  and  DMN.  Acute  changes   in  these  two  networks  have  never  been  studied.  We  hypothesized  there  would  be  a  general   meal-­‐induced  reduction  in  SN  and  DMN  activity  60  minutes  after  dinner.  We  further   hypothesized  that  a  high  protein  dinner  would  result  in  a  greater  reduction  in  resting  state   activity  compared  to  a  normal  protein  dinner.  Acute  aerobic  exercise  would  result  in  a   relatively  greater  resting  state  activity  compared  to  rest.         These  hypotheses  were  based  on  previous  research  showing  dietary  protein  [4]  and   aerobic  exercise  [5]  influencing  subjective  appetite  sensations.  Previous  research  has   shown  that  acute  higher  protein  diets  increase  satiety  in  comparison  to  lower  protein  diets   and  this  results  in  a  decreased  energy  intake  [4].  A  long-­‐term  high  protein  diet  has  been   shown  to  result  in  weight  loss  [16].  The  relationship  between  dietary  induced   thermogenesis  and  satiety  [4],  specifically  because  the  thermic  effect  of  protein  is  greater   then  fat  and  carbohydrate,  may  be  the  reasoning  behind  dietary  protein’s  satiating  effects.       Previous  research  has  also  demonstrated  that  aerobic  exercise  influences  subjective   appetite  and  energy  balance,  though  the  results  are  sometimes  conflicting  [13].  Further,  it   has  been  suggested  that  exercise  effects  on  appetite  may  differ  in  men  versus  women;   specifically  exercise  has  a  tendency  to  increase  hunger  in  women  relative  to  men  [13].   Sensations  of  appetite  may  be  influenced  by  activity  in  DMN  and  SN-­‐related  brain   structures  [2,14].    Also,  exercise  training  has  previously  been  shown  to  decrease  DMN   activity  [2].  This  did  not  occur  in  this  study,  but  instead  there  were  no  significant  changes   in  DMN  activity  after  meal  consumption  and  among  interventions.  These  results  suggest  
  • 14.   14   that  acute  interventions  may  not  influence  resting  state  brain  activity  and  therefore  long-­‐ term  inventions  may  be  necessary  for  normalizing  resting-­‐state  neural  activity  in  obese   women.  Another  possibility  is  that  greater  intensity,  duration,  and  caloric  expenditure  of   exercise  may  be  necessary  to  elicit  acute  changes  in  brain  activity.       Looking  at  Figures  3  and  4,  it  seems  that  primarily  the  high  protein  with  rest   condition  drove  the  trend  for  an  increase  of  DMN  activity  on  resting  days.  These  results  are   contrary  to  our  hypothesis  of  a  greater  reduction  of  DMN  activity  with  a  high  protein  meal.   However,  the  increase  in  DMN  activity  was  not  statistically  confirmed  after  correcting  for   multiple  comparisons.  The  independent  component  analysis  did  not  reveal  a  SN,  and   therefore  intervention  effects  on  SN  activity  could  not  be  evaluated.       A  previous  study  assessed  the  effects  of  a  6-­‐month  exercise  training  intervention  on   the  DMN  and  SN  in  overweight  and  obese  males  and  females.  DMN  activity  was  decreased   following  the  6-­‐month  exercise-­‐training  program  relative  to  baseline.  However,  greater  fat   mass  loss  was  associated  with  greater  reductions  in  DMN  activity  [2].  This  correlation   between  fat  loss  and  DMN  activity  cannot  be  used  to  infer  causality.  It  is  possible  that   exercise  training  and  improvements  in  fitness  reduced  DMN  activity.  Conversely,  exercise   training  may  decrease  fat  mass,  which  may  also  decrease  DMN  activity.    