SlideShare a Scribd company logo
1 of 1
Meet the Fellows
Bringing Elements of Plant Physiology and Global Climate Change Research into an Elementary School Classroom
Celia Del Cid, Megan Inayoshi, Briena Healy, Karen Snetselaar
1
Department of Biology, St. Joseph’s University, Philadelphia, PA USA, 2
Science requires understanding terminology and overall structure.
Scientists have to learn process skills and techniques: Using tools
Scientists design and conduct experiments
Scientists present their data
Support
The Plant Ecology-Physiology lab at St. Joseph’s University focuses on research
related to Global Climate Change and how it affects different aspects of plant life. Each
fellow’s research investigates a different aspect of the plant life cycle, and looks at how
plants respond to change. One the of the fellows’ research examines the bacterial
pathogen, Xylella fastidiosa, which causes a disease related to water stress in important
crops and native forest plant species through the blockage of the xylem [water-carrying]
vessels. Another fellows’ research focuses on how the flowering time of Arabidopsis
thaliana is affected by elevated CO2 concentrations in the atmosphere. The third
fellows’ research strives to quantify and describe the mechanism of the infection of
Glycine max L (soybeans) by Heterodera glycines (nematodes). The learning objectives
of the GK-12 curriculum closely parallel the graduate work that the fellows do, in that
the focus is on lab techniques and data collection methods.
Before any scientist can begin a research project it is necessary to first understand the material you wish to
work with. This is a fundamental aspect of all research and it is one we teach to our students as well. An
example of background research from our own experiments can be as simple as understanding the parts
of the plants we work with. As graduate students, we may approach this background research by reading
books and journal articles about plant structure. We are then able to use the knowledge gained from those
journal articles and books to aide in explaining the importance of the plant parts in every way necessary for
the students to understand. With the second grade students, we do hands on activities like a cut and paste
a construction paper flower with labeled parts. In third grade, the students are handed a stargazer lily and
are asked to deconstruct and identify each part of the flower. No matter if the experiment is as complicated
as infecting the plant with the parasite, like one the fellows’ research, or as simple as growing three plants
in a specialized medium, like a project the second graders work on, it is first absolutely necessary to know
all about the parts of a plant. Before manipulation there must be understanding.
Once an extensive amount of background information is known about a subject matter, the skills needed to
conduct the experiment must also be acquired. These skills are not specific to an expertise level, but rather
once learned can be used throughout an individual’s entire scientific career. From the tape measures,
thermometers, and magnifying glasses used in the younger grades, to the balances, N.P.K. soil tests and
other measuring tools like graduated cylinders in the older grades, all of these tools and techniques are the
same we use in our own labs. With this similarity, the ability to teach the techniques becomes one of
certainty.
The experimental process is a multivariate one, which at its heart requires simple but accurate observation and
record keeping. These are skills, once learned, must be practiced and perfected. It is never too early to begin the
practice, which we instigate in our first graders and build on up through fifth grade. In our own labs, our record
keeping is under intense scrutiny and one is constantly reminded this is a skill you never stop refining. Thinking
critically is another crucial aspect in experimental design; as a scientist you are always asking questions. This trait
is naturally abundant in children, and we as fellows attempt to teach the students how to apply their curiosity to
conducting an experiment. In fifth grade we especially focus on the ability to tease out inquisitions into testable
hypotheses. The students perform an experiment with UV beads, which is almost entirely dependent upon what
questions they come up with to ask. Fifth grade is the top of the pyramid as far as self-directed conduction of
experiments. Though throughout the younger grades students are also able to conduct experiments, but with
slightly more hands on guidance by the fellows.
Once an experiment is approaching completion, it becomes time to display and analyze that raw data,
usually in the form of a graph and statistics. In additional to graphical representation, a presentation of
research is expected from all scientists. The ability to present data is a fundamental skill for every
individual who has a career in science. The second graders are taught how to graph weather data that
they have collected over the course of a few weeks. They then give an informal presentation
describing what kind of data their graph shows, and any predictions they might draw from it. The fifth
graders graph the data they collect from their own self-directed experiments, and then present their
findings in a formal setting at the end of the year to their peers. Here they explain what their data
shows, and describe any trends they may see. The graphical displays our students make are no less
complicated or specific than the graphs we do with our own data. And though the presentations our
students give may be shorter and less in-depth than the presentation for our thesis defense at the
culmination of our research, the same basic skills and principles are employed. We try to instill in our
students the importance of these aspects of scientific learning, especially in the older grades.
MMajor funding for GeoKids LINKS comes from The National Science Foundation through the GK-12 program (DGE #0440506),
the Howard Hughes Medical Foundation, Saint Joseph's University and The Wagner Free Institute of Science.

