SlideShare a Scribd company logo
1 of 1
Download to read offline
§ The threespine stickleback has long been a staple organism in the study of
evolution because of its ecological and morphological diversity
§ Past research has highlighted the difference of vertebral number between forms
and found that it increases with body elongation (with some exceptions).
§ This study aims to analyze variability in vertebral length in ecologically diverse
populations of threespine stickleback
§ Vertebral length may be an important factor in a fish’s mobility. With shorter
vertebrae, the threespine stickleback should able to laterally bend to a greater
degree and increase its burst swimming performance.
Introduction:
Objectives:
1. Describe	
  the	
  relationships	
  between	
  vertebral	
  length	
  and	
  the	
  length	
  of	
  the	
  
body	
  in	
  threespine	
  stickleback
2. Examine	
  whether	
  vertebral	
  length	
  changes	
  along	
  the	
  vertebral	
  column
3. Examine	
  the	
  relationship	
  between	
  vertebral	
  length	
  and	
  vertebral	
  number
4. Investigate	
  how	
  vertebral	
  length	
  varies	
  between	
  populations	
  with	
  
different	
  body	
  forms
Results: Results:
Variation	
  in	
  Body	
  Forms:
Limnetic:
Benthic	
  and	
  Stream	
  populations	
  are	
  
characterized	
  by	
  their	
  deeper	
  body	
  forms	
  
and	
  are	
  found	
  in	
  shallow	
  lakes	
  and	
  
streams.	
  
Anadromous	
  populations	
  are	
  the	
  ocean	
  
form	
  of	
  the	
  threespine	
  stickleback,	
  known	
  
for	
  their	
  large	
  size	
  and	
  armored	
  plates.	
  
Benthic/Stream:
Anadromous:
Limnetic	
  populations	
  are	
  generally	
  found	
  in	
  
deep	
  lakes	
  and	
  are	
  characterized	
  by	
  their	
  
elongate	
  body	
  form.
Tinkering	
  with	
  the	
  Axial	
  Skeleton	
  II:	
  Uncovering	
  Vertebral	
  
Length	
  Variation	
  in	
  the	
  Threespine	
  Stickleback
Twenty	
  populations	
   of	
  the	
  threespine	
  stickleback	
  were	
  collected	
  from	
  nineteen	
  bodies	
  of	
  water	
  in	
  Alaska	
  and	
  were	
  brought	
  to	
  the	
  Field	
  
Museum	
  of	
  Natural	
  	
  history	
  for	
  photography	
   and	
  x-­‐ray.	
  The	
  photographs	
   and	
  x-­‐rays	
  were	
  then	
  scaled	
  and	
  measured	
  for	
  standard	
  (body)	
  
length,	
  body	
  depth,	
  and	
  vertebral	
  length	
  using	
  the	
  computer	
  program	
  TPSDig2.
Standardizing	
  vertebral	
  length	
  by	
  body	
  length:
• Vertebral	
  length	
  was	
  standardized	
  by	
  body	
  length	
  to	
  account	
  for	
  variation	
  attributable	
  to	
  differences	
  in	
  body	
  size	
  among	
  specimens.	
  This	
  
was	
  done	
  by	
  regression	
  analysis	
  and	
  the	
  calculation	
  of	
  residuals.	
  Residuals	
  are	
  the	
  difference	
  between	
  the	
  measured	
  value	
  and the	
  
predicted	
  value.	
  The	
  predicted	
  value	
  for	
  each	
  fish	
  was	
  added	
  to	
  the	
  calculated	
  residual	
  to	
  standardize	
  by	
  size.	
  A	
  grand	
  mean	
  was	
  also	
  
necessary	
  for	
  these	
  calculations.	
  However,	
  the	
  anadromous	
  populations	
   tend	
  to	
  be	
  much	
  larger	
  than	
  the	
  benthic/stream	
  and	
  limnetic	
  
populations.	
  To	
  ensure	
  accuracy,	
  two	
  separate	
  grand	
  means	
  for	
  standard	
  length	
  were	
  calculated:	
  one	
  for	
  benthic/stream	
  and	
  limnetic	
  
populations	
   (45.64	
  mm),	
  and	
  one	
  for	
  the	
  anadromous	
  populations	
   (69.50	
  mm).	
  Data	
  on	
  the	
  anadromous	
   populations	
  is	
  not	
  shown	
  here.	
  
