SlideShare a Scribd company logo
1 of 59
Download to read offline
 
	
  
2015	
  Analyzing	
  Water	
  Quality	
  
Parameters	
  to	
  Assess	
  Lake	
  
Health	
  on	
  Kushog	
  Lake,	
  Ontario.	
  
	
  
Community	
  Based	
  Research	
  in	
  
Geography	
  4030Y	
  
Trent	
  University	
  in	
  partnership	
  
with	
  U-­‐Links	
  Haliburton.	
  
2014-­‐2015	
  
Prepared	
  for:	
  
Kushog	
  Lake	
  Property	
  Owners	
  Association	
  
Township	
  of	
  Algonquin	
  Highlands	
  
Halliburton	
  Ontario	
  
Prepared	
  by:	
  
Caitlyn	
  Bondy	
  and	
  Emily	
  McDonald	
  
Trent	
  University	
  
Peterborough,	
  Ontario	
  
K9J	
  7B8	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   1	
  
	
  
	
  
	
  
Table	
  of	
  Contents	
  
Acknowledgements........................................................................................................................3	
  
Contact	
  List………………………………………………………………………………………………………………………………..4	
  
1.0 Introduction…………………………………………………………………………………………………………………………5	
  
1.1 Project	
  Overview	
  and	
  Scope………………………………………………………………………………….5-­‐6	
  
1.2 Research	
  Questions……………………………………………………………………………………………….6-­‐7	
  
1.3 Framing	
  Research	
  and	
  Defining	
  Lake	
  Health	
  …………………………………………………………7-­‐9	
  
	
  
2.0 Background………………………………………………………………………………………………………………………..10	
  
2.1 Location	
  and	
  Physical	
  Characteristics	
  of	
  Kushog	
  Lake……………………………………………..10	
  
2.2 Hydrology	
  and	
  Watershed	
  Characteristics………………………………………………………………10	
  
2.2.1	
  Gull	
  River	
  Watershed………………………………………………………………………………..10-­‐13	
  
2.2.2	
  Kushog	
  Lake	
  Watershed	
  ………………………………………………………………………………..14	
  
2.3 Climate	
  and	
  Precipitation………………………………………………………………………………….14-­‐17	
  
2.4 Residential	
  and	
  Recreational	
  Uses	
  of	
  Kushog	
  Lake…………………………………………….17-­‐19	
  
2.5 Fisheries…………………………………………………………………………………………………………….19-­‐20	
  
	
  
3.0 Current	
  State	
  of	
  Knowledge	
  on	
  Lake	
  Ecosystems	
  ……………………………………………………………...21	
  
3.1 The	
  Lake	
  Environment…………………………………………………………………………………………….21	
  
3.1.1 Introduction………………………………………………………………………………………….21	
  
3.1.2 Lake	
  Thermal	
  Structure……………………………………………………………………21-­‐22	
  
3.1.3 Lake	
  Habitats	
  and	
  Food	
  Chains…………………………………………………………23-­‐24	
  
3.2 Nutrient	
  Dynamics………………………………………………………………………………………………….24	
  
3.2.1 Introduction………………………………………………………………………………………….24	
  
3.2.2 Phosphorous……………………………………………………………………………………24-­‐26	
  
3.2.3 Nitrogen……………………………………………………………………………………………….26	
  
3.2.4 Calcium…………………………………………………………………………………………….26-­‐27	
  
3.2.5 Dissolved	
  Organic	
  Carbon	
  and	
  Wetlands………………………………………....27-­‐28	
  
	
  
4.0 Lake	
  Health	
  and	
  Water	
  Quality	
  Assessment……………………………………………………………………….28	
  
4.1 Synthesis	
  of	
  Kushog	
  Research………………………………………………………………………………..28	
  
4.1.1 Reports…………………………………………………………………………………………….29-­‐31	
  
4.1.2 Data	
  Collection…………………………………………………………………………………31-­‐33	
  
4.1.3 Summary	
  Table………………………………………………………………………………..34-­‐35	
  
4.2 Regional	
  Comparison	
  of	
  Lake	
  Water	
  Quality	
  Parameters………………………………………..35	
  
4.2.1 Gull	
  River	
  Watershed……………………………………………………………………….35-­‐42	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   2	
  
	
  
	
  
	
  
4.3 Water	
  Quality	
  Guidelines	
  Comparison……………………………………………………………………42	
  
4.3.1 Recreational…………………………………………………………………………………….42-­‐44	
  
4.3.2 Protection	
  for	
  Aquatic	
  Life	
  ………………………………………………………………44-­‐45	
  
4.3.3 Drinking	
  Water	
  Standards	
  ……………………………………………………………….46-­‐47	
  
4.4 Benthic	
  Invertebrates	
  and	
  Biological	
  Indicators………………………………………………...48-­‐51	
  
	
  
5.0 Interpretation	
  and	
  Discussion…………………………………………………………………………………………....51	
  
5.1 Interpretation	
  of	
  Lake	
  Water	
  Quality	
  Parameters……………………………………………..51-­‐53	
  
5.2 Water	
  Quality	
  Guidelines	
  Interpretation……..……………………………………………………......53	
  
6.0 Recommendations………………………………………………………………………………………………………..54-­‐55	
  
References………………………………………………………………………………………………………………………....56-­‐58	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   3	
  
	
  
	
  
	
  
Acknowledgements	
  
The	
  authors	
  of	
  this	
  report	
  would	
  like	
  to	
  thank	
  Norma	
  Goodger	
  and	
  Dagmar	
  Boettcher	
  for	
  
proposing	
  this	
  project	
  and	
  allowing	
  us	
  to	
  put	
  our	
  best	
  efforts	
  into	
  the	
  assignment,	
  as	
  it	
  has	
  
proven	
  to	
  be	
  an	
  excellent	
  experience	
  for	
  both	
  of	
  us.	
  We	
  would	
  also	
  like	
  to	
  thank	
  the	
  entire	
  U-­‐
Links	
  team	
  that	
  has	
  essentially	
  made	
  this	
  all	
  happen,	
  with	
  a	
  special	
  thanks	
  to	
  Emma	
  Horrigan	
  
who	
  has	
  provided	
  support	
  throughout	
  the	
  project.	
  Lastly,	
  we	
  would	
  like	
  to	
  thank	
  the	
  Trent	
  
University	
  Geography	
  staff,	
  particularly	
  Professor	
  Cheryl	
  McKenna-­‐Neuman	
  and	
  Catherine	
  
Eimers	
  who’s	
  expertise	
  and	
  encouragement	
  was	
  highly	
  valuable	
  for	
  the	
  completion	
  of	
  this	
  
work.	
  	
  It	
  is	
  our	
  hope	
  that	
  this	
  research	
  will	
  help	
  the	
  Kushog	
  Lake	
  Properties	
  Owners	
  Association	
  
continue	
  the	
  excellent	
  stewardship	
  of	
  their	
  lake	
  environment.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   4	
  
	
  
	
  
	
  
Contact	
  List	
  
	
  
	
  
Host	
  Organization:	
  
Dagmar	
  Boettcher	
  
Kushog	
  Lake	
  Property	
  Owners	
  Association.	
  
dagmar@interhop.ca	
  
705-­‐457-­‐5968	
  
	
  
Norma	
  Goodger	
  
Kushog	
  Lake	
  Property	
  Owners	
  Association.	
  
norma.goodger@sympatico.ca	
  
705-­‐489-­‐2966	
  
	
  
U-­‐Links	
  Host:	
  
Emma	
  Horrigan.	
  	
  	
  
Box	
  655	
  Minden,	
  Ontario	
  
ehorrigan.ulinks@bellnet.ca	
  
1-­‐877-­‐527-­‐2411;	
  705-­‐286-­‐2411	
  
	
  
	
  
	
  
	
  
	
  
	
  
Trent	
  Faculty:	
  
Cheryl	
  McKenna-­‐Neuman.	
  	
  
Department	
  of	
  Geography	
  at	
  Trent	
  
University.	
  
cmckneuman@trentu.ca	
  
	
  
Catherine	
  Eimers	
  
Department	
  of	
  Geography	
  at	
  Trent	
  
University	
  
c.eimers@trentu.ca	
  
	
  
Benthic	
  Monitoring	
  Scientist:	
  	
  
Chris	
  Jones	
  
Dorset	
  Environmental	
  Science	
  
Centre.	
  
f.chris.jones@ontario.ca	
  
705	
  766	
  1724	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   5	
  
	
  
	
  
	
  
1.0 Introduction	
  
In	
  fulfillment	
  of	
  the	
  requirements	
  for	
  a	
  course	
  based	
  project	
  (GEOG	
  4030Y)	
  at	
  Trent	
  University,	
  
Emily	
  McDonald	
  and	
  Caitlyn	
  Bondy	
  in	
  partnership	
  with	
  the	
  Haliburton	
  Center	
  for	
  Community	
  
Based	
  Research,	
  were	
  retained	
  by	
  the	
  Kushog	
  Lake	
  Property	
  Owners	
  Association	
  (KLOPA)	
  to	
  
conduct	
  a	
  review,	
  summarization,	
  consolidation	
  and	
  interpretation	
  of	
  various	
  water	
  quality	
  
monitoring	
  programs	
  and	
  the	
  data	
  produced	
  by	
  them	
  for	
  Kushog	
  Lake.	
  KLOPA	
  expressed	
  a	
  
desire	
  to	
  understand	
  what	
  the	
  monitoring	
  data	
  indicate	
  in	
  terms	
  of	
  the	
  health	
  of	
  their	
  lake.	
  	
  
The	
  key	
  sources	
  of	
  Kushog	
  data	
  in	
  this	
  project	
  include	
  those	
  from	
  the	
  Lake	
  Partnership	
  
Program,	
  in	
  addition	
  to	
  supplementary	
  data	
  and	
  reports	
  from	
  the	
  Ministry	
  of	
  Environment,	
  
Glenside	
  Ecological	
  Services	
  and	
  KLOPA.	
  	
  The	
  documents	
  and	
  data	
  sources	
  which	
  have	
  been	
  
produced	
  specifically	
  for	
  Kushog	
  and	
  which	
  serve	
  as	
  the	
  foundation	
  for	
  this	
  project,	
  are	
  
outlined	
  in	
  full	
  within	
  section	
  4.0	
  of	
  this	
  report.	
  
The	
  KLOPA	
  expressed	
  interest	
  in	
  this	
  work	
  as	
  part	
  of	
  their	
  mandate	
  to	
  be	
  responsible	
  stewards	
  
of	
  their	
  lake	
  environment	
  and	
  to	
  ensure	
  the	
  continued	
  sustainability	
  of	
  the	
  environment	
  for	
  
generations	
  to	
  come.	
  They	
  have	
  expressed	
  concerns	
  over	
  potential	
  impacts	
  related	
  to	
  shoreline	
  
development,	
  water	
  level	
  fluctuations	
  and	
  regional	
  water	
  quality	
  trends.	
  	
  	
  In	
  addition	
  to	
  
interpreting	
  the	
  current	
  monitoring	
  data	
  and	
  geographic	
  reports	
  available,	
  KLOPA	
  was	
  
interested	
  in	
  receiving	
  recommendations	
  for	
  prioritizing	
  future	
  water	
  quality	
  monitoring	
  
efforts.	
  	
  
1.1	
  	
  Project	
  Scope	
  and	
  Overview	
  
This	
  report	
  aims	
  to	
  address	
  the	
  following	
  key	
  research	
  questions:	
  
• What	
  do	
  existing	
  water	
  quality	
  data	
  for	
  Kushog	
  Lake	
  suggest	
  in	
  terms	
  of	
  current	
  lake	
  
health?	
  How	
  do	
  we	
  define	
  lake	
  health?	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   6	
  
	
  
	
  
	
  
• Is	
  there	
  any	
  evidence	
  in	
  the	
  existing	
  water	
  quality	
  data	
  for	
  Kushog	
  Lake	
  that	
  would	
  
suggest	
  (1)	
  an	
  overall	
  pattern	
  or	
  trend	
  leading	
  to	
  decline	
  in	
  lake	
  health,	
  or	
  (2)	
  a	
  current	
  
issue	
  with	
  lake	
  health?	
  
	
  
• Using	
  peer-­‐reviewed	
  literature,	
  government	
  documents/established	
  guidelines,	
  can	
  we	
  
identify	
  any	
  upcoming	
  concerns	
  for	
  which	
  it	
  would	
  be	
  prudent	
  to	
  include	
  or	
  establish	
  
new	
  water	
  quality	
  parameters	
  to	
  monitor?	
  
	
  
• What	
  water	
  quality	
  parameters	
  or	
  indicators	
  should	
  be	
  prioritized	
  for	
  continued	
  
monitoring	
  on	
  Kushog	
  Lake	
  to	
  ensure	
  the	
  conservation	
  and	
  preservation	
  of	
  the	
  natural	
  
lake	
  environment?	
  	
  
To	
  focus	
  the	
  analysis	
  of	
  Kushog	
  Lake	
  water	
  quality	
  data,	
  a	
  methodology	
  was	
  designed	
  to	
  explain	
  
and	
  answer	
  the	
  aforementioned	
  research	
  questions	
  in	
  the	
  context	
  of	
  background	
  information	
  
about	
  Kushog	
  Lake,	
  general	
  lake	
  ecology	
  and	
  water	
  quality.	
  	
  	
  
This	
  report	
  does	
  not	
  directly	
  address	
  the	
  issue	
  of	
  water	
  level	
  draw-­‐downs	
  and	
  fluctuations.	
  It	
  is	
  
likely	
  that	
  this	
  should	
  be	
  an	
  area	
  of	
  further	
  research,	
  using	
  if	
  possible	
  the	
  foundation	
  
established	
  by	
  this	
  report.	
  	
  There	
  is	
  additional	
  information	
  related	
  to	
  sediment	
  profiles	
  for	
  the	
  
lake,	
  which	
  are	
  not	
  covered	
  in	
  detail	
  in	
  this	
  report,	
  but	
  have	
  been	
  discussed	
  in	
  other	
  
documents.	
  	
  	
  
	
  
1.2	
  	
  Research	
  Goals	
  and	
  Deliverables	
  	
  
The	
  research	
  goals	
  and	
  deliverables	
  for	
  this	
  project:	
  	
  
• Conduct	
  a	
  review,	
  summarization,	
  consolidation	
  and	
  interpretation	
  of	
  existing	
  water	
  
quality	
  monitoring	
  data	
  on	
  Kushog	
  Lake	
  as	
  related	
  to	
  lake	
  health	
  	
  
	
  
• Create	
  a	
  ‘Lake	
  Fact	
  Sheets’	
  which	
  aid	
  in	
  interpreting	
  the	
  water	
  quality	
  data	
  and	
  serve	
  as	
  
a	
  communication	
  tool	
  to	
  inform	
  KLOPA	
  on	
  the	
  status	
  of	
  lake	
  health.	
  	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   7	
  
	
  
	
  
	
  
	
  
• Provide	
  recommendations	
  for	
  the	
  prioritization	
  of	
  future	
  monitoring	
  efforts	
  aimed	
  at	
  
ensuring	
  the	
  conservation	
  and	
  preservation	
  of	
  the	
  natural	
  lake	
  environment.	
  	
  
	
  
1.3	
  	
  	
  Framing	
  Research	
  and	
  Defining	
  Lake	
  Health	
  	
  
Since	
  there	
  is	
  no	
  singular	
  definition	
  of	
  what	
  ‘lake	
  health’	
  or	
  a	
  healthy	
  lake	
  is,	
  a	
  methodological	
  
approach	
  which	
  allowed	
  for	
  qualitative	
  interpretation	
  of	
  the	
  monitoring	
  data	
  in	
  terms	
  of	
  ‘lake	
  
health’	
  was	
  established.	
  A	
  visual	
  conceptualization	
  of	
  this	
  methodological	
  approach	
  is	
  
presented	
  in	
  Figure	
  4.	
  This	
  establishes	
  Kushog	
  within	
  its	
  geographical	
  context	
  and	
  serves	
  as	
  a	
  
basis	
  for	
  comparison	
  of	
  what	
  is	
  typical	
  or	
  ‘normal’	
  for	
  Ontario	
  Precambrian	
  lakes.	
  Key	
  elements	
  
include:	
  
• Comparing	
  average	
  values	
  of	
  chemical	
  and	
  physical	
  water	
  quality	
  parameters	
  for	
  Kushog	
  
Lake	
  to	
  other	
  lakes	
  within	
  the	
  Gull	
  River	
  Watershed	
  in	
  order	
  to	
  determine	
  if	
  differences	
  
exist	
  or	
  if	
  the	
  water	
  quality	
  of	
  Kushog	
  is	
  typical	
  for	
  the	
  watershed.	
  
	
  
• Comparing	
  average	
  values	
  of	
  chemical	
  and	
  physical	
  water	
  quality	
  parameters	
  for	
  Kushog	
  
Lake	
  with	
  Canadian	
  Environmental	
  Quality	
  Guidelines	
  (EQGs)	
  including	
  the	
  Recreational	
  
Water	
  Quality	
  Guidelines	
  and	
  Aesthetics,	
  Canadian	
  Water	
  Quality	
  Guidelines	
  for	
  the	
  
Protection	
  of	
  Aquatic	
  Life	
  and	
  Guidelines	
  for	
  Canadian	
  Drinking	
  Water	
  Quality.	
  	
  	
  
	
  
These	
  EQGs	
  are	
  nationally	
  endorsed,	
  science-­‐based	
  goals	
  for	
  aquatic	
  ecosystems	
  which	
  
are	
  intended	
  to	
  aid	
  in	
  the	
  protection,	
  sustainability	
  and	
  enhancement	
  of	
  the	
  quality	
  of	
  
the	
  environment.	
  They	
  are	
  numerical	
  values	
  for	
  chemical	
  and	
  physical	
  parameters	
  in	
  
ambient	
  water	
  (CCME,	
  2001).	
  By	
  comparing	
  the	
  numerical	
  values	
  of	
  water	
  quality	
  
parameters	
  of	
  Kushog	
  Lake	
  to	
  these	
  protective	
  guidelines,	
  we	
  can	
  establish	
  if	
  any	
  
exceedences	
  occur,	
  which	
  may	
  indicate	
  if	
  there	
  is	
  impairment	
  of	
  lake	
  health.	
  Conversely,	
  
if	
  no	
  exceedences	
  occur	
  we	
  can	
  attest	
  there	
  is	
  no	
  impairment	
  of	
  lake	
  health	
  relative	
  to	
  
the	
  guideline	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   8	
  
	
  
	
  
	
  
• Creating	
  a	
  Kushog	
  Lake	
  ‘Fact	
  Sheet’	
  which	
  presents	
  and	
  interprets	
  key	
  water	
  quality	
  
parameters	
  including;	
  phosphorus	
  concentrations	
  through	
  time	
  relative	
  to	
  the	
  trophic	
  
status	
  it	
  represents;	
  secchi	
  depth	
  and	
  dissolved	
  oxygen/temperature	
  profile.	
  It	
  also	
  
includes	
  key	
  geographic	
  descriptors	
  such	
  as	
  lake	
  depth,	
  shape,	
  size,	
  %	
  wetlands	
  and	
  
watershed	
  area.	
  	
  
	
  
• Creating	
  a	
  ‘Kushog	
  Lake’	
  which	
  presents	
  information	
  about	
  the	
  use	
  of	
  benthic	
  
invertebrates	
  as	
  biological	
  indicators,	
  including	
  a	
  description	
  of	
  the	
  general	
  
methodology	
  
	
  
• All	
  water	
  quality	
  parameters	
  are	
  also	
  interpreted	
  in	
  the	
  context	
  of	
  current	
  peer	
  
reviewed	
  literature	
  and	
  related	
  to	
  lake	
  health.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   9	
  
	
  
	
  
	
  
	
  
Figure	
  4.	
  Visual	
  conceptualization	
  of	
  project	
  scope	
  and	
  methodological	
  approach	
  with	
  regard	
  to	
  defining	
  
and	
  assessing	
  lake	
  health	
  	
  
Section	
  4.1	
  serves	
  as	
  summarization	
  and	
  a	
  consolidation	
  of	
  the	
  known	
  available	
  reports	
  and	
  
data	
  specific	
  to	
  Kushog	
  Lake.	
  	
  These	
  reports	
  and	
  data	
  are	
  the	
  foundation	
  for	
  our	
  assessment	
  of	
  
the	
  water	
  quality	
  and	
  lake	
  health.	
  Additional	
  resources	
  which	
  were	
  obtained	
  that	
  are	
  applicable	
  
to,	
  but	
  not	
  directly	
  derived	
  from	
  Kushog	
  lake	
  are	
  also	
  described	
  in	
  this	
  section.	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   10	
  
	
  
	
  
	
  
2.0 Kushog	
  Lake	
  Geographical	
  Background	
  
	
  
2.1	
  	
  	
  	
  Location	
  and	
  Physical	
  Characteristics	
  of	
  Kushog	
  Lake	
  
Kushog	
  Lake	
  is	
  situated	
  within	
  the	
  Precambrian	
  Shield	
  at	
  N	
  45	
  °5’,	
  W	
  78°	
  47’	
  at	
  an	
  elevation	
  of	
  
332.8	
  meters	
  above	
  sea	
  level.	
  	
  By	
  car,	
  it	
  is	
  situated	
  approximately	
  1hr	
  45	
  min	
  NW	
  of	
  
Peterborough	
  ON,	
  45	
  min	
  SW	
  of	
  Algonquin	
  Provincial	
  Park,	
  E	
  of	
  Haliburton,	
  ON	
  and	
  N	
  of	
  
Minden,	
  ON.	
  	
  Kushog	
  Lake	
  lies	
  on	
  right	
  on	
  the	
  border	
  between	
  Haliburton	
  and	
  Muskoka	
  
countries	
  and	
  the	
  townships	
  of	
  Minden	
  Hills	
  and	
  Algonquin	
  Highlands.	
  It	
  is	
  a	
  long	
  and	
  narrow	
  
water	
  body,	
  oriented	
  north	
  to	
  south	
  with	
  a	
  mean	
  depth	
  of	
  9.1	
  m	
  and	
  maximum	
  of	
  38.1	
  m.	
  	
  The	
  
lake	
  spans	
  17.2	
  km	
  with	
  a	
  maximum	
  width	
  of	
  1.6	
  km.	
  The	
  water	
  surface	
  area	
  of	
  Kushog	
  Lake	
  is	
  
approximately	
  600	
  hectares	
  with	
  a	
  shoreline	
  perimeter	
  that	
  spans	
  approximately	
  38.2	
  to	
  40.6	
  
km.	
  For	
  reference,	
  see	
  Figures	
  1a	
  and	
  1b.	
  The	
  lake	
  holds	
  a	
  total	
  volume	
  of	
  63	
  200	
  000	
  m³	
  (MOE,	
  
2003;	
  Heaven	
  and	
  Brady,	
  2011).	
  Table	
  1	
  provides	
  a	
  summary	
  of	
  this	
  information.	
  
Table	
  1.	
  Summary	
  of	
  physical	
  characteristics	
  of	
  Kushog	
  Lake.	
  
