SlideShare a Scribd company logo
1 of 41
1
Elfitrin Syahrul
Universitas Gunadarma
DASAR
TELEKOMUNIKASI
1-2
Topik Perkuliahan
minggu Topik
1 & 2 Pendahuluan : elemen-elemen
sistem komunikasi, representasi
sinyal, spektrum, desibel?
3 & 4 Saluran transmisi
5, 6, 7 Modulasi
8, 9, 10 Multipleksing
11 Dasar transmisi digital
1-3
isn’t AM and FM pretty “old stuff ” ….?
 Digital is hot (and elegant !)
 But why FM and AM ? Aren’t they really old and only for
our radios?
Not really...
Today we use AM and FM (PM) to carry digital signals.
AM is also the basis of all digital “lightwave” transmission today
and FDM is the basis of “DWDM” optical networking
FM (PM) is the basis of many other high performance
communication systems, including when the payload is digital.
And remember…..Everything is actually ANALOG
ANALOG & “Linear” = High performance !
1-4
Definisi Telekomunikasi
At the General Assembly of the ITU (International
Telecommunication Union) at Melbourne 1988, the
following definition of telecommunication has been
adopted:
"Telecommunication
 is any transmission and/or emission and reception
of signals representing signs, writing, images and
sounds, or intelligence of any nature by wire, radio,
optical, or other electromagnetic system".
1-5
Pendahuluan
Telekomunikasi  transmisi informasi dari suatu tempat ke tempat yang
lain dalam bentuk gelombang elektromagnetik.
Pada pembahasan berikut ini pesan (message) yang membawa informasi
dalam bentuk gelombang (waveform), deretan bit (bit sequence) atau
bentuk fisik lainnya dari informasi.
Tujuan sistem komunikasi adalah untuk membuat replika pesan /
informasi di tempat tujuan (destination)
Pesan asli (original message) dapat berupa analog (spt suara) atau
digital (spt teks).
Pesan  bentuk analog atau digital.
Transmisi  analog atau digital
Pada transmisi analog terdapat beberapa kriteria kualitas (Signal-to-
Noise Ratio SNR, distorsi, dll) yang harus dipenuhi atau diperhatikan
dalam merancang suatu sistem komunikasi.
Pada transmisi digital diusahakan untuk meminimalisasi probabilitas
kesalahan (probability of error).
1-6
Perubahan kecepatan Informasi
1900 1950 2004
1850
huge quantities of
information
transmitted in a
fraction of a second.
telegraph
Information took
days or weeks to
be transmitted
Information
transmitted in
minutes or hours
Electronic
communications
sped up the rate of
transmission of information,
growth of telecommunications and
especially computer networks
globalization
phenomenon
(WWW)
1-7
Kemajuan teknologi telepon
1876
Phone
invented
first trans-
continental
and
transatlantic
phone
connections
1915
1919
Strowger (stepper)
switch,
rotary dial phones
(enabling automatic
connections)
1948
Microwave
trunk lines
(Canada)
1962
Telstar
(Telecommunications
via satellite), Fax
services, digital
transmission (T-
carriers)
1969
Picturefone
(failed
commercially)
1976
Packet-switched
data
communications
1984
Cellular
telephone
1-8
Sejarah sistem informasi
Data communications over
phone lines (became
common and mainframes
became multi-user systems)
Batch
processing
mainframes
Networking
everywhere
PC LANs
become
common
1950 1960 1990 2000
1970 1980
Online real-time,
transaction oriented
systems (replaced batch
processing. DBMSs
become common)
PC revolution
1-9
Perjalanan Internet
Originally called
ARPANET, the Internet
began as a military-
academic network
1969
Over 240
million
servers
and 400
million
users
2001
1990
commercial
access to
the Internet
begins
ARPANET splits:
• Milnet - for military
• Internet - academic,
education and research
purposes only
1983
NSFNet
created as
US Internet
backbone
1986
Government
funding of the
backbone
ends
1994
1-10
Dasar Datakom
Broadband Communications
Telecommunications
transmission of voice, video, data,
- imply longer distances
- broader term
Data Communications
movement of computer information
by means of electrical or optical
transmission systems
convergence
1-11
Elemen sistem komunikasi -1
Transmitter memproses masukan sinyal dan menghasilkan sinyal yang
sesuai dengan karakteristik kanal transmisi, yang melibatkan
• Modulasi (Modulation)
• Pengkodean (Coding)
1-12
Kanal (channel ) (media elektrik yang menjembatani jarak antara sumber dan
tujuan) akan mempengaruhi sinyal sehingga memungkinkan terjadi