Procedures	
  and	
  Statistical	
  Methods:
Figure	
  1	
  shows	
  the	
  size-­‐adjusted	
  vertebral	
  length	
  values	
  for	
  vertebrae	
  AV1-­‐CV3	
   as	
  a	
  
function	
  of	
  total	
  vertebral	
  number	
  separated	
  by	
  benthic/stream	
  (B)	
  and	
  limnetic	
  (L)	
  
populations.
Objective	
  2:
• Looking	
  vertically	
  down	
  each	
  column,	
  it	
  can	
  be	
  seen	
  that	
  there	
  is	
  a	
  decline	
  in	
  size-­‐
adjusted	
  vertebral	
  length	
  moving	
  posteriorly	
  along	
  the	
  body	
  axis	
  from	
  AV1	
  to	
  CV3.	
  
AV1	
  is	
  the	
  longest	
  vertebra,	
  followed	
  by	
  AV2.	
  AV3,	
  CV1,	
  and	
  CV2	
  tend	
  to	
  have	
  
similar	
  size-­‐adjusted	
  values,	
  while	
  CV3	
  consistently	
  shows	
  a	
  much	
  lower	
  value.	
  
Objective	
  3:
• As	
  vertebral	
  number	
  goes	
  up,	
  vertebral	
  length	
  declines	
  in	
  both	
  the	
  benthic	
  and	
  
limnetic	
  populations.	
  However,	
  the	
  CV3	
  length	
  in	
  the	
  limnetic	
  populations	
  with	
  34	
  
vertebrae	
  increases	
  slightly.	
  
Objective	
  4:
• This	
  graph	
  is	
  also	
  useful	
  for	
  examining	
  differences	
  in	
  vertebral	
  length	
  between	
  
limnetic	
  and	
  benthic	
  populations.	
  Overall	
  the	
  graph	
  shows	
  benthic	
  and	
  stream	
  
populations	
  having	
  a	
  lower	
  size-­‐adjusted	
  vertebral	
  length	
  than	
  the	
  limnetic	
  
populations.	
  
Kirby	
  Karpan	
  and	
  Windsor	
  Aguirre
Department	
  of	
  Biological	
  Sciences,	
  DePaul	
  University,	
  Chicago,	
  Illinois
Vertebral	
  Length	
  Along	
  the	
  Body	
  Axis:
Figure	
  1:
Rather	
  than	
  doing	
  statistical	
  analysis	
  on	
  all	
  vertebrae,	
  twelve	
  vertebrae	
  spanning	
  the	
  
entire	
  vertebral	
  column	
  were	
  measured. The	
  first	
  two	
  abdominal	
  vertebrae	
  were	
  
averaged	
  and	
  called	
  AV1.	
  The	
  middle	
  two	
  abdominal	
  vertebrae	
  were	
  averaged	
  and	
  
called	
  AV2,	
  and	
  the	
  last	
  two	
  abdominal	
  vertebrae	
  were	
  averaged	
  and	
  called	
  AV3.CV1,	
  
CV2,	
  and	
  CV3	
  were	
  calculated	
  in	
  the	
  same	
  way	
  for	
  the	
  caudal	
  vertebrae.	
  	
  
Figure	
  3:
Objective	
  1:
Figure	
  3 shows	
  vertebral	
  length	
  of	
  AV1-­‐CV3	
  plotted	
  as	
  a	
  function	
  of	
  standard	
  (body)	
  
length.	
  Specimens	
  are	
  color	
  coded	
  by	
  ecomorph.	
  It	
  can	
  be	
  seen	
  that	
  vertebral	
  length	
  is	
  
more	
  strongly	
  correlated	
  for	
  vertebrae	
  AV1-­‐CV2,	
  and	
  that	
  the	
  posterior	
  end,	
  CV3,	
  
exhibits	
  greater	
  variation.	
  However,	
  vertebral	
  length	
  is	
  generally	
  strongly	
  correlated	
  with	
  
standard	
  length.
In	
  terms	
  of	
  the	
  four	
  objectives,	
  it	
  has	
  been	
  seen	
  that:
1)	
  Larger	
  fish	
  have	
  longer	
  vertebrae,	
  with	
  R2 values	
  ranging	
  between	
  0.70	
  and	
  0.94.	
  For	
  most	
  vertebrae,	
  
the	
  R2 values	
  were	
  0.87	
  or	
  greater,	
  indicating	
  a	
  strong	
  relationship	
  between	
  vertebral	
  length	
  and	
  body	
  
length.	
  For	
  CV3,	
  the	
  relationship	
  was	
  weaker,	
  indicating	
  greater	
  variability	
  in	
  this	
  region.	
  