Physical	
  Characteristics	
  of	
  Kushog	
  Lake	
  
Lake	
  Surface	
  Area	
   679	
  ha	
  
Shoreline	
  Perimeter	
   38.3	
  to	
  40.6	
  km	
  
Maximum	
  Depth	
   38.1	
  m	
  
Mean	
  Depth	
   9.1	
  m	
  
North	
  to	
  South	
  
Length	
  
17.2	
  km	
  
Maximum	
  Width	
   1.6	
  km	
  
Elevation	
   332.8	
  mASL	
  
Total	
  Volume	
   63	
  200	
  000	
  m³	
  
	
  
2.2	
  	
  	
  Hydrology	
  and	
  Watershed	
  Characteristics	
  
2.2.1	
  Gull	
  River	
  Watershed	
  
The	
  Gull	
  River	
  Watershed	
  (Figure	
  2)	
  is	
  situated	
  at	
  the	
  most	
  northern	
  part	
  of	
  the	
  Trent	
  River	
  
basin,	
  lying	
  to	
  the	
  west	
  of	
  the	
  Black	
  River	
  Watershed	
  and	
  east	
  of	
  the	
  Burnt	
  River	
  Watershed.	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   11	
  
	
  
	
  
	
  
Altogether,	
  there	
  are	
  17	
  lakes	
  within	
  the	
  Gull	
  River	
  Watershed	
  that	
  contain	
  21	
  dams	
  operated	
  
by	
  the	
  Trent	
  Severn	
  Waterway	
  (TSW).	
  Of	
  the	
  17	
  lakes,	
  Kushog	
  resides	
  in	
  middle	
  of	
  the	
  
watershed.	
  Kushog	
  is	
  managed	
  as	
  a	
  headwater	
  for	
  the	
  Trent	
  Severn	
  Waterway	
  (TSW),	
  which	
  is	
  
an	
  important	
  economic,	
  environmental	
  and	
  recreational	
  resource	
  that	
  consists	
  of	
  
interconnected	
  series	
  of	
  lakes,	
  as	
  well	
  as	
  artificial	
  canal	
  cuts	
  stretching	
  for	
  386	
  km	
  (Parks	
  
Canada,	
  2014).	
  This	
  subjects	
  Kushog	
  to	
  water	
  level	
  fluctuations,	
  which	
  are	
  managed	
  seasonally	
  
to	
  accommodate	
  Lake	
  Trout	
  spawning	
  activity.	
  	
  
	
  
Sherborne	
  Lake	
  resides	
  directly	
  north	
  of	
  the	
  Kushog	
  Watershed	
  and	
  connects	
  Lake	
  St.	
  Nora	
  to	
  
Kushog	
  Lake.	
  The	
  most	
  northern	
  lakes	
  within	
  the	
  Gull	
  River	
  Watershed	
  are:	
  Sherborne,	
  Red	
  
Pine	
  Lake,	
  Kennisis	
  Lake,	
  Redstone	
  Lake,	
  and	
  Percy	
  Lake	
  (Map	
  1).	
  All	
  five	
  of	
  these	
  lakes	
  
sequentially	
  flow	
  southwards	
  into	
  the	
  remaining	
  lakes.	
  Moore	
  Lake	
  is	
  the	
  most	
  southern	
  lake	
  
within	
  the	
  watershed,	
  which	
  flows	
  directly	
  into	
  the	
  Kawartha	
  Lake	
  watershed.	
  	
  
	
  
Of	
  particular	
  interest	
  to	
  this	
  report	
  are	
  the	
  lakes:	
  Big	
  Hawk	
  Lake,	
  Eagle	
  Lake,	
  Halls	
  Lake,	
  Twelve	
  
Miles	
  Lake,	
  and	
  Gull	
  Lake.	
  These	
  lakes	
  will	
  be	
  analyzed	
  in	
  conjunction	
  with	
  Kushog	
  Lake	
  to	
  
distinguish	
  any	
  differences	
  or	
  consolidate	
  any	
  similarities.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   12	
  
	
  
	
  
	
  
	
  
Figure	
  1.	
  	
  Aerial	
  Photograph	
  Image	
  of	
  Kushog	
  Lake.	
  Retrieved	
  from	
  Scholars	
  GeoPortal	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   13	
  
	
  
	
  
	
  
	
  
Figure	
  2.	
  Gull	
  River	
  Watershed;	
  consists	
  of	
  21	
  large	
  named	
  lakes	
  connected	
  by	
  the	
  Gull	
  River.	
  Source:	
  
adopted	
  from	
  www.redstonelake.com.	
  Retrieved	
  April	
  1st
,	
  2015.	
  	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   14	
  
	
  
	
  
	
  
2.2.2	
  Kushog	
  Lake	
  Watershed	
  
Nested	
  within	
  the	
  Gull	
  River	
  Watershed,	
  as	
  delineated	
  by	
  Glenside	
  Ecological	
  Services	
  (GES)	
  
G.I.S.	
  analysis,	
  is	
  Kushog	
  Lake’s	
  own	
  drainage	
  basin	
  or	
  watershed.	
  The	
  total	
  watershed	
  area,	
  
including	
  the	
  water	
  bodies	
  of	
  St.	
  Nora	
  and	
  Kushog	
  is	
  approximately	
  8,656	
  hectares	
  (ha).	
  Lake	
  St.	
  
Nora	
  has	
  an	
  area	
  of	
  276	
  ha	
  and	
  Kushog	
  Lake	
  has	
  an	
  area	
  of	
  679	
  ha.	
  Other	
  important	
  
waterbodies	
  within	
  the	
  watershed	
  include	
  Margaret	
  Lake,	
  Kabakwa,	
  and	
  Plastic	
  Lake.	
  The	
  
watershed	
  is	
  further	
  divided	
  into	
  terrestrial	
  sub-­‐watersheds	
  representing	
  land	
  units	
  draining	
  
separately	
  into	
  Kushog	
  (Map	
  3).	
  There	
  are	
  46-­‐subwatersheds	
  which	
  range	
  from	
  approximately	
  9	
  
hectares	
  to	
  475	
  hectares.	
  Collectively	
  these	
  sub	
  watersheds	
  have	
  an	
  area	
  of	
  7701	
  ha	
  excluding	
  
the	
  area	
  of	
  Kushog	
  and	
  Lake	
  St	
  Nora.	
  From	
  these	
  sub-­‐watersheds	
  there	
  are	
  approximately	
  34	
  
streams	
  identified	
  in	
  the	
  watershed,	
  as	
  well	
  as	
  12	
  culverts.	
  The	
  areas	
  of	
  each	
  sub-­‐watershed	
  are	
  
summarized	
  in	
  detail	
  in	
  the	
  GES	
  document	
  ‘Kushog	
  Lake	
  Watershed:	
  Wetland	
  and	
  Stream	
  
Desktop	
  Analysis,	
  Final	
  Report,	
  2011’.	
  	
  
	
  
There	
  is	
  an	
  existing	
  body	
  of	
  research	
  (e.g.	
  Adkinson	
  et	
  al.,2008,	
  Eimers	
  et	
  al.,	
  2008,	
  Watmough	
  
and	
  Dillion,	
  2003),	
  which	
  has	
  been	
  carried	
  out	
  by	
  Trent	
  University	
  researchers	
  on	
  Plastic	
  Lake	
  
involving	
  legacy	
  effects	
  of	
  acidification	
  and	
  recovery	
  quantification,	
  dissolved	
  organic	
  carbon	
  
and	
  nutrient	
  dynamics,	
  calcium	
  weathering,	
  metal	
  release	
  from	
  wetlands	
  and	
  phosphorus	
  
budgets.	
  	
  We	
  mention	
  this	
  since	
  Plastic	
  Lake	
  resides	
  within	
  Kushog’s	
  catchment.	
  Plastic	
  lake	
  is	
  a	
  
sustainably	
  smaller	
  lake	
  (32	
  ha)	
  and	
  its	
  catchment	
  area	
  represents	
  only	
  257	
  ha	
  or	
  3.5	
  %	
  of	
  the	
  
terrestrial	
  catchment	
  of	
  Kushog.	
  	
  	
  
	
  
2.3	
  	
  	
  Climate	
  and	
  Precipitation	
  
Precipitation	
  events	
  and	
  temperature	
  fluctuations	
  contribute	
  to	
  variable	
  water	
  quality.	
  
Frequent	
  precipitation	
  events	
  can	
  lead	
  to	
  greater	
  runoff	
  flowing	
  into	
  the	
  lake,	
  which	
  may	
  carry	
  
a	
  multitude	
  of	
  contaminants	
  ranging	
  from	
  agricultural	
  nutrients	
  or	
  pesticides	
  to	
  road	
  salts.	
  Over	
  
the	
  past	
  several	
  decades,	
  road	
  salts	
  have	
  been	
  a	
  major	
  concern	
  as	
  they	
  have	
  had	
  an	
  adverse	
  
effect	
  on	
  freshwater	
  organisms	
  as	
  well	
  as	
  the	
  chemical	
  composition	
  of	
  lakes.	
  As	
  more	
  highways	
  
are	
  constructed	
  in	
  relatively	
  undeveloped	
  regions,	
  particularly	
  on	
  the	
  Canadian	
  Shield,	
  and	
  rural	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   15	
  
	
  
	
  
	
  
ecosystems	
  become	
  incorporated	
  within	
  the	
  urban	
  region,	
  aquatic	
  ecosystems	
  located	
  near	
  
these	
  roadways	
  may	
  be	
  adversely	
  impacted.	
  In	
  particular,	
  species	
  shift	
  may	
  occur	
  and	
  some	
  
lakes	
  can	
  become	
  chemically	
  stratified.	
  These	
  salts	
  naturally	
  enter	
  surface	
  waters	
  through	
  
pathways	
  of	
  the	
  water	
  cycle,	
  which	
  include	
  precipitation,	
  stream	
  inflow,	
  overland	
  runoff,	
  and	
  
groundwater	
  inputs	
  (Evans	
  et	
  al.,	
  2001).	
  The	
  same	
  processes	
  apply	
  to	
  the	
  transportation	
  of	
  
agricultural	
  nutrients	
  or	
  pesticides.	
  Runoff	
  water	
  associated	
  with	
  storm	
  events	
  can	
  cause	
  a	
  flush	
  
or	
  ‘pulse’	
  of	
  contaminants	
  to	
  enter	
  aquatic	
  systems	
  (Richards	
  et	
  al.,	
  1992).	
  	
  Furthermore,	
  
agricultural	
  runoff	
  can	
  carry	
  sources	
  of	
  phosphorus	
  and	
  contribute	
  to	
  the	
  eutrophication	
  of	
  
freshwaters.	
  Although,	
  most	
  freshwater	
  lakes	
  are	
  phosphorus	
  limited,	
  continued	
  inputs	
  of	
  
fertilizer	
  and	
  manure	
  in	
  excess	
  of	
  crop	
  requirements	
  have	
  led	
  to	
  soil	
  phosphorus	
  levels	
  that	
  are	
  
of	
  environmental	
  concern	
  and	
  can	
  threaten	
  water	
  quality	
  (Sharpley	
  et	
  al.,	
  1994).	
  	
  
There	
  are	
  several	
  actions	
  that	
  have	
  been	
  suggested	
  within	
  relevant	
  research	
  to	
  reduce	
  the	
  
transport	
  of	
  road	
  salt	
  and	
  agricultural	
  runoff	
  input	
  into	
  aquatic	
  ecosystems.	
  These	
  actions	
  
include	
  modifying	
  application	
  rates,	
  improving	
  operation	
  of	
  road	
  salt	
  storage	
  depots,	
  using	
  safe	
  
waste-­‐snow	
  removal	
  methods,	
  and	
  incorporating	
  buffer	
  strips,	
  riparian	
  zones	
  and	
  terracing	
  
surrounding	
  the	
  lake	
  (Evans	
  et	
  al.,	
  2002;	
  Sharpley	
  et	
  al,	
  2001).	
  	
  
Temperature	
  fluctuation	
  also	
  has	
  profound	
  effects	
  on	
  lake	
  health,	
  as	
  a	
  warmer	
  climate	
  can	
  
increase	
  lake	
  temperatures	
  and	
  exert	
  major	
  influence	
  on	
  biological	
  activity.	
  Freshwater	
  fish	
  are	
  
directly	
  affected	
  by	
  the	
  temperature	
  of	
  their	
  surrounding	
  environment	
  and	
  can	
  be	
  grouped	
  into	
  
three	
  thermal	
  guilds:	
  1)	
  warm-­‐water	
  (E.g.,	
  smallmouth	
  bass);	
  2)	
  cool-­‐water	
  (e.g.,	
  northern	
  pike,	
  
walleye,	
  yellow	
  perch);	
  and	
  3)	
  cold-­‐water	
  (e.g.	
  brook	
  trout,	
  lake	
  trout,	
  lake	
  whitefish).	
  Fish	
  
species	
  that	
  spawn	
  at	
  low	
  temperature	
  generate	
  larvae	
  that	
  do	
  best	
  at	
  low	
  temperatures	
  and	
  
fish	
  species	
  that	
  spawn	
  at	
  high	
  temperatures	
  generate	
  larvae	
  that	
  do	
  best	
  at	
  high	
  temperatures	
  
(Chetkiewicz	
  et	
  al.,	
  2012).	
  It	
  is	
  also	
  imperative	
  to	
  be	
  aware	
  of	
  the	
  fact	
  that	
  increasing	
  
concentrations	
  of	
  greenhouse	
  gases	
  are	
  expected	
  to	
  increase	
  surface	
  temperatures,	
  lower	
  pH,	
  
and	
  cause	
  changes	
  to	
  vertical	
  mixing,	
  upwelling,	
  precipitation,	
  and	
  evaporation	
  rates.	
  The	
  
potential	
  consequences	
  of	
  these	
  changes	
  can	
  lead	
  to	
  harmful	
  algae	
  blooms	
  (Moore	
  et	
  al,	
  2008).	
  
A	
  study	
  performed	
  by	
  Winter	
  et	
  al.	
  (1994)	
  revealed	
  that	
  most	
  of	
  the	
  increase	
  in	
  the	
  number	
  of	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   16	
  
	
  
	
  
	
  
cyanobacteria	
  bloom	
  reports	
  was	
  associated	
  with	
  lakes	
  on	
  the	
  Canadian	
  Shield.	
  Winter	
  et	
  al	
  
attributed	
  these	
  trends	
  to	
  (1)	
  increased	
  nutrient	
  inputs	
  that	
  promote	
  algae	
  growth,	
  (2)	
  factors	
  
associated	
  with	
  climate	
  change	
  that	
  exacerbate	
  bloom	
  conditions;	
  and	
  (3)	
  an	
  increase	
  in	
  public	
  
awareness	
  of	
  algal	
  issues.	
  Irrefutably,	
  climate	
  change	
  correlates	
  with	
  increased	
  temperatures	
  
and	
  algae	
  bloom	
  growth	
  and	
  is	
  an	
  important	
  factor	
  to	
  consider	
  when	
  discussing	
  a	
  lakes	
  overall	
  
health.	
  	
  
Figure	
  3	
  displays	
  the	
  30-­‐year	
  climate	
  normal	
  for	
  the	
  Haliburton	
  region	
  with	
  both	
  precipitation	
  
and	
  temperature	
  averages.	
  “Climate	
  normal”	
  refers	
  to	
  the	
  arithmetic	
  calculations	
  based	
  on	
  
observed	
  climate	
  values	
  in	
  a	
  given	
  region	
  over	
  a	
  specific	
  time,	
  usually	
  30	
  years	
  (Government	
  of	
  
Canada,	
  2015).	
  The	
  climograph	
  displays	
  monthly	
  averages	
  for	
  precipitation	
  (mm)	
  and	
  daily	
  
temperatures,	
  with	
  maximum	
  and	
  minimum	
  daily	
  temperatures	
  in	
  Haliburton	
  for	
  the	
  years	
  
1981	
  to	
  2010.	
  	
  
Kushog	
  Lake	
  is	
  located	
  within	
  the	
  Haliburton	
  region,	
  which	
  has	
  a	
  temperate	
  continental	
  climate.	
  
A	
  temperate	
  continental	
  climate	
  is	
  usually	
  characteristic	
  of	
  short	
  and	
  warm	
  summers	
  and	
  
winters	
  that	
  are	
  long	
  and	
  cold,	
  which	
  is	
  exhibited	
  in	
  Figure	
  3.	
  This	
  figure	
  displays	
  that	
  the	
  
highest	
  daily	
  average	
  temperature	
  is	
  in	
  the	
  month	
  of	
  July	
  with	
  18	
  °C.	
  The	
  lowest	
  average	
  
temperature	
  occurs	
  in	
  January	
  at	
  approximately	
  –	
  11	
  °C.	
  For	
  this	
  climate	
  period,	
  precipitation	
  is	
  
at	
  its	
  highest	
  level	
  in	
  the	
  month	
  of	
  November	
  with	
  approximately	
  116	
  mm.	
  Throughout	
  
November,	
  the	
  most	
  common	
  form	
  of	
  precipitation	
  is	
  light	
  to	
  moderate	
  snow	
  and	
  rain.	
  The	
  
precipitation	
  amount	
  is	
  lowest	
  in	
  February	
  with	
  73	
  mm	
  and	
  is	
  predominately	
  in	
  the	
  form	
  of	
  
snow.	
  	
  	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   17	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  3.	
  	
  Monthly	
  averages	
  for	
  precipitation	
  (mm)	
  and	
  daily	
  temperatures	
  (°C),	
  with	
  daily	
  maximum	
  and	
  
minimum	
  temperatures	
  in	
  Haliburton	
  for	
  the	
  years	
  1981	
  to	
  2010.	
  Source:	
  Government	
  of	
  Canada:	
  
Canadian	
  Climate	
  Normal	
  for	
  1971-­‐2000	
  Station	
  data.	
  	
  
	
  
2.4	
  	
  	
  	
  Residential	
  and	
  Recreational	
  Uses	
  of	
  Kushog	
  Lake	
  
Kushog’s	
  property	
  and	
  shoreline	
  development	
  primarily	
  consists	
  of	
  seasonal	
  and	
  permanent	
  
residences.	
  	
  A	
  total	
  of	
  576	
  residential,	
  commercial	
  and	
  government	
  properties	
  are	
  established	
  
on	
  the	
  lake,	
  in	
  addition	
  to	
  crown	
  land.	
  The	
  Kushog	
  Lake	
  Spring	
  Newsletter	
  of	
  2011	
  summarizes	
  
the	
  approximate	
  percentage	
  that	
  each	
  development	
  occupies	
  on	
  the	
  shoreline.	
  Residential	
  
properties	
  total	
  543,	
  where	
  73	
  or	
  13%	
  are	
  permanent	
  and	
  438	
  or	
  78%	
  are	
  seasonal;	
  however,	
  in	
  
terms	
  of	
  frontage	
  65%	
  or	
  26.6	
  km	
  belong	
  to	
  the	
  permanent	
  residential	
  properties	
  and	
  only	
  3.8	
  
km	
  or	
  10%	
  of	
  total	
  frontage	
  belongs	
  to	
  the	
  438	
  seasonal	
  residences,	
  with	
  another	
  5%	
  or	
  1.9	
  km	
  
of	
  vacant	
  lots.	
  Additionally	
  another	
  17%	
  or	
  7.2	
  km	
  is	
  considered	
  Crown	
  Land.	
  	
  
This	
  has	
  important	
  management	
  implications;	
  the	
  7.2	
  km	
  of	
  Crown	
  Land,	
  1.9	
  km	
  of	
  vacant	
  lots	
  
and	
  26.6km	
  of	
  permanent	
  residents	
  make	
  up	
  35.7	
  km	
  of	
  40.6	
  km	
  or	
  88%	
  of	
  the	
  total	
  frontage	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   18	
  
	
  
	
  
	
  
on	
  Kushog.	
  Crown	
  Land	
  is	
  generally	
  undeveloped	
  and	
  may	
  remain	
  in	
  relative	
  pristine	
  condition	
  
compared	
  to	
  residential	
  properties,	
  and	
  thus,	
  can	
  be	
  considered	
  to	
  have	
  a	
  nominal	
  or	
  positive	
  
contribution	
  to	
  the	
  lake	
  environment.	
  Vacant	
  lots	
  currently	
  not	
  occupied	
  by	
  humans	
  do	
  not	
  
have	
  active	
  anthropogenic	
  contributions,	
  but	
  depending	
  on	
  the	
  legacy	
  of	
  individual	
  sites,	
  may	
  
have	
  an	
  historical	
  influence.	
  They	
  can	
  be	
  considered	
  as	
  neutral	
  sites,	
  undergoing	
  possible	
  
succession	
  or	
  natural	
  restoration.	
  	
  Since	
  65%	
  of	
  the	
  shoreline	
  is	
  occupied	
  by	
  permanent	
  
residences,	
  focusing	
  on	
  best	
  management	
  practices	
  (e.g.	
  proper	
  septic	
  and	
  lawn	
  maintence)	
  
and	
  stewardship	
  efforts	
  (restoration,	
  naturalization,	
  monitoring)	
  within	
  these	
  properties	
  could	
  
have	
  a	
  highly	
  effective	
  outcome.	
  	
  
Other	
  impacts,	
  such	
  as	
  recreational	
  uses	
  including	
  boating	
  and	
  overfishing,	
  combined	
  with	
  
sewage	
  disposal	
  and	
  alteration	
  of	
  natural	
  landscape,	
  can	
  effectually	
  harm	
  the	
  lake	
  (Kushog	
  Lake	
  
Newsletter,	
  2011).	
  Research	
  on	
  the	
  effects	
  from	
  recreational	
  activities	
  have	
  acknowledged	
  that	
  
activities	
  such	
  as	
  boating	
  can	
  result	
  in	
  a	
  decrease	
  in	
  water	
  quality	
  through	
  fuel	
  spills,	
  and	
  
thereby	
  damage	
  lake	
  ecology,	
  as	
  well	
  as	
  introduce	
  invasive	
  or	
  non-­‐native	
  species.	
  	
  Additionally,	
  
boat-­‐generated	
  waves	
  act	
  to	
  simplify	
  aquatic	
  communities	
  through	
  a	
  reduction	
  in	
  the	
  diversity	
  
of	
  habitat	
  types,	
  ultimately	
  reducing	
  species	
  diversity	
  (Hall	
  et	
  al,	
  2014).	
  
The	
  duration	
  over	
  which	
  people	
  occupy	
  the	
  shoreline	
  (seasonal	
  vs.	
  permanent)	
  directly	
  
increases	
  the	
  amount	
  of	
  sewage	
  being	
  disposed	
  of	
  annually.	
  As	
  residential	
  occupancy	
  increases,	
  
the	
  potential	
  amount	
  of	
  phosphorus	
  that	
  leaches	
  into	
  the	
  lake	
  will	
  also	
  increase	
  (Kushog	
  Lake	
  
Newsletter,	
  2011).	
  There	
  is	
  a	
  relationship	
  between	
  unmaintained	
  septic	
  systems	
  and	
  
phosphorus	
  accumulation;	
  it	
  has	
  been	
  demonstrated	
  that	
  phosphorus	
  accumulation	
  occurs	
  
within	
  sediment	
  zones	
  that	
  are	
  very	
  close	
  to	
  infiltration	
  pipes	
  and	
  this	
  is	
  observed	
  to	
  be	
  a	
  
common	
  occurrence	
  around	
  septic	
  systems	
  (Zanini	
  et	
  al,	
  1998).	
  	
  These	
  relationships,	
  however,	
  
are	
  highly	
  dependant	
  on	
  the	
  types	
  of	
  soils	
  present	
  and	
  the	
  pH	
  of	
  the	
  surrounding	
  environment.	
  
In	
  watersheds	
  where	
  the	
  pH	
  is:	
  1)	
  lowered	
  by	
  historical	
  acidification	
  through	
  acid	
  rain,	
  and/or	
  2)	
  
naturally	
  low	
  because	
  of	
  soil	
  or	
  vegetation	
  type,	
  the	
  phosphorus	
  will	
  more	
  readily	
  combine	
  with	
  
aluminum,	
  iron	
  or	
  manganese	
  forming	
  insoluble	
  salts	
  contained	
  within	
  the	
  soils.	
  In	
  these	
  
catchments,	
  phosphorus	
  in	
  runoff	
  is	
  reduced	
  (Jansson	
  et	
  al.,	
  1986).	
  This	
  is	
  likely	
  the	
  situation	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   19	
  
	
  
	
  
	
  
present	
  on	
  Kushog	
  Lake	
  owing	
  to	
  its	
  location	
  within	
  the	
  shallow	
  acidic	
  soils	
  of	
  the	
  Precambrain	
  
Shield	
  which	
  are	
  calcium	
  limited	
  (Jeziorski	
  et	
  al.,	
  2008;	
  Wetzel,	
  2001).	
  Conversely,	
  phosphorus	
  is	
  
most	
  bioavailable	
  and	
  readily	
  leeched	
  from	
  soils	
  at	
  pH	
  values	
  between	
  6	
  to	
  7.	
  It	
  is	
  always	
  
advisable	
  to	
  follow	
  best	
  management	
  practices,	
  including	
  the	
  proper	
  and	
  continual	
  monitoring	
  
of	
  aging	
  septic	
  tanks.	
  This	
  is	
  an	
  important	
  practice	
  to	
  implement	
  on	
  Kushog	
  Lake	
  cottages	
  in	
  
order	
  to	
  prevent	
  the	
  potential	
  release	
  of	
  phosphorus	
  into	
  the	
  lake.	
  	