perubahan sinyal akibat :
• Atenuasi (Attenuation)
• distorsi Fasa dan frekuensi
• Noise (random signal)
• interferensi (Interference), misalkan yang diakibatkan oleh kanal lain
Receiver mereplika sinyal pesan menjadi seperti bentuk sinyal yang di
transmitter (melalui penguatan sinyal [amplification], decoding,
demodulasi [demodulation], filtering) dan meminimalisasi efek yang
menyebabkan perubahan sinyal selama pengiriman.
Mode Transmisi :
1. Simplex: transmisi satu arah (one-way)
2. Full-duplex: transmisi dua arah secara bersamaan
3. Half-duplex: transmisi dua arah secara berantian
Elemen sistem komunikasi -2
1-13
Model telekomunikasi – agak lengkap dr yg sebelumnya!!
Compressor/Expandor  m(t) digitalisasi oleh non-uniform quantizer
Anti-Aliasing filter  m(t) large bandwidth –> eliminasi spectral folding
Sampler  m(t) mjd discrete
Ideal reconstruction filter  interpolasi antara sampel m(t)
Encoder/decoder  encode quantizer mjd bit (dan sebaliknya)
Digital processor Blocks  pemrosesan digital  (scrambling, differential encoding)
Line Coder  merubah bit ke voltage signal untuk keperluan transmisi
Line Decoder  menentukan sinyal yang diterima berdasarkankan voltage, dan
merubahnya menjadi bit
1-14
Kanal Transmisi - contoh
1. Cables
• wire pairs (ordinary telephone line)
• coaxial cable
2. Radio Transmission
• broadcasting (e.g.: DVB-T, DVB-S, …)
• satellite transmission (GPS, Galileo)
• cell networks (GSM, WCDMA)
3. Optical Fiber
4. Magnetic Tape
1-15
Keterbatasan Fisik/kanal/jalur/media transmisi
Keterbatasan fundamental perancangan suatu sistem komunikasi
adalah noise dan bandwidth.
Noise  thermal noise (pergerakan acak muatan partikel dengan
temperatur diatas nol derjat Kelvin), yang menjadi
permasalahan utama untuk jarak transmisi yang semakin jauh.
Setiap sistem komunikasi mempunyai bandwidth/BW tertentu. BW
merupakan permasalahan yang utama ketika kecepatan
transmisi ditingkatkan. BW dan kec. transmisi peningkatannya
berbanding lurus.
Channel capacity :
B : bandwidth
S/N :Signal-to-Noise Ratio (SNR)
Hubungan antara BW dan SNR  Hukum Hartley-Shannon
1-16
Broadband VS Baseband
 Broadband :
Suatu teknik di mana data yang ditransmisi
dikirimkan menggunakan isyarat pembawa
(dimodulasi). Lebih dari satu isyarat pembawa
dapat ditransmisikan bersama-sama, sehingga
lebih dari satu isyarat dapat dikirim dengan satu
media (kawat) yang sama.
 Baseband :
Satu single data ditransmisikan secara langsung
dengan kawat, dengan tegangan positif dan
negatif. Interface RS-232 adalah salah satu
contoh transmisi baseband
1-17
Modulasi -1
Modulasi  2 bentuk gelombang :
Sinyal yang dimodulasi (modulating signal) yang
merepresentasikan pesan (message)
sinyal pembawa (carrier).
Contoh :
modulasi amplitudo (amplitude modulation) menggunakan
sinusoidal dan pulse train sebagai gel. pembawa (carrier).
Pesan (message) terlihat pada selubung (envelope) dari sinyal
yang termodulasi (modulated signal). Pada receiver,
pesan/message dapat diperoleh kembali dengan
mendemodulasi (demodulation) sinyal.
1-18
Modulasi - 2
Pada umumnya frekuensi sinyal
pembawa (carrier) lebih tinggi dari
frekuensi tertinggi sinyal yang
dimodulasi (modulating Signal).
contoh : spektrum dari sinyal yang
dimodulasi (modulated signal) terdiri dari
komponen frekuensi yang terkelompok
disekitar gelo. pembawa (carrier
frequency).
Modulasi  frequency translation.
1-19
Benefit modulasi - 1
1. Modulasi untuk efisiensi transmisi
Efisiensi  tergantung pada frekuensi sinyal
efisien line-of-sight propagasi radio membutuhkan antena dengan dimensi fisik 1/10 dari
panjang gelombang sinyal (signal wavelength).
contoh : transmisi sinyal audio 100 Hz yang tdk dimodulasi membutuhkan antenna
sepanjang 300 km, dan apabila sinyal dimodulasi pada gel carrier 100 MHz membutuhkan
panjang antena sekitar 1 m.
  panjang gelombang (m)
f  frekuensi (Hz)
v  cepat rambat gelombang (m/s)
2. Modulasi untuk penunjukkan/alokasi frekuensi
masing-masing stasiun radio/TV mempunyai alokasi frekuensi yang telah ditentukan oleh
suatu badan/regulator yang mengatur alokasi frekuensi. Alokasi frekuensi juga menggunakan
filtering. Frekuensi Radio dialokasikan sesuai dengan perjanjian dunia (WRC / world radio
conference dibawah ITU / international telecommunication Union, utk Indonesia  dept.
postel)


