SlideShare a Scribd company logo
1 of 3
Memorial Calculo Método Matemático.
Calculo da Resistência Media de Dosagem.
𝑓𝑐𝑚𝑗 = 𝑓𝑐𝑘 + 1,65 × 𝑆𝑑
𝑓𝑐𝑚𝑗 = 20 + 1,65 × 5,5
𝑓𝑐𝑚𝑗 = 29,075 𝑚𝑝𝑎
 Lei de Abrams
𝑓𝑐𝑗 =
𝐾1
𝐾2
𝑎
𝑐
29,075 =
108,3825994
20,46712911
𝑎
𝑐
𝑎
𝑐
= 0,4359
Calculo Incógnita K1
𝐾1 = 10
(1
3
×((log𝑓𝑐𝑗1+log𝑓𝑐𝑗2+log𝑓𝑐𝑗3)−𝑏×( 𝑎
𝑐1
+
𝑎
𝑐2
+
𝑎
𝑐3
)))
𝐾1 = 10
(1
3
×((log25,23+log19,73+log10,2)+1,31105692918552×(0,46+0,61+0,76)))
𝐾1 = 108,3825994
Calculo Incógnita K2
𝐾2 = 101,31105692918552
𝐾2 = 20,46712911
Calculo Incógnita b
𝑏 =
log 𝑓𝑐𝑗1 × (2 ×
𝑎
𝑐1
−
𝑎
𝑐2
−
𝑎
𝑐3
) + log 𝑓𝑐𝑗2 × (2 ×
𝑎
𝑐2
−
𝑎
𝑐1
−
𝑎
𝑐3
) + log 𝑓𝑐𝑗3 (2 ×
𝑎
𝑐3
−
𝑎
𝑐1
−
𝑎
𝑐2
)
2 × (
𝑎
𝑐1
2
+
𝑎
𝑐2
2
+
𝑎
𝑐3
2
) − 2 × (
𝑎
𝑐1
×
𝑎
𝑐2
+
𝑎
𝑐1
×
𝑎
𝑐3
+
𝑎
𝑐2
×
𝑎
𝑐3
)
𝑏 =
log 25,23 × (2 × 0,46− 0,61 − 0,76) + log 19,73 × (2 × 0,61 − 0,46 − 0,76) + log 10,2(2 × 0,76 − 0,46 − 0,61)
2 × (0,462
+ 0,612
+ 0,762) − 2 × (0,46 × 0,61 + 0,46 × 0,76 + 0,61 × 0,76)
𝑏 = -1,31105692918552
 Lei de Lyse
Calculo Proporção de Agregado.
𝑚 = 𝐾3 + 𝐾4 ×
𝑎
𝑐
𝑚 = −1,1 + 10 × 0,4359
𝑚 = 3,259
Calculo Incógnita K2
𝐾3 = 5 − [
𝐾4 × (
𝑎
𝑐1
+
𝑎
𝑐2
+
𝑎
𝑐3
)
3
]
𝐾3 = 5 − [
10 × (0,46 + 0,61 + 0,76)
3
]
𝐾3 = -1,1
Calculo Incógnita K4
𝐾4 =
(3,5 ×
𝑎
𝑐1
+ 5 ×
𝑎
𝑐2
+ 6,5 ×
𝑎
𝑐3
) − 5 × (
𝑎
𝑐1
+
𝑎
𝑐2
+
𝑎
𝑐3
)
(
𝑎
𝑐1
2
+
𝑎
𝑐2
2
+
𝑎
𝑐3
2
) −
(
𝑎
𝑐1
+
𝑎
𝑐2
+
𝑎
𝑐3
)
2
3
𝐾4 =
(3,5 × 0,46 + 5 × 0,61 + 6,5 × 0,76) − 5 × (0,46 + 0,61 + 0,76)
(0,462 + 0,612 + 0,762) −
(0,46 + 0,61 + 0,76)2
3
𝐾4 = 10
 Lei de Molinari
Calculo Consumo de Cimento.
𝐶 =
1000
𝐾5 + 𝐾6 × 𝑚
𝐶 =
1000
0,416546568 + 0,469791864 × 3,259
𝐶 = 513,4529 Kg/m³
Calculo Incógnita K5
𝐾5 = [(
1000
3
) × (
1
𝐶1
+
1
𝐶2
+
1
𝐶3
)] − 5 × 𝐾6
𝐾5 = [(
1000
3
) × (
1
480,44234
+
1
367,0640
+
1
286,46804
)] − 5 × 0,469791864
𝐾5 = 0,416546568
Calculo Incógnita K6
𝐾6 = (
1000
3
) × (
1
𝐶3
−
1
𝐶1
)
𝐾6 = (
1000
3
) × (
1
286,46804
−
1
480,44234
)
𝐾6 = 0,469791864