Our  results  show   that  acute  aerobic  exercise,  which  did  not  influence  overall  fitness  level  or  fat  mass,  did  not   influence  DMN  activity.  These  results  suggest  that  modulation  of  resting  state  brain  activity   may  be  driven  by  adaptations  to  chronic  exercise  training  rather  than  acute  exercise.       The  resting  state  SN  and  DMN  are  important  because  they  process  homeostatic   information.  The  DMN  is  specifically  associated  with  self-­‐monitoring  behavior  [3]  and  is   more  active  during  interoceptive  processing,  which  is  related  to  processing  of  internal  
  • 15.   15   stimuli.  The  SN  is  associated  with  the  reward  system  and  shows  greater  activation  when  an   individual  is  anticipating  food  consumption  [3].  We  expected  to  observe  a  SN  because   previous  studies  have  revealed  this  network  using  the  same  standard  techniques  [2,  3,  11].   However  our  analysis  did  not  reveal  this  network.     Strengths  and  Limitations     The  strengths  of  this  study  include  extensive  dietary  controls  and  supervised   exercise  sessions  to  ensure  adherence  to  our  diet  and  exercise  interventions.  All  subjects   were  blinded  to  the  protein  content  of  the  meals,  so  any  cognitive  biases  were  avoided.     Our  small  homogenous  group  of  subjects,  obese  young  women,  is  a  limitation.  A   larger  subject  group  may  provide  greater  statistical  power  to  detect  a  SN  and  changes  in   DMN  activity  among  interventions.  Including  a  more  heterogeneous  group  of  men  and   various  age  groups  would  increase  the  generalizability  of  these  findings.  Inclusion  of  a   normal  weight  group  would  enable  comparisons  of  resting  state  brain  activity  in  normal   weight  versus  obese  women.  Also  this  would  allow  an  investigation  of  whether  weight   status  influences  acute  effects  of  exercise  and  meal  consumption  on  resting  state  brain   activity.  In  this  study,  scanning  was  completed  in  the  evenings,  beginning  at  5pm;  whereas   most  existing  research  completed  resting  state  scanning  in  the  morning.  This  may  have   influenced  our  results,  however  further  research  is  needed  to  confirm  time  of  day  effects.     Further  Research     Since  this  pilot  study  was  the  first  to  test  and  analyze  the  effect  of  protein   consumption  and  aerobic  exercise  on  acute  activity  in  these  reward  networks,  further   research  should  be  done  to  confirm  that  there  is  no  change  in  activity  from  these   interventions.  Further  research  should  especially  be  done  with  a  larger  subject  group,  
  • 16.   16   along  with  both  men  and  women  of  varying  BMI’s.  Previous  research  showed  decreased   reward  network  activity  in  a  6-­‐month  exercise  training  intervention  [2],  therefore  further   research  should  be  done  to  determine  at  what  time  point  exercise  training  begins  to   decrease  network  activity.     Conclusion   In  conclusion,  neither  high  protein  meals  nor  aerobic  exercise  had  acute  effects  on   DMN  activity  in  obese  women  ages  18-­‐45  years  old.  Conclusions  cannot  be  made  regarding   the  effects  of  dietary  protein  or  exercise  on  SN  activity.  Acute  dietary  protein  and  aerobic   exercise  may  not  be  modulators  of  resting-­‐state  neural  activity  in  obese  women  and   therefore  may  not  be  effective  strategies  for  decreasing  resting-­‐state  neural  activity  in   obese  women.      