v
f
1-20
Benefit modulasi - 2
3. Multipleksing
penggabungan beberapa sinyal yang dilewatkan dalam satu
kanal jika frek. Pembawa (carrier) berlainan (frequency division
multiplexing/FDM).
4. Modulasi juga bisa mengatasi keterbatasan hardware
Perancangan suatu sistem komunikasi memungkinkan dibatasi
oleh biaya dan ketersediaan hardware, kinerja perangkat sering
tergantung pada frekwensi yang teribat. Modulasi
memungkinkan perancangan sistem komunikasi menempatkan
sinyal tertentu pada suatu range frekuensi untuk menghindari
keterbatasan hardware.
1-21
Spektrum Elektromagnetik
Above "light" frequencies used by optical communications comes ultra-violet, X-rays, and eventually cosmic rays. They're all
electromagnet radiation, mathematically the same. Thank Maxwell for showing this.
1-22
Contoh alokasi frekuensi – dikit dr negara org
1-23
Coding
 memproses pesan (message signal) untuk meningkatkan kualitas
komunikasi digital
Decoding proses inverse dari coding
• Channel coding (teknik yang digunakan untuk mengatur redudansi
untuk peningkatan reliabilitas kinerja pada kanal).
• Source coding (teknik yang digunakan untuk menurunkan
redudansi pada sinyal untuk efisiensi)
Contoh :
1. ASCII-code: coding of the alphanumerical characters to binary data.
2. Kapasitas transmisi dapat ditingkatkan dengan mengirim tingkatan
level simbol 2M untuk mewakili binary code words dengan panjang M
(source coding).
3. Penambahan digitk ekstra untuk cek masing-masing binary code word
yang dapat dideteksi tau dikoreksi kesalahan yang sering terjadi pada
receiver (channel coding).
1-24
Sinyal dan spektrum
Representasi sinyal :
 Domain waktu (time domain)
 Domain frekuensi (frequency domain)
Tool Matematik yang mengkonversi isyarat-
isyarat dari Time domain Frequency
domain adalah:
Deret Fourier [periodic signal]
Transformasi Fourier [non-periodic signal]
1-25
Sinyal sinusoidal
Sinyal sinusoidal dimodelkan sbb :
A : amplitudo
o : frekuensi angular (fo : frekuensi)
 : phase (fasa)
Sinyal periodik  perioda To = 2 / o = 1/fo
Satu nilai puncak (peak value) pada t = - / o
1-26
Spektrum sinyal sinusoidal
Spektrum garis (line spectrum)  frekuensi tertentu untuk suatu amplitudo dan fasa
Contoh satu sisi spektrum garis sinyal sinusoidal :
Spektrum amplitudo dan fasa  impuls pada fo
Parameter penting dari sinyal (frekuensi , amplitudo dan fasa) dapat
terlihat pada spektrum .
1-27
Kombinasi liner sinyal sinusoidal
Persaman diatas dapat dirubah menjadi :
Dari pers. diatas dapat
digambarkan spektrum
garisnya dengan plot satu
sisi.
1-28
Representasi sinyal kompleks sinusoidal - 1
Biasanya sinyal  ril (real-valued)
Konsep sinyal kompleks  tool sangat penting dalam telekomunikasi.
Sinyal  real signal
Sinyal kompleks  analisis spektrum
 Persamaan Euler :
1-29
Representasi sinyal komplek sinusoidal - 2
Konvensi dan notasi berikut sangat penting pada analisa dan
perancangan sistem komunikasi :
1. Spektrum 1 variabel, frekuensi f (Hz) atau angular frekuensi
 = 2f (radian), fo ,f1,f2 digunakan untuk memperbaiki
frekuensi-frekuensi berikutnya
2. Sudut fasa diukur dengan gelombang kosinus atau setara
dengan poros ril poritif diagram fasor
3. Amplitudo bernilai positif : - A cos t = A cos (t ±180o)
fasa dalam derajat (o) meskipun radian juga sering digunakan
1-30
Spektrum 2 sisi
Spektrum 1 sisi (one-sided spectrum)  sinyal ril
Spektrum 2 sisi (two-sided spectrum)  mengatasi sinyal kompleks
Sinyal ril  spektrum 2 sisi di peroleh dengan substitusi
Spektrum 2 sisi (contoh
sinyal sebelumnya) dapat
dilihat pada gbr disamping
 Fungsi dasar eksponensial
kompleks
1-31
Representasi fasor -1
Fungsi eksponensial kompleks dapat dinyatakan  Fasor
Representasi fasor :
 Mengilustrasikan sinyal
sinusoidal dan sinyal
komunikasi yang terdiri
dari sinusoidal
1-32
Representasi fasor -2
Diagram fasor spektrum 2 sisi sinusoidal :
 Terdiri dari 2 vektor dimana fasa dan arahnya
berlawanan. Resultan vektor adalah sinyal ril.
1-33
Sinyal periodik
Sinyal v(t) periodik jika :
M  integer
Sinyal dapat dikonstruksi dengan menggabungkan komponen sinyal To :
Panjang sinyal periodik tidak terhingga (infinite), pada kenyataannya
sinyal sistem tidak periodik murni. Akan tetapi, finite-length signal hampir
sama dengan sinyal periodik asli.
1-34
EVERYTHING
YOU NEED TO
KNOW ABOUT
DECIBELS
A short course…
1-35
DECIBELS SIMPLIFIED - NOTES
Decibels are defined as:
dB = 10 Log10 (Pout/Pin)
You can add and subtract dBs to represent just about any
power ratio without resorting to a calculator by remembering
the rules:
•Positive dBs mean multiply (or gain).
•Negative dBs mean divide (or attenuate).
•Memorize one dB value!
1-36
HOW TO DO DB’S IN YOUR HEAD
with a little cheating
All you have to memorize is that 3 dB = 2 times.
Now consider the obvious you already know, like 2 x 2 = 4. Since dB’s
add for multiplication, then 4x means +3 dB +3 dB = +6 dB, 8x means
+3 dB +3 dB +3 dB = 9 dB. Likewise 10x is +10 dB and 100x is +20 dB.
Remember that attenuation is negative dB’s. So, 1/100th the power
would be -10 dB and 1/1000th the power is -30 dB.
Get it?
Then construct a table, as follows…
1-37
You can always make a table like this whenever you need to convert to
dBs.
Some Examples
The ratio of 16 times = 2 x 2 x 2 x 2 which
is +3 dB + 3 dB + 3 dB + 3 dB = + 12 dB.
A gain of 500 is simply 1000 divided by 2
or +30 dB - 3 dB = 27 dB.
1/2000 is - 30 dB – 3 dB = - 33 dB.
-14 dB = -20 dB + 3 dB + 3 dB or -20 dB +
6 dB which is 1/100 x 4 = 1/25th.
Make up some of your own and test it with
a calculator.
1-38
Additional and Review Concepts:
Decibel notation as in the above formulas always represents a
Power Ratio only.
There is no such thing as "voltage dBs". But in the special case of a
transmission system where the impedance of the transmission line
is the same for the input and output signals (or before and after an
element that causes attenuation), we can derive a formula for dBs
based on the familiar Ohm's law (Current = Voltage/Resistance) and
the definition of Power in watts (Power = Current times Voltage)
and come up with P = V2/R. Since the log of a square is twice the
log, you can double the dB's for such a "constant impedance" facility
calculation.
1-39
An exception to using dB notation for pure ratios is a "shorthand"
scheme for indicating a ratio of power compared to a given defined
level. One example is the common artifice of using a subscript such as
dBm to indicate Power compared to one milliwatt. Therefore, -3dBm
means 1/2 of one milliwatt or 3 dB below 1 milliwatt. Similar notation is
used with the Greek letter mu (μ) for dBs compared to a microwatt, as
in 10 dBμ to mean 10 microwatts or 1/100th of a milliwatt. Therefore, -
20 dBm = +10 dBμ. Get it?
Get used to the above--until you are really comfortable with dBs--as
you will encounter all this again in Optical Communications, Satellite,
and Wireless courses and FOR THE REST OF YOUR CAREER. Learn
to do dBs in your head and impress your friends. (At least your friends
in the ITP.)
1-40
CONVERTING LOGARITHMS FROM BASE 10 TO BASE 2
loga (x) = logb (x) / logb (a)
log2 (x) = log10 (x)/log10 (2) = log10 (x)/0.3 = 3.333 log10 (x)
Example: log2 (100) = 3.333 (2) = 6.666
1-41
Pembahasan berikutnya :
 Media transmisi
Be prepare……!!!!!!