2)	
  Vertebral	
  length	
  declines	
  posteriorly	
  along	
  the	
  vertebral	
  column.	
  However,	
  the	
  pattern	
  of	
  decline	
  is	
  
not	
  uniform.	
  AV3,	
  CV1,	
  and	
  CV2	
  tend	
  to	
  be	
  similar	
  in	
  length.	
  The	
  largest	
  decline	
  is	
  consistently	
  between	
  
CV2	
  and	
  CV3,	
  indicating	
  substantial	
  decline	
  in	
  vertebral	
  length	
  at	
  the	
  very	
  end	
  of	
  the	
  vertebral	
  column.	
  
3)	
  Vertebral	
  length	
  generally	
  declines	
  as	
  vertebral	
  number	
  increases	
  in	
  both	
  benthic	
  and	
  limnetic	
  
populations.	
  Surprisingly,	
  vertebral	
  length	
  increased	
  between	
  fish	
  with	
  30	
  and	
  31	
  vertebrae.	
  
4)	
  Deeper	
  bodied	
  benthic/stream	
  populations	
  have	
  shorter	
  vertebrae	
  than	
  the	
  more	
  elongate	
  limnetic	
  
populations	
  for	
  all	
  vertebral	
  counts.	
  The	
  difference	
  in	
  vertebral	
  length	
  was	
  particularly	
  pronounced	
  for	
  
fish	
  with	
  33	
  vertebrae.	
  
Thanks	
  to	
  The	
  Field	
  Museum	
  of	
  Natural	
  History	
  and	
  all	
  involved	
  in	
  this	
  project.
Conclusions:
Results:
Figure	
  2: In	
  Figure	
  2,	
  vertebral	
  length	
  was	
  
averaged	
  across	
  all	
  vertebrae.	
  This	
  
figure	
  is	
  useful	
  for	
  comparing	
  the	
  
benthic/stream	
  and	
  limnetic	
  stickleback	
  
populations.
Objective	
  3:
• Vertebral	
  length	
  generally	
  declines	
  
with	
  increasing	
  vertebral	
  number,	
  
with	
  the	
  exception	
  of	
  fish	
  with	
  31	
  
vertebrae.	
  
Objective	
  4:
• For	
  all	
  vertebral	
  counts,	
  limnetics	
  
have	
  longer	
  vertebrae	
  than	
  benthics.	
  
The	
  benthic/stream	
  populations	
  
follow	
  the	
  limnetic	
  populations	
  fairly	
  
closely	
  save	
  for	
  the	
  large	
  drop	
  in	
  the	
  
benthic/stream	
  populations	
  at	
  33	
  
vertebrae.	
  

More Related Content

Similar to Presentation1 (3)

Fish Population Dynamics Lab
Fish Population Dynamics LabFish Population Dynamics Lab
Fish Population Dynamics LabZakiur
 
2016 ghassemi-clinically-usable-fib-ilium
2016 ghassemi-clinically-usable-fib-ilium2016 ghassemi-clinically-usable-fib-ilium
2016 ghassemi-clinically-usable-fib-iliumKlinikum Lippe GmbH
 
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...IOSR Journals
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Size distribution and biometric relationships of little tunny Euthynnus allet...
Size distribution and biometric relationships of little tunny Euthynnus allet...Size distribution and biometric relationships of little tunny Euthynnus allet...
Size distribution and biometric relationships of little tunny Euthynnus allet...inventy
 
Mendelsohn, judith aas poster summer 2011
Mendelsohn, judith   aas poster summer 2011Mendelsohn, judith   aas poster summer 2011
Mendelsohn, judith aas poster summer 2011judym333
 
Limb length discrepency
Limb length discrepencyLimb length discrepency
Limb length discrepencyNaveed Jumani
 
Pavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisPavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisantonio pio masciotra
 
fish population dynamics, Population structure
fish population dynamics, Population structurefish population dynamics, Population structure
fish population dynamics, Population structureDegonto Islam
 

Similar to Presentation1 (3) (20)

Fish Population Dynamics Lab
Fish Population Dynamics LabFish Population Dynamics Lab
Fish Population Dynamics Lab
 
2016 ghassemi-clinically-usable-fib-ilium
2016 ghassemi-clinically-usable-fib-ilium2016 ghassemi-clinically-usable-fib-ilium
2016 ghassemi-clinically-usable-fib-ilium
 
D0562022
D0562022D0562022
D0562022
 
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...
Accretion Profile of the Rosy Barb, Puntius Conchonius (Hamilton- Buchanan, 1...
 