  Another	
  consideration	
  is	
  to	
  
manage	
  and	
  mitigate	
  the	
  possible	
  erosion	
  of	
  soils	
  laden	
  with	
  phosphorus	
  salts	
  into	
  the	
  
waterbody,	
  preventing	
  loading	
  in	
  this	
  manner.	
  	
  
The	
  destruction	
  of	
  fish	
  habitats	
  from	
  environmental	
  abuses	
  mentioned	
  above	
  is	
  further	
  
augmented	
  by	
  inappropriate	
  fishing	
  practices.	
  It	
  is	
  imperative	
  that	
  lake	
  managers	
  enforce	
  time	
  
periods	
  on	
  when	
  it	
  is	
  appropriate	
  to	
  fish	
  certain	
  species;	
  otherwise,	
  overfishing	
  can	
  result	
  in	
  
declining	
  populations.	
  Research	
  has	
  suggested	
  that	
  lake	
  trout	
  can	
  tolerate	
  substantial	
  losses	
  in	
  
spawning	
  habitat,	
  but	
  natural	
  populations,	
  especially	
  in	
  small	
  lakes,	
  must	
  be	
  protected	
  from	
  
excessive	
  exploitation.	
  (Gunn	
  et	
  al,	
  2000)	
  
2.5	
  	
  	
  Fisheries	
  
Kushog	
  supports	
  recreational	
  fishing,	
  where	
  a	
  majority	
  of	
  the	
  fish	
  are	
  caught	
  and	
  consumed	
  
locally.	
  The	
  Glenside	
  Ecological	
  Services	
  Desktop	
  Analysis	
  Report	
  recognizes	
  16	
  fish	
  species	
  in	
  
the	
  Kushog	
  Lake	
  Watershed	
  that	
  were	
  identified	
  in	
  1975.	
  These	
  consist	
  of:	
  bluntnose	
  minnow	
  
(Pimephales),	
  brook	
  stickleback	
  (Culaea	
  inconstans),	
  brook	
  trout	
  (Salvelinus	
  fontinalis	
  
fontinalis),	
  brown	
  bullhead	
  (Ameiurus	
  Nebulosus),	
  burbot	
  (Lota	
  lota),	
  creek	
  chub	
  (semotilus	
  
atromaculatus),	
  golden	
  shiner	
  (notemigonus	
  crysoleucas),	
  lake	
  trout	
  (salvelinus	
  namaycush),	
  
largemouth	
  bass	
  (micropterus	
  salmoides),	
  northern	
  pike	
  (esox	
  lucius),	
  pumpkinseed	
  (lepomis	
  
gibbosus),	
  rainbow	
  smelt	
  (osmerus	
  mordax),	
  rock	
  bass	
  (ambloplites	
  rupestris),	
  smallmouthbass	
  
(micropterus	
  dolomieu),	
  white	
  sucker	
  (catostomuc	
  commersoni),	
  and	
  yellow	
  perch	
  (perca	
  
flavescens)	
  Heaven	
  and	
  Brady,2011)	
  	
  
In	
  contrast	
  a	
  current	
  document	
  developed	
  by	
  the	
  Ministry	
  of	
  the	
  Environment	
  in	
  2003,	
  
identified	
  12	
  out	
  of	
  the	
  16	
  fish	
  species	
  in	
  both	
  the	
  north	
  and	
  south	
  end	
  of	
  Kushog	
  that	
  are	
  
classified	
  in	
  the	
  Desktop	
  Analysis	
  Report.	
  Therefore,	
  4	
  species	
  are	
  either	
  missing	
  from	
  the	
  most	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   20	
  
	
  
	
  
	
  
current	
  fish	
  species	
  data	
  or	
  they	
  are	
  no	
  longer	
  present	
  in	
  Kushog	
  Lake.	
  These	
  fish	
  include:	
  the	
  
bluntnose	
  minnow	
  (pimephales	
  notatus),	
  brook	
  strickleback	
  (culaea	
  inconstans),	
  creek	
  chub	
  
(semotilus	
  atromaculatus)	
  and	
  golden	
  shiner	
  (notemigonus	
  crysoleucas).	
  Furthermore,	
  the	
  
Ministry	
  of	
  Environment	
  2003	
  document	
  identifies	
  three	
  additional	
  fish	
  that	
  were	
  not	
  listed	
  in	
  
the	
  Desktop	
  Analysis	
  Report.	
  These	
  fish	
  include:	
  cisco	
  (coregonus	
  artedi),	
  muskellunge	
  (esox	
  
masquinongy)	
  and	
  bluegill	
  (lepomis	
  macrochirus)	
  (MOE,	
  2003).	
  It	
  is	
  important	
  to	
  recognize	
  
these	
  changes	
  in	
  the	
  ecology	
  of	
  the	
  lake,	
  as	
  fish	
  species	
  are	
  an	
  excellent	
  biological	
  indicator	
  of	
  
lake	
  health.	
  	
  
Kushog	
  Lake	
  is	
  managed	
  as	
  a	
  cold-­‐water	
  fishery	
  with	
  a	
  lake	
  trout	
  population.	
  Lake	
  trout	
  are	
  
favourable	
  biological	
  indicators	
  of	
  cold-­‐water	
  lake	
  health,	
  because	
  they	
  tend	
  to	
  be	
  vulnerable	
  
to	
  factors	
  such	
  as	
  warmer	
  temperatures	
  and/or	
  oxygen	
  depletion.	
  Research	
  has	
  shown	
  that	
  
lake	
  trout	
  have	
  a	
  more	
  fixed	
  physiology	
  limit	
  and	
  cannot	
  tolerate	
  warmer	
  temperatures,	
  
whereas	
  other	
  species	
  are	
  more	
  tolerant	
  of	
  temperature	
  increase	
  (Chetkiewicz	
  et	
  al.,	
  2012).	
  	
  In	
  
fact,	
  the	
  suitability	
  of	
  the	
  lake	
  trout	
  as	
  a	
  biological	
  indicator	
  has	
  been	
  researched	
  and	
  used	
  for	
  
oligotrophic	
  waters	
  of	
  the	
  Great	
  Lakes.	
  The	
  lake	
  trout	
  was	
  selected	
  as	
  an	
  exemplary	
  organism	
  
for	
  the	
  detection	
  of	
  a	
  healthy	
  system	
  for	
  the	
  Great	
  Lakes	
  because	
  the	
  species	
  occupies	
  a	
  
sensitive	
  and	
  integrative	
  part	
  at	
  the	
  top	
  trophic	
  level	
  of	
  the	
  system.	
  Additionally,	
  the	
  lake	
  trout	
  
acts	
  as	
  a	
  major	
  controlling	
  factor	
  over	
  the	
  remainder	
  of	
  the	
  cold-­‐water	
  community	
  because	
  it	
  
plays	
  a	
  vital	
  role	
  as	
  a	
  terminal	
  predator	
  (Edwards	
  et	
  al,	
  1990).	
  Overall,	
  the	
  lake	
  trout	
  represents	
  
a	
  vital	
  component	
  to	
  northern,	
  cold-­‐water	
  lake	
  systems.	
  There	
  continued	
  presence	
  can	
  be	
  
understood	
  as	
  an	
  indication	
  of	
  health	
  and	
  well	
  being	
  of	
  Kushog	
  Lake.	
  Conversely,	
  if	
  a	
  fisheries	
  
assessment	
  indicates	
  that	
  numbers	
  decline	
  or	
  they	
  were	
  to	
  be	
  extirpated	
  from	
  the	
  lake,	
  this	
  
would	
  indicate	
  a	
  change	
  in	
  the	
  health	
  and	
  well	
  being	
  of	
  Kushog	
  Lake.	
  	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   21	
  
	
  
	
  
	
  
3.0 Current	
  State	
  of	
  Knowledge	
  on	
  Lake	
  Ecosystems	
  	
  
	
  
3.1	
  	
  	
  	
  The	
  Lake	
  Environment	
  
	
  
3.1.1 Introduction	
  
It	
  is	
  important	
  to	
  understand	
  a	
  lake	
  as	
  a	
  dynamic	
  environment.	
  There	
  are	
  a	
  multitude	
  of	
  
interactions	
  between	
  the	
  physical,	
  chemical	
  and	
  biological	
  properties	
  of	
  the	
  waters	
  and	
  
surrounding	
  environment.	
  	
  	
  Therefore,	
  it	
  is	
  necessary	
  to	
  view	
  a	
  lake	
  as	
  it	
  own	
  ecosystem,	
  with	
  
consideration	
  of	
  relationships	
  between	
  organisms,	
  and	
  changes	
  in	
  organism	
  populations	
  in	
  
response	
  to	
  variable	
  physical,	
  chemical	
  and	
  biological	
  conditions.	
  Elements	
  of	
  a	
  lake	
  
environment	
  may	
  act	
  in	
  synergistic,	
  additive	
  or	
  reductive	
  ways	
  with	
  one	
  another.	
  	
  One	
  modality	
  
for	
  engaging	
  this	
  thinking	
  is	
  considering	
  how	
  the	
  watershed,	
  and	
  all	
  the	
  activities	
  contained	
  
within,	
  determines	
  the	
  metabolism	
  (i.e.	
  productivity	
  through	
  time)	
  of	
  a	
  lake	
  through	
  nutrient	
  
inputs.	
  	
  The	
  lake	
  ecosystem	
  does	
  not	
  just	
  represent	
  the	
  water	
  held	
  within	
  the	
  lake,	
  but	
  rather	
  it	
  
extends	
  into	
  its	
  littoral	
  banks	
  and	
  wetlands,	
  up	
  the	
  inflow	
  streams	
  and	
  associated	
  riparian	
  
zones,	
  and	
  into	
  the	
  entire	
  terrestrial	
  landscape	
  which	
  drains	
  into	
  the	
  lake.	
  	
  Therefore,	
  if	
  a	
  
specific	
  concern	
  is	
  identified	
  within	
  a	
  lake,	
  consideration	
  of	
  both	
  the	
  cause	
  and	
  interactions	
  
between	
  these	
  compartments	
  must	
  be	
  investigated	
  in	
  order	
  to	
  devise	
  a	
  management	
  response.	
  	
  	
  
The	
  intent	
  of	
  these	
  next	
  sections	
  is	
  to	
  highlight	
  some	
  of	
  these	
  properties	
  and	
  interactions	
  which	
  
occur	
  within	
  lakes,	
  to	
  inform	
  and	
  interpret	
  the	
  nature	
  of	
  Kushog	
  Lake.	
  	
  
	
  
3.1.2 Lake	
  Thermal	
  Structure	
  
Temperate	
  deep	
  lakes	
  thermally	
  stratify	
  during	
  the	
  winter	
  and	
  summer	
  and	
  mix	
  during	
  the	
  
spring	
  and	
  fall.	
  	
  During	
  summer,	
  increased	
  insolation	
  and	
  associated	
  energy	
  increases	
  the	
  
temperature	
  of	
  water	
  at	
  the	
  surface,	
  while	
  deeper	
  cooler	
  and	
  thus	
  denser	
  water	
  do	
  not	
  receive	
  
as	
  much	
  light	
  and	
  are	
  not	
  warmed	
  to	
  the	
  same	
  extent.	
  	
  The	
  orientation	
  of	
  a	
  lake	
  in	
  relation	
  to	
  
prevailing	
  winds	
  changes	
  the	
  fetch	
  and	
  wave	
  action	
  occurring	
  on	
  the	
  lake.	
  This	
  in	
  turn,	
  changes	
  
the	
  depth	
  to	
  which	
  wave	
  action	
  mixes	
  the	
  upper	
  layer	
  and	
  the	
  depth	
  of	
  the	
  warmed	
  layer	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   22	
  
	
  
	
  
	
  
termed	
  the	
  ‘epilimnion’.	
  	
  In	
  the	
  winter,	
  however,	
  water	
  which	
  is	
  directly	
  beneath	
  an	
  iced	
  
surface	
  is	
  cooled	
  to	
  0°C	
  and	
  deeper	
  waters	
  are	
  warmer	
  and	
  denser	
  at	
  4°C.	
  	
  
In	
  the	
  summer	
  stratification	
  below	
  the	
  hypolimnion,	
  often	
  there	
  is	
  a	
  rapid	
  temperature	
  drop	
  or	
  
themocline.	
  This	
  zone	
  can	
  have	
  variable	
  temperatures	
  at	
  depth	
  and	
  is	
  a	
  transition	
  zone	
  to	
  the	
  
‘hypolimnion’.	
  The	
  hypolimnion	
  is	
  the	
  densest	
  and	
  coolest	
  section	
  of	
  the	
  lake	
  with	
  water	
  
temperatures	
  around	
  4	
  	
  ͦC	
  and	
  provides	
  critical	
  habitat	
  for	
  cold	
  water	
  fishes.	
  Essentially,	
  it	
  is	
  the	
  
seasonal	
  differences	
  in	
  water	
  temperature	
  and	
  the	
  associated	
  density	
  changes	
  which	
  cause	
  
these	
  layers	
  to	
  form.	
  In	
  the	
  spring	
  and	
  fall	
  as	
  temperatures	
  warm	
  and	
  cool	
  respectively,	
  the	
  
difference	
  in	
  temperature	
  between	
  the	
  surface	
  layer	
  and	
  deeper	
  layers	
  is	
  significantly	
  reduced	
  
which	
  results	
  in	
  a	
  turn	
  over	
  or	
  mixing	
  event.	
  	
  
The	
  summer	
  thermal	
  stratification	
  separates	
  the	
  water	
  of	
  the	
  lake	
  into	
  distinct	
  parts;	
  a	
  zone	
  
where	
  relatively	
  high	
  levels	
  of	
  solar	
  illumination	
  give	
  rise	
  to	
  warm	
  waters	
  where	
  phytoplankton	
  
add	
  to	
  primary	
  productivity	
  through	
  photosynthesis	
  and	
  a	
  deep	
  dark	
  and	
  cold	
  environment,	
  
where	
  decomposition	
  takes	
  place.	
  The	
  winter	
  season	
  is	
  also	
  generally	
  marked	
  by	
  increased	
  
rates	
  of	
  decomposition	
  relative	
  to	
  production;	
  anoxic	
  conditions	
  can	
  manifest	
  if	
  large	
  amounts	
  
of	
  organic	
  matter	
  are	
  generated	
  in	
  the	
  previous	
  summer,	
  which	
  will	
  impact	
  deep	
  water	
  species	
  
such	
  as	
  Lake	
  Trout.	
  	
  
This	
  thermal	
  stratification	
  and	
  the	
  associated	
  mixing	
  events	
  are	
  important	
  features	
  of	
  lakes	
  
with	
  implications	
  for	
  nutrient	
  dynamics	
  and	
  habitat	
  selection	
  by	
  aquatic	
  organisms,	
  as	
  well	
  as	
  
for	
  potential	
  for	
  algal	
  blooms	
  and	
  the	
  speciation	
  of	
  them	
  (see	
  section	
  3.1.3).	
  	
  For	
  example,	
  it	
  is	
  
best	
  to	
  sample	
  a	
  lake	
  for	
  phosphorus	
  immediately	
  after	
  the	
  spring	
  turn	
  over	
  event	
  to	
  get	
  a	
  
homogenous	
  representative	
  sample.	
  The	
  lake	
  at	
  this	
  point	
  is	
  well	
  mixed	
  and	
  can	
  give	
  the	
  best	
  
indication	
  of	
  the	
  phosphorus	
  concentration	
  of	
  the	
  water	
  and	
  its	
  associated	
  trophic	
  status.	
  In	
  the	
  
summer,	
  stratification	
  can	
  lead	
  to	
  thermally	
  isolated	
  or	
  induced	
  algal	
  production	
  which	
  is	
  not	
  
representative	
  of	
  the	
  whole	
  lake.	
  	
  	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   23	
  
	
  
	
  
	
  
3.1.3 Lake	
  Habitats	
  and	
  Food	
  Chains	
  
Within	
  the	
  lake	
  environment	
  itself	
  there	
  are	
  a	
  number	
  of	
  different	
  habitats	
  including	
  the	
  pelagic	
  
(open	
  water),	
  littoral	
  (lake	
  margin)	
  and	
  profundal	
  (bottom	
  water	
  and	
  sediment)	
  zones.	
  	
  Each	
  
zone	
  has	
  its	
  own	
  set	
  of	
  unique	
  inhabitants,	
  structures,	
  interactions	
  and	
  processes.	
  	
  This	
  leads	
  to	
  
complex	
  interfaces	
  of	
  energy	
  exchange.	
  	
  
The	
  pelagic	
  zone	
  is	
  where	
  most	
  of	
  the	
  primary	
  production	
  is	
  generated	
  through	
  the	
  
photosynthetic	
  activity	
  of	
  phytoplankton.	
  This	
  acts	
  as	
  the	
  base	
  of	
  a	
  food	
  web	
  within	
  a	
  lake	
  
ecosystem,	
  resulting	
  in	
  a	
  transfer	
  of	
  energy	
  up	
  through	
  trophic	
  levels.	
  	
  Phytoplankton	
  and	
  
cyanobacteria	
  are	
  limited	
  to	
  zones	
  in	
  which	
  they	
  can	
  carry	
  out	
  photosynthetic	
  activity	
  and	
  
mixing	
  within	
  the	
  epilimnion	
  through	
  wind	
  generated	
  wave	
  action,	
  will	
  generally	
  keep	
  them	
  
suspended.	
  	
  However,	
  cyanobacteria	
  responsible	
  for	
  so	
  called	
  ‘blue-­‐green’	
  algae	
  blooms	
  have	
  
the	
  ability	
  to	
  ascend	
  and	
  descend	
  within	
  the	
  water	
  column	
  to	
  adjust	
  to	
  variable	
  light	
  and	
  
nutrient	
  conditions.	
  Small	
  and	
  unicellular	
  phytoplankton	
  and	
  bacteria	
  are	
  in	
  turn	
  consumed	
  by	
  
zooplankton.	
  	
  Species	
  of	
  Daphnia,	
  an	
  abundant	
  type	
  of	
  zooplankton,	
  are	
  generalist	
  filter	
  feeders	
  
which	
  can	
  ingest	
  most	
  algae	
  encountered,	
  but	
  prefer	
  nutrient	
  dense	
  types	
  over	
  less	
  nutritious	
  
types	
  like	
  cyanobacteria.	
  Zooplankton	
  is	
  then	
  consumed	
  by	
  invertebrate	
  species	
  and	
  
planktivorous	
  fish,	
  which	
  are	
  then	
  consumed	
  by	
  piscivorous	
  fish,	
  which	
  cap	
  the	
  top	
  of	
  the	
  food	
  
chain	
  within	
  the	
  lake.	
  	
  Of	
  course,	
  these	
  fish	
  can	
  then	
  be	
  removed	
  and	
  consumed	
  by	
  birds,	
  bears,	
  
foxes	
  or	
  humans,	
  to	
  name	
  a	
  few.	
  	
  
The	
  littoral	
  zones	
  of	
  lakes	
  are	
  also	
  quite	
  productive;	
  however	
  productivity	
  here	
  is	
  dominated	
  by	
  
macrophytes	
  (rooted	
  plants),	
  which	
  provide	
  structure	
  for	
  colonization	
  of	
  attached	
  submerged	
  
algae	
  species.	
  	
  This	
  habitat	
  is	
  then	
  well	
  suited	
  for	
  invertebrates	
  and	
  benthic	
  invertebrates	
  which	
  
feed	
  by	
  scraping	
  or	
  grazing,	
  and	
  fish	
  species	
  which	
  prefer	
  sheltered	
  habitats	
  for	
  foraging,	
  cover	
  
and	
  breeding.	
  	
  The	
  littoral	
  zone	
  is	
  also	
  an	
  important	
  interface	
  between	
  the	
  upland	
  terrestrial	
  
communities	
  and	
  the	
  open	
  water;	
  it	
  will	
  often	
  capture	
  chemical	
  or	
  organic	
  matter	
  laden	
  
sediment	
  or	
  runoff	
  from	
  the	
  watershed.	
  	
  Transformation	
  of	
  these	
  materials	
  are	
  of	
  paramount	
  
importance	
  to	
  maintaining	
  open	
  water	
  ecosystem	
  integrity.	
  	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   24	
  
	
  
	
  
	
  
The	
  profundal	
  zone	
  is	
  the	
  sediment-­‐	
  water	
  interface	
  at	
  the	
  bottom	
  of	
  the	
  lake.	
  The	
  key	
  
processes	
  occurring	
  here	
  are	
  variations	
  in	
  reduction	
  and	
  oxidation	
  reactions	
  (redox)	
  involving	
  
the	
  transformation	
  of	
  key	
  nutrients	
  and	
  trace	
  elements.	
  	
  The	
  pH	
  and	
  oxygenation	
  of	
  the	
  water	
  
within	
  these	
  zones	
  will	
  govern	
  the	
  type	
  and	
  scope	
  of	
  process	
  that	
  occur	
  here,	
  a	
  complete	
  
discussion	
  of	
  which	
  are	
  beyond	
  the	
  scope	
  of	
  this	
  paper.	
  	
  A	
  crucial	
  point	
  however	
  is	
  that	
  when	
  
the	
  oxygen	
  demand	
  of	
  bacteria	
  dwelling	
  within	
  sediments	
  is	
  greater	
  than	
  that	
  which	
  is	
  present	
  
in	
  the	
  water,	
  dissolved	
  oxygen	
  is	
  depleted,	
  thereby	
  forming	
  hypoxic	
  or	
  anoxic	
  conditions	
  which	
  
can	
  have	
  deleterious	
  effects	
  on	
  sensitive	
  fish	
  species	
  such	
  as	
  lake	
  trout.	
  
	
  
3.2 	
  Nutrient	
  Dynamics	
  
	
  
3.2.1 Introduction	
  
This	
  following	
  section	
  reviews	
  a	
  selection	
  of	
  papers	
  and	
  general	
  information	
  which	
  may	
  provide	
  
insight	
  into	
  some	
  of	
  the	
  water	
  quality	
  conditions	
  on	
  Kushog	
  Lake,	
  aid	
  in	
  interpretation	
  of	
  
existing	
  data,	
  and	
  be	
  utilized	
  in	
  consideration	
  of	
  future	
  monitoring	
  efforts.	
  	
  
3.2.2 Phosphorous	
  
Phosphorus	
  is	
  the	
  limiting	
  nutrient	
  within	
  a	
  freshwater	
  system,	
  due	
  to	
  relative	
  scarcity	
  in	
  
bioavailable	
  forms	
  when	
  compared	
  to	
  nitrogen	
  and	
  carbon	
  (Schindler	
  et	
  al.,	
  1974).	
  	
  The	
  only	
  
natural	
  source	
  of	
  phosphorous	
  from	
  the	
  watershed	
  is	
  in	
  the	
  form	
  of	
  the	
  phosphate	
  ion,	
  which	
  
has	
  poor	
  water	
  solubility.	
  Phosphorus	
  has	
  a	
  strong	
  affinity	
  for	
  soils	
  and	
  sediments.	
  This	
  means	
  
that	
  under	
  ‘natural’	
  conditions,	
  the	
  bioavailability	
  of	
  phosphorus	
  in	
  lakes	
  is	
  quite	
  low	
  and	
  any	
  
available	
  amount	
  will	
  be	
  rapidly	
  up	
  taken	
  by	
  phytoplankton	
  (Currie	
  and	
  Kalff,	
  1984).	
  
