SlideShare a Scribd company logo
1 of 17
발표자 – Vision AI 김민하
Major Task
● Unsupervised domain adaptation
● 비지도 도메인 적응(UDA)은 레이블이 지정된 소스 도메인과 레이블이 지정되지 않은
대상 도메인 사이의 도메인 이동을 연결하는 것을 목표로 한다.
● Face anti-spoofing
Introduction
기존 방법들은 training stage에서 seen data만을 사용하거나, high level feature만 활용
하지만, 대상 도메인의 Supervision 이 불충분 → Source model의 성능에 영향을 미칠 수밖
에 없다.
low-level feature은 FAS 작업에 특히 중요하다고 주장
→ 따라서, High-level feature만을 기반으로 하는 target distribution alignment는
UDA FAS에 적합한 방법이 아닐 수 있음.
Contribution
● 이미지 변환을 통해 대상 데이터를 소스 도메인 스타일로 스타일화하여 대상
데이터를 소스 모델에 직접 맞추는 얼굴 안티 스푸핑을 위한 감독되지 않은 도
메인 적응의 새로운 관점을 제안한다.
● 스타일화를 보장하기 위해, 도메인 간 신경 통계 NSC과 DSC과 결합된 생성
도메인 적응 프레임워크를 제시함. 그리고 일반화를 보장하기 위해 목표 데이
터 분포를 더욱 확장하기 위해 도메인 내 SpecMix을 제시함.
● 광범위한 Experiments과 Visualization을 통해 제안된 방법의 효과를 입증한
다.
Architecture
Architecture
Methods
Methods
amplitude spectrum
original phase spectrum
R(xt) :real / I(xt) imaginary part of F(xt),
They consider explicitly penalizing the semantic inconsistency by ensuring the
phase is retained before and after the image translation.
mixed amplitude spectrum
iFFT
Methods
Methods
Experiments
Experiments
<dataset>
OULU-NPU (denoted as O)
CASIA-MFSD (denoted as C)
Idiap Replay-Attack (denoted as I)
MSU-MFSD (denoted as M).
<matrix>
HTER (mean of the FAR and the FRR)
AUC
Experiments
Experiments
1) UDA FAS 대부분 메소드는 사
전 훈련된 모델에 저장된 소스
도메인 지식을 완전히 활용하
지 않으며, 이는 기능 정렬에
충분하지 않다.
2) 대부분 Target domain gap을
크게 무시하고, Target data의
다양한 환경변수에 따른
Representation learning을 고
려하지 않는다.
Experiments
Conclusion
● inter-domain neural statisti consistency (NSC) to guide the generator
generating the source-style domain.
● dual-level semantic consistency (DSC) to prevent the generation from
semantic distortions.
● intra-domain spectrum mixup (SpecMix) to reduce the intra-domain gaps
Opinion..
Generator 뭘 쓴건지
그 이유는 제안하는 방식이 data를 generation해서 분류되는 방식임. 그래서 모르는
정보가 들어갔을 때 outlier로 작용될 수 있다고 봄.

More Related Content

More from KIMMINHA3

[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing
[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing
[AAAI21] Self-Domain Adaptation for Face Anti-SpoofingKIMMINHA3
 
[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing
[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing
[TIFS'22] Learning Meta Pattern for Face Anti-SpoofingKIMMINHA3
 
[AAAI'23]Learning Polysemantic Spoof Trace
[AAAI'23]Learning Polysemantic Spoof Trace[AAAI'23]Learning Polysemantic Spoof Trace
[AAAI'23]Learning Polysemantic Spoof TraceKIMMINHA3
 
Architectures of Super-resolution (AI)
Architectures of Super-resolution (AI)Architectures of Super-resolution (AI)
Architectures of Super-resolution (AI)KIMMINHA3
 
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...KIMMINHA3
 
[NeuralIPS 2020]filter in filter pruning
[NeuralIPS 2020]filter in filter pruning[NeuralIPS 2020]filter in filter pruning
[NeuralIPS 2020]filter in filter pruningKIMMINHA3
 
Methods for interpreting and understanding deep neural networks
Methods for interpreting and understanding deep neural networksMethods for interpreting and understanding deep neural networks
Methods for interpreting and understanding deep neural networksKIMMINHA3
 
Meta learned Confidence for Few-shot Learning
Meta learned Confidence for Few-shot LearningMeta learned Confidence for Few-shot Learning
Meta learned Confidence for Few-shot LearningKIMMINHA3
 
“zero-shot” super-resolution using deep internal learning [CVPR2018]
“zero-shot” super-resolution using deep internal learning [CVPR2018]“zero-shot” super-resolution using deep internal learning [CVPR2018]
“zero-shot” super-resolution using deep internal learning [CVPR2018]KIMMINHA3
 
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...KIMMINHA3
 
Transferable GAN-generated Images Detection Framework.
Transferable GAN-generated Images  Detection Framework.Transferable GAN-generated Images  Detection Framework.
Transferable GAN-generated Images Detection Framework.KIMMINHA3
 
[Seminar arxiv]fake face detection via adaptive residuals extraction network
[Seminar arxiv]fake face detection via adaptive residuals extraction network [Seminar arxiv]fake face detection via adaptive residuals extraction network
[Seminar arxiv]fake face detection via adaptive residuals extraction network KIMMINHA3
 
Xception mhkim
Xception mhkimXception mhkim
Xception mhkimKIMMINHA3
 
short text large effect measuring the impact of user reviews on android app s...
short text large effect measuring the impact of user reviews on android app s...short text large effect measuring the impact of user reviews on android app s...
short text large effect measuring the impact of user reviews on android app s...KIMMINHA3
 

More from KIMMINHA3 (14)

[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing
[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing
[AAAI21] Self-Domain Adaptation for Face Anti-Spoofing
 
[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing
[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing
[TIFS'22] Learning Meta Pattern for Face Anti-Spoofing
 
[AAAI'23]Learning Polysemantic Spoof Trace
[AAAI'23]Learning Polysemantic Spoof Trace[AAAI'23]Learning Polysemantic Spoof Trace
[AAAI'23]Learning Polysemantic Spoof Trace
 
Architectures of Super-resolution (AI)
Architectures of Super-resolution (AI)Architectures of Super-resolution (AI)
Architectures of Super-resolution (AI)
 
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...
[CVPRW2021]FReTAL: Generalizing Deepfake detection using Knowledge Distillati...
 