  • 17.   17   REFERENCES       1.   Huettel,  S.A.,  A.W.  Song,  and  G.  McCarthy,  Functional  magnetic  resonance  imaging.   2nd  ed.  2008,  Sunderland,  Mass.:  Sinauer  Associates.  xvi,  542  p.   2.   McFadden,  K.L.,  et  al.,  Effects  of  exercise  on  resting-­‐state  default  mode  and  salience   network  activity  in  overweight/obese  adults.  Neuroreport,  2013.  24(15):  p.  866-­‐71.   3.   Garcia-­‐Garcia,  I.,  et  al.,  Alterations  of  the  salience  network  in  obesity:  A  resting-­‐state   fMRI  study.  Hum  Brain  Mapp,  2012.   4.   Halton,  T.L.  and  F.B.  Hu,  The  effects  of  high  protein  diets  on  thermogenesis,  satiety  and   weight     loss:  a  critical  review.  J  Am  Coll  Nutr,  2004.  23(5):  p.  373-­‐85.   5.   Martin,  L.E.,  et  al.,  Neural  mechanisms  associated  with  food  motivation  in  obese  and   healthy   weight  adults.  Obesity  (Silver  Spring),  2010.  18(2):  p.  254-­‐60.   6.   Karhunen,  L.J.,  et  al.,  Regional  cerebral  blood  flow  during  food  exposure  in  obese  and   normal-­‐   weight  women.  Brain,  1997.  120  (  Pt  9):  p.  1675-­‐84.   7.   Rothemund,  Y.,  et  al.,  Differential  activation  of  the  dorsal  striatum  by  high-­‐calorie   visual  food     stimuli  in  obese  individuals.  Neuroimage,  2007.  37(2):  p.  410-­‐21.   8.   Stice,  E.,  et  al.,  Relation  of  reward  from  food  intake  and  anticipated  food  intake  to   obesity:  a     functional  magnetic  resonance  imaging  study.  J  Abnorm  Psychol,  2008.  117(4):  p.   924-­‐35.   9.   Horstmann,  A.,  et  al.,  Obesity-­‐Related  Differences  between  Women  and  Men  in  Brain   Structure     and  Goal-­‐Directed  Behavior.  Front  Hum  Neurosci,  2011.  5:  p.  58.   10.   Goldstone,  A.P.,  et  al.,  Fasting  biases  brain  reward  systems  towards  high-­‐calorie  foods.   Eur  J     Neurosci,  2009.  30(8):  p.  1625-­‐35.   11.   Cornier,  M.A.,  et  al.,  Sex-­‐based  differences  in  the  behavioral  and  neuronal  responses  to   food.     Physiol  Behav,  2010.  99(4):  p.  538-­‐43.   12.   Stubbs,  R.J.,  et  al.,  The  use  of  visual  analogue  scales  to  assess  motivation  to  eat  in   human  subjects:  a  review  of  their  reliability  and  validity  with  an  evaluation  of  new   hand-­‐held  computerized  systems  for  temporal  tracking  of  appetite  ratings.  Br  J  Nutr,   2000.  84(4):  p.  405-­‐15.   13.     Stensel,  D.,  Exercise,  appetite  and  appetite-­‐regulating  hormones:  implications  for  food   intake  and  weight  control.  Ann  Nutr  Metab,  2010.  57  Suppl  2:  p.  36-­‐42.   14.   Tregellas,  J.R.,  et  al.,  Altered  default  network  activity  in  obesity.  Obesity  (Silver   Spring),  2011.  19(12):  p.  2316-­‐21.   15.     Thompson,  W.R.,  N.F.  Gordon,  and  L.S.  Pescatello,  eds.  ACSM's  Guidelines  for   Exercise  Testing  and  Prescription.  8th  Edition  ed.  2010,  Lippincott  Williams  &   Wilkins:  Philadelphia,  PA.   16.     Wycherley,  T.P.,  L.J.  Moran,  P.M.  Clifton,  M.  Noakes,  and  G.D.  Brinkworth,  Effects  of  
  • 18.   18     energy-­‐restricted  high-­‐protein,  low-­‐fat  compared  with  standard-­‐protein,  low-­‐fat  diets:     a  meta-­‐analysis  of  randomized  controlled  trials.  Am  J  Clin  Nutr,  2012.  96(6):  p.  1281-­‐   98.        
  • 19.   19   TABLES  AND  FIGURES       Table  1.  Subject  Characteristics        
  • 20.   20   Table  2.  Dinner  (High  Protein  or  Normal  Protein)  Macronutrient  Composition1       Property High Protein Meal Normal Protein Meal Total Energy (kcals) 811.9 811.9 Protein (g, % Energy) 60.9, 30% 30.4, 15% Carbohydrate (g, % Energy) 91.3, 45% 121.8, 60% Fat (g, % Energy) 22.6 25% 22.6, 25%     1All  values  are  mean  ±  SEM.                  