Additionally,	
  when	
  waters	
  are	
  well	
  oxygenated	
  and	
  contain	
  of	
  certain	
  iron	
  species,	
  phosphate	
  
can	
  combine	
  with	
  these	
  elements	
  to	
  form	
  insoluble	
  salts	
  which	
  precipitate	
  out	
  of	
  the	
  water	
  
column	
  and	
  sink	
  to	
  the	
  bottom	
  sediments,	
  further	
  limiting	
  availability.	
  	
  If	
  however,	
  anoxic	
  
conditions	
  are	
  initiated	
  there	
  can	
  be	
  a	
  release	
  of	
  the	
  phosphorus	
  back	
  into	
  the	
  water	
  column;	
  
these	
  are	
  termed	
  ‘internal	
  loading	
  events’.	
  This	
  can	
  then	
  in	
  turn	
  stimulate	
  algal	
  blooms	
  through	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   25	
  
	
  
	
  
	
  
mixing	
  events.	
  	
  In	
  terms	
  of	
  management	
  considerations	
  for	
  fresh	
  water	
  lakes,	
  there	
  is	
  a	
  general	
  
consensus	
  that	
  preventing	
  anthropogenic	
  inputs	
  of	
  this	
  limiting	
  nutrient	
  is	
  essential	
  to	
  
preventing	
  excessive	
  algal	
  blooms.	
  	
  
	
  
Phosphorus	
  Characterization	
  in	
  Sediments	
  Impacted	
  by	
  Septic	
  Effluent	
  at	
  Four	
  Sites	
  in	
  
Central	
  Canada	
  (Zanini,	
  Robertson,	
  Ptacek,	
  Schiff	
  and	
  Mayer,	
  1998).	
  
A	
  relevant	
  article	
  that	
  pertains	
  to	
  perceived	
  phosphorus	
  issues	
  on	
  Kushog	
  is	
  the	
  1998	
  article	
  by	
  
Zanini	
  et	
  al. The	
  article	
  serves	
  to	
  explain	
  how	
  phosphorus	
  content	
  in	
  sediments	
  is	
  impacted	
  by	
  
septic	
  outflows.	
  They	
  look	
  at	
  four	
  particular	
  sites	
  in	
  central	
  Canada,	
  one	
  area	
  being	
  Muskoka.	
  
This	
  article	
  has	
  significant	
  relevance	
  to	
  Kushog	
  Lake	
  specifically,	
  because	
  a	
  majority	
  of	
  the	
  
cottages	
  located	
  on	
  the	
  perimeter	
  of	
  the	
  lake	
  have	
  septic	
  systems.	
  Moreover,	
  there	
  is	
  concern	
  
over	
  whether	
  the	
  cottage	
  owners	
  are	
  maintaining	
  these	
  systems	
  regularly.	
  The	
  authors	
  
conclude	
  that	
  phosphorus	
  accumulation	
  occurs	
  within	
  sediment	
  zones	
  that	
  are	
  very	
  close	
  to	
  
infiltration	
  pipes.	
  This	
  is	
  observed	
  to	
  be	
  a	
  common	
  occurrence	
  at	
  septic	
  system	
  sites	
  (Zanini	
  et	
  
al,	
  1998).	
  The	
  authors	
  cite	
  an	
  example	
  in	
  Australia,	
  where	
  enriched	
  Phosphorus	
  concentrations	
  
were	
  observed	
  to	
  occur	
  within	
  14	
  cm	
  of	
  the	
  infiltration	
  pipes	
  at	
  a	
  29	
  year	
  old	
  septic	
  system.	
  
Furthermore,	
  the	
  findings	
  suggest	
  that	
  the	
  physical	
  and	
  chemical	
  characteristics	
  of	
  the	
  
sediments	
  will	
  affect	
  phosphorus	
  attenuation.	
  The	
  quantity	
  of	
  phosphorus	
  that	
  is	
  immobilized	
  is	
  
likely	
  to	
  be	
  controlled	
  by	
  a	
  number	
  of	
  specific	
  factors,	
  including	
  the	
  composition	
  of	
  the	
  effluent,	
  
particularly	
  speciation	
  of	
  iron,	
  nitrogen,	
  and	
  alkalinity;	
  the	
  amount	
  of	
  reductive	
  dissolution	
  of	
  
iron	
  that	
  occurs	
  in	
  the	
  sub	
  tile	
  sediments	
  prior	
  to	
  oxidation;	
  and	
  the	
  degree	
  of	
  oxidation	
  of	
  the	
  
effluent	
  and	
  the	
  buffering	
  capacity	
  of	
  the	
  sediments	
  (Zanini	
  et	
  al,	
  1998).	
  	
  
The	
  important	
  point	
  here,	
  is	
  that	
  phosphorus	
  has	
  a	
  strong	
  affinity	
  for	
  the	
  soil	
  and	
  is	
  fairly	
  
immobile	
  in	
  this	
  form.	
  	
  Preventing	
  phosphorus	
  laden	
  sediments	
  from	
  entering	
  waters	
  should	
  be	
  
prioritized.	
  	
  Another	
  key	
  point	
  is	
  that	
  accumulation	
  of	
  phosphorous	
  seems	
  to	
  occur	
  in	
  the	
  
immediate	
  vicinity	
  of	
  infiltration	
  pipes;	
  this	
  suggests	
  that	
  phosphorus	
  is	
  not	
  leaching	
  into	
  
sediments	
  meters	
  or	
  tens	
  of	
  meters	
  away	
  from	
  the	
  infiltration	
  pipes.	
  We	
  want	
  to	
  stress	
  
however,	
  that	
  best	
  practices	
  management	
  and	
  the	
  maintence	
  of	
  septic	
  systems	
  should	
  still	
  be	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   26	
  
	
  
	
  
	
  
prioritized	
  to	
  ensure	
  raw	
  or	
  partially	
  treated	
  sewage	
  is	
  not	
  entering	
  the	
  lake,	
  which	
  would	
  
contribute	
  to	
  elevated	
  phosphorous/	
  nitrogen	
  concentration	
  and	
  bacterial	
  counts.	
  	
  
	
  
3.2.3 Nitrogen	
  	
  
Nitrogen	
  is	
  often	
  naturally	
  available	
  in	
  higher	
  quantities	
  in	
  lakes,	
  and	
  present	
  in	
  both	
  organic	
  
and	
  inorganic	
  forms,	
  in	
  both	
  dissolved	
  and	
  particulate	
  forms.	
  It	
  is	
  often	
  not	
  the	
  limiting	
  nutrient	
  
to	
  primary	
  production	
  in	
  healthy	
  lakes.	
  	
  Nitrogen	
  can	
  become	
  a	
  limiting	
  nutrient	
  when	
  
phosphorus	
  levels	
  are	
  high;	
  that	
  is,	
  when	
  the	
  ratio	
  of	
  phosphorus	
  to	
  nitrogen	
  is	
  high,	
  but	
  in	
  
healthy	
  lakes	
  this	
  will	
  not	
  occur.	
  	
  Algal	
  cells	
  	
  require	
  nitrogen	
  to	
  synthesize	
  proteins	
  and	
  take	
  up	
  
this	
  nutrient	
  in	
  the	
  form	
  of	
  ammonia	
  ions	
  (NH4
+
)	
  or	
  NO3
-­‐	
  
(nitrate).	
  	
  Cyanobacteria	
  have	
  a	
  
competitive	
  advantage	
  in	
  that	
  they	
  can	
  fix	
  N2	
  (nitrogen	
  gas)	
  from	
  the	
  air-­‐water	
  interface,	
  so	
  that	
  
in	
  possible	
  nitrogen	
  limited	
  situations,	
  they	
  are	
  still	
  able	
  to	
  obtain	
  the	
  nutrient.	
  	
  Again,	
  nutrient	
  
limitation	
  by	
  nitrogen	
  is	
  generally	
  not	
  a	
  common	
  observance,	
  but	
  it	
  can	
  occur	
  when	
  phosphorus	
  
levels	
  far	
  exceed	
  nitrogen	
  levels.	
  	
  	
  
	
  
3.2.4 Calcium	
  
Calcium	
  concentrations	
  in	
  surface	
  waters	
  on	
  the	
  Precambrian	
  Shield	
  are	
  determined	
  by	
  the	
  
supply	
  of	
  calcium	
  originating	
  from	
  the	
  terrestrial	
  pool	
  and	
  to	
  a	
  lesser	
  extent	
  atmospheric	
  
deposition.	
  	
  The	
  supply	
  is	
  contingent	
  on	
  the	
  calcium-­‐weathering	
  rate	
  in	
  soils	
  and	
  extractions	
  of	
  
calcium	
  from	
  the	
  catchment	
  through	
  activities	
  such	
  as	
  timber	
  harvesting	
  (Watmough	
  and	
  
Aherne,	
  2008).	
  A	
  number	
  of	
  mass	
  balance	
  studies	
  of	
  forest	
  ecosystems	
  have	
  indicated	
  that	
  
calcium	
  losses	
  are	
  exceeding	
  the	
  inputs	
  (i.e.	
  weathering	
  rates)(	
  Likens	
  et	
  al.,	
  1998;	
  Watmough	
  
and	
  Dillion	
  2003,	
  2004).	
  	
  Additionally,	
  the	
  acid	
  sensitive	
  soils	
  of	
  this	
  region	
  have	
  likely	
  suffered	
  
calcium	
  losses	
  from	
  historical	
  acid	
  deposition,	
  which	
  caused	
  extensive	
  leeching	
  of	
  the	
  already	
  
naturally	
  limited	
  pool.	
  This	
  has	
  resulted	
  in	
  a	
  corresponding	
  decline	
  in	
  the	
  calcium	
  concentration	
  
of	
  surface	
  waters	
  within	
  these	
  catchments,	
  raising	
  concerns	
  that	
  Calcium	
  limitation	
  will	
  pose	
  a	
  
threat	
  to	
  aquatic	
  biota.	
  	
  Calcium	
  is	
  a	
  nutrient	
  which	
  is	
  required	
  by	
  all	
  lake	
  dwelling	
  organisms	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   27	
  
	
  
	
  
	
  
and	
  is	
  particular	
  concern	
  for	
  the	
  calcium	
  rich	
  zooplankton,	
  Daphia	
  sp.	
  	
  Dr.	
  Norman	
  Yan	
  (now	
  
retired)	
  and	
  colleagues	
  at	
  York	
  University	
  demonstrated	
  that	
  most	
  lake	
  dwelling	
  Daphnia	
  
species	
  suffer	
  reproductive	
  stress	
  with	
  lake	
  calcium	
  levels	
  below	
  concentrations	
  of	
  1.5	
  mg/L.	
  	
  
A	
  large	
  proportion	
  of	
  the	
  Canadian	
  Shield	
  lakes	
  that	
  have	
  been	
  examined	
  have	
  calcium	
  
concentrations	
  approaching	
  or	
  below	
  the	
  threshold	
  at	
  which	
  Daphnia	
  populations	
  suffer	
  
reduced	
  survival	
  and	
  fertility	
  (Jeziorski	
  et	
  al,	
  2008).	
  Watmough	
  and	
  Aherne	
  also	
  elaborate	
  on	
  
this	
  current	
  issue;	
  they	
  predict	
  that	
  calcium	
  concentrations	
  in	
  individual	
  lakes	
  will	
  decline	
  by	
  
10%	
  -­‐	
  40	
  %	
  as	
  compared	
  to	
  current	
  values.	
  	
  
	
  
3.2.5 Dissolved	
  Organic	
  Carbon	
  and	
  Wetlands	
  
Effect	
  of	
  Landscape	
  form	
  on	
  Export	
  of	
  Dissolved	
  Organic	
  Carbon,	
  Iron	
  and	
  Phosphorus	
  
from	
  Forested	
  Stream	
  Catchments.	
  (Dillon	
  and	
  Molots,	
  1997).	
  
	
  
Dillon	
  and	
  Molot	
  (1997)	
  present	
  dissolved	
  carbon	
  (DOC),	
  total	
  phosphorus	
  (TP),	
  and	
  iron	
  (Fe)	
  
export	
  data	
  for	
  20	
  undisturbed	
  forested	
  catchments	
  draining	
  into	
  seven	
  lakes	
  in	
  central	
  
Ontario.	
  They	
  provide	
  regression	
  models	
  of	
  the	
  chemical	
  export	
  as	
  functions	
  of	
  landscape	
  
composition.	
  The	
  chemical	
  composition	
  of	
  surface	
  waters	
  depends	
  upon	
  in	
  situ	
  processes,	
  the	
  
external	
  supply	
  of	
  substances,	
  their	
  loss	
  rate	
  from	
  the	
  lake	
  or	
  stream,	
  and	
  the	
  modifying	
  effects	
  
of	
  factors	
  such	
  as	
  climate.	
  Furthermore,	
  the	
  flux	
  of	
  metals,	
  nutrients	
  and	
  DOC	
  from	
  a	
  catchment	
  
significantly	
  affects	
  water	
  chemistry.	
  These	
  factors	
  determine	
  the	
  chemical	
  composition	
  of	
  
waters	
  in	
  Ontario	
  and	
  can	
  be	
  related	
  back	
  to	
  the	
  water	
  quality	
  of	
  Kushog	
  Lake.	
  DOC	
  plays	
  a	
  vital	
  
role	
  in	
  lake	
  chemistry	
  because	
  it	
  complexes	
  many	
  metals	
  and	
  nutrients.	
  DOC	
  often	
  controls	
  
transparency;	
  the	
  organic	
  acids	
  that	
  comprise	
  a	
  portion	
  of	
  DOC	
  affect	
  pH	
  and	
  alkalinity.	
  Iron	
  is	
  
also	
  an	
  important	
  factor	
  to	
  consider	
  in	
  the	
  chemistry	
  of	
  lakes	
  and	
  rivers.	
  Iron	
  is	
  important	
  
because	
  it	
  enhances	
  phosphorus	
  complexity	
  with	
  DOC,	
  reduces	
  DOC	
  export	
  from	
  podzolic	
  soils,	
  
and	
  reduces	
  TP	
  export	
  from	
  mineral	
  soils	
  when	
  oxidized	
  (Dillon	
  and	
  Molot,	
  1997).	
  Hence,	
  DOC	
  
and	
  Fe	
  are	
  extremely	
  important	
  factors	
  to	
  consider	
  in	
  regard	
  to	
  surface	
  water	
  quality	
  because	
  
they	
  influence	
  biological	
  productivity	
  in	
  phosphorus-­‐limited	
  waters.	
  Consequently,	
  it	
  is	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   28	
  
	
  
	
  
	
  
important	
  to	
  take	
  these	
  parameters	
  in	
  account	
  when	
  analyzing	
  the	
  current	
  data	
  pertaining	
  to	
  
Kushog	
  Lake.	
  	
  
	
  
4.0 Lake	
  Health	
  and	
  Water	
  Quality	
  Assessment	
  	
  
	
  
4.1 Synthesis	
  of	
  Kushog	
  Monitoring	
  
The	
  intent	
  of	
  this	
  section	
  is	
  review,	
  summarize	
  and	
  consolidate	
  of	
  the	
  data	
  sources	
  and	
  
literature	
  that	
  are	
  either	
  1)	
  derived	
  directly	
  from	
  Kushog	
  Lake,	
  including	
  data	
  collected	
  from	
  
field	
  work	
  and	
  reports	
  created	
  therein,	
  or	
  2)	
  directly	
  applicable	
  to	
  Kushog	
  including	
  water	
  
quality	
  guideline	
  documents	
  and	
  alternate	
  data	
  sources	
  we	
  retrieved	
  to	
  use	
  in	
  the	
  Lake	
  Health	
  
and	
  Water	
  Quality	
  Assessment.	
  	
  
It	
  should	
  be	
  noted	
  that	
  while	
  the	
  Kushog	
  research	
  we	
  are	
  aware	
  of	
  is	
  summarized	
  and	
  
consolidated	
  here,	
  not	
  all	
  of	
  it	
  pertains	
  to	
  or	
  is	
  used	
  in	
  the	
  Lake	
  Health	
  and	
  Water	
  Quality	
  
Assessment.	
  The	
  majority	
  of	
  this	
  information	
  can	
  be	
  considered	
  as	
  grey	
  literature	
  including	
  
personal	
  communications,	
  government/NGO	
  reports	
  and	
  data,	
  student	
  produced	
  reports	
  and	
  
data,	
  consultant’s	
  reports	
  and	
  maps,	
  and	
  community/KLOPA	
  produced	
  documents.	
  	
  	
  
We	
  believe	
  that	
  by	
  having	
  these	
  documents	
  summarized	
  and	
  consolidated	
  in	
  one	
  location,	
  it	
  
will	
  be	
  more	
  accessible	
  for	
  possible	
  future	
  projects.	
  In	
  each	
  section,	
  the	
  relevant	
  titles	
  are	
  listed	
  
along	
  with	
  a	
  brief	
  summary	
  of	
  the	
  content	
  and/or	
  data	
  type	
  contained	
  within.	
  Also	
  provided	
  are	
  
the	
  citations	
  where	
  appropriate	
  for	
  the	
  Kushog	
  related	
  reports.	
  	
  We	
  have	
  also	
  provided	
  a	
  USB	
  
with	
  this	
  report	
  which	
  contains	
  all	
  known	
  research	
  and	
  data	
  for	
  Kushog	
  Lake.	
  	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   29	
  
	
  
	
  
	
  
	
  
4.1.1 Reports	
  and	
  Documents	
  	
  
Christie,	
  A.	
  E.	
  Ministry	
  of	
  Environment,	
  Waste	
  Management	
  in	
  Ontario:	
  Water	
  Resources	
  
Commission	
  (1968).	
  Nutrient-­‐phytoplankton	
  relationships	
  in	
  eight	
  southern	
  Ontario	
  
lakes	
  (No.	
  23.	
  ).	
  Toronto,	
  Ontario:	
  Queen's	
  Printer	
  for	
  Ontario.	
  
Published	
  in	
  1968	
  this	
  is	
  the	
  earliest	
  consolidated	
  report	
  and	
  data	
  available	
  for	
  Kushog	
  Lake.	
  	
  It	
  
was	
  produced	
  by	
  A.	
  E.	
  Christie	
  in	
  partnership	
  with	
  MOE	
  and	
  the	
  Water	
  Resources	
  Commission	
  
of	
  Waste	
  Management	
  in	
  Ontario.	
  This	
  study	
  evaluated	
  the	
  relationships	
  between	
  the	
  nutrient	
  
availability	
  and	
  the	
  algal	
  production	
  of	
  eight	
  shield	
  lakes	
  which	
  reside	
  within	
  the	
  Trent	
  River	
  
Basin.	
  	
  It	
  appears	
  this	
  study	
  was	
  initially	
  undertaken	
  as	
  a	
  mode	
  to	
  understand	
  controls	
  on	
  algal	
  
growth	
  in	
  the	
  interest	
  of	
  preventing	
  excessive	
  algal	
  growth.	
  	
  There	
  was	
  interest	
  in	
  these	
  aspects	
  
with	
  regard	
  to	
  problems	
  of	
  filter	
  clogging,	
  taste	
  and	
  odours,	
  and	
  recreational	
  impairment,	
  
which	
  was	
  and	
  still	
  is	
  fundamental	
  to	
  proper	
  water	
  management.	
  	
  
This	
  is	
  a	
  lake	
  sampling	
  study	
  for	
  which	
  a	
  number	
  of	
  chemical	
  variables	
  were	
  determined	
  and	
  
relationships	
  explored.	
  The	
  most	
  valuable	
  part	
  of	
  this	
  report	
  is	
  the	
  water	
  chemistry	
  and	
  
chlorophyll	
  data	
  it	
  contains.	
  The	
  data	
  provide	
  the	
  earliest	
  known	
  record	
  of	
  water	
  quality	
  data	
  
on	
  Kushog	
  Lake	
  and	
  other	
  lakes	
  within	
  its	
  physiographic	
  region.	
  	
  	
  
Ministry	
  of	
  the	
  Environment	
  (MOE)	
  (2003).	
  Water	
  data	
  for	
  Kushog	
  lake.	
  	
  
Produced	
  in	
  2003	
  it	
  is	
  a	
  summary	
  of	
  water	
  quality	
  data	
  for	
  2002	
  and	
  2003.	
  It	
  includes	
  
measurements	
  for	
  “North,	
  Middle	
  and	
  South”	
  basins	
  for	
  the	
  variables	
  of	
  Secchi	
  Depth	
  (m),	
  Total	
  
Dissolved	
  Phosphorus(reactive),	
  Ammonia,	
  Nitrite,	
  Nitrate,	
  Total	
  Kjeldahl	
  Nitrogen,	
  Dissolved	
  
Organic	
  Carbon,	
  Dissolved	
  Inorganic	
  Carbon,	
  pH,	
  Total	
  Alkalinity	
  and	
  Conductivity.	
  Other	
  key	
  
aspects	
  include	
  dissolved	
  oxygen	
  and	
  temperature	
  at	
  depth,	
  as	
  well	
  as	
  a	
  summary	
  of	
  fisheries	
  in	
  
the	
  lake	
  (no	
  population	
  level	
  data,	
  only	
  occurrence	
  of	
  species).	
  	
  
Heaven,	
  P.,	
  &	
  Brady,	
  C.	
  (2011).	
  Kushog	
  lake	
  watershed:	
  stream	
  and	
  desktop	
  analysis	
  final	
  
report.	
  In	
  Project	
  Number:	
  11019.	
  Minden,	
  Ontario:	
  Glenside	
  Ecological	
  Services	
  Limited	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   30	
  
	
  
	
  
	
  
This	
  report	
  was	
  produced	
  by	
  the	
  ecological	
  and	
  GIS	
  consulting	
  company	
  Glenside	
  Ecological	
  
Services	
  Limited	
  at	
  the	
  request	
  of	
  KLOPA	
  to	
  better	
  understand	
  the	
  lake’s	
  watershed	
  and	
  
hydrological	
  characteristics.	
  	
  The	
  report	
  presents	
  a	
  delineation	
  of	
  lake	
  watershed	
  and	
  the	
  
nested	
  sub-­‐watersheds	
  obtained	
  through	
  ArcGIS.	
  Within	
  the	
  sub-­‐watersheds,	
  wetland	
  
complexes	
  (including,	
  area	
  and	
  type)	
  and	
  streams	
  (inflows)	
  were	
  also	
  delineated	
  and	
  mapped.	
  	
  
Using	
  information	
  based	
  on	
  the	
  size	
  of	
  the	
  wetlands,	
  this	
  report	
  also	
  provides	
  
recommendations	
  for	
  the	
  prioritization	
  of	
  wetlands	
  for	
  further	
  investigation,	
  as	
  possible	
  
provincially	
  significant	
  wetlands	
  or	
  Species	
  At	
  Risk	
  habitat.	
  	
  The	
  report	
  also	
  contains	
  a	
  review	
  of	
  
the	
  Ministry	
  of	
  Natural	
  Resources	
  lake	
  management	
  files,	
  Aquatic	
  Habitat	
  Inventory	
  studies,	
  
and	
  1970’s	
  fish	
  species	
  surveys.	
  Finally,	
  report	
  provides	
  recommendations	
  for	
  the	
  further	
  
investigation	
  of	
  streams	
  (inflows),	
  and	
  that	
  early	
  spring	
  field	
  investigations	
  be	
  conducted	
  to	
  
confirm	
  the	
  findings	
  of	
  the	
  GIS	
  analysis.	
  See	
  page	
  35	
  of	
  the	
  report	
  for	
  a	
  full	
  outline	
  of	
  their	
  
recommendations.	
  