More Related Content

Similar to 1_Dasar_Telekomunikasi.ppt

media_transmisi_komunikasi_data.pptx
media_transmisi_komunikasi_data.pptxmedia_transmisi_komunikasi_data.pptx
media_transmisi_komunikasi_data.pptxPutri Arifah
 
jaringan-dan-telekomunikasi
jaringan-dan-telekomunikasijaringan-dan-telekomunikasi
jaringan-dan-telekomunikasiSamsuri14
 
Sistem Komunikasi Seluler
Sistem Komunikasi SelulerSistem Komunikasi Seluler
Sistem Komunikasi SelulerRio Hafandi
 
2. Konsep Sistem Telekomunikasi.ppt
2. Konsep Sistem Telekomunikasi.ppt2. Konsep Sistem Telekomunikasi.ppt
2. Konsep Sistem Telekomunikasi.pptRidhaMayaFazaLubis
 
Komunikas data sistem informasi manajemen
Komunikas data   sistem informasi manajemenKomunikas data   sistem informasi manajemen
Komunikas data sistem informasi manajemenApriliana Susanti
 
Makalah Komunikasi Data dan Jaringan
Makalah Komunikasi Data dan JaringanMakalah Komunikasi Data dan Jaringan
Makalah Komunikasi Data dan Jaringanatuulll
 
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptx
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptxPERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptx
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptxarfa442827
 
16067356 teknologi-jaringan-bawah-air
16067356 teknologi-jaringan-bawah-air16067356 teknologi-jaringan-bawah-air
16067356 teknologi-jaringan-bawah-airLina Ernita
 
Komunikasi Data - Pengertian Data dan Media Transmisi
Komunikasi Data - Pengertian Data dan Media TransmisiKomunikasi Data - Pengertian Data dan Media Transmisi
Komunikasi Data - Pengertian Data dan Media TransmisiSigit Muhammad
 
Presentase bentuk sinyal telekomunikasi
Presentase bentuk sinyal telekomunikasiPresentase bentuk sinyal telekomunikasi
Presentase bentuk sinyal telekomunikasistyo14
 
sesi_9a_-_layanan_jarkom.pptx
sesi_9a_-_layanan_jarkom.pptxsesi_9a_-_layanan_jarkom.pptx
sesi_9a_-_layanan_jarkom.pptxFirmanAndika4
 
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdfNovitaRizkaYulaekha1
 
8. media komunikasi jaringan komputer
8. media komunikasi jaringan komputer8. media komunikasi jaringan komputer
8. media komunikasi jaringan komputerMuh Ramadhan
 
Elements-elements Komunikasi data pada jaringan
Elements-elements Komunikasi data pada jaringanElements-elements Komunikasi data pada jaringan
Elements-elements Komunikasi data pada jaringanNawdirAspire1
 

Similar to 1_Dasar_Telekomunikasi.ppt (20)