  • 21.   21   Figure1:  Study  Design.  Schematic  of  testing  day  procedures.       Figure  2:  Default  Mode  Network.  AFNI  was  used  to  create  statistical  parametric  maps  to   depict  resting  state  Default  Mode  Network  activity  with  all  sessions  combined  (n=64  total   sessions).       Figure  3:  Pre-­‐Meal  Default  Mode  Network  Activity.  All  values  are  mean  ±  SEM.  Repeated   measures  ANOVA  (MIXED  Procedures,  SAS,  version  9.2)  was  used  to  test  for  differences  in   Default  Mode  Network  Activity  on  the  4  testing  days.  Default  Mode  Activity  was  not   different  on  these  testing  days.     Abbreviations:  NPR,  Normal  Protein/Rest;  HPR,  High  Protein/Rest;  NPEx,  Normal   Protein/Exercise;  HPEx,  High  Protein/Exercise     Figure  4:  Post-­‐Meal  Default  Mode  Network  Activity.  All  values  are  mean  ±  SEM.  Repeated   measures  ANOVA  (MIXED  Procedures,  SAS,  version  9.2)  was  used  to  test  for  differences  in   Default  Mode  Network  Activity  on  the  4  testing  days.  Default  Mode  Activity  was  not   different  on  these  testing  days.     Abbreviations:  NPR,  Normal  Protein/Rest;  HPR,  High  Protein/Rest;  NPEx,  Normal   Protein/Exercise;  HPEx,  High  Protein/Exercise      
  • 22.   22     Figure  1.  Study  Design              
  • 23.   23   Figure  2.  Default  Mode  Network                
  • 24.   24   Figure  3.  Pre-­‐Meal  Default  Mode  Network  Activity         0   1   2   3   4   5   6  DMNActivity(z-score) NPR                      HPR                        NPEx                    HPEx   Pre-­‐Meal  Default  Mode  Network  Activity  
  • 25.   25   Figure  4.  1-­‐Hour  Post-­‐Meal  Default  Mode  Network  Activity                                     0   1   2   3   4   5   6    DMN  Activity  (z-­‐score)   NPR                      HPR                        NPEx                    HPEx   1-­‐Hour  Post-­‐Meal  Default  Mode  Network  Activity  
  • 26.   26                           APPENDICES      
  • 27.   27             APPENDIX  1     Recruitment  Flyer  
  • 28.   28   Women Ages 18 to 45   Needed for a Research Study Prof. Wayne Campbell Department of Nutrition Science, Purdue University We are looking for overweight women who would like to volunteer for a research study evaluating whether exercise performed before dinner affects brain activity in response to viewing pictures of food. Participants will be compensated $200 for completing this study. INTERESTED VOLUNTEERS SHOULD BE: ü Female ü Age: 18 to 45 ü Overweight ü Not Smoking ü Not Pregnant Measurements taken during the study will include brain activity using functional magnetic resonance imaging, questionnaires about appetite, and a blood draw. FOR MORE INFORMATION, contact Drew @ (765) 494-8313 or Email: sayer@purdue.edu Department of Nutrition Science, Purdue University; West Lafayette, IN 47907       Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480   Drew   sayer@purdue.edu   765-­‐494-­‐8313   Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480   Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480   Drew   sayer@purdue.edu   765-­‐494-­‐8313   John Drew   sayer@purdue.edu   765-­‐494-­‐8313     Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480   Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480   Drew   sayer@purdue.edu   765-­‐494-­‐8313   John apolzan@purdue.edu 765-496-6480  
  • 29.   29             APPENDIX  2     Consent  Form        
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.   31             APPENDIX  3     Appetite  Questionnaire        
  • 40.   32   APPETITE LOG Study code:___________ Please place one mark on each scale that best reflects your answer to each of the following questions at this time. 1. How strong is your feeling of hunger? 1. ____ Not at all Extremely 2. How strong is your feeling of fullness? 2. ____ Not at all Extremely 3. How strong is your desire to eat? 3. ____ Not at all Extremely 4. How strong is your “urge to eat”? 4. ____ Not at all Extremely 5. How strong is your preoccupation with thoughts of food? 5. ____ Not at all Extremely 6. How strong is your feeling of thirst? 6. ____ Not at all Extremely