More Related Content

What's hot

Structural Design and Analysis of Offshore Wind Turbines from a System Point ...
Structural Design and Analysis of Offshore Wind Turbines from a System Point ...Structural Design and Analysis of Offshore Wind Turbines from a System Point ...
Structural Design and Analysis of Offshore Wind Turbines from a System Point ...Franco Bontempi Org Didattica
 
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTArchitectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTPaul Jomy
 
The Side Project Report.pdf
The Side Project Report.pdfThe Side Project Report.pdf
The Side Project Report.pdfhabitualise.com
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sirSHAMJITH KM
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Basics of Foundation Design
Basics of Foundation DesignBasics of Foundation Design
Basics of Foundation Designduraocorreia
 
Solução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiSolução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiroger forte
 
Galpões viga pilar
Galpões viga pilarGalpões viga pilar
Galpões viga pilarTiago Torres
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wallAchuthan Karnnan
 
Analysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundationAnalysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundationMonojit Mondal
 
Cantilever Retaining Wall
Cantilever Retaining Wall Cantilever Retaining Wall
Cantilever Retaining Wall Harsh Shani
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Soil pressure in etabs
Soil pressure in etabsSoil pressure in etabs
Soil pressure in etabsJacob shah
 
Final structure report
Final structure reportFinal structure report
Final structure reportTay Jit Ying
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Muhammad Irfan
 
Topic1_Method of Virtual Work.pptx
Topic1_Method of Virtual Work.pptxTopic1_Method of Virtual Work.pptx
Topic1_Method of Virtual Work.pptxMary Joanne Aniñon
 

What's hot (20)

Structural Design and Analysis of Offshore Wind Turbines from a System Point ...
Structural Design and Analysis of Offshore Wind Turbines from a System Point ...Structural Design and Analysis of Offshore Wind Turbines from a System Point ...
Structural Design and Analysis of Offshore Wind Turbines from a System Point ...
 
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTArchitectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
 
The Side Project Report.pdf
The Side Project Report.pdfThe Side Project Report.pdf
The Side Project Report.pdf
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sir
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
 
09.01.03.072
09.01.03.07209.01.03.072
09.01.03.072
 
Basics of Foundation Design
Basics of Foundation DesignBasics of Foundation Design
Basics of Foundation Design
 
Solução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiSolução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoii
 
Galpões viga pilar
Galpões viga pilarGalpões viga pilar
Galpões viga pilar
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wall
 
Analysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundationAnalysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundation
 
Cantilever Retaining Wall
Cantilever Retaining Wall Cantilever Retaining Wall
Cantilever Retaining Wall
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Soil pressure in etabs
Soil pressure in etabsSoil pressure in etabs
Soil pressure in etabs
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Final structure report
Final structure reportFinal structure report
Final structure report
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Topic1_Method of Virtual Work.pptx
Topic1_Method of Virtual Work.pptxTopic1_Method of Virtual Work.pptx
Topic1_Method of Virtual Work.pptx
 
