Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Scaling Self-Experimentation


Published on

Presented at Medicine X, September 2012

  • Be the first to comment

  • Be the first to like this

Scaling Self-Experimentation

  1. 1. Scaling Self-Experimentation IDA  SIM,  CO-­‐FOUNDER   September  28,  2012       A  project  of  the  Tides  Center     and  Professor  of  Medicine,   University  of  California  San  Francisco  
  2. 2. n  =  1  
  3. 3. (n  =  1).n  
  4. 4. n  Σ (n  =  1).
  5. 5. data  driven  feedback  loops  
  6. 6. 2  
  7. 7. without  better  sensemaking  to  drive  these  feedback  loops…  
  8. 8. Plateau  of  Diminished  Promise  
  9. 9. open  architecture  for  mobile  health   activity classification graphing mobility data over time a  small  set  of  common  principles/practices  by  which     these  modules  are  described  and  interface  to  one  another  
  10. 10. enabling  reuse,  integration,  and  innovation     getting  further  together  faster…  
  11. 11. n  Σ (n  =  1).
  12. 12. does  caffeine  affect  my  sleep?   N-­‐of-­‐1  study  design   caffeine   no  caffeine   caffeine   sleep   sleep   no  caffeine   caffeine   no  caffeine  
  13. 13. scaling  (n  =  1)  n  Outcome  Variables  •  a  caffeine  definition  module    •  a  sleep  definition  module,  with  APIs  for  getting  sleep  data  from   various  monitors  •  new  variables  that  take  advantage  of  mobile  (e.g.,  reality  mining)  Scripting  study  protocols  •  e.g.,  modules  for  setting  up  an  n-­‐of-­‐1  study    
  14. 14. n   Σ scaling            (n=1)  Make  the  findings  comparable  for  aggregation  •  libraries  of  standard  measures  (e.g.,  PHQ-­‐9,  PROMIS)  •  indexing  of  variables  and  results  and  to  standard  vocabularies              
  15. 15. n   Σ scaling            (n=1)  Need  to  describe  context  to  combine  apples  with  apples    •  who  is  “n”:  demographics,  important  clinical  features  •  study  approach:  ad  hoc,  n-­‐of-­‐1,  etc.    •  activity  context:  walking?  running?  •  social  context:  …  •  technical  context:  device,  operating  system,  app,  version,  sampling   rate…  •  etc.      
  16. 16. 2  
  17. 17. connect  with  us  •  Web:    •  Twitter:  @open_mhealth  •