D0562022
D0562022D0562022
D0562022
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Length Frequency Distribution of (Chrysichthys nigrodigitatus) (Lecepede, 180...
Length Frequency Distribution of (Chrysichthys nigrodigitatus) (Lecepede, 180...Length Frequency Distribution of (Chrysichthys nigrodigitatus) (Lecepede, 180...
Length Frequency Distribution of (Chrysichthys nigrodigitatus) (Lecepede, 180...
 
Comparative cytomorphometry of red blood cells of some fishes
Comparative cytomorphometry of red blood cells of some fishesComparative cytomorphometry of red blood cells of some fishes
Comparative cytomorphometry of red blood cells of some fishes
 
Size distribution and biometric relationships of little tunny Euthynnus allet...
Size distribution and biometric relationships of little tunny Euthynnus allet...Size distribution and biometric relationships of little tunny Euthynnus allet...
Size distribution and biometric relationships of little tunny Euthynnus allet...
 
CDR Ppt.pptx
CDR Ppt.pptxCDR Ppt.pptx
CDR Ppt.pptx
 
Mendelsohn, judith aas poster summer 2011
Mendelsohn, judith   aas poster summer 2011Mendelsohn, judith   aas poster summer 2011
Mendelsohn, judith aas poster summer 2011
 
Limb length discrepency
Limb length discrepencyLimb length discrepency
Limb length discrepency
 
skjain
skjainskjain
skjain
 
Pavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisPavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testis
 
Limb length discrepancy
Limb length discrepancyLimb length discrepancy
Limb length discrepancy
 
fish population dynamics, Population structure
fish population dynamics, Population structurefish population dynamics, Population structure
fish population dynamics, Population structure
 
SKJAIN
SKJAINSKJAIN
SKJAIN
 
Anatomia tilapia
Anatomia tilapiaAnatomia tilapia
Anatomia tilapia
 
Leg length measurements
Leg length measurementsLeg length measurements
Leg length measurements
 
lld- leg length.ppt
lld- leg length.pptlld- leg length.ppt
lld- leg length.ppt
 

Presentation1 (3)