[NeuralIPS 2020]filter in filter pruning
[NeuralIPS 2020]filter in filter pruning[NeuralIPS 2020]filter in filter pruning
[NeuralIPS 2020]filter in filter pruning
 
Methods for interpreting and understanding deep neural networks
Methods for interpreting and understanding deep neural networksMethods for interpreting and understanding deep neural networks
Methods for interpreting and understanding deep neural networks
 
Meta learned Confidence for Few-shot Learning
Meta learned Confidence for Few-shot LearningMeta learned Confidence for Few-shot Learning
Meta learned Confidence for Few-shot Learning
 
“zero-shot” super-resolution using deep internal learning [CVPR2018]
“zero-shot” super-resolution using deep internal learning [CVPR2018]“zero-shot” super-resolution using deep internal learning [CVPR2018]
“zero-shot” super-resolution using deep internal learning [CVPR2018]
 
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...
[CVPRW 2020]Real world Super-Resolution via Kernel Estimation and Noise Injec...
 
Transferable GAN-generated Images Detection Framework.
Transferable GAN-generated Images  Detection Framework.Transferable GAN-generated Images  Detection Framework.
Transferable GAN-generated Images Detection Framework.
 
[Seminar arxiv]fake face detection via adaptive residuals extraction network
[Seminar arxiv]fake face detection via adaptive residuals extraction network [Seminar arxiv]fake face detection via adaptive residuals extraction network
[Seminar arxiv]fake face detection via adaptive residuals extraction network
 
Xception mhkim
Xception mhkimXception mhkim
Xception mhkim
 
short text large effect measuring the impact of user reviews on android app s...
short text large effect measuring the impact of user reviews on android app s...short text large effect measuring the impact of user reviews on android app s...
short text large effect measuring the impact of user reviews on android app s...
 

[ECCV2022] Generative Domain Adaptation for Face Anti-Spoofing

  • 1. 발표자 – Vision AI 김민하
  • 2. Major Task ● Unsupervised domain adaptation ● 비지도 도메인 적응(UDA)은 레이블이 지정된 소스 도메인과 레이블이 지정되지 않은 대상 도메인 사이의 도메인 이동을 연결하는 것을 목표로 한다. ● Face anti-spoofing
  • 3. Introduction 기존 방법들은 training stage에서 seen data만을 사용하거나, high level feature만 활용 하지만, 대상 도메인의 Supervision 이 불충분 → Source model의 성능에 영향을 미칠 수밖 에 없다. low-level feature은 FAS 작업에 특히 중요하다고 주장 → 따라서, High-level feature만을 기반으로 하는 target distribution alignment는 UDA FAS에 적합한 방법이 아닐 수 있음.
  • 4. Contribution ● 이미지 변환을 통해 대상 데이터를 소스 도메인 스타일로 스타일화하여 대상 데이터를 소스 모델에 직접 맞추는 얼굴 안티 스푸핑을 위한 감독되지 않은 도 메인 적응의 새로운 관점을 제안한다. ● 스타일화를 보장하기 위해, 도메인 간 신경 통계 NSC과 DSC과 결합된 생성 도메인 적응 프레임워크를 제시함. 그리고 일반화를 보장하기 위해 목표 데이 터 분포를 더욱 확장하기 위해 도메인 내 SpecMix을 제시함. ● 광범위한 Experiments과 Visualization을 통해 제안된 방법의 효과를 입증한 다.
  • 8. Methods amplitude spectrum original phase spectrum R(xt) :real / I(xt) imaginary part of F(xt), They consider explicitly penalizing the semantic inconsistency by ensuring the phase is retained before and after the image translation. mixed amplitude spectrum iFFT
  • 12. Experiments <dataset> OULU-NPU (denoted as O) CASIA-MFSD (denoted as C) Idiap Replay-Attack (denoted as I) MSU-MFSD (denoted as M). <matrix> HTER (mean of the FAR and the FRR) AUC
  • 14. Experiments 1) UDA FAS 대부분 메소드는 사 전 훈련된 모델에 저장된 소스 도메인 지식을 완전히 활용하 지 않으며, 이는 기능 정렬에 충분하지 않다. 2) 대부분 Target domain gap을 크게 무시하고, Target data의 다양한 환경변수에 따른 Representation learning을 고 려하지 않는다.
  • 16. Conclusion ● inter-domain neural statisti consistency (NSC) to guide the generator generating the source-style domain. ● dual-level semantic consistency (DSC) to prevent the generation from semantic distortions. ● intra-domain spectrum mixup (SpecMix) to reduce the intra-domain gaps
  • 17. Opinion.. Generator 뭘 쓴건지 그 이유는 제안하는 방식이 data를 generation해서 분류되는 방식임. 그래서 모르는 정보가 들어갔을 때 outlier로 작용될 수 있다고 봄.

Editor's Notes

  1. source data는
  2. mixed된 amplitude spectrum과 original phase spectrum을 이용해 inverse fourier transformation을 생성 https://aistudy9314.tistory.com/50