P3 jaringan komputer
P3 jaringan komputerP3 jaringan komputer
P3 jaringan komputer
 
media_transmisi_komunikasi_data.pptx
media_transmisi_komunikasi_data.pptxmedia_transmisi_komunikasi_data.pptx
media_transmisi_komunikasi_data.pptx
 
jaringan-dan-telekomunikasi
jaringan-dan-telekomunikasijaringan-dan-telekomunikasi
jaringan-dan-telekomunikasi
 
Sistem Komunikasi Seluler
Sistem Komunikasi SelulerSistem Komunikasi Seluler
Sistem Komunikasi Seluler
 
Media transmisi
Media transmisiMedia transmisi
Media transmisi
 
2. Konsep Sistem Telekomunikasi.ppt
2. Konsep Sistem Telekomunikasi.ppt2. Konsep Sistem Telekomunikasi.ppt
2. Konsep Sistem Telekomunikasi.ppt
 
Komunikas data sistem informasi manajemen
Komunikas data   sistem informasi manajemenKomunikas data   sistem informasi manajemen
Komunikas data sistem informasi manajemen
 
Makalah Komunikasi Data dan Jaringan
Makalah Komunikasi Data dan JaringanMakalah Komunikasi Data dan Jaringan
Makalah Komunikasi Data dan Jaringan
 
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptx
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptxPERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptx
PERTEMUAN 2_PENGANTAR TEKNOLOGI MOBILE.pptx
 
Terminal-terminal Telekomunikasi.pptx
Terminal-terminal Telekomunikasi.pptxTerminal-terminal Telekomunikasi.pptx
Terminal-terminal Telekomunikasi.pptx
 
16067356 teknologi-jaringan-bawah-air
16067356 teknologi-jaringan-bawah-air16067356 teknologi-jaringan-bawah-air
16067356 teknologi-jaringan-bawah-air
 
Komunikasi Data - Pengertian Data dan Media Transmisi
Komunikasi Data - Pengertian Data dan Media TransmisiKomunikasi Data - Pengertian Data dan Media Transmisi
Komunikasi Data - Pengertian Data dan Media Transmisi
 
Media Transmisi Guided Dan Unguided
Media Transmisi Guided Dan UnguidedMedia Transmisi Guided Dan Unguided
Media Transmisi Guided Dan Unguided
 
Presentase bentuk sinyal telekomunikasi
Presentase bentuk sinyal telekomunikasiPresentase bentuk sinyal telekomunikasi
Presentase bentuk sinyal telekomunikasi
 
Bab 10
Bab 10Bab 10
Bab 10
 
sesi_9a_-_layanan_jarkom.pptx
sesi_9a_-_layanan_jarkom.pptxsesi_9a_-_layanan_jarkom.pptx
sesi_9a_-_layanan_jarkom.pptx
 
Kuliah1 wireless 17
Kuliah1 wireless 17Kuliah1 wireless 17
Kuliah1 wireless 17
 
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf
3_4_Memahami_aspek-aspek_teknologi_komunikasi_data_dan_suara_.pdf
 
8. media komunikasi jaringan komputer
8. media komunikasi jaringan komputer8. media komunikasi jaringan komputer
8. media komunikasi jaringan komputer
 
Elements-elements Komunikasi data pada jaringan
Elements-elements Komunikasi data pada jaringanElements-elements Komunikasi data pada jaringan
Elements-elements Komunikasi data pada jaringan
 