  • 1. § The threespine stickleback has long been a staple organism in the study of evolution because of its ecological and morphological diversity § Past research has highlighted the difference of vertebral number between forms and found that it increases with body elongation (with some exceptions). § This study aims to analyze variability in vertebral length in ecologically diverse populations of threespine stickleback § Vertebral length may be an important factor in a fish’s mobility. With shorter vertebrae, the threespine stickleback should able to laterally bend to a greater degree and increase its burst swimming performance. Introduction: Objectives: 1. Describe  the  relationships  between  vertebral  length  and  the  length  of  the   body  in  threespine  stickleback 2. Examine  whether  vertebral  length  changes  along  the  vertebral  column 3. Examine  the  relationship  between  vertebral  length  and  vertebral  number 4. Investigate  how  vertebral  length  varies  between  populations  with   different  body  forms Results: Results: Variation  in  Body  Forms: Limnetic: Benthic  and  Stream  populations  are   characterized  by  their  deeper  body  forms   and  are  found  in  shallow  lakes  and   streams.   Anadromous  populations  are  the  ocean   form  of  the  threespine  stickleback,  known   for  their  large  size  and  armored  plates.   Benthic/Stream: Anadromous: Limnetic  populations  are  generally  found  in   deep  lakes  and  are  characterized  by  their   elongate  body  form. Tinkering  with  the  Axial  Skeleton  II:  Uncovering  Vertebral   Length  Variation  in  the  Threespine  Stickleback Twenty  populations   of  the  threespine  stickleback  were  collected  from  nineteen  bodies  of  water  in  Alaska  and  were  brought  to  the  Field   Museum  of  Natural    history  for  photography   and  x-­‐ray.  The  photographs   and  x-­‐rays  were  then  scaled  and  measured  for  standard  (body)   length,  body  depth,  and  vertebral  length  using  the  computer  program  TPSDig2. Standardizing  vertebral  length  by  body  length: • Vertebral  length  was  standardized  by  body  length  to  account  for  variation  attributable  to  differences  in  body  size  among  specimens.  This   was  done  by  regression  analysis  and  the  calculation  of  residuals.  Residuals  are  the  difference  between  the  measured  value  and the   predicted  value.  The  predicted  value  for  each  fish  was  added  to  the  calculated  residual  to  standardize  by  size.  A  grand  mean  was  also   necessary  for  these  calculations.  However,  the  anadromous  populations   tend  to  be  much  larger  than  the  benthic/stream  and  limnetic   populations.  To  ensure  accuracy,  two  separate  grand  means  for  standard  length  were  calculated:  one  for  benthic/stream  and  limnetic   populations   (45.64  mm),  and  one  for  the  anadromous  populations   (69.50  mm).  Data  on  the  anadromous   populations  is  not  shown  here.   Procedures  and  Statistical  Methods: Figure  1  shows  the  size-­‐adjusted  vertebral  length  values  for  vertebrae  AV1-­‐CV3   as  a   function  of  total  vertebral  number  separated  by  benthic/stream  (B)  and  limnetic  (L)   populations. Objective  2: • Looking  vertically  down  each  column,  it  can  be  seen  that  there  is  a  decline  in  size-­‐ adjusted  vertebral  length  moving  posteriorly  along  the  body  axis  from  AV1  to  CV3.   AV1  is  the  longest  vertebra,  followed  by  AV2.  AV3,  CV1,  and  CV2  tend  to  have   similar  size-­‐adjusted  values,  while  CV3  consistently  shows  a  much  lower  value.   Objective  3: • As  vertebral  number  goes  up,  vertebral  length  declines  in  both  the  benthic  and   limnetic  populations.  However,  the  CV3  length  in  the  limnetic  populations  with  34   vertebrae  increases  slightly.   Objective  4: • This  graph  is  also  useful  for  examining  differences  in  vertebral  length  between   limnetic  and  benthic  populations.  Overall  the  graph  shows  benthic  and  stream   populations  having  a  lower  size-­‐adjusted  vertebral  length  than  the  limnetic   populations.   Kirby  Karpan  and  Windsor  Aguirre Department  of  Biological  Sciences,  DePaul  University,  Chicago,  Illinois Vertebral  Length  Along  the  Body  Axis: Figure  1: Rather  than  doing  statistical  analysis  on  all  vertebrae,  twelve  vertebrae  spanning  the   entire  vertebral  column  were  measured. The  first  two  abdominal  vertebrae  were   averaged  and  called  AV1.  The  middle  two  abdominal  vertebrae  were  averaged  and   called  AV2,  and  the  last  two  abdominal  vertebrae  were  averaged  and  called  AV3.CV1,   CV2,  and  CV3  were  calculated  in  the  same  way  for  the  caudal  vertebrae.     Figure  3: Objective  1: Figure  3 shows  vertebral  length  of  AV1-­‐CV3  plotted  as  a  function  of  standard  (body)   length.  Specimens  are  color  coded  by  ecomorph.  It  can  be  seen  that  vertebral  length  is   more  strongly  correlated  for  vertebrae  AV1-­‐CV2,  and  that  the  posterior  end,  CV3,   exhibits  greater  variation.  However,  vertebral  length  is  generally  strongly  correlated  with   standard  length. In  terms  of  the  four  objectives,  it  has  been  seen  that: 1)  Larger  fish  have  longer  vertebrae,  with  R2 values  ranging  between  0.70  and  0.94.  For  most  vertebrae,   the  R2 values  were  0.87  or  greater,  indicating  a  strong  relationship  between  vertebral  length  and  body   length.  For  CV3,  the  relationship  was  weaker,  indicating  greater  variability  in  this  region.   2)  Vertebral  length  declines  posteriorly  along  the  vertebral  column.  However,  the  pattern  of  decline  is   not  uniform.  AV3,  CV1,  and  CV2  tend  to  be  similar  in  length.  The  largest  decline  is  consistently  between   CV2  and  CV3,  indicating  substantial  decline  in  vertebral  length  at  the  very  end  of  the  vertebral  column.   3)  Vertebral  length  generally  declines  as  vertebral  number  increases  in  both  benthic  and  limnetic   populations.  Surprisingly,  vertebral  length  increased  between  fish  with  30  and  31  vertebrae.   4)  Deeper  bodied  benthic/stream  populations  have  shorter  vertebrae  than  the  more  elongate  limnetic   populations  for  all  vertebral  counts.  The  difference  in  vertebral  length  was  particularly  pronounced  for   fish  with  33  vertebrae.   Thanks  to  The  Field  Museum  of  Natural  History  and  all  involved  in  this  project. Conclusions: Results: Figure  2: In  Figure  2,  vertebral  length  was   averaged  across  all  vertebrae.  This   figure  is  useful  for  comparing  the   benthic/stream  and  limnetic  stickleback   populations. Objective  3: • Vertebral  length  generally  declines   with  increasing  vertebral  number,   with  the  exception  of  fish  with  31   vertebrae.   Objective  4: • For  all  vertebral  counts,  limnetics   have  longer  vertebrae  than  benthics.   The  benthic/stream  populations   follow  the  limnetic  populations  fairly   closely  save  for  the  large  drop  in  the   benthic/stream  populations  at  33   vertebrae.