Settlement
SettlementSettlement
Settlement
 

Memorial calculo método matemático

  • 1. Memorial Calculo Método Matemático. Calculo da Resistência Media de Dosagem. 𝑓𝑐𝑚𝑗 = 𝑓𝑐𝑘 + 1,65 × 𝑆𝑑 𝑓𝑐𝑚𝑗 = 20 + 1,65 × 5,5 𝑓𝑐𝑚𝑗 = 29,075 𝑚𝑝𝑎  Lei de Abrams 𝑓𝑐𝑗 = 𝐾1 𝐾2 𝑎 𝑐 29,075 = 108,3825994 20,46712911 𝑎 𝑐 𝑎 𝑐 = 0,4359 Calculo Incógnita K1 𝐾1 = 10 (1 3 ×((log𝑓𝑐𝑗1+log𝑓𝑐𝑗2+log𝑓𝑐𝑗3)−𝑏×( 𝑎 𝑐1 + 𝑎 𝑐2 + 𝑎 𝑐3 ))) 𝐾1 = 10 (1 3 ×((log25,23+log19,73+log10,2)+1,31105692918552×(0,46+0,61+0,76))) 𝐾1 = 108,3825994 Calculo Incógnita K2 𝐾2 = 101,31105692918552 𝐾2 = 20,46712911 Calculo Incógnita b 𝑏 = log 𝑓𝑐𝑗1 × (2 × 𝑎 𝑐1 − 𝑎 𝑐2 − 𝑎 𝑐3 ) + log 𝑓𝑐𝑗2 × (2 × 𝑎 𝑐2 − 𝑎 𝑐1 − 𝑎 𝑐3 ) + log 𝑓𝑐𝑗3 (2 × 𝑎 𝑐3 − 𝑎 𝑐1 − 𝑎 𝑐2 ) 2 × ( 𝑎 𝑐1 2 + 𝑎 𝑐2 2 + 𝑎 𝑐3 2 ) − 2 × ( 𝑎 𝑐1 × 𝑎 𝑐2 + 𝑎 𝑐1 × 𝑎 𝑐3 + 𝑎 𝑐2 × 𝑎 𝑐3 ) 𝑏 = log 25,23 × (2 × 0,46− 0,61 − 0,76) + log 19,73 × (2 × 0,61 − 0,46 − 0,76) + log 10,2(2 × 0,76 − 0,46 − 0,61) 2 × (0,462 + 0,612 + 0,762) − 2 × (0,46 × 0,61 + 0,46 × 0,76 + 0,61 × 0,76) 𝑏 = -1,31105692918552
  • 2.  Lei de Lyse Calculo Proporção de Agregado. 𝑚 = 𝐾3 + 𝐾4 × 𝑎 𝑐 𝑚 = −1,1 + 10 × 0,4359 𝑚 = 3,259 Calculo Incógnita K2 𝐾3 = 5 − [ 𝐾4 × ( 𝑎 𝑐1 + 𝑎 𝑐2 + 𝑎 𝑐3 ) 3 ] 𝐾3 = 5 − [ 10 × (0,46 + 0,61 + 0,76) 3 ] 𝐾3 = -1,1 Calculo Incógnita K4 𝐾4 = (3,5 × 𝑎 𝑐1 + 5 × 𝑎 𝑐2 + 6,5 × 𝑎 𝑐3 ) − 5 × ( 𝑎 𝑐1 + 𝑎 𝑐2 + 𝑎 𝑐3 ) ( 𝑎 𝑐1 2 + 𝑎 𝑐2 2 + 𝑎 𝑐3 2 ) − ( 𝑎 𝑐1 + 𝑎 𝑐2 + 𝑎 𝑐3 ) 2 3 𝐾4 = (3,5 × 0,46 + 5 × 0,61 + 6,5 × 0,76) − 5 × (0,46 + 0,61 + 0,76) (0,462 + 0,612 + 0,762) − (0,46 + 0,61 + 0,76)2 3 𝐾4 = 10  Lei de Molinari Calculo Consumo de Cimento. 𝐶 = 1000 𝐾5 + 𝐾6 × 𝑚 𝐶 = 1000 0,416546568 + 0,469791864 × 3,259 𝐶 = 513,4529 Kg/m³
  • 3. Calculo Incógnita K5 𝐾5 = [( 1000 3 ) × ( 1 𝐶1 + 1 𝐶2 + 1 𝐶3 )] − 5 × 𝐾6 𝐾5 = [( 1000 3 ) × ( 1 480,44234 + 1 367,0640 + 1 286,46804 )] − 5 × 0,469791864 𝐾5 = 0,416546568 Calculo Incógnita K6 𝐾6 = ( 1000 3 ) × ( 1 𝐶3 − 1 𝐶1 ) 𝐾6 = ( 1000 3 ) × ( 1 286,46804 − 1 480,44234 ) 𝐾6 = 0,469791864