Goutos,	
  D.,	
  Hawkins,	
  A.,	
  Jansen,	
  K.,	
  &	
  O’Halloran,L.	
  (2012).	
  Kushog	
  lake	
  subwatersheds	
  1-­‐10:	
  
Ground	
  truthing	
  inflows	
  and	
  establishing	
  long-­‐term	
  monitoring	
  sites	
  final	
  report.	
  In	
  L.	
  O	
  
(Ed.),Credit	
  for	
  Product,	
  Ecosystem	
  Management	
  Technology	
  .	
  Lindsay,	
  Ontario:	
  Fleming	
  
College	
  	
  
Burns,	
  R.,	
  Ciancio,	
  M.,	
  Gavrilova,	
  M.,	
  &	
  Keegan,	
  M.	
  (2013).	
  Ground	
  truthing	
  inflows	
  in	
  
subwatersheds	
  1,	
  10-­‐14,	
  26-­‐31:	
  Phase	
  2,	
  north	
  of	
  the	
  ox	
  narrows.	
  In	
  Credit	
  for	
  Product,	
  
Ecosystem	
  Management	
  Technology	
  .	
  Lindsay,	
  Ontario:	
  Fleming	
  College	
  
In	
  response	
  to	
  the	
  Heaven	
  and	
  Brady	
  report	
  listed	
  above,	
  a	
  partnership	
  between	
  KLOPA	
  and	
  the	
  
indentified	
  Fleming	
  College	
  Credit	
  for	
  Product	
  program	
  was	
  developed	
  to	
  “ground	
  truth”	
  the	
  
inflows	
  that	
  were	
  delineated	
  by	
  the	
  GIS	
  analysis.	
  They	
  also	
  recorded	
  using	
  GPS	
  the	
  location	
  of	
  
culverts	
  and	
  streams	
  which	
  did	
  not	
  appear	
  in	
  the	
  maps	
  produced	
  by	
  Heaven	
  and	
  Brady	
  (2011).	
  	
  
At	
  inflows	
  where	
  there	
  was	
  significant	
  flow,	
  a	
  measurement	
  of	
  the	
  flow	
  rate	
  was	
  obtained	
  as	
  
well	
  as	
  measurements	
  of	
  the	
  conductivity,	
  pH,	
  alkalinity,	
  temperature	
  and	
  dissolved	
  oxygen.	
  
Additionally,	
  at	
  select	
  inflows,	
  rapid	
  bioassessment	
  of	
  benthic	
  invertebrates	
  was	
  completed	
  
following	
  the	
  Ontario	
  Benthic	
  Biomonitoring	
  Network	
  protocols.	
  The	
  report	
  contains	
  a	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   31	
  
	
  
	
  
	
  
description	
  of	
  the	
  methodology,	
  as	
  well	
  as	
  interpretations	
  of	
  the	
  results	
  concerning	
  the	
  benthic	
  
data.	
  	
  
KLOPA.	
  (2010).	
  Kushog	
  lake	
  plan	
  summary.	
  The	
  Kushog	
  Lake	
  Property	
  Owners	
  Association	
  
This	
  document,	
  which	
  is	
  a	
  summary	
  of	
  the	
  larger	
  200+	
  page	
  Kushog	
  Lake	
  Plan	
  document,	
  was	
  
created	
  with	
  the	
  intention	
  to	
  be	
  widely	
  distributed	
  to	
  Kushog	
  Lake	
  residents.	
  Components	
  of	
  it	
  
regularly	
  appear	
  in	
  KLOPAs	
  newsletters.	
  It	
  is	
  a	
  comprehensive	
  document	
  containing	
  information	
  
on	
  the	
  general	
  geography	
  of	
  the	
  lake,	
  historical	
  development,	
  social	
  elements,	
  natural	
  history/	
  
heritage,	
  physical	
  elements,	
  and	
  land	
  use,	
  as	
  well	
  as	
  an	
  agenda	
  for	
  adaptive	
  management.	
  	
  It	
  
gives	
  good	
  insight	
  into	
  how	
  KLOPA	
  perceives	
  the	
  status	
  of	
  the	
  lake’s	
  health	
  and	
  what	
  their	
  
priorities	
  and	
  concerns	
  are	
  for	
  its	
  maintence.	
  	
  It	
  should	
  be	
  noted	
  that	
  it	
  was	
  created	
  from	
  the	
  
contributions	
  of	
  numerous	
  individuals,	
  and	
  it	
  is	
  not	
  always	
  clear	
  where	
  the	
  information	
  
contained	
  within	
  the	
  document	
  originates	
  from.	
  	
  
Collection	
  of	
  Miscellaneous	
  Memos	
  	
  
This	
  was	
  provided	
  to	
  us	
  by	
  KLOPA	
  in	
  an	
  email;	
  it	
  is	
  a	
  pdf	
  document	
  containing	
  a	
  number	
  of	
  
emails.	
  They	
  are	
  mostly	
  centered	
  around	
  the	
  discussion	
  and	
  interpretation	
  of	
  data	
  and	
  
environmental	
  conditions	
  on	
  the	
  lake,	
  including	
  secchi	
  and	
  phosphorous	
  concentrations.	
  It	
  
gives	
  insight	
  into	
  how	
  these	
  results	
  have	
  been	
  interpreted	
  by	
  the	
  host,	
  and	
  those	
  
organizations/individuals	
  they	
  have	
  partnered	
  with	
  such	
  as	
  the	
  MOE	
  and	
  representatives	
  from	
  
the	
  Dorset	
  Environmental	
  Center.	
  There	
  is	
  also	
  a	
  pdf	
  that	
  was	
  provided	
  in	
  one	
  memo,	
  which	
  
outlines	
  a	
  record	
  of	
  MOE	
  involvement	
  in	
  1988.	
  It	
  provides	
  a	
  record	
  of	
  low	
  pH	
  from	
  the	
  legacy	
  of	
  
the	
  acid	
  rain	
  era,	
  and	
  acknowledges	
  the	
  positive	
  impact	
  that	
  reductions	
  of	
  bathing	
  and	
  dumping	
  	
  
of	
  had	
  on	
  phosphorus	
  concentrations	
  within	
  the	
  lake.	
  	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   32	
  
	
  
	
  
	
  
4.1.2 Data	
  Collection	
  
Lake	
  Partnership	
  Program	
  (LPP).	
  Ministry	
  of	
  Environment,	
  Dorset	
  Environmental	
  Science	
  Center	
  
(DESC).	
  (2014).	
  Ontario	
  lake	
  partner	
  program:	
  Monitoring	
  data	
  
The	
  Lake	
  Partner	
  Program	
  is	
  a	
  volunteer	
  based	
  water	
  quality	
  monitoring	
  program.	
  	
  It	
  is	
  
coordinated	
  by	
  the	
  Ontario	
  Ministry	
  of	
  the	
  Environment	
  through	
  the	
  Dorset	
  Environmental	
  
Center.	
  The	
  program	
  was	
  initiated	
  in	
  1996.	
  Volunteers	
  from	
  the	
  partner	
  lakes	
  collect	
  water	
  
samples,	
  which	
  are	
  evaluated	
  for	
  total	
  phosphorus	
  concentrations,	
  and	
  perform	
  secchi	
  depth	
  
measurements.	
  The	
  data	
  are	
  available	
  in	
  an	
  online	
  repository	
  which	
  can	
  be	
  accessed	
  through	
  
the	
  Dorset	
  environmental	
  center	
  website	
  or	
  at	
  the	
  Ontario	
  Ministry	
  of	
  the	
  Environment	
  (MOE)	
  
website	
  (http://desc.ca/programs/lpp	
  and	
  http://www.ontario.ca/data/ontario-­‐lake-­‐partner).	
  	
  
The	
  quality	
  and	
  resolution	
  of	
  these	
  data	
  varies	
  by	
  lake.	
  	
  Phosphorus	
  and	
  secchi	
  data	
  can	
  be	
  
retrieved	
  by	
  using	
  an	
  interactive	
  map	
  or	
  by	
  searching	
  the	
  lake	
  of	
  interest.	
  Data	
  are	
  returned	
  to	
  
the	
  investigator	
  in	
  either	
  Excel	
  spread	
  sheets	
  from	
  the	
  MOE	
  or	
  a	
  combination	
  of	
  Excel	
  and	
  pdf	
  
files	
  from	
  DESC.	
  	
  This	
  data	
  are	
  available	
  from	
  2002-­‐2013	
  and	
  in	
  future	
  as	
  new	
  data	
  are	
  provided.	
  
Also	
  available	
  from	
  the	
  DESC	
  website	
  are	
  pre-­‐2002	
  data	
  for	
  LPP	
  lakes.	
  	
  The	
  concentration	
  of	
  
calcium	
  was	
  added	
  to	
  the	
  monitoring	
  program	
  in	
  2008,	
  in	
  acknowledgement	
  of	
  its	
  critical	
  
importance	
  in	
  the	
  metabolism	
  of	
  lakes	
  and	
  trends	
  that	
  suggest	
  it	
  may	
  be	
  in	
  decline.	
  Kushog	
  has	
  
participated	
  in	
  all	
  of	
  these	
  sampling	
  initiatives	
  and	
  has	
  good	
  temporal	
  and	
  spatial	
  coverage.	
  
Sampling	
  has	
  occurred	
  in	
  the	
  Northern,	
  Middle	
  and	
  Southern	
  basins	
  of	
  the	
  lake.	
  There	
  is	
  
variability	
  in	
  the	
  timing	
  of	
  the	
  samples	
  were	
  taken,	
  however,	
  early	
  May	
  samples	
  are	
  always	
  
taken.	
  	
  
Goutos,	
  D.,	
  Hawkins,	
  A.,	
  Jansen,	
  K.,	
  &	
  O’Halloran,L.	
  (2012).	
  Kushog	
  lake	
  subwatersheds	
  1-­‐
10:ground	
  truthing	
  inflows	
  and	
  establishing	
  long-­‐term	
  monitoring	
  sites	
  final	
  report.	
  In	
  L.	
  
O	
  (Ed.),Credit	
  for	
  Product,	
  Ecosystem	
  Management	
  Technology	
  .	
  Lindsay,	
  Ontario:	
  
Fleming	
  College	
  	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   33	
  
	
  
	
  
	
  
Burns,	
  R.,	
  Ciancio,	
  M.,	
  Gavrilova,	
  M.,	
  &	
  Keegan,	
  M.	
  (2013).	
  Ground	
  truthing	
  inflows	
  in	
  
subwatersheds	
  1,	
  10-­‐14,	
  26-­‐31:	
  Phase	
  2,	
  north	
  of	
  the	
  ox	
  narrows.	
  In	
  Credit	
  for	
  Product,	
  
Ecosystem	
  Management	
  Technology	
  .	
  Lindsay,	
  Ontario:	
  Fleming	
  College	
  
Raw	
  2014	
  data	
  provided	
  to	
  us	
  in	
  Excel/Word	
  format	
  from	
  Emma	
  Horrigan	
  at	
  U-­‐links	
  Haliburton	
  	
  
The	
  field	
  component	
  of	
  these	
  reports	
  involved	
  the	
  collection	
  of	
  water	
  chemistry	
  and	
  benthic	
  
invertebrate	
  data	
  at	
  inflows	
  to	
  Kushog	
  Lake.	
  The	
  water	
  chemistry	
  measurements	
  consist	
  of	
  
conductivity,	
  pH,	
  alkalinity,	
  temperature	
  and	
  dissolved	
  oxygen,	
  consistent	
  with	
  what	
  is	
  required	
  
for	
  the	
  OBBM	
  protocols.	
  Benthic	
  invertebrate	
  data	
  are	
  available	
  for	
  Hindon	
  or	
  ‘Lost	
  Creek’	
  
(2012),	
  Fleming	
  (2012),	
  Bennett	
  (renamed	
  in	
  2014)(2013,	
  2014),	
  Harrison(2013,2014),	
  Margaret	
  
(2013,2014),	
  Kanawa	
  (2013),	
  Kabakwa	
  (2014)	
  inflows.	
  The	
  sampling	
  was	
  performed	
  to	
  the	
  
coarse	
  27	
  group	
  level,	
  consistent	
  with	
  OBBM	
  protocols	
  for	
  streams.	
  	
  
Sediment	
  Data	
  for	
  Kushog	
  Lake	
  2013	
  &	
  2014	
  
Sediment	
  core	
  data	
  were	
  collected	
  by	
  Fleming	
  students	
  under	
  the	
  guidance	
  of	
  Dr.	
  Eric	
  Sager	
  for	
  
the	
  analysis	
  of	
  metallic	
  ions;	
  with	
  a	
  total	
  of	
  19	
  analyses	
  evaluated.	
  	
  These	
  data	
  were	
  received	
  
from	
  Dr.	
  Eric	
  Sager.	
  	
  Sampling	
  locations	
  are	
  consistent	
  with	
  other	
  monitoring	
  programs	
  that	
  
have	
  been	
  carried	
  out	
  in	
  the	
  lake,	
  in	
  locations	
  that	
  include	
  North,	
  Middle	
  and	
  South	
  basins	
  of	
  
Kushog.	
  	
  It	
  should	
  be	
  noted	
  that	
  there	
  were	
  also	
  student	
  reports	
  created,	
  and	
  one	
  in	
  particular	
  
by	
  a	
  Mr.	
  Sean	
  Whitten,	
  which	
  provides	
  an	
  excellent	
  dissemination	
  and	
  interpretation	
  of	
  these	
  
data.	
  He	
  also	
  compared	
  the	
  2014	
  data	
  to	
  the	
  Canadian	
  Environmental	
  Quality	
  Guideline	
  (EQG),	
  
and	
  Sediment	
  Quality	
  Guideline	
  for	
  the	
  Protection	
  of	
  Aquatic	
  Life.	
  	
  
	
  
	
  
	
  
	
  
	
  
Kushog	
  Lake	
  Monitoring	
  Assessment	
   34	
  
	
  
	
  
	
  
4.1.3 Summary	
  Table	
  
Table	
  2.	
  	
  Summary	
  of	
  known	
  data	
  sources	
  and	
  reports	
  specific	
  to	
  Kushog	
  Lake	
  as	
  of	
  September	
  2014	
  
Document	
  
Title,	
  Year	
  
Source/Author	
   Type	
   Brief	
  Summary	
  of	
  Content/Data	
  Type	
  and	
  Usage	
  
Total	
  
Phosphorus,	
  
2013	
  
(excel)	
  
Ontario	
  Lake	
  
Partner	
  
Program(LPP)	
  
Volunteer	
  
sampled	
  
monitoring	
  
data	
  
-­‐total	
   phosphorus	
   data	
   from	
   2002-­‐2013	
   sampled	
   at	
   4	
  
locations	
  in	
  the	
  lake,	
  in	
  Spring,	
  Summer	
  and	
  Fall.	
  
	
  
Phosphorus	
  
Pre	
  2002	
  
Averages	
  
(excel)	
  
Dorset	
  
Environmental	
  
Center	
  	
  
Unverified	
   -­‐presents	
   the	
   pre	
   2002	
   annual	
   means	
   of	
   total	
  
phosphorous	
  data	
  for	
  entire	
  lake.	
  	
  
Water	
  Clarity	
  
(secchi),	
  2013	
  
(excel)	
  
Ontario	
  Lake	
  
Partner	
  
Program(LPP)	
  
Volunteer	
  
sampled	
  
monitoring	
  
data	
  
-­‐secchi	
   depth	
   data	
   from	
   2002-­‐2013	
   sampled	
   at	
   4	
  
locations	
  in	
  the	
  lake	
  
Calcium,	
  2013	
  
(excel/pdf)	
  
Ontario	
  Lake	
  
Partner	
  
Program	
  
Volunteer	
  
sampled	
  
monitoring	
  
data	
  
-­‐calcium	
  data	
  from	
  2008-­‐2012	
  samples	
  at	
  4	
  locations	
  in	
  
the	
  lake	
  
Sediment	
  	
  
Data	
  2013	
  &	
  
2014	
  
(pdfs)	
  
Fleming	
  College	
  
Students	
  and	
  
Prof.	
  Eric	
  Sager	
  
Credit	
  for	
  
Product	
  
Field,	
  Lab	
  
and	
  Reports	
  
-­‐sediment	
  core	
  sampling	
  and	
  analysis	
  of	
  19	
  metallic	
  ions	
  
at	
  depths	
  of	
  0-­‐15	
  cm	
  and	
  15-­‐30	
  cm	
  into	
  sediment.	
  	
  
-­‐also	
   students	
   reports	
   which	
   provided	
   a	
   comparison	
   of	
  
data	
   values	
   to	
   EQG	
   sediment	
   quality	
   guidelines	
   for	
   the	
  
protection	
  of	
  aquatic	
  life.	
  	
  
Nutrient	
  
Phytoplankton	
  
Relationships	
  
in	
  Eight	
  
Ontario	
  Lakes	
  
1968	
  
Waste	
  
Management	
  in	
  
Ontario,	
  Water	
  
Resources	
  
Commission,	
  
A.E.	
  Christie	
  
Government	
  
Report,	
  data	
  
-­‐provides	
   oldest	
   record	
   of	
   study	
   on	
   Kushog	
   Lake	
   in	
  
comparison	
  to	
  other	
  lakes.	
  
-­‐has	
  historical	
  total	
  active	
  phosphorus	
  data,	
  which	
  differs	
  
from	
  the	
  LPP	
  measurement	
  of	
  total	
  phosphorus.	
  	
  
	
  
Kushog	
  Lake	
  
Watershed:	
  
Wetland	
  and	
  
Stream	
  
Desktop	
  
Analysis,	
  2011	
  
Glenside	
  
Ecological	
  
Consultants	
  Inc.	
  
(Heaven	
  &	
  
Brady)	
  
Consultant	
  
Report/	
  GIS	
  
desktop	
  
analysis	
  and	
  
final	
  report	
  
-­‐provides	
  maps	
  of	
  Kushog	
  Lake	
  Watershed	
  and	
  Kushog	
  
Lake,	
  wetland	
  complexes,	
  inflows	
  
-­‐%/hectares	
  of	
  wetland,	
  watershed	
  area,	
  %	
  wetland	
  by	
  
type	
  
-­‐delineated	
  inflows	
  and	
  wetland	
  complexes	
  on	
  Kushog	
  
Lake	
  
-­‐provided	
  summary	
  of	
  fisheries,	
  species	
  level	
  	
  
Ground-­‐
truthing	
  
Inflows,	
  2012	
  
&2013	
  
Fleming	
  College	
  	
  
Students	
  
Credit	
  for	
  
Product	
  -­‐
Field	
  work	
  
and	
  Reports	
  
-­‐in	
   response	
   to	
   the	
   Glenside	
   desktop	
   analysis,	
   ground-­‐
truthing	
  of	
  the	
  inflow	
  data	
  was	
  performed	
  by	
  two	
  groups	
  
of	
  students	
  in	
  2012	
  and	
  2013.	
  	
  
-­‐they	
   recorded	
   GPS	
   location,	
   and	
   water	
   chemistry	
   data	
  
where	
  possible	
  (pH,	
  temperature,	
  alkalinity,	
  conductivity,	
  
dissolved	
  oxygen)	
  
Benthic	
  
Invertebrate	
  
Sampling	
  
(excel-­‐data,	
  
Reports-­‐pdf)	
  
Fleming	
  College	
  
Students	
  
Credit	
  for	
  
Product-­‐	
  
Reports	
  and	
  
data	
  
-­‐students	
   performed	
   rapid	
   bioassay	
   of	
   benthic	
  
invertebrates	
   at	
   streams	
   on	
   Kushog	
   Lake	
   (Fleming)	
  
(2012),	
   Hindon	
   (2012),	
   Kanawa	
   (2013),	
   Bennet	
   (2013	
   &	
  
2014),	
  Harrison	
  (2013	
  &	
  2014),	
  Margaret	
  (2013	
  &	
  2014),	
  
Kabakawa(2014)	
  
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)
CBE 4030 - Kushog Lake Report (1)

More Related Content

Similar to CBE 4030 - Kushog Lake Report (1)

Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Mark Spurgis
 
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Mark Spurgis
 
Policy Recommendations From Black Falls Project7[1]
Policy Recommendations From Black Falls Project7[1]Policy Recommendations From Black Falls Project7[1]
Policy Recommendations From Black Falls Project7[1]ritasebastian
 
A Water Conservation Handbook for Idaho and Eastern Washington
A Water Conservation Handbook for Idaho and Eastern WashingtonA Water Conservation Handbook for Idaho and Eastern Washington
A Water Conservation Handbook for Idaho and Eastern WashingtonKama158x
 
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...Water, Land and Ecosystems (WLE)
 
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013Markus Race
 
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...Fiona9864
 
Geography Pdf Print
Geography Pdf PrintGeography Pdf Print
Geography Pdf Printashd_122
 
Canada; Rainwater Collection System: A Feasibility Study for Dalhousie Univ...
Canada;  Rainwater Collection System:  A Feasibility Study for Dalhousie Univ...Canada;  Rainwater Collection System:  A Feasibility Study for Dalhousie Univ...
Canada; Rainwater Collection System: A Feasibility Study for Dalhousie Univ...D5Z
 
Proceedings of technical papers
Proceedings of technical papersProceedings of technical papers
Proceedings of technical papershydrologyproject0
 
Proceedings of technical papers
Proceedings of technical papersProceedings of technical papers
Proceedings of technical papershydrologyproject2
 
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...IRJET Journal
 
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...LaishramDipolin
 
Freethy_Dissertation_final_26May16
Freethy_Dissertation_final_26May16Freethy_Dissertation_final_26May16
Freethy_Dissertation_final_26May16Diana Freethy
 
Quality of Filtered Drinking Water in Rawalpindi - December 2014
Quality of Filtered Drinking Water in Rawalpindi - December 2014Quality of Filtered Drinking Water in Rawalpindi - December 2014
Quality of Filtered Drinking Water in Rawalpindi - December 2014Batool tazeem
 
D5.3 Integrated water resource sustainability and vulnerability assessment
D5.3 Integrated water resource sustainability and vulnerability assessmentD5.3 Integrated water resource sustainability and vulnerability assessment
D5.3 Integrated water resource sustainability and vulnerability assessmentenvirogrids-blacksee
 
IRJET- Impact of Religious Activities on Water Quality: A Significant Ass...
IRJET-  	  Impact of Religious Activities on Water Quality: A Significant Ass...IRJET-  	  Impact of Religious Activities on Water Quality: A Significant Ass...
IRJET- Impact of Religious Activities on Water Quality: A Significant Ass...IRJET Journal
 

Similar to CBE 4030 - Kushog Lake Report (1) (20)

Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
 
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
Water Your Opinions- A Social Assessment of the Lake Bloomington (1)
 
Policy Recommendations From Black Falls Project7[1]
Policy Recommendations From Black Falls Project7[1]Policy Recommendations From Black Falls Project7[1]
Policy Recommendations From Black Falls Project7[1]
 
A Water Conservation Handbook for Idaho and Eastern Washington
A Water Conservation Handbook for Idaho and Eastern WashingtonA Water Conservation Handbook for Idaho and Eastern Washington
A Water Conservation Handbook for Idaho and Eastern Washington
 
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...
2017 Greater Mekong Forum - Session 6 - River health and hydropower on the La...
 
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013
Water Quality Monitoring Assessment - Mudgeeraba Catchment - August 2013
 
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...
Okanagan Waterwise: A Soft Path for Water Sustainability Case Study, Town of ...
 
Geography Pdf Print
Geography Pdf PrintGeography Pdf Print
Geography Pdf Print
 
Water quality targeting success stories perez
Water quality targeting success stories   perezWater quality targeting success stories   perez
Water quality targeting success stories perez
 
Canada; Rainwater Collection System: A Feasibility Study for Dalhousie Univ...
Canada;  Rainwater Collection System:  A Feasibility Study for Dalhousie Univ...Canada;  Rainwater Collection System:  A Feasibility Study for Dalhousie Univ...
Canada; Rainwater Collection System: A Feasibility Study for Dalhousie Univ...
 
Proceedings of technical papers
Proceedings of technical papersProceedings of technical papers
Proceedings of technical papers
 
Proceedings of technical papers
Proceedings of technical papersProceedings of technical papers
Proceedings of technical papers
 
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
 
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
“A STUDY ON THE SEASONAL VARIATION IN WATER QUALITY OF SHANTIGRAMA LAKE IN HA...
 