More Related Content

Viewers also liked

Phytoalexins by sajad nabi
Phytoalexins by sajad nabiPhytoalexins by sajad nabi
Phytoalexins by sajad nabiSajad Nabi
 
Plant immunity towards an integrated view of plant pathogen interaction and i...
Plant immunity towards an integrated view of plant pathogen interaction and i...Plant immunity towards an integrated view of plant pathogen interaction and i...
Plant immunity towards an integrated view of plant pathogen interaction and i...Pavan R
 
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9IELTS Vocabulary 9 Words to Get the IELTS Band Score 9
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9JROOZ Review Center
 
15 days practice for ielts writing
15 days practice for ielts writing15 days practice for ielts writing
15 days practice for ielts writingshankyverma04
 
IELTS Essay Topics with Answers (writing task 2)
IELTS Essay Topics with Answers (writing task 2)IELTS Essay Topics with Answers (writing task 2)
IELTS Essay Topics with Answers (writing task 2)Ben Worthington
 

Viewers also liked (7)

Phytoalexins by sajad nabi
Phytoalexins by sajad nabiPhytoalexins by sajad nabi
Phytoalexins by sajad nabi
 
Plant immunity towards an integrated view of plant pathogen interaction and i...
Plant immunity towards an integrated view of plant pathogen interaction and i...Plant immunity towards an integrated view of plant pathogen interaction and i...
Plant immunity towards an integrated view of plant pathogen interaction and i...
 
Plant immune system
Plant immune systemPlant immune system
Plant immune system
 
Phytoalexins
PhytoalexinsPhytoalexins
Phytoalexins
 
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9IELTS Vocabulary 9 Words to Get the IELTS Band Score 9
IELTS Vocabulary 9 Words to Get the IELTS Band Score 9
 
15 days practice for ielts writing
15 days practice for ielts writing15 days practice for ielts writing
15 days practice for ielts writing
 
IELTS Essay Topics with Answers (writing task 2)
IELTS Essay Topics with Answers (writing task 2)IELTS Essay Topics with Answers (writing task 2)
IELTS Essay Topics with Answers (writing task 2)
 

Similar to Bringing Plant Physiology and Climate Change Research to Elementary Students

2019 20 pgce session 1 what is science materials me
2019 20 pgce  session 1 what is science materials me2019 20 pgce  session 1 what is science materials me
2019 20 pgce session 1 what is science materials meMariaElsam
 
2109 20 primary science school direct session 1 what is science me
2109 20 primary science school direct session 1 what is science me2109 20 primary science school direct session 1 what is science me
2109 20 primary science school direct session 1 what is science meMariaElsam
 
Understanding the curriculum thp2yr5
Understanding the curriculum thp2yr5Understanding the curriculum thp2yr5
Understanding the curriculum thp2yr5Kamarudin Jaafar
 
Science standards
Science standardsScience standards
Science standardsTmHowa
 
Kto12 science cg-as-of-apr-25-2013-2
Kto12 science cg-as-of-apr-25-2013-2Kto12 science cg-as-of-apr-25-2013-2
Kto12 science cg-as-of-apr-25-2013-2Antonietta Cruz
 
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013 Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013 Jan Cecilio
 
K+12 SCIENCE CURRICULUM GUIDE
K+12 SCIENCE CURRICULUM GUIDEK+12 SCIENCE CURRICULUM GUIDE
K+12 SCIENCE CURRICULUM GUIDERoderick Nierva
 
IE-419-Lecture-1.pdf-Methods of Research
IE-419-Lecture-1.pdf-Methods of ResearchIE-419-Lecture-1.pdf-Methods of Research
IE-419-Lecture-1.pdf-Methods of ResearchNorxine Montalbo
 