  • 41.   33   7. How strong is your desire to eat something salty? 7. ____ Not at all Extremely 8. How strong is your desire to eat something fatty? 8. ____ Not at all Extremely 9. How strong is your desire to eat something sweet? 9. ____ Not at all Extremely 10.The shakiness of your hand is… 10. ____ Not at all Extremely 11.How strong is your grip? 11. ____ Not at all Extremely 12.How itchy is your scalp? 12. ____ Not at all Extremely  
  • 42.   34               APPENDIX  4     YMCA  Submaximal  Protocol              
  • 43.   35   YMCA  Submaximal  Protocol                       1st  Stage   150  kgm  (0.5  kp)   HR:  <80   HR:  _____   750  kgm   (2.5  kp)   HR:  _____   900  kgm   (3.0  kp)   HR:  _____   1050  kgm   (3.5  kp)   HR:  _____   HR:  80-­‐89   HR:  _____   600  kgm   (2.0  kp)   HR:  _____   750  kgm   (2.5  kp)   HR:  _____   900  kgm   (3.0  kp)   HR:  _____   HR:  90-­‐100   HR:  _____   450  kgm   (1.5  kp)   HR:  _____   600  kgm   (2.0  kp)   HR:  _____   750  kgm   (2.5  kp)   HR:  _____   HR:  >100   HR:  _____   300  kgm   (1.0  kp)   HR:  _____   450  kgm   (1.5  kp)   HR:  _____   600  kgm   (2.0  kp)   HR:  _____  
  • 44.   36               APPENDIX  5     Resume              
  • 45.   37   Lexie Buchs Education Purdue University – West Lafayette, IN 10/2011 – Present Bachelor of Science degree with Honors, Major: Dietetics, GPA: 3.40 Study Abroad - Dublin Institute of Technology – Dublin, Ireland 1/2014 – 5/2014 Adult and Child First Aid/CPR/AED Certified Blood Born Pathogen Certified Work Experience Wiley Dining Court – Purdue University 10/2014 – Present Food Preparation, Food Service, Meal Preparation, Cleaning and Sanitation Campbell Nutrition Science Lab – Purdue University 5/2014 – Present MRI Secondary Operator, Data Entry into Microsoft Excel, Miscellaneous Lab Work Metabolic Kitchen – Purdue University 5/2014 - 8/2014 Data Entry, Food Preparation for scientific research studies Buffalo Wild Wings – Auburn, IN 5/2012 - 8/2012 Waitress, Cashier, Greeter, Cleaning and Sanitation Auburn Community Pool – Auburn, IN 5/10 - 8/10 & 5/11 - 8/11 Lifeguard, Swim Lesson Instructor Brown House Restaurant – Auburn, IN 3/2010 - 7/2010 Cook, Cashier, Food Service, Cleaning and Sanitation Volunteer Experience Data Collection for a Pantry Study in a Purdue University Nutrition Lab Fall 2014 Completed 24-hour recalls with study participants and entered data into Microsoft Excel Lafayette Soup Kitchen Fall 2014 Serve and Prepare Food Mentor at the Ireland Pre-Departure Meeting 11/20/2014 Assisting students in finding housing, and preparing students to leave for Ireland Mentor at the Study Abroad Fair 9/10/2014 Advocating to interested students about the perks of studying abroad and answering questions Ecuador Medical Mission Trip 12/15/2012 - 12/23/2012 Assisted doctors and nurses in hospitals and visited children in orphanages Delta Zeta Painted Turtle 5K – Benefitting the Starkey Hearing Foundation 4/27/2013 Organized and participated in the race event Delta Zeta Turtle Tug - Benefitting the Painted Turtle Camp 10/2011 & 10/2012 Organized the competition, Team Leader Delta Zeta ‘Bowlarama’ - Benefitting the Starkey Hearing Foundation 4/2011 Organized the tournament, facilitated the event Organizations & Societies Accomplishments & Awards Academy of Nutrition & Dietetics Honors Society.org Purdue University Nutrition Society Phi Sigma Theta Honors Society Purdue University Caduceus Club National Society of Collegiate Scholars Saint Michael’s Church Parishioner Intel International Science Fair 1st Place Air force Award 2011, Competitor 2010 & 2011 4546 Cr 16 Waterloo, IN 46793 Ÿ 260 908 1652 Ÿ lbuchs@purdue.edu