Freethy_Dissertation_final_26May16
Freethy_Dissertation_final_26May16Freethy_Dissertation_final_26May16
Freethy_Dissertation_final_26May16
 
Quality of Filtered Drinking Water in Rawalpindi - December 2014
Quality of Filtered Drinking Water in Rawalpindi - December 2014Quality of Filtered Drinking Water in Rawalpindi - December 2014
Quality of Filtered Drinking Water in Rawalpindi - December 2014
 
Assessment of Need for a New York State Master Watershed Steward Program
Assessment of Need for a New York State Master Watershed Steward ProgramAssessment of Need for a New York State Master Watershed Steward Program
Assessment of Need for a New York State Master Watershed Steward Program
 
Giuffria_JM_T_2016
Giuffria_JM_T_2016Giuffria_JM_T_2016
Giuffria_JM_T_2016
 
D5.3 Integrated water resource sustainability and vulnerability assessment
D5.3 Integrated water resource sustainability and vulnerability assessmentD5.3 Integrated water resource sustainability and vulnerability assessment
D5.3 Integrated water resource sustainability and vulnerability assessment
 
IRJET- Impact of Religious Activities on Water Quality: A Significant Ass...
IRJET-  	  Impact of Religious Activities on Water Quality: A Significant Ass...IRJET-  	  Impact of Religious Activities on Water Quality: A Significant Ass...
IRJET- Impact of Religious Activities on Water Quality: A Significant Ass...
 

CBE 4030 - Kushog Lake Report (1)