1_Dasar_Telekomunikasi.ppt

  • 2. 1-2 Topik Perkuliahan minggu Topik 1 & 2 Pendahuluan : elemen-elemen sistem komunikasi, representasi sinyal, spektrum, desibel? 3 & 4 Saluran transmisi 5, 6, 7 Modulasi 8, 9, 10 Multipleksing 11 Dasar transmisi digital
  • 3. 1-3 isn’t AM and FM pretty “old stuff ” ….?  Digital is hot (and elegant !)  But why FM and AM ? Aren’t they really old and only for our radios? Not really... Today we use AM and FM (PM) to carry digital signals. AM is also the basis of all digital “lightwave” transmission today and FDM is the basis of “DWDM” optical networking FM (PM) is the basis of many other high performance communication systems, including when the payload is digital. And remember…..Everything is actually ANALOG ANALOG & “Linear” = High performance !
  • 4. 1-4 Definisi Telekomunikasi At the General Assembly of the ITU (International Telecommunication Union) at Melbourne 1988, the following definition of telecommunication has been adopted: "Telecommunication  is any transmission and/or emission and reception of signals representing signs, writing, images and sounds, or intelligence of any nature by wire, radio, optical, or other electromagnetic system".
  • 5. 1-5 Pendahuluan Telekomunikasi  transmisi informasi dari suatu tempat ke tempat yang lain dalam bentuk gelombang elektromagnetik. Pada pembahasan berikut ini pesan (message) yang membawa informasi dalam bentuk gelombang (waveform), deretan bit (bit sequence) atau bentuk fisik lainnya dari informasi. Tujuan sistem komunikasi adalah untuk membuat replika pesan / informasi di tempat tujuan (destination) Pesan asli (original message) dapat berupa analog (spt suara) atau digital (spt teks). Pesan  bentuk analog atau digital. Transmisi  analog atau digital Pada transmisi analog terdapat beberapa kriteria kualitas (Signal-to- Noise Ratio SNR, distorsi, dll) yang harus dipenuhi atau diperhatikan dalam merancang suatu sistem komunikasi. Pada transmisi digital diusahakan untuk meminimalisasi probabilitas kesalahan (probability of error).
  • 6. 1-6 Perubahan kecepatan Informasi 1900 1950 2004 1850 huge quantities of information transmitted in a fraction of a second. telegraph Information took days or weeks to be transmitted Information transmitted in minutes or hours Electronic communications sped up the rate of transmission of information, growth of telecommunications and especially computer networks globalization phenomenon (WWW)
  • 7. 1-7 Kemajuan teknologi telepon 1876 Phone invented first trans- continental and transatlantic phone connections 1915 1919 Strowger (stepper) switch, rotary dial phones (enabling automatic connections) 1948 Microwave trunk lines (Canada) 1962 Telstar (Telecommunications via satellite), Fax services, digital transmission (T- carriers) 1969 Picturefone (failed commercially) 1976 Packet-switched data communications 1984 Cellular telephone
  • 8. 1-8 Sejarah sistem informasi Data communications over phone lines (became common and mainframes became multi-user systems) Batch processing mainframes Networking everywhere PC LANs become common 1950 1960 1990 2000 1970 1980 Online real-time, transaction oriented systems (replaced batch processing. DBMSs become common) PC revolution
  • 9. 1-9 Perjalanan Internet Originally called ARPANET, the Internet began as a military- academic network 1969 Over 240 million servers and 400 million users 2001 1990 commercial access to the Internet begins ARPANET splits: • Milnet - for military • Internet - academic, education and research purposes only 1983 NSFNet created as US Internet backbone 1986 Government funding of the backbone ends 1994
  • 10. 1-10 Dasar Datakom Broadband Communications Telecommunications transmission of voice, video, data, - imply longer distances - broader term Data Communications movement of computer information by means of electrical or optical transmission systems convergence
  • 11. 1-11 Elemen sistem komunikasi -1 Transmitter memproses masukan sinyal dan menghasilkan sinyal yang sesuai dengan karakteristik kanal transmisi, yang melibatkan • Modulasi (Modulation) • Pengkodean (Coding)
  • 12. 1-12 Kanal (channel ) (media elektrik yang menjembatani jarak antara sumber dan tujuan) akan mempengaruhi sinyal sehingga memungkinkan terjadi perubahan sinyal akibat : • Atenuasi (Attenuation) • distorsi Fasa dan frekuensi • Noise (random signal) • interferensi (Interference), misalkan yang diakibatkan oleh kanal lain Receiver mereplika sinyal pesan menjadi seperti bentuk sinyal yang di transmitter (melalui penguatan sinyal [amplification], decoding, demodulasi [demodulation], filtering) dan meminimalisasi efek yang menyebabkan perubahan sinyal selama pengiriman. Mode Transmisi : 1. Simplex: transmisi satu arah (one-way) 2. Full-duplex: transmisi dua arah secara bersamaan 3. Half-duplex: transmisi dua arah secara berantian Elemen sistem komunikasi -2
  • 13. 1-13 Model telekomunikasi – agak lengkap dr yg sebelumnya!! Compressor/Expandor  m(t) digitalisasi oleh non-uniform quantizer Anti-Aliasing filter  m(t) large bandwidth –> eliminasi spectral folding Sampler  m(t) mjd discrete Ideal reconstruction filter  interpolasi antara sampel m(t) Encoder/decoder  encode quantizer mjd bit (dan sebaliknya) Digital processor Blocks  pemrosesan digital  (scrambling, differential encoding) Line Coder  merubah bit ke voltage signal untuk keperluan transmisi Line Decoder  menentukan sinyal yang diterima berdasarkankan voltage, dan merubahnya menjadi bit