IE-419-Lecture-1.pdf Methods of Research
IE-419-Lecture-1.pdf Methods of ResearchIE-419-Lecture-1.pdf Methods of Research
IE-419-Lecture-1.pdf Methods of ResearchNorxine Montalbo
 
Len Reimer At SFU June 2008
Len Reimer At SFU June 2008Len Reimer At SFU June 2008
Len Reimer At SFU June 2008guest40143e
 
AP Biology syllabus
AP Biology syllabusAP Biology syllabus
AP Biology syllabusTim Welsh
 
2109 20 primary science session 1 what is science me (003)
2109 20 primary science session 1 what is science me (003)2109 20 primary science session 1 what is science me (003)
2109 20 primary science session 1 what is science me (003)MariaElsam
 
Radians School News Letter, Issue 14 science fair edition!!
Radians School News Letter, Issue 14 science fair edition!! Radians School News Letter, Issue 14 science fair edition!!
Radians School News Letter, Issue 14 science fair edition!! acastrodad
 
Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Cee_Kai
 
Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0mariztella
 

Similar to Bringing Plant Physiology and Climate Change Research to Elementary Students (20)

Sec6.processskills
Sec6.processskillsSec6.processskills
Sec6.processskills
 
2019 20 pgce session 1 what is science materials me
2019 20 pgce  session 1 what is science materials me2019 20 pgce  session 1 what is science materials me
2019 20 pgce session 1 what is science materials me
 
2109 20 primary science school direct session 1 what is science me
2109 20 primary science school direct session 1 what is science me2109 20 primary science school direct session 1 what is science me
2109 20 primary science school direct session 1 what is science me
 
Science kto12 cg
Science kto12 cgScience kto12 cg
Science kto12 cg
 
Understanding the curriculum thp2yr5
Understanding the curriculum thp2yr5Understanding the curriculum thp2yr5
Understanding the curriculum thp2yr5
 
Science standards
Science standardsScience standards
Science standards
 
Kto12 science cg-as-of-apr-25-2013-2
Kto12 science cg-as-of-apr-25-2013-2Kto12 science cg-as-of-apr-25-2013-2
Kto12 science cg-as-of-apr-25-2013-2
 
K to 12 science
K to 12 scienceK to 12 science
K to 12 science
 
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013 Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013
Kto12 Science Curriculum Guide Kindergarten to Grade 10 As of April 25,2013
 
K+12 SCIENCE CURRICULUM GUIDE
K+12 SCIENCE CURRICULUM GUIDEK+12 SCIENCE CURRICULUM GUIDE
K+12 SCIENCE CURRICULUM GUIDE
 
IE-419-Lecture-1.pdf-Methods of Research
IE-419-Lecture-1.pdf-Methods of ResearchIE-419-Lecture-1.pdf-Methods of Research
IE-419-Lecture-1.pdf-Methods of Research
 
IE-419-Lecture-1.pdf Methods of Research
IE-419-Lecture-1.pdf Methods of ResearchIE-419-Lecture-1.pdf Methods of Research
IE-419-Lecture-1.pdf Methods of Research
 
Len Reimer At SFU June 2008
Len Reimer At SFU June 2008Len Reimer At SFU June 2008
Len Reimer At SFU June 2008
 
The Nature of Science
The Nature of ScienceThe Nature of Science
The Nature of Science
 
AP Biology syllabus
AP Biology syllabusAP Biology syllabus
AP Biology syllabus
 
2109 20 primary science session 1 what is science me (003)
2109 20 primary science session 1 what is science me (003)2109 20 primary science session 1 what is science me (003)
2109 20 primary science session 1 what is science me (003)
 
Radians School News Letter, Issue 14 science fair edition!!
Radians School News Letter, Issue 14 science fair edition!! Radians School News Letter, Issue 14 science fair edition!!
Radians School News Letter, Issue 14 science fair edition!!
 
Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0
 
Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0
 
Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0Science kto12 cg 3 10 v1.0
Science kto12 cg 3 10 v1.0
 

Bringing Plant Physiology and Climate Change Research to Elementary Students

  • 1. Meet the Fellows Bringing Elements of Plant Physiology and Global Climate Change Research into an Elementary School Classroom Celia Del Cid, Megan Inayoshi, Briena Healy, Karen Snetselaar 1 Department of Biology, St. Joseph’s University, Philadelphia, PA USA, 2 Science requires understanding terminology and overall structure. Scientists have to learn process skills and techniques: Using tools Scientists design and conduct experiments Scientists present their data Support The Plant Ecology-Physiology lab at St. Joseph’s University focuses on research related to Global Climate Change and how it affects different aspects of plant life. Each fellow’s research investigates a different aspect of the plant life cycle, and looks at how plants respond to change. One the of the fellows’ research examines the bacterial pathogen, Xylella fastidiosa, which causes a disease related to water stress in important crops and native forest plant species through the blockage of the xylem [water-carrying] vessels. Another fellows’ research focuses on how the flowering time of Arabidopsis thaliana is affected by elevated CO2 concentrations in the atmosphere. The third fellows’ research strives to quantify and describe the mechanism of the infection of Glycine max L (soybeans) by Heterodera glycines (nematodes). The learning objectives of the GK-12 curriculum closely parallel the graduate work that the fellows do, in that the focus is on lab techniques and data collection methods. Before any scientist can begin a research project it is necessary to first understand the material you wish to work with. This is a fundamental aspect of all research and it is one we teach to our students as well. An example of background research from our own experiments can be as simple as understanding the parts of the plants we work with. As graduate students, we may approach this background research by reading books and journal articles about plant structure. We are then able to use the knowledge gained from those journal articles and books to aide in explaining the importance of the plant parts in every way necessary for the students to understand. With the second grade students, we do hands on activities like a cut and paste a construction paper flower with labeled parts. In third grade, the students are handed a stargazer lily and are asked to deconstruct and identify each part of the flower. No matter if the experiment is as complicated as infecting the plant with the parasite, like one the fellows’ research, or as simple as growing three plants in a specialized medium, like a project the second graders work on, it is first absolutely necessary to know all about the parts of a plant. Before manipulation there must be understanding. Once an extensive amount of background information is known about a subject matter, the skills needed to conduct the experiment must also be acquired. These skills are not specific to an expertise level, but rather once learned can be used throughout an individual’s entire scientific career. From the tape measures, thermometers, and magnifying glasses used in the younger grades, to the balances, N.P.K. soil tests and other measuring tools like graduated cylinders in the older grades, all of these tools and techniques are the same we use in our own labs. With this similarity, the ability to teach the techniques becomes one of certainty. The experimental process is a multivariate one, which at its heart requires simple but accurate observation and record keeping. These are skills, once learned, must be practiced and perfected. It is never too early to begin the practice, which we instigate in our first graders and build on up through fifth grade. In our own labs, our record keeping is under intense scrutiny and one is constantly reminded this is a skill you never stop refining. Thinking critically is another crucial aspect in experimental design; as a scientist you are always asking questions. This trait is naturally abundant in children, and we as fellows attempt to teach the students how to apply their curiosity to conducting an experiment. In fifth grade we especially focus on the ability to tease out inquisitions into testable hypotheses. The students perform an experiment with UV beads, which is almost entirely dependent upon what questions they come up with to ask. Fifth grade is the top of the pyramid as far as self-directed conduction of experiments. Though throughout the younger grades students are also able to conduct experiments, but with slightly more hands on guidance by the fellows. Once an experiment is approaching completion, it becomes time to display and analyze that raw data, usually in the form of a graph and statistics. In additional to graphical representation, a presentation of research is expected from all scientists. The ability to present data is a fundamental skill for every individual who has a career in science. The second graders are taught how to graph weather data that they have collected over the course of a few weeks. They then give an informal presentation describing what kind of data their graph shows, and any predictions they might draw from it. The fifth graders graph the data they collect from their own self-directed experiments, and then present their findings in a formal setting at the end of the year to their peers. Here they explain what their data shows, and describe any trends they may see. The graphical displays our students make are no less complicated or specific than the graphs we do with our own data. And though the presentations our students give may be shorter and less in-depth than the presentation for our thesis defense at the culmination of our research, the same basic skills and principles are employed. We try to instill in our students the importance of these aspects of scientific learning, especially in the older grades. MMajor funding for GeoKids LINKS comes from The National Science Foundation through the GK-12 program (DGE #0440506), the Howard Hughes Medical Foundation, Saint Joseph's University and The Wagner Free Institute of Science.

Editor's Notes

  1. Acknowledge grant…NSF-Gk-12…not just NSF.