  • 1.     2015  Analyzing  Water  Quality   Parameters  to  Assess  Lake   Health  on  Kushog  Lake,  Ontario.     Community  Based  Research  in   Geography  4030Y   Trent  University  in  partnership   with  U-­‐Links  Haliburton.   2014-­‐2015   Prepared  for:   Kushog  Lake  Property  Owners  Association   Township  of  Algonquin  Highlands   Halliburton  Ontario   Prepared  by:   Caitlyn  Bondy  and  Emily  McDonald   Trent  University   Peterborough,  Ontario   K9J  7B8  
  • 2. Kushog  Lake  Monitoring  Assessment   1         Table  of  Contents   Acknowledgements........................................................................................................................3   Contact  List………………………………………………………………………………………………………………………………..4   1.0 Introduction…………………………………………………………………………………………………………………………5   1.1 Project  Overview  and  Scope………………………………………………………………………………….5-­‐6   1.2 Research  Questions……………………………………………………………………………………………….6-­‐7   1.3 Framing  Research  and  Defining  Lake  Health  …………………………………………………………7-­‐9     2.0 Background………………………………………………………………………………………………………………………..10   2.1 Location  and  Physical  Characteristics  of  Kushog  Lake……………………………………………..10   2.2 Hydrology  and  Watershed  Characteristics………………………………………………………………10   2.2.1  Gull  River  Watershed………………………………………………………………………………..10-­‐13   2.2.2  Kushog  Lake  Watershed  ………………………………………………………………………………..14   2.3 Climate  and  Precipitation………………………………………………………………………………….14-­‐17   2.4 Residential  and  Recreational  Uses  of  Kushog  Lake…………………………………………….17-­‐19   2.5 Fisheries…………………………………………………………………………………………………………….19-­‐20     3.0 Current  State  of  Knowledge  on  Lake  Ecosystems  ……………………………………………………………...21   3.1 The  Lake  Environment…………………………………………………………………………………………….21   3.1.1 Introduction………………………………………………………………………………………….21   3.1.2 Lake  Thermal  Structure……………………………………………………………………21-­‐22   3.1.3 Lake  Habitats  and  Food  Chains…………………………………………………………23-­‐24   3.2 Nutrient  Dynamics………………………………………………………………………………………………….24   3.2.1 Introduction………………………………………………………………………………………….24   3.2.2 Phosphorous……………………………………………………………………………………24-­‐26   3.2.3 Nitrogen……………………………………………………………………………………………….26   3.2.4 Calcium…………………………………………………………………………………………….26-­‐27   3.2.5 Dissolved  Organic  Carbon  and  Wetlands………………………………………....27-­‐28     4.0 Lake  Health  and  Water  Quality  Assessment……………………………………………………………………….28   4.1 Synthesis  of  Kushog  Research………………………………………………………………………………..28   4.1.1 Reports…………………………………………………………………………………………….29-­‐31   4.1.2 Data  Collection…………………………………………………………………………………31-­‐33   4.1.3 Summary  Table………………………………………………………………………………..34-­‐35   4.2 Regional  Comparison  of  Lake  Water  Quality  Parameters………………………………………..35   4.2.1 Gull  River  Watershed……………………………………………………………………….35-­‐42  
  • 3. Kushog  Lake  Monitoring  Assessment   2         4.3 Water  Quality  Guidelines  Comparison……………………………………………………………………42   4.3.1 Recreational…………………………………………………………………………………….42-­‐44   4.3.2 Protection  for  Aquatic  Life  ………………………………………………………………44-­‐45   4.3.3 Drinking  Water  Standards  ……………………………………………………………….46-­‐47   4.4 Benthic  Invertebrates  and  Biological  Indicators………………………………………………...48-­‐51     5.0 Interpretation  and  Discussion…………………………………………………………………………………………....51   5.1 Interpretation  of  Lake  Water  Quality  Parameters……………………………………………..51-­‐53   5.2 Water  Quality  Guidelines  Interpretation……..……………………………………………………......53   6.0 Recommendations………………………………………………………………………………………………………..54-­‐55   References………………………………………………………………………………………………………………………....56-­‐58                                  
  • 4. Kushog  Lake  Monitoring  Assessment   3         Acknowledgements   The  authors  of  this  report  would  like  to  thank  Norma  Goodger  and  Dagmar  Boettcher  for   proposing  this  project  and  allowing  us  to  put  our  best  efforts  into  the  assignment,  as  it  has   proven  to  be  an  excellent  experience  for  both  of  us.  We  would  also  like  to  thank  the  entire  U-­‐ Links  team  that  has  essentially  made  this  all  happen,  with  a  special  thanks  to  Emma  Horrigan   who  has  provided  support  throughout  the  project.  Lastly,  we  would  like  to  thank  the  Trent   University  Geography  staff,  particularly  Professor  Cheryl  McKenna-­‐Neuman  and  Catherine   Eimers  who’s  expertise  and  encouragement  was  highly  valuable  for  the  completion  of  this   work.    It  is  our  hope  that  this  research  will  help  the  Kushog  Lake  Properties  Owners  Association   continue  the  excellent  stewardship  of  their  lake  environment.                            
  • 5. Kushog  Lake  Monitoring  Assessment   4         Contact  List       Host  Organization:   Dagmar  Boettcher   Kushog  Lake  Property  Owners  Association.   dagmar@interhop.ca   705-­‐457-­‐5968     Norma  Goodger   Kushog  Lake  Property  Owners  Association.   norma.goodger@sympatico.ca   705-­‐489-­‐2966     U-­‐Links  Host:   Emma  Horrigan.       Box  655  Minden,  Ontario   ehorrigan.ulinks@bellnet.ca   1-­‐877-­‐527-­‐2411;  705-­‐286-­‐2411               Trent  Faculty:   Cheryl  McKenna-­‐Neuman.     Department  of  Geography  at  Trent   University.   cmckneuman@trentu.ca     Catherine  Eimers   Department  of  Geography  at  Trent   University   c.eimers@trentu.ca     Benthic  Monitoring  Scientist:     Chris  Jones   Dorset  Environmental  Science   Centre.   f.chris.jones@ontario.ca   705  766  1724    
  • 6. Kushog  Lake  Monitoring  Assessment   5         1.0 Introduction   In  fulfillment  of  the  requirements  for  a  course  based  project  (GEOG  4030Y)  at  Trent  University,   Emily  McDonald  and  Caitlyn  Bondy  in  partnership  with  the  Haliburton  Center  for  Community   Based  Research,  were  retained  by  the  Kushog  Lake  Property  Owners  Association  (KLOPA)  to   conduct  a  review,  summarization,  consolidation  and  interpretation  of  various  water  quality   monitoring  programs  and  the  data  produced  by  them  for  Kushog  Lake.  KLOPA  expressed  a   desire  to  understand  what  the  monitoring  data  indicate  in  terms  of  the  health  of  their  lake.     The  key  sources  of  Kushog  data  in  this  project  include  those  from  the  Lake  Partnership   Program,  in  addition  to  supplementary  data  and  reports  from  the  Ministry  of  Environment,   Glenside  Ecological  Services  and  KLOPA.    The  documents  and  data  sources  which  have  been   produced  specifically  for  Kushog  and  which  serve  as  the  foundation  for  this  project,  are   outlined  in  full  within  section  4.0  of  this  report.   The  KLOPA  expressed  interest  in  this  work  as  part  of  their  mandate  to  be  responsible  stewards   of  their  lake  environment  and  to  ensure  the  continued  sustainability  of  the  environment  for   generations  to  come.  They  have  expressed  concerns  over  potential  impacts  related  to  shoreline   development,  water  level  fluctuations  and  regional  water  quality  trends.      In  addition  to   interpreting  the  current  monitoring  data  and  geographic  reports  available,  KLOPA  was   interested  in  receiving  recommendations  for  prioritizing  future  water  quality  monitoring   efforts.     1.1    Project  Scope  and  Overview   This  report  aims  to  address  the  following  key  research  questions:   • What  do  existing  water  quality  data  for  Kushog  Lake  suggest  in  terms  of  current  lake   health?  How  do  we  define  lake  health?    
  • 7. Kushog  Lake  Monitoring  Assessment   6         • Is  there  any  evidence  in  the  existing  water  quality  data  for  Kushog  Lake  that  would   suggest  (1)  an  overall  pattern  or  trend  leading  to  decline  in  lake  health,  or  (2)  a  current   issue  with  lake  health?     • Using  peer-­‐reviewed  literature,  government  documents/established  guidelines,  can  we   identify  any  upcoming  concerns  for  which  it  would  be  prudent  to  include  or  establish   new  water  quality  parameters  to  monitor?     • What  water  quality  parameters  or  indicators  should  be  prioritized  for  continued   monitoring  on  Kushog  Lake  to  ensure  the  conservation  and  preservation  of  the  natural   lake  environment?     To  focus  the  analysis  of  Kushog  Lake  water  quality  data,  a  methodology  was  designed  to  explain   and  answer  the  aforementioned  research  questions  in  the  context  of  background  information   about  Kushog  Lake,  general  lake  ecology  and  water  quality.       This  report  does  not  directly  address  the  issue  of  water  level  draw-­‐downs  and  fluctuations.  It  is   likely  that  this  should  be  an  area  of  further  research,  using  if  possible  the  foundation   established  by  this  report.    There  is  additional  information  related  to  sediment  profiles  for  the   lake,  which  are  not  covered  in  detail  in  this  report,  but  have  been  discussed  in  other   documents.         1.2    Research  Goals  and  Deliverables     The  research  goals  and  deliverables  for  this  project:     • Conduct  a  review,  summarization,  consolidation  and  interpretation  of  existing  water   quality  monitoring  data  on  Kushog  Lake  as  related  to  lake  health       • Create  a  ‘Lake  Fact  Sheets’  which  aid  in  interpreting  the  water  quality  data  and  serve  as   a  communication  tool  to  inform  KLOPA  on  the  status  of  lake  health.    
  • 8. Kushog  Lake  Monitoring  Assessment   7           • Provide  recommendations  for  the  prioritization  of  future  monitoring  efforts  aimed  at   ensuring  the  conservation  and  preservation  of  the  natural  lake  environment.       1.3      Framing  Research  and  Defining  Lake  Health     Since  there  is  no  singular  definition  of  what  ‘lake  health’  or  a  healthy  lake  is,  a  methodological   approach  which  allowed  for  qualitative  interpretation  of  the  monitoring  data  in  terms  of  ‘lake   health’  was  established.  A  visual  conceptualization  of  this  methodological  approach  is   presented  in  Figure  4.  This  establishes  Kushog  within  its  geographical  context  and  serves  as  a   basis  for  comparison  of  what  is  typical  or  ‘normal’  for  Ontario  Precambrian  lakes.  Key  elements   include:   • Comparing  average  values  of  chemical  and  physical  water  quality  parameters  for  Kushog   Lake  to  other  lakes  within  the  Gull  River  Watershed  in  order  to  determine  if  differences   exist  or  if  the  water  quality  of  Kushog  is  typical  for  the  watershed.     • Comparing  average  values  of  chemical  and  physical  water  quality  parameters  for  Kushog   Lake  with  Canadian  Environmental  Quality  Guidelines  (EQGs)  including  the  Recreational   Water  Quality  Guidelines  and  Aesthetics,  Canadian  Water  Quality  Guidelines  for  the   Protection  of  Aquatic  Life  and  Guidelines  for  Canadian  Drinking  Water  Quality.         These  EQGs  are  nationally  endorsed,  science-­‐based  goals  for  aquatic  ecosystems  which   are  intended  to  aid  in  the  protection,  sustainability  and  enhancement  of  the  quality  of   the  environment.  They  are  numerical  values  for  chemical  and  physical  parameters  in   ambient  water  (CCME,  2001).  By  comparing  the  numerical  values  of  water  quality   parameters  of  Kushog  Lake  to  these  protective  guidelines,  we  can  establish  if  any   exceedences  occur,  which  may  indicate  if  there  is  impairment  of  lake  health.  Conversely,   if  no  exceedences  occur  we  can  attest  there  is  no  impairment  of  lake  health  relative  to   the  guideline  
  • 9. Kushog  Lake  Monitoring  Assessment   8         • Creating  a  Kushog  Lake  ‘Fact  Sheet’  which  presents  and  interprets  key  water  quality   parameters  including;  phosphorus  concentrations  through  time  relative  to  the  trophic   status  it  represents;  secchi  depth  and  dissolved  oxygen/temperature  profile.  It  also   includes  key  geographic  descriptors  such  as  lake  depth,  shape,  size,  %  wetlands  and   watershed  area.       • Creating  a  ‘Kushog  Lake’  which  presents  information  about  the  use  of  benthic   invertebrates  as  biological  indicators,  including  a  description  of  the  general   methodology     • All  water  quality  parameters  are  also  interpreted  in  the  context  of  current  peer   reviewed  literature  and  related  to  lake  health.                        
  • 10. Kushog  Lake  Monitoring  Assessment   9           Figure  4.  Visual  conceptualization  of  project  scope  and  methodological  approach  with  regard  to  defining   and  assessing  lake  health     Section  4.1  serves  as  summarization  and  a  consolidation  of  the  known  available  reports  and   data  specific  to  Kushog  Lake.    These  reports  and  data  are  the  foundation  for  our  assessment  of   the  water  quality  and  lake  health.  Additional  resources  which  were  obtained  that  are  applicable   to,  but  not  directly  derived  from  Kushog  lake  are  also  described  in  this  section.          
  • 11. Kushog  Lake  Monitoring  Assessment   10         2.0 Kushog  Lake  Geographical  Background     2.1        Location  and  Physical  Characteristics  of  Kushog  Lake   Kushog  Lake  is  situated  within  the  Precambrian  Shield  at  N  45  °5’,  W  78°  47’  at  an  elevation  of   332.8  meters  above  sea  level.    By  car,  it  is  situated  approximately  1hr  45  min  NW  of   Peterborough  ON,  45  min  SW  of  Algonquin  Provincial  Park,  E  of  Haliburton,  ON  and  N  of   Minden,  ON.    Kushog  Lake  lies  on  right  on  the  border  between  Haliburton  and  Muskoka   countries  and  the  townships  of  Minden  Hills  and  Algonquin  Highlands.  It  is  a  long  and  narrow   water  body,  oriented  north  to  south  with  a  mean  depth  of  9.1  m  and  maximum  of  38.1  m.    The   lake  spans  17.2  km  with  a  maximum  width  of  1.6  km.  The  water  surface  area  of  Kushog  Lake  is   approximately  600  hectares  with  a  shoreline  perimeter  that  spans  approximately  38.2  to  40.6   km.  For  reference,  see  Figures  1a  and  1b.  The  lake  holds  a  total  volume  of  63  200  000  m³  (MOE,   2003;  Heaven  and  Brady,  2011).  Table  1  provides  a  summary  of  this  information.   Table  1.  Summary  of  physical  characteristics  of  Kushog  Lake.   Physical  Characteristics  of  Kushog  Lake   Lake  Surface  Area   679  ha   Shoreline  Perimeter   38.3  to  40.6  km   Maximum  Depth   38.1  m   Mean  Depth   9.1  m   North  to  South   Length   17.2  km   Maximum  Width   1.6  km   Elevation   332.8  mASL   Total  Volume   63  200  000  m³     2.2      Hydrology  and  Watershed  Characteristics   2.2.1  Gull  River  Watershed   The  Gull  River  Watershed  (Figure  2)  is  situated  at  the  most  northern  part  of  the  Trent  River   basin,  lying  to  the  west  of  the  Black  River  Watershed  and  east  of  the  Burnt  River  Watershed.  
  • 12. Kushog  Lake  Monitoring  Assessment   11         Altogether,  there  are  17  lakes  within  the  Gull  River  Watershed  that  contain  21  dams  operated   by  the  Trent  Severn  Waterway  (TSW).  Of  the  17  lakes,  Kushog  resides  in  middle  of  the   watershed.  Kushog  is  managed  as  a  headwater  for  the  Trent  Severn  Waterway  (TSW),  which  is   an  important  economic,  environmental  and  recreational  resource  that  consists  of   interconnected  series  of  lakes,  as  well  as  artificial  canal  cuts  stretching  for  386  km  (Parks   Canada,  2014).  This  subjects  Kushog  to  water  level  fluctuations,  which  are  managed  seasonally   to  accommodate  Lake  Trout  spawning  activity.       Sherborne  Lake  resides  directly  north  of  the  Kushog  Watershed  and  connects  Lake  St.  Nora  to   Kushog  Lake.  The  most  northern  lakes  within  the  Gull  River  Watershed  are:  Sherborne,  Red   Pine  Lake,  Kennisis  Lake,  Redstone  Lake,  and  Percy  Lake  (Map  1).  All  five  of  these  lakes   sequentially  flow  southwards  into  the  remaining  lakes.  Moore  Lake  is  the  most  southern  lake   within  the  watershed,  which  flows  directly  into  the  Kawartha  Lake  watershed.       Of  particular  interest  to  this  report  are  the  lakes:  Big  Hawk  Lake,  Eagle  Lake,  Halls  Lake,  Twelve   Miles  Lake,  and  Gull  Lake.  These  lakes  will  be  analyzed  in  conjunction  with  Kushog  Lake  to   distinguish  any  differences  or  consolidate  any  similarities.                        
  • 13. Kushog  Lake  Monitoring  Assessment   12           Figure  1.    Aerial  Photograph  Image  of  Kushog  Lake.  Retrieved  from  Scholars  GeoPortal  
  • 14. Kushog  Lake  Monitoring  Assessment   13           Figure  2.  Gull  River  Watershed;  consists  of  21  large  named  lakes  connected  by  the  Gull  River.  Source:   adopted  from  www.redstonelake.com.  Retrieved  April  1st ,  2015.            
  • 15. Kushog  Lake  Monitoring  Assessment   14         2.2.2  Kushog  Lake  Watershed   Nested  within  the  Gull  River  Watershed,  as  delineated  by  Glenside  Ecological  Services  (GES)   G.I.S.  analysis,  is  Kushog  Lake’s  own  drainage  basin  or  watershed.  The  total  watershed  area,   including  the  water  bodies  of  St.  Nora  and  Kushog  is  approximately  8,656  hectares  (ha).  Lake  St.   Nora  has  an  area  of  276  ha  and  Kushog  Lake  has  an  area  of  679  ha.  Other  important   waterbodies  within  the  watershed  include  Margaret  Lake,  Kabakwa,  and  Plastic  Lake.  The   watershed  is  further  divided  into  terrestrial  sub-­‐watersheds  representing  land  units  draining   separately  into  Kushog  (Map  3).  There  are  46-­‐subwatersheds  which  range  from  approximately  9   hectares  to  475  hectares.  Collectively  these  sub  watersheds  have  an  area  of  7701  ha  excluding   the  area  of  Kushog  and  Lake  St  Nora.  From  these  sub-­‐watersheds  there  are  approximately  34   streams  identified  in  the  watershed,  as  well  as  12  culverts.  The  areas  of  each  sub-­‐watershed  are   summarized  in  detail  in  the  GES  document  ‘Kushog  Lake  Watershed:  Wetland  and  Stream   Desktop  Analysis,  Final  Report,  2011’.       There  is  an  existing  body  of  research  (e.g.  Adkinson  et  al.,2008,  Eimers  et  al.,  2008,  Watmough   and  Dillion,  2003),  which  has  been  carried  out  by  Trent  University  researchers  on  Plastic  Lake   involving  legacy  effects  of  acidification  and  recovery  quantification,  dissolved  organic  carbon   and  nutrient  dynamics,  calcium  weathering,  metal  release  from  wetlands  and  phosphorus   budgets.    We  mention  this  since  Plastic  Lake  resides  within  Kushog’s  catchment.  Plastic  lake  is  a   sustainably  smaller  lake  (32  ha)  and  its  catchment  area  represents  only  257  ha  or  3.5  %  of  the   terrestrial  catchment  of  Kushog.         2.3      Climate  and  Precipitation   Precipitation  events  and  temperature  fluctuations  contribute  to  variable  water  quality.   Frequent  precipitation  events  can  lead  to  greater  runoff  flowing  into  the  lake,  which  may  carry   a  multitude  of  contaminants  ranging  from  agricultural  nutrients  or  pesticides  to  road  salts.  Over   the  past  several  decades,  road  salts  have  been  a  major  concern  as  they  have  had  an  adverse   effect  on  freshwater  organisms  as  well  as  the  chemical  composition  of  lakes.  As  more  highways   are  constructed  in  relatively  undeveloped  regions,  particularly  on  the  Canadian  Shield,  and  rural  
  • 16. Kushog  Lake  Monitoring  Assessment   15         ecosystems  become  incorporated  within  the  urban  region,  aquatic  ecosystems  located  near   these  roadways  may  be  adversely  impacted.  In  particular,  species  shift  may  occur  and  some   lakes  can  become  chemically  stratified.  These  salts  naturally  enter  surface  waters  through   pathways  of  the  water  cycle,  which  include  precipitation,  stream  inflow,  overland  runoff,  and   groundwater  inputs  (Evans  et  al.,  2001).  The  same  processes  apply  to  the  transportation  of   agricultural  nutrients  or  pesticides.  Runoff  water  associated  with  storm  events  can  cause  a  flush   or  ‘pulse’  of  contaminants  to  enter  aquatic  systems  (Richards  et  al.,  1992).    Furthermore,   agricultural  runoff  can  carry  sources  of  phosphorus  and  contribute  to  the  eutrophication  of   freshwaters.  Although,  most  freshwater  lakes  are  phosphorus  limited,  continued  inputs  of   fertilizer  and  manure  in  excess  of  crop  requirements  have  led  to  soil  phosphorus  levels  that  are   of  environmental  concern  and  can  threaten  water  quality  (Sharpley  et  al.,  1994).     There  are  several  actions  that  have  been  suggested  within  relevant  research  to  reduce  the   transport  of  road  salt  and  agricultural  runoff  input  into  aquatic  ecosystems.  These  actions   include  modifying  application  rates,  improving  operation  of  road  salt  storage  depots,  using  safe   waste-­‐snow  removal  methods,  and  incorporating  buffer  strips,  riparian  zones  and  terracing   surrounding  the  lake  (Evans  et  al.,  2002;  Sharpley  et  al,  2001).     Temperature  fluctuation  also  has  profound  effects  on  lake  health,  as  a  warmer  climate  can   increase  lake  temperatures  and  exert  major  influence  on  biological  activity.  Freshwater  fish  are   directly  affected  by  the  temperature  of  their  surrounding  environment  and  can  be  grouped  into   three  thermal  guilds:  1)  warm-­‐water  (E.g.,  smallmouth  bass);  2)  cool-­‐water  (e.g.,  northern  pike,   walleye,  yellow  perch);  and  3)  cold-­‐water  (e.g.  brook  trout,  lake  trout,  lake  whitefish).  Fish   species  that  spawn  at  low  temperature  generate  larvae  that  do  best  at  low  temperatures  and   fish  species  that  spawn  at  high  temperatures  generate  larvae  that  do  best  at  high  temperatures   (Chetkiewicz  et  al.,  2012).  It  is  also  imperative  to  be  aware  of  the  fact  that  increasing   concentrations  of  greenhouse  gases  are  expected  to  increase  surface  temperatures,  lower  pH,   and  cause  changes  to  vertical  mixing,  upwelling,  precipitation,  and  evaporation  rates.  The   potential  consequences  of  these  changes  can  lead  to  harmful  algae  blooms  (Moore  et  al,  2008).   A  study  performed  by  Winter  et  al.  (1994)  revealed  that  most  of  the  increase  in  the  number  of  
  • 17. Kushog  Lake  Monitoring  Assessment   16         cyanobacteria  bloom  reports  was  associated  with  lakes  on  the  Canadian  Shield.  Winter  et  al   attributed  these  trends  to  (1)  increased  nutrient  inputs  that  promote  algae  growth,  (2)  factors   associated  with  climate  change  that  exacerbate  bloom  conditions;  and  (3)  an  increase  in  public   awareness  of  algal  issues.  Irrefutably,  climate  change  correlates  with  increased  temperatures   and  algae  bloom  growth  and  is  an  important  factor  to  consider  when  discussing  a  lakes  overall   health.     Figure  3  displays  the  30-­‐year  climate  normal  for  the  Haliburton  region  with  both  precipitation   and  temperature  averages.  “Climate  normal”  refers  to  the  arithmetic  calculations  based  on   observed  climate  values  in  a  given  region  over  a  specific  time,  usually  30  years  (Government  of   Canada,  2015).  The  climograph  displays  monthly  averages  for  precipitation  (mm)  and  daily   temperatures,  with  maximum  and  minimum  daily  temperatures  in  Haliburton  for  the  years   1981  to  2010.     Kushog  Lake  is  located  within  the  Haliburton  region,  which  has  a  temperate  continental  climate.   A  temperate  continental  climate  is  usually  characteristic  of  short  and  warm  summers  and   winters  that  are  long  and  cold,  which  is  exhibited  in  Figure  3.  This  figure  displays  that  the   highest  daily  average  temperature  is  in  the  month  of  July  with  18  °C.  The  lowest  average   temperature  occurs  in  January  at  approximately  –  11  °C.  For  this  climate  period,  precipitation  is   at  its  highest  level  in  the  month  of  November  with  approximately  116  mm.  Throughout   November,  the  most  common  form  of  precipitation  is  light  to  moderate  snow  and  rain.  The   precipitation  amount  is  lowest  in  February  with  73  mm  and  is  predominately  in  the  form  of   snow.          
  • 18. Kushog  Lake  Monitoring  Assessment   17             Figure  3.    Monthly  averages  for  precipitation  (mm)  and  daily  temperatures  (°C),  with  daily  maximum  and   minimum  temperatures  in  Haliburton  for  the  years  1981  to  2010.  Source:  Government  of  Canada:   Canadian  Climate  Normal  for  1971-­‐2000  Station  data.       2.4        Residential  and  Recreational  Uses  of  Kushog  Lake   Kushog’s  property  and  shoreline  development  primarily  consists  of  seasonal  and  permanent   residences.    A  total  of  576  residential,  commercial  and  government  properties  are  established   on  the  lake,  in  addition  to  crown  land.  The  Kushog  Lake  Spring  Newsletter  of  2011  summarizes   the  approximate  percentage  that  each  development  occupies  on  the  shoreline.  Residential   properties  total  543,  where  73  or  13%  are  permanent  and  438  or  78%  are  seasonal;  however,  in   terms  of  frontage  65%  or  26.6  km  belong  to  the  permanent  residential  properties  and  only  3.8   km  or  10%  of  total  frontage  belongs  to  the  438  seasonal  residences,  with  another  5%  or  1.9  km   of  vacant  lots.  Additionally  another  17%  or  7.2  km  is  considered  Crown  Land.     This  has  important  management  implications;  the  7.2  km  of  Crown  Land,  1.9  km  of  vacant  lots   and  26.6km  of  permanent  residents  make  up  35.7  km  of  40.6  km  or  88%  of  the  total  frontage    
  • 19. Kushog  Lake  Monitoring  Assessment   18         on  Kushog.  Crown  Land  is  generally  undeveloped  and  may  remain  in  relative  pristine  condition   compared  to  residential  properties,  and  thus,  can  be  considered  to  have  a  nominal  or  positive   contribution  to  the  lake  environment.  Vacant  lots  currently  not  occupied  by  humans  do  not   have  active  anthropogenic  contributions,  but  depending  on  the  legacy  of  individual  sites,  may   have  an  historical  influence.  They  can  be  considered  as  neutral  sites,  undergoing  possible   succession  or  natural  restoration.    Since  65%  of  the  shoreline  is  occupied  by  permanent   residences,  focusing  on  best  management  practices  (e.g.  proper  septic  and  lawn  maintence)   and  stewardship  efforts  (restoration,  naturalization,  monitoring)  within  these  properties  could   have  a  highly  effective  outcome.     Other  impacts,  such  as  recreational  uses  including  boating  and  overfishing,  combined  with   sewage  disposal  and  alteration  of  natural  landscape,  can  effectually  harm  the  lake  (Kushog  Lake   Newsletter,  2011).  Research  on  the  effects  from  recreational  activities  have  acknowledged  that   activities  such  as  boating  can  result  in  a  decrease  in  water  quality  through  fuel  spills,  and   thereby  damage  lake  ecology,  as  well  as  introduce  invasive  or  non-­‐native  species.    Additionally,   boat-­‐generated  waves  act  to  simplify  aquatic  communities  through  a  reduction  in  the  diversity   of  habitat  types,  ultimately  reducing  species  diversity  (Hall  et  al,  2014).   The  duration  over  which  people  occupy  the  shoreline  (seasonal  vs.  permanent)  directly   increases  the  amount  of  sewage  being  disposed  of  annually.  As  residential  occupancy  increases,   the  potential  amount  of  phosphorus  that  leaches  into  the  lake  will  also  increase  (Kushog  Lake   Newsletter,  2011).  There  is  a  relationship  between  unmaintained  septic  systems  and   phosphorus  accumulation;  it  has  been  demonstrated  that  phosphorus  accumulation  occurs   within  sediment  zones  that  are  very  close  to  infiltration  pipes  and  this  is  observed  to  be  a   common  occurrence  around  septic  systems  (Zanini  et  al,  1998).    These  relationships,  however,   are  highly  dependant  on  the  types  of  soils  present  and  the  pH  of  the  surrounding  environment.   In  watersheds  where  the  pH  is:  1)  lowered  by  historical  acidification  through  acid  rain,  and/or  2)   naturally  low  because  of  soil  or  vegetation  type,  the  phosphorus  will  more  readily  combine  with   aluminum,  iron  or  manganese  forming  insoluble  salts  contained  within  the  soils.  In  these   catchments,  phosphorus  in  runoff  is  reduced  (Jansson  et  al.,  1986).  This  is  likely  the  situation  
  • 20. Kushog  Lake  Monitoring  Assessment   19         present  on  Kushog  Lake  owing  to  its  location  within  the  shallow  acidic  soils  of  the  Precambrain   Shield  which  are  calcium  limited  (Jeziorski  et  al.,  2008;  Wetzel,  2001).  Conversely,  phosphorus  is   most  bioavailable  and  readily  leeched  from  soils  at  pH  values  between  6  to  7.  It  is  always   advisable  to  follow  best  management  practices,  including  the  proper  and  continual  monitoring   of  aging  septic  tanks.  This  is  an  important  practice  to  implement  on  Kushog  Lake  cottages  in   order  to  prevent  the  potential  release  of  phosphorus  into  the  lake.    Another  consideration  is  to   manage  and  mitigate  the  possible  erosion  of  soils  laden  with  phosphorus  salts  into  the   waterbody,  preventing  loading  in  this  manner.     The  destruction  of  fish  habitats  from  environmental  abuses  mentioned  above  is  further   augmented  by  inappropriate  fishing  practices.  It  is  imperative  that  lake  managers  enforce  time   periods  on  when  it  is  appropriate  to  fish  certain  species;  otherwise,  overfishing  can  result  in   declining  populations.  Research  has  suggested  that  lake  trout  can  tolerate  substantial  losses  in   spawning  habitat,  but  natural  populations,  especially  in  small  lakes,  must  be  protected  from   excessive  exploitation.  (Gunn  et  al,  2000)   2.5      Fisheries   Kushog  supports  recreational  fishing,  where  a  majority  of  the  fish  are  caught  and  consumed   locally.  The  Glenside  Ecological  Services  Desktop  Analysis  Report  recognizes  16  fish  species  in   the  Kushog  Lake  Watershed  that  were  identified  in  1975.  These  consist  of:  bluntnose  minnow   (Pimephales),  brook  stickleback  (Culaea  inconstans),  brook  trout  (Salvelinus  fontinalis   fontinalis),  brown  bullhead  (Ameiurus  Nebulosus),  burbot  (Lota  lota),  creek  chub  (semotilus   atromaculatus),  golden  shiner  (notemigonus  crysoleucas),  lake  trout  (salvelinus  namaycush),   largemouth  bass  (micropterus  salmoides),  northern  pike  (esox  lucius),  pumpkinseed  (lepomis   gibbosus),  rainbow  smelt  (osmerus  mordax),  rock  bass  (ambloplites  rupestris),  smallmouthbass   (micropterus  dolomieu),  white  sucker  (catostomuc  commersoni),  and  yellow  perch  (perca   flavescens)  Heaven  and  Brady,2011)     In  contrast  a  current  document  developed  by  the  Ministry  of  the  Environment  in  2003,   identified  12  out  of  the  16  fish  species  in  both  the  north  and  south  end  of  Kushog  that  are   classified  in  the  Desktop  Analysis  Report.  Therefore,  4  species  are  either  missing  from  the  most  
  • 21. Kushog  Lake  Monitoring  Assessment   20         current  fish  species  data  or  they  are  no  longer  present  in  Kushog  Lake.  These  fish  include:  the   bluntnose  minnow  (pimephales  notatus),  brook  strickleback  (culaea  inconstans),  creek  chub   (semotilus  atromaculatus)  and  golden  shiner  (notemigonus  crysoleucas).  Furthermore,  the   Ministry  of  Environment  2003  document  identifies  three  additional  fish  that  were  not  listed  in   the  Desktop  Analysis  Report.  These  fish  include:  cisco  (coregonus  artedi),  muskellunge  (esox   masquinongy)  and  bluegill  (lepomis  macrochirus)  (MOE,  2003).  It  is  important  to  recognize   these  changes  in  the  ecology  of  the  lake,  as  fish  species  are  an  excellent  biological  indicator  of   lake  health.     Kushog  Lake  is  managed  as  a  cold-­‐water  fishery  with  a  lake  trout  population.  Lake  trout  are   favourable  biological  indicators  of  cold-­‐water  lake  health,  because  they  tend  to  be  vulnerable   to  factors  such  as  warmer  temperatures  and/or  oxygen  depletion.  Research  has  shown  that   lake  trout  have  a  more  fixed  physiology  limit  and  cannot  tolerate  warmer  temperatures,   whereas  other  species  are  more  tolerant  of  temperature  increase  (Chetkiewicz  et  al.,  2012).    In   fact,  the  suitability  of  the  lake  trout  as  a  biological  indicator  has  been  researched  and  used  for   oligotrophic  waters  of  the  Great  Lakes.  The  lake  trout  was  selected  as  an  exemplary  organism   for  the  detection  of  a  healthy  system  for  the  Great  Lakes  because  the  species  occupies  a   sensitive  and  integrative  part  at  the  top  trophic  level  of  the  system.  Additionally,  the  lake  trout   acts  as  a  major  controlling  factor  over  the  remainder  of  the  cold-­‐water  community  because  it   plays  a  vital  role  as  a  terminal  predator  (Edwards  et  al,  1990).  Overall,  the  lake  trout  represents   a  vital  component  to  northern,  cold-­‐water  lake  systems.  There  continued  presence  can  be   understood  as  an  indication  of  health  and  well  being  of  Kushog  Lake.  Conversely,  if  a  fisheries   assessment  indicates  that  numbers  decline  or  they  were  to  be  extirpated  from  the  lake,  this   would  indicate  a  change  in  the  health  and  well  being  of  Kushog  Lake.              