  • 14. 1-14 Kanal Transmisi - contoh 1. Cables • wire pairs (ordinary telephone line) • coaxial cable 2. Radio Transmission • broadcasting (e.g.: DVB-T, DVB-S, …) • satellite transmission (GPS, Galileo) • cell networks (GSM, WCDMA) 3. Optical Fiber 4. Magnetic Tape
  • 15. 1-15 Keterbatasan Fisik/kanal/jalur/media transmisi Keterbatasan fundamental perancangan suatu sistem komunikasi adalah noise dan bandwidth. Noise  thermal noise (pergerakan acak muatan partikel dengan temperatur diatas nol derjat Kelvin), yang menjadi permasalahan utama untuk jarak transmisi yang semakin jauh. Setiap sistem komunikasi mempunyai bandwidth/BW tertentu. BW merupakan permasalahan yang utama ketika kecepatan transmisi ditingkatkan. BW dan kec. transmisi peningkatannya berbanding lurus. Channel capacity : B : bandwidth S/N :Signal-to-Noise Ratio (SNR) Hubungan antara BW dan SNR  Hukum Hartley-Shannon
  • 16. 1-16 Broadband VS Baseband  Broadband : Suatu teknik di mana data yang ditransmisi dikirimkan menggunakan isyarat pembawa (dimodulasi). Lebih dari satu isyarat pembawa dapat ditransmisikan bersama-sama, sehingga lebih dari satu isyarat dapat dikirim dengan satu media (kawat) yang sama.  Baseband : Satu single data ditransmisikan secara langsung dengan kawat, dengan tegangan positif dan negatif. Interface RS-232 adalah salah satu contoh transmisi baseband
  • 17. 1-17 Modulasi -1 Modulasi  2 bentuk gelombang : Sinyal yang dimodulasi (modulating signal) yang merepresentasikan pesan (message) sinyal pembawa (carrier). Contoh : modulasi amplitudo (amplitude modulation) menggunakan sinusoidal dan pulse train sebagai gel. pembawa (carrier). Pesan (message) terlihat pada selubung (envelope) dari sinyal yang termodulasi (modulated signal). Pada receiver, pesan/message dapat diperoleh kembali dengan mendemodulasi (demodulation) sinyal.
  • 18. 1-18 Modulasi - 2 Pada umumnya frekuensi sinyal pembawa (carrier) lebih tinggi dari frekuensi tertinggi sinyal yang dimodulasi (modulating Signal). contoh : spektrum dari sinyal yang dimodulasi (modulated signal) terdiri dari komponen frekuensi yang terkelompok disekitar gelo. pembawa (carrier frequency). Modulasi  frequency translation.
  • 19. 1-19 Benefit modulasi - 1 1. Modulasi untuk efisiensi transmisi Efisiensi  tergantung pada frekuensi sinyal efisien line-of-sight propagasi radio membutuhkan antena dengan dimensi fisik 1/10 dari panjang gelombang sinyal (signal wavelength). contoh : transmisi sinyal audio 100 Hz yang tdk dimodulasi membutuhkan antenna sepanjang 300 km, dan apabila sinyal dimodulasi pada gel carrier 100 MHz membutuhkan panjang antena sekitar 1 m.   panjang gelombang (m) f  frekuensi (Hz) v  cepat rambat gelombang (m/s) 2. Modulasi untuk penunjukkan/alokasi frekuensi masing-masing stasiun radio/TV mempunyai alokasi frekuensi yang telah ditentukan oleh suatu badan/regulator yang mengatur alokasi frekuensi. Alokasi frekuensi juga menggunakan filtering. Frekuensi Radio dialokasikan sesuai dengan perjanjian dunia (WRC / world radio conference dibawah ITU / international telecommunication Union, utk Indonesia  dept. postel)   v f
  • 20. 1-20 Benefit modulasi - 2 3. Multipleksing penggabungan beberapa sinyal yang dilewatkan dalam satu kanal jika frek. Pembawa (carrier) berlainan (frequency division multiplexing/FDM). 4. Modulasi juga bisa mengatasi keterbatasan hardware Perancangan suatu sistem komunikasi memungkinkan dibatasi oleh biaya dan ketersediaan hardware, kinerja perangkat sering tergantung pada frekwensi yang teribat. Modulasi memungkinkan perancangan sistem komunikasi menempatkan sinyal tertentu pada suatu range frekuensi untuk menghindari keterbatasan hardware.
  • 21. 1-21 Spektrum Elektromagnetik Above "light" frequencies used by optical communications comes ultra-violet, X-rays, and eventually cosmic rays. They're all electromagnet radiation, mathematically the same. Thank Maxwell for showing this.
  • 22. 1-22 Contoh alokasi frekuensi – dikit dr negara org
  • 23. 1-23 Coding  memproses pesan (message signal) untuk meningkatkan kualitas komunikasi digital Decoding proses inverse dari coding • Channel coding (teknik yang digunakan untuk mengatur redudansi untuk peningkatan reliabilitas kinerja pada kanal). • Source coding (teknik yang digunakan untuk menurunkan redudansi pada sinyal untuk efisiensi) Contoh : 1. ASCII-code: coding of the alphanumerical characters to binary data. 2. Kapasitas transmisi dapat ditingkatkan dengan mengirim tingkatan level simbol 2M untuk mewakili binary code words dengan panjang M (source coding). 3. Penambahan digitk ekstra untuk cek masing-masing binary code word yang dapat dideteksi tau dikoreksi kesalahan yang sering terjadi pada receiver (channel coding).
  • 24. 1-24 Sinyal dan spektrum Representasi sinyal :  Domain waktu (time domain)  Domain frekuensi (frequency domain) Tool Matematik yang mengkonversi isyarat- isyarat dari Time domain Frequency domain adalah: Deret Fourier [periodic signal] Transformasi Fourier [non-periodic signal]
  • 25. 1-25 Sinyal sinusoidal Sinyal sinusoidal dimodelkan sbb : A : amplitudo o : frekuensi angular (fo : frekuensi)  : phase (fasa) Sinyal periodik  perioda To = 2 / o = 1/fo Satu nilai puncak (peak value) pada t = - / o
