SlideShare a Scribd company logo
1 of 6
Download to read offline
Production	
  and	
  binding	
  of	
  D4	
  protein	
  
Bree	
  Drda	
  
Purpose	
  	
  
C.	
  botulinium	
  C2II	
  domain	
  four	
  (D4)	
  is	
  a	
  toxin	
  binding	
  domain	
  protein	
  with	
  a	
  general	
  specificity	
  towards	
  
eukaryotic	
  cell	
  surface	
  glycosylation	
  patterns	
  which	
  promotes	
  cellular	
  recognition	
  and	
  endocytosis	
  of	
  
the	
  toxin.	
  	
  It	
  has	
  not	
  yet	
  been	
  characterized	
  by	
  crystallography	
  or	
  used	
  in	
  a	
  biomedical	
  application	
  as	
  a	
  
binding	
  domain.	
  	