  • 22. Kushog  Lake  Monitoring  Assessment   21         3.0 Current  State  of  Knowledge  on  Lake  Ecosystems       3.1        The  Lake  Environment     3.1.1 Introduction   It  is  important  to  understand  a  lake  as  a  dynamic  environment.  There  are  a  multitude  of   interactions  between  the  physical,  chemical  and  biological  properties  of  the  waters  and   surrounding  environment.      Therefore,  it  is  necessary  to  view  a  lake  as  it  own  ecosystem,  with   consideration  of  relationships  between  organisms,  and  changes  in  organism  populations  in   response  to  variable  physical,  chemical  and  biological  conditions.  Elements  of  a  lake   environment  may  act  in  synergistic,  additive  or  reductive  ways  with  one  another.    One  modality   for  engaging  this  thinking  is  considering  how  the  watershed,  and  all  the  activities  contained   within,  determines  the  metabolism  (i.e.  productivity  through  time)  of  a  lake  through  nutrient   inputs.    The  lake  ecosystem  does  not  just  represent  the  water  held  within  the  lake,  but  rather  it   extends  into  its  littoral  banks  and  wetlands,  up  the  inflow  streams  and  associated  riparian   zones,  and  into  the  entire  terrestrial  landscape  which  drains  into  the  lake.    Therefore,  if  a   specific  concern  is  identified  within  a  lake,  consideration  of  both  the  cause  and  interactions   between  these  compartments  must  be  investigated  in  order  to  devise  a  management  response.       The  intent  of  these  next  sections  is  to  highlight  some  of  these  properties  and  interactions  which   occur  within  lakes,  to  inform  and  interpret  the  nature  of  Kushog  Lake.       3.1.2 Lake  Thermal  Structure   Temperate  deep  lakes  thermally  stratify  during  the  winter  and  summer  and  mix  during  the   spring  and  fall.    During  summer,  increased  insolation  and  associated  energy  increases  the   temperature  of  water  at  the  surface,  while  deeper  cooler  and  thus  denser  water  do  not  receive   as  much  light  and  are  not  warmed  to  the  same  extent.    The  orientation  of  a  lake  in  relation  to   prevailing  winds  changes  the  fetch  and  wave  action  occurring  on  the  lake.  This  in  turn,  changes   the  depth  to  which  wave  action  mixes  the  upper  layer  and  the  depth  of  the  warmed  layer  
  • 23. Kushog  Lake  Monitoring  Assessment   22         termed  the  ‘epilimnion’.    In  the  winter,  however,  water  which  is  directly  beneath  an  iced   surface  is  cooled  to  0°C  and  deeper  waters  are  warmer  and  denser  at  4°C.     In  the  summer  stratification  below  the  hypolimnion,  often  there  is  a  rapid  temperature  drop  or   themocline.  This  zone  can  have  variable  temperatures  at  depth  and  is  a  transition  zone  to  the   ‘hypolimnion’.  The  hypolimnion  is  the  densest  and  coolest  section  of  the  lake  with  water   temperatures  around  4    ͦC  and  provides  critical  habitat  for  cold  water  fishes.  Essentially,  it  is  the   seasonal  differences  in  water  temperature  and  the  associated  density  changes  which  cause   these  layers  to  form.  In  the  spring  and  fall  as  temperatures  warm  and  cool  respectively,  the   difference  in  temperature  between  the  surface  layer  and  deeper  layers  is  significantly  reduced   which  results  in  a  turn  over  or  mixing  event.     The  summer  thermal  stratification  separates  the  water  of  the  lake  into  distinct  parts;  a  zone   where  relatively  high  levels  of  solar  illumination  give  rise  to  warm  waters  where  phytoplankton   add  to  primary  productivity  through  photosynthesis  and  a  deep  dark  and  cold  environment,   where  decomposition  takes  place.  The  winter  season  is  also  generally  marked  by  increased   rates  of  decomposition  relative  to  production;  anoxic  conditions  can  manifest  if  large  amounts   of  organic  matter  are  generated  in  the  previous  summer,  which  will  impact  deep  water  species   such  as  Lake  Trout.     This  thermal  stratification  and  the  associated  mixing  events  are  important  features  of  lakes   with  implications  for  nutrient  dynamics  and  habitat  selection  by  aquatic  organisms,  as  well  as   for  potential  for  algal  blooms  and  the  speciation  of  them  (see  section  3.1.3).    For  example,  it  is   best  to  sample  a  lake  for  phosphorus  immediately  after  the  spring  turn  over  event  to  get  a   homogenous  representative  sample.  The  lake  at  this  point  is  well  mixed  and  can  give  the  best   indication  of  the  phosphorus  concentration  of  the  water  and  its  associated  trophic  status.  In  the   summer,  stratification  can  lead  to  thermally  isolated  or  induced  algal  production  which  is  not   representative  of  the  whole  lake.          
  • 24. Kushog  Lake  Monitoring  Assessment   23         3.1.3 Lake  Habitats  and  Food  Chains   Within  the  lake  environment  itself  there  are  a  number  of  different  habitats  including  the  pelagic   (open  water),  littoral  (lake  margin)  and  profundal  (bottom  water  and  sediment)  zones.    Each   zone  has  its  own  set  of  unique  inhabitants,  structures,  interactions  and  processes.    This  leads  to   complex  interfaces  of  energy  exchange.     The  pelagic  zone  is  where  most  of  the  primary  production  is  generated  through  the   photosynthetic  activity  of  phytoplankton.  This  acts  as  the  base  of  a  food  web  within  a  lake   ecosystem,  resulting  in  a  transfer  of  energy  up  through  trophic  levels.    Phytoplankton  and   cyanobacteria  are  limited  to  zones  in  which  they  can  carry  out  photosynthetic  activity  and   mixing  within  the  epilimnion  through  wind  generated  wave  action,  will  generally  keep  them   suspended.    However,  cyanobacteria  responsible  for  so  called  ‘blue-­‐green’  algae  blooms  have   the  ability  to  ascend  and  descend  within  the  water  column  to  adjust  to  variable  light  and   nutrient  conditions.  Small  and  unicellular  phytoplankton  and  bacteria  are  in  turn  consumed  by   zooplankton.    Species  of  Daphnia,  an  abundant  type  of  zooplankton,  are  generalist  filter  feeders   which  can  ingest  most  algae  encountered,  but  prefer  nutrient  dense  types  over  less  nutritious   types  like  cyanobacteria.  Zooplankton  is  then  consumed  by  invertebrate  species  and   planktivorous  fish,  which  are  then  consumed  by  piscivorous  fish,  which  cap  the  top  of  the  food   chain  within  the  lake.    Of  course,  these  fish  can  then  be  removed  and  consumed  by  birds,  bears,   foxes  or  humans,  to  name  a  few.     The  littoral  zones  of  lakes  are  also  quite  productive;  however  productivity  here  is  dominated  by   macrophytes  (rooted  plants),  which  provide  structure  for  colonization  of  attached  submerged   algae  species.    This  habitat  is  then  well  suited  for  invertebrates  and  benthic  invertebrates  which   feed  by  scraping  or  grazing,  and  fish  species  which  prefer  sheltered  habitats  for  foraging,  cover   and  breeding.    The  littoral  zone  is  also  an  important  interface  between  the  upland  terrestrial   communities  and  the  open  water;  it  will  often  capture  chemical  or  organic  matter  laden   sediment  or  runoff  from  the  watershed.    Transformation  of  these  materials  are  of  paramount   importance  to  maintaining  open  water  ecosystem  integrity.    
  • 25. Kushog  Lake  Monitoring  Assessment   24         The  profundal  zone  is  the  sediment-­‐  water  interface  at  the  bottom  of  the  lake.  The  key   processes  occurring  here  are  variations  in  reduction  and  oxidation  reactions  (redox)  involving   the  transformation  of  key  nutrients  and  trace  elements.    The  pH  and  oxygenation  of  the  water   within  these  zones  will  govern  the  type  and  scope  of  process  that  occur  here,  a  complete   discussion  of  which  are  beyond  the  scope  of  this  paper.    A  crucial  point  however  is  that  when   the  oxygen  demand  of  bacteria  dwelling  within  sediments  is  greater  than  that  which  is  present   in  the  water,  dissolved  oxygen  is  depleted,  thereby  forming  hypoxic  or  anoxic  conditions  which   can  have  deleterious  effects  on  sensitive  fish  species  such  as  lake  trout.     3.2  Nutrient  Dynamics     3.2.1 Introduction   This  following  section  reviews  a  selection  of  papers  and  general  information  which  may  provide   insight  into  some  of  the  water  quality  conditions  on  Kushog  Lake,  aid  in  interpretation  of   existing  data,  and  be  utilized  in  consideration  of  future  monitoring  efforts.     3.2.2 Phosphorous   Phosphorus  is  the  limiting  nutrient  within  a  freshwater  system,  due  to  relative  scarcity  in   bioavailable  forms  when  compared  to  nitrogen  and  carbon  (Schindler  et  al.,  1974).    The  only   natural  source  of  phosphorous  from  the  watershed  is  in  the  form  of  the  phosphate  ion,  which   has  poor  water  solubility.  Phosphorus  has  a  strong  affinity  for  soils  and  sediments.  This  means   that  under  ‘natural’  conditions,  the  bioavailability  of  phosphorus  in  lakes  is  quite  low  and  any   available  amount  will  be  rapidly  up  taken  by  phytoplankton  (Currie  and  Kalff,  1984).   Additionally,  when  waters  are  well  oxygenated  and  contain  of  certain  iron  species,  phosphate   can  combine  with  these  elements  to  form  insoluble  salts  which  precipitate  out  of  the  water   column  and  sink  to  the  bottom  sediments,  further  limiting  availability.    If  however,  anoxic   conditions  are  initiated  there  can  be  a  release  of  the  phosphorus  back  into  the  water  column;   these  are  termed  ‘internal  loading  events’.  This  can  then  in  turn  stimulate  algal  blooms  through  
  • 26. Kushog  Lake  Monitoring  Assessment   25         mixing  events.    In  terms  of  management  considerations  for  fresh  water  lakes,  there  is  a  general   consensus  that  preventing  anthropogenic  inputs  of  this  limiting  nutrient  is  essential  to   preventing  excessive  algal  blooms.       Phosphorus  Characterization  in  Sediments  Impacted  by  Septic  Effluent  at  Four  Sites  in   Central  Canada  (Zanini,  Robertson,  Ptacek,  Schiff  and  Mayer,  1998).   A  relevant  article  that  pertains  to  perceived  phosphorus  issues  on  Kushog  is  the  1998  article  by   Zanini  et  al. The  article  serves  to  explain  how  phosphorus  content  in  sediments  is  impacted  by   septic  outflows.  They  look  at  four  particular  sites  in  central  Canada,  one  area  being  Muskoka.   This  article  has  significant  relevance  to  Kushog  Lake  specifically,  because  a  majority  of  the   cottages  located  on  the  perimeter  of  the  lake  have  septic  systems.  Moreover,  there  is  concern   over  whether  the  cottage  owners  are  maintaining  these  systems  regularly.  The  authors   conclude  that  phosphorus  accumulation  occurs  within  sediment  zones  that  are  very  close  to   infiltration  pipes.  This  is  observed  to  be  a  common  occurrence  at  septic  system  sites  (Zanini  et   al,  1998).  The  authors  cite  an  example  in  Australia,  where  enriched  Phosphorus  concentrations   were  observed  to  occur  within  14  cm  of  the  infiltration  pipes  at  a  29  year  old  septic  system.   Furthermore,  the  findings  suggest  that  the  physical  and  chemical  characteristics  of  the   sediments  will  affect  phosphorus  attenuation.  The  quantity  of  phosphorus  that  is  immobilized  is   likely  to  be  controlled  by  a  number  of  specific  factors,  including  the  composition  of  the  effluent,   particularly  speciation  of  iron,  nitrogen,  and  alkalinity;  the  amount  of  reductive  dissolution  of   iron  that  occurs  in  the  sub  tile  sediments  prior  to  oxidation;  and  the  degree  of  oxidation  of  the   effluent  and  the  buffering  capacity  of  the  sediments  (Zanini  et  al,  1998).     The  important  point  here,  is  that  phosphorus  has  a  strong  affinity  for  the  soil  and  is  fairly   immobile  in  this  form.    Preventing  phosphorus  laden  sediments  from  entering  waters  should  be   prioritized.    Another  key  point  is  that  accumulation  of  phosphorous  seems  to  occur  in  the   immediate  vicinity  of  infiltration  pipes;  this  suggests  that  phosphorus  is  not  leaching  into   sediments  meters  or  tens  of  meters  away  from  the  infiltration  pipes.  We  want  to  stress   however,  that  best  practices  management  and  the  maintence  of  septic  systems  should  still  be  
  • 27. Kushog  Lake  Monitoring  Assessment   26         prioritized  to  ensure  raw  or  partially  treated  sewage  is  not  entering  the  lake,  which  would   contribute  to  elevated  phosphorous/  nitrogen  concentration  and  bacterial  counts.       3.2.3 Nitrogen     Nitrogen  is  often  naturally  available  in  higher  quantities  in  lakes,  and  present  in  both  organic   and  inorganic  forms,  in  both  dissolved  and  particulate  forms.  It  is  often  not  the  limiting  nutrient   to  primary  production  in  healthy  lakes.    Nitrogen  can  become  a  limiting  nutrient  when   phosphorus  levels  are  high;  that  is,  when  the  ratio  of  phosphorus  to  nitrogen  is  high,  but  in   healthy  lakes  this  will  not  occur.    Algal  cells    require  nitrogen  to  synthesize  proteins  and  take  up   this  nutrient  in  the  form  of  ammonia  ions  (NH4 + )  or  NO3 -­‐   (nitrate).    Cyanobacteria  have  a   competitive  advantage  in  that  they  can  fix  N2  (nitrogen  gas)  from  the  air-­‐water  interface,  so  that   in  possible  nitrogen  limited  situations,  they  are  still  able  to  obtain  the  nutrient.    Again,  nutrient   limitation  by  nitrogen  is  generally  not  a  common  observance,  but  it  can  occur  when  phosphorus   levels  far  exceed  nitrogen  levels.         3.2.4 Calcium   Calcium  concentrations  in  surface  waters  on  the  Precambrian  Shield  are  determined  by  the   supply  of  calcium  originating  from  the  terrestrial  pool  and  to  a  lesser  extent  atmospheric   deposition.    The  supply  is  contingent  on  the  calcium-­‐weathering  rate  in  soils  and  extractions  of   calcium  from  the  catchment  through  activities  such  as  timber  harvesting  (Watmough  and   Aherne,  2008).  A  number  of  mass  balance  studies  of  forest  ecosystems  have  indicated  that   calcium  losses  are  exceeding  the  inputs  (i.e.  weathering  rates)(  Likens  et  al.,  1998;  Watmough   and  Dillion  2003,  2004).    Additionally,  the  acid  sensitive  soils  of  this  region  have  likely  suffered   calcium  losses  from  historical  acid  deposition,  which  caused  extensive  leeching  of  the  already   naturally  limited  pool.  This  has  resulted  in  a  corresponding  decline  in  the  calcium  concentration   of  surface  waters  within  these  catchments,  raising  concerns  that  Calcium  limitation  will  pose  a   threat  to  aquatic  biota.    Calcium  is  a  nutrient  which  is  required  by  all  lake  dwelling  organisms  
  • 28. Kushog  Lake  Monitoring  Assessment   27         and  is  particular  concern  for  the  calcium  rich  zooplankton,  Daphia  sp.    Dr.  Norman  Yan  (now   retired)  and  colleagues  at  York  University  demonstrated  that  most  lake  dwelling  Daphnia   species  suffer  reproductive  stress  with  lake  calcium  levels  below  concentrations  of  1.5  mg/L.     A  large  proportion  of  the  Canadian  Shield  lakes  that  have  been  examined  have  calcium   concentrations  approaching  or  below  the  threshold  at  which  Daphnia  populations  suffer   reduced  survival  and  fertility  (Jeziorski  et  al,  2008).  Watmough  and  Aherne  also  elaborate  on   this  current  issue;  they  predict  that  calcium  concentrations  in  individual  lakes  will  decline  by   10%  -­‐  40  %  as  compared  to  current  values.       3.2.5 Dissolved  Organic  Carbon  and  Wetlands   Effect  of  Landscape  form  on  Export  of  Dissolved  Organic  Carbon,  Iron  and  Phosphorus   from  Forested  Stream  Catchments.  (Dillon  and  Molots,  1997).     Dillon  and  Molot  (1997)  present  dissolved  carbon  (DOC),  total  phosphorus  (TP),  and  iron  (Fe)   export  data  for  20  undisturbed  forested  catchments  draining  into  seven  lakes  in  central   Ontario.  They  provide  regression  models  of  the  chemical  export  as  functions  of  landscape   composition.  The  chemical  composition  of  surface  waters  depends  upon  in  situ  processes,  the   external  supply  of  substances,  their  loss  rate  from  the  lake  or  stream,  and  the  modifying  effects   of  factors  such  as  climate.  Furthermore,  the  flux  of  metals,  nutrients  and  DOC  from  a  catchment   significantly  affects  water  chemistry.  These  factors  determine  the  chemical  composition  of   waters  in  Ontario  and  can  be  related  back  to  the  water  quality  of  Kushog  Lake.  DOC  plays  a  vital   role  in  lake  chemistry  because  it  complexes  many  metals  and  nutrients.  DOC  often  controls   transparency;  the  organic  acids  that  comprise  a  portion  of  DOC  affect  pH  and  alkalinity.  Iron  is   also  an  important  factor  to  consider  in  the  chemistry  of  lakes  and  rivers.  Iron  is  important   because  it  enhances  phosphorus  complexity  with  DOC,  reduces  DOC  export  from  podzolic  soils,   and  reduces  TP  export  from  mineral  soils  when  oxidized  (Dillon  and  Molot,  1997).  Hence,  DOC   and  Fe  are  extremely  important  factors  to  consider  in  regard  to  surface  water  quality  because   they  influence  biological  productivity  in  phosphorus-­‐limited  waters.  Consequently,  it  is  
  • 29. Kushog  Lake  Monitoring  Assessment   28         important  to  take  these  parameters  in  account  when  analyzing  the  current  data  pertaining  to   Kushog  Lake.       4.0 Lake  Health  and  Water  Quality  Assessment       4.1 Synthesis  of  Kushog  Monitoring   The  intent  of  this  section  is  review,  summarize  and  consolidate  of  the  data  sources  and   literature  that  are  either  1)  derived  directly  from  Kushog  Lake,  including  data  collected  from   field  work  and  reports  created  therein,  or  2)  directly  applicable  to  Kushog  including  water   quality  guideline  documents  and  alternate  data  sources  we  retrieved  to  use  in  the  Lake  Health   and  Water  Quality  Assessment.     It  should  be  noted  that  while  the  Kushog  research  we  are  aware  of  is  summarized  and   consolidated  here,  not  all  of  it  pertains  to  or  is  used  in  the  Lake  Health  and  Water  Quality   Assessment.  The  majority  of  this  information  can  be  considered  as  grey  literature  including   personal  communications,  government/NGO  reports  and  data,  student  produced  reports  and   data,  consultant’s  reports  and  maps,  and  community/KLOPA  produced  documents.       We  believe  that  by  having  these  documents  summarized  and  consolidated  in  one  location,  it   will  be  more  accessible  for  possible  future  projects.  In  each  section,  the  relevant  titles  are  listed   along  with  a  brief  summary  of  the  content  and/or  data  type  contained  within.  Also  provided  are   the  citations  where  appropriate  for  the  Kushog  related  reports.    We  have  also  provided  a  USB   with  this  report  which  contains  all  known  research  and  data  for  Kushog  Lake.              
  • 30. Kushog  Lake  Monitoring  Assessment   29           4.1.1 Reports  and  Documents     Christie,  A.  E.  Ministry  of  Environment,  Waste  Management  in  Ontario:  Water  Resources   Commission  (1968).  Nutrient-­‐phytoplankton  relationships  in  eight  southern  Ontario   lakes  (No.  23.  ).  Toronto,  Ontario:  Queen's  Printer  for  Ontario.   Published  in  1968  this  is  the  earliest  consolidated  report  and  data  available  for  Kushog  Lake.    It   was  produced  by  A.  E.  Christie  in  partnership  with  MOE  and  the  Water  Resources  Commission   of  Waste  Management  in  Ontario.  This  study  evaluated  the  relationships  between  the  nutrient   availability  and  the  algal  production  of  eight  shield  lakes  which  reside  within  the  Trent  River   Basin.    It  appears  this  study  was  initially  undertaken  as  a  mode  to  understand  controls  on  algal   growth  in  the  interest  of  preventing  excessive  algal  growth.    There  was  interest  in  these  aspects   with  regard  to  problems  of  filter  clogging,  taste  and  odours,  and  recreational  impairment,   which  was  and  still  is  fundamental  to  proper  water  management.     This  is  a  lake  sampling  study  for  which  a  number  of  chemical  variables  were  determined  and   relationships  explored.  The  most  valuable  part  of  this  report  is  the  water  chemistry  and   chlorophyll  data  it  contains.  The  data  provide  the  earliest  known  record  of  water  quality  data   on  Kushog  Lake  and  other  lakes  within  its  physiographic  region.       Ministry  of  the  Environment  (MOE)  (2003).  Water  data  for  Kushog  lake.     Produced  in  2003  it  is  a  summary  of  water  quality  data  for  2002  and  2003.  It  includes   measurements  for  “North,  Middle  and  South”  basins  for  the  variables  of  Secchi  Depth  (m),  Total   Dissolved  Phosphorus(reactive),  Ammonia,  Nitrite,  Nitrate,  Total  Kjeldahl  Nitrogen,  Dissolved   Organic  Carbon,  Dissolved  Inorganic  Carbon,  pH,  Total  Alkalinity  and  Conductivity.  Other  key   aspects  include  dissolved  oxygen  and  temperature  at  depth,  as  well  as  a  summary  of  fisheries  in   the  lake  (no  population  level  data,  only  occurrence  of  species).     Heaven,  P.,  &  Brady,  C.  (2011).  Kushog  lake  watershed:  stream  and  desktop  analysis  final   report.  In  Project  Number:  11019.  Minden,  Ontario:  Glenside  Ecological  Services  Limited  
  • 31. Kushog  Lake  Monitoring  Assessment   30         This  report  was  produced  by  the  ecological  and  GIS  consulting  company  Glenside  Ecological   Services  Limited  at  the  request  of  KLOPA  to  better  understand  the  lake’s  watershed  and   hydrological  characteristics.    The  report  presents  a  delineation  of  lake  watershed  and  the   nested  sub-­‐watersheds  obtained  through  ArcGIS.  Within  the  sub-­‐watersheds,  wetland   complexes  (including,  area  and  type)  and  streams  (inflows)  were  also  delineated  and  mapped.     Using  information  based  on  the  size  of  the  wetlands,  this  report  also  provides   recommendations  for  the  prioritization  of  wetlands  for  further  investigation,  as  possible   provincially  significant  wetlands  or  Species  At  Risk  habitat.    The  report  also  contains  a  review  of   the  Ministry  of  Natural  Resources  lake  management  files,  Aquatic  Habitat  Inventory  studies,   and  1970’s  fish  species  surveys.  Finally,  report  provides  recommendations  for  the  further   investigation  of  streams  (inflows),  and  that  early  spring  field  investigations  be  conducted  to   confirm  the  findings  of  the  GIS  analysis.  See  page  35  of  the  report  for  a  full  outline  of  their   recommendations.   Goutos,  D.,  Hawkins,  A.,  Jansen,  K.,  &  O’Halloran,L.  (2012).  Kushog  lake  subwatersheds  1-­‐10:   Ground  truthing  inflows  and  establishing  long-­‐term  monitoring  sites  final  report.  In  L.  O   (Ed.),Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming   College     Burns,  R.,  Ciancio,  M.,  Gavrilova,  M.,  &  Keegan,  M.  (2013).  Ground  truthing  inflows  in   subwatersheds  1,  10-­‐14,  26-­‐31:  Phase  2,  north  of  the  ox  narrows.  In  Credit  for  Product,   Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College   In  response  to  the  Heaven  and  Brady  report  listed  above,  a  partnership  between  KLOPA  and  the   indentified  Fleming  College  Credit  for  Product  program  was  developed  to  “ground  truth”  the   inflows  that  were  delineated  by  the  GIS  analysis.  They  also  recorded  using  GPS  the  location  of   culverts  and  streams  which  did  not  appear  in  the  maps  produced  by  Heaven  and  Brady  (2011).     At  inflows  where  there  was  significant  flow,  a  measurement  of  the  flow  rate  was  obtained  as   well  as  measurements  of  the  conductivity,  pH,  alkalinity,  temperature  and  dissolved  oxygen.   Additionally,  at  select  inflows,  rapid  bioassessment  of  benthic  invertebrates  was  completed   following  the  Ontario  Benthic  Biomonitoring  Network  protocols.  The  report  contains  a  
  • 32. Kushog  Lake  Monitoring  Assessment   31         description  of  the  methodology,  as  well  as  interpretations  of  the  results  concerning  the  benthic   data.     KLOPA.  (2010).  Kushog  lake  plan  summary.  The  Kushog  Lake  Property  Owners  Association   This  document,  which  is  a  summary  of  the  larger  200+  page  Kushog  Lake  Plan  document,  was   created  with  the  intention  to  be  widely  distributed  to  Kushog  Lake  residents.  Components  of  it   regularly  appear  in  KLOPAs  newsletters.  It  is  a  comprehensive  document  containing  information   on  the  general  geography  of  the  lake,  historical  development,  social  elements,  natural  history/   heritage,  physical  elements,  and  land  use,  as  well  as  an  agenda  for  adaptive  management.    It   gives  good  insight  into  how  KLOPA  perceives  the  status  of  the  lake’s  health  and  what  their   priorities  and  concerns  are  for  its  maintence.    It  should  be  noted  that  it  was  created  from  the   contributions  of  numerous  individuals,  and  it  is  not  always  clear  where  the  information   contained  within  the  document  originates  from.     Collection  of  Miscellaneous  Memos     This  was  provided  to  us  by  KLOPA  in  an  email;  it  is  a  pdf  document  containing  a  number  of   emails.  They  are  mostly  centered  around  the  discussion  and  interpretation  of  data  and   environmental  conditions  on  the  lake,  including  secchi  and  phosphorous  concentrations.  It   gives  insight  into  how  these  results  have  been  interpreted  by  the  host,  and  those   organizations/individuals  they  have  partnered  with  such  as  the  MOE  and  representatives  from   the  Dorset  Environmental  Center.  There  is  also  a  pdf  that  was  provided  in  one  memo,  which   outlines  a  record  of  MOE  involvement  in  1988.  It  provides  a  record  of  low  pH  from  the  legacy  of   the  acid  rain  era,  and  acknowledges  the  positive  impact  that  reductions  of  bathing  and  dumping     of  had  on  phosphorus  concentrations  within  the  lake.            
  • 33. Kushog  Lake  Monitoring  Assessment   32         4.1.2 Data  Collection   Lake  Partnership  Program  (LPP).  Ministry  of  Environment,  Dorset  Environmental  Science  Center   (DESC).  (2014).  Ontario  lake  partner  program:  Monitoring  data   The  Lake  Partner  Program  is  a  volunteer  based  water  quality  monitoring  program.    It  is   coordinated  by  the  Ontario  Ministry  of  the  Environment  through  the  Dorset  Environmental   Center.  The  program  was  initiated  in  1996.  Volunteers  from  the  partner  lakes  collect  water   samples,  which  are  evaluated  for  total  phosphorus  concentrations,  and  perform  secchi  depth   measurements.  The  data  are  available  in  an  online  repository  which  can  be  accessed  through   the  Dorset  environmental  center  website  or  at  the  Ontario  Ministry  of  the  Environment  (MOE)   website  (http://desc.ca/programs/lpp  and  http://www.ontario.ca/data/ontario-­‐lake-­‐partner).     The  quality  and  resolution  of  these  data  varies  by  lake.    Phosphorus  and  secchi  data  can  be   retrieved  by  using  an  interactive  map  or  by  searching  the  lake  of  interest.  Data  are  returned  to   the  investigator  in  either  Excel  spread  sheets  from  the  MOE  or  a  combination  of  Excel  and  pdf   files  from  DESC.    This  data  are  available  from  2002-­‐2013  and  in  future  as  new  data  are  provided.   Also  available  from  the  DESC  website  are  pre-­‐2002  data  for  LPP  lakes.    The  concentration  of   calcium  was  added  to  the  monitoring  program  in  2008,  in  acknowledgement  of  its  critical   importance  in  the  metabolism  of  lakes  and  trends  that  suggest  it  may  be  in  decline.  Kushog  has   participated  in  all  of  these  sampling  initiatives  and  has  good  temporal  and  spatial  coverage.   Sampling  has  occurred  in  the  Northern,  Middle  and  Southern  basins  of  the  lake.  There  is   variability  in  the  timing  of  the  samples  were  taken,  however,  early  May  samples  are  always   taken.     Goutos,  D.,  Hawkins,  A.,  Jansen,  K.,  &  O’Halloran,L.  (2012).  Kushog  lake  subwatersheds  1-­‐ 10:ground  truthing  inflows  and  establishing  long-­‐term  monitoring  sites  final  report.  In  L.   O  (Ed.),Credit  for  Product,  Ecosystem  Management  Technology  .  Lindsay,  Ontario:   Fleming  College    
  • 34. Kushog  Lake  Monitoring  Assessment   33         Burns,  R.,  Ciancio,  M.,  Gavrilova,  M.,  &  Keegan,  M.  (2013).  Ground  truthing  inflows  in   subwatersheds  1,  10-­‐14,  26-­‐31:  Phase  2,  north  of  the  ox  narrows.  In  Credit  for  Product,   Ecosystem  Management  Technology  .  Lindsay,  Ontario:  Fleming  College   Raw  2014  data  provided  to  us  in  Excel/Word  format  from  Emma  Horrigan  at  U-­‐links  Haliburton     The  field  component  of  these  reports  involved  the  collection  of  water  chemistry  and  benthic   invertebrate  data  at  inflows  to  Kushog  Lake.  The  water  chemistry  measurements  consist  of   conductivity,  pH,  alkalinity,  temperature  and  dissolved  oxygen,  consistent  with  what  is  required   for  the  OBBM  protocols.  Benthic  invertebrate  data  are  available  for  Hindon  or  ‘Lost  Creek’   (2012),  Fleming  (2012),  Bennett  (renamed  in  2014)(2013,  2014),  Harrison(2013,2014),  Margaret   (2013,2014),  Kanawa  (2013),  Kabakwa  (2014)  inflows.  The  sampling  was  performed  to  the   coarse  27  group  level,  consistent  with  OBBM  protocols  for  streams.     Sediment  Data  for  Kushog  Lake  2013  &  2014   Sediment  core  data  were  collected  by  Fleming  students  under  the  guidance  of  Dr.  Eric  Sager  for   the  analysis  of  metallic  ions;  with  a  total  of  19  analyses  evaluated.    These  data  were  received   from  Dr.  Eric  Sager.    Sampling  locations  are  consistent  with  other  monitoring  programs  that   have  been  carried  out  in  the  lake,  in  locations  that  include  North,  Middle  and  South  basins  of   Kushog.    It  should  be  noted  that  there  were  also  student  reports  created,  and  one  in  particular   by  a  Mr.  Sean  Whitten,  which  provides  an  excellent  dissemination  and  interpretation  of  these   data.  He  also  compared  the  2014  data  to  the  Canadian  Environmental  Quality  Guideline  (EQG),   and  Sediment  Quality  Guideline  for  the  Protection  of  Aquatic  Life.              
  • 35. Kushog  Lake  Monitoring  Assessment   34         4.1.3 Summary  Table   Table  2.    Summary  of  known  data  sources  and  reports  specific  to  Kushog  Lake  as  of  September  2014   Document   Title,  Year   Source/Author   Type   Brief  Summary  of  Content/Data  Type  and  Usage   Total   Phosphorus,   2013   (excel)   Ontario  Lake   Partner   Program(LPP)   Volunteer   sampled   monitoring   data   -­‐total   phosphorus   data   from   2002-­‐2013   sampled   at   4   locations  in  the  lake,  in  Spring,  Summer  and  Fall.     Phosphorus   Pre  2002   Averages   (excel)   Dorset   Environmental   Center     Unverified   -­‐presents   the   pre   2002   annual   means   of   total   phosphorous  data  for  entire  lake.     Water  Clarity   (secchi),  2013   (excel)   Ontario  Lake   Partner   Program(LPP)   Volunteer   sampled   monitoring   data   -­‐secchi   depth   data   from   2002-­‐2013   sampled   at   4   locations  in  the  lake   Calcium,  2013   (excel/pdf)   Ontario  Lake   Partner   Program   Volunteer   sampled   monitoring   data   -­‐calcium  data  from  2008-­‐2012  samples  at  4  locations  in   the  lake   Sediment     Data  2013  &   2014   (pdfs)   Fleming  College   Students  and   Prof.  Eric  Sager   Credit  for   Product   Field,  Lab   and  Reports   -­‐sediment  core  sampling  and  analysis  of  19  metallic  ions   at  depths  of  0-­‐15  cm  and  15-­‐30  cm  into  sediment.     -­‐also   students   reports   which   provided   a   comparison   of   data   values   to   EQG   sediment   quality   guidelines   for   the   protection  of  aquatic  life.     Nutrient   Phytoplankton   Relationships   in  Eight   Ontario  Lakes   1968   Waste   Management  in   Ontario,  Water   Resources   Commission,   A.E.  Christie   Government   Report,  data   -­‐provides   oldest   record   of   study   on   Kushog   Lake   in   comparison  to  other  lakes.   -­‐has  historical  total  active  phosphorus  data,  which  differs   from  the  LPP  measurement  of  total  phosphorus.       Kushog  Lake   Watershed:   Wetland  and   Stream   Desktop   Analysis,  2011   Glenside   Ecological   Consultants  Inc.   (Heaven  &   Brady)   Consultant   Report/  GIS   desktop   analysis  and   final  report   -­‐provides  maps  of  Kushog  Lake  Watershed  and  Kushog   Lake,  wetland  complexes,  inflows   -­‐%/hectares  of  wetland,  watershed  area,  %  wetland  by   type   -­‐delineated  inflows  and  wetland  complexes  on  Kushog   Lake   -­‐provided  summary  of  fisheries,  species  level     Ground-­‐ truthing   Inflows,  2012   &2013   Fleming  College     Students   Credit  for   Product  -­‐ Field  work   and  Reports   -­‐in   response   to   the   Glenside   desktop   analysis,   ground-­‐ truthing  of  the  inflow  data  was  performed  by  two  groups   of  students  in  2012  and  2013.     -­‐they   recorded   GPS   location,   and   water   chemistry   data   where  possible  (pH,  temperature,  alkalinity,  conductivity,   dissolved  oxygen)   Benthic   Invertebrate   Sampling   (excel-­‐data,   Reports-­‐pdf)   Fleming  College   Students   Credit  for   Product-­‐   Reports  and   data   -­‐students   performed   rapid   bioassay   of   benthic   invertebrates   at   streams   on   Kushog   Lake   (Fleming)   (2012),   Hindon   (2012),   Kanawa   (2013),   Bennet   (2013   &   2014),  Harrison  (2013  &  2014),  Margaret  (2013  &  2014),   Kabakawa(2014)