  • 26. 1-26 Spektrum sinyal sinusoidal Spektrum garis (line spectrum)  frekuensi tertentu untuk suatu amplitudo dan fasa Contoh satu sisi spektrum garis sinyal sinusoidal : Spektrum amplitudo dan fasa  impuls pada fo Parameter penting dari sinyal (frekuensi , amplitudo dan fasa) dapat terlihat pada spektrum .
  • 27. 1-27 Kombinasi liner sinyal sinusoidal Persaman diatas dapat dirubah menjadi : Dari pers. diatas dapat digambarkan spektrum garisnya dengan plot satu sisi.
  • 28. 1-28 Representasi sinyal kompleks sinusoidal - 1 Biasanya sinyal  ril (real-valued) Konsep sinyal kompleks  tool sangat penting dalam telekomunikasi. Sinyal  real signal Sinyal kompleks  analisis spektrum  Persamaan Euler :
  • 29. 1-29 Representasi sinyal komplek sinusoidal - 2 Konvensi dan notasi berikut sangat penting pada analisa dan perancangan sistem komunikasi : 1. Spektrum 1 variabel, frekuensi f (Hz) atau angular frekuensi  = 2f (radian), fo ,f1,f2 digunakan untuk memperbaiki frekuensi-frekuensi berikutnya 2. Sudut fasa diukur dengan gelombang kosinus atau setara dengan poros ril poritif diagram fasor 3. Amplitudo bernilai positif : - A cos t = A cos (t ±180o) fasa dalam derajat (o) meskipun radian juga sering digunakan
  • 30. 1-30 Spektrum 2 sisi Spektrum 1 sisi (one-sided spectrum)  sinyal ril Spektrum 2 sisi (two-sided spectrum)  mengatasi sinyal kompleks Sinyal ril  spektrum 2 sisi di peroleh dengan substitusi Spektrum 2 sisi (contoh sinyal sebelumnya) dapat dilihat pada gbr disamping  Fungsi dasar eksponensial kompleks
  • 31. 1-31 Representasi fasor -1 Fungsi eksponensial kompleks dapat dinyatakan  Fasor Representasi fasor :  Mengilustrasikan sinyal sinusoidal dan sinyal komunikasi yang terdiri dari sinusoidal
  • 32. 1-32 Representasi fasor -2 Diagram fasor spektrum 2 sisi sinusoidal :  Terdiri dari 2 vektor dimana fasa dan arahnya berlawanan. Resultan vektor adalah sinyal ril.
  • 33. 1-33 Sinyal periodik Sinyal v(t) periodik jika : M  integer Sinyal dapat dikonstruksi dengan menggabungkan komponen sinyal To : Panjang sinyal periodik tidak terhingga (infinite), pada kenyataannya sinyal sistem tidak periodik murni. Akan tetapi, finite-length signal hampir sama dengan sinyal periodik asli.
  • 34. 1-34 EVERYTHING YOU NEED TO KNOW ABOUT DECIBELS A short course…
  • 35. 1-35 DECIBELS SIMPLIFIED - NOTES Decibels are defined as: dB = 10 Log10 (Pout/Pin) You can add and subtract dBs to represent just about any power ratio without resorting to a calculator by remembering the rules: •Positive dBs mean multiply (or gain). •Negative dBs mean divide (or attenuate). •Memorize one dB value!
  • 36. 1-36 HOW TO DO DB’S IN YOUR HEAD with a little cheating All you have to memorize is that 3 dB = 2 times. Now consider the obvious you already know, like 2 x 2 = 4. Since dB’s add for multiplication, then 4x means +3 dB +3 dB = +6 dB, 8x means +3 dB +3 dB +3 dB = 9 dB. Likewise 10x is +10 dB and 100x is +20 dB. Remember that attenuation is negative dB’s. So, 1/100th the power would be -10 dB and 1/1000th the power is -30 dB. Get it? Then construct a table, as follows…
  • 37. 1-37 You can always make a table like this whenever you need to convert to dBs. Some Examples The ratio of 16 times = 2 x 2 x 2 x 2 which is +3 dB + 3 dB + 3 dB + 3 dB = + 12 dB. A gain of 500 is simply 1000 divided by 2 or +30 dB - 3 dB = 27 dB. 1/2000 is - 30 dB – 3 dB = - 33 dB. -14 dB = -20 dB + 3 dB + 3 dB or -20 dB + 6 dB which is 1/100 x 4 = 1/25th. Make up some of your own and test it with a calculator.
  • 38. 1-38 Additional and Review Concepts: Decibel notation as in the above formulas always represents a Power Ratio only. There is no such thing as "voltage dBs". But in the special case of a transmission system where the impedance of the transmission line is the same for the input and output signals (or before and after an element that causes attenuation), we can derive a formula for dBs based on the familiar Ohm's law (Current = Voltage/Resistance) and the definition of Power in watts (Power = Current times Voltage) and come up with P = V2/R. Since the log of a square is twice the log, you can double the dB's for such a "constant impedance" facility calculation.
  • 39. 1-39 An exception to using dB notation for pure ratios is a "shorthand" scheme for indicating a ratio of power compared to a given defined level. One example is the common artifice of using a subscript such as dBm to indicate Power compared to one milliwatt. Therefore, -3dBm means 1/2 of one milliwatt or 3 dB below 1 milliwatt. Similar notation is used with the Greek letter mu (μ) for dBs compared to a microwatt, as in 10 dBμ to mean 10 microwatts or 1/100th of a milliwatt. Therefore, - 20 dBm = +10 dBμ. Get it? Get used to the above--until you are really comfortable with dBs--as you will encounter all this again in Optical Communications, Satellite, and Wireless courses and FOR THE REST OF YOUR CAREER. Learn to do dBs in your head and impress your friends. (At least your friends in the ITP.)
  • 40. 1-40 CONVERTING LOGARITHMS FROM BASE 10 TO BASE 2 loga (x) = logb (x) / logb (a) log2 (x) = log10 (x)/log10 (2) = log10 (x)/0.3 = 3.333 log10 (x) Example: log2 (100) = 3.333 (2) = 6.666
  • 41. 1-41 Pembahasan berikutnya :  Media transmisi Be prepare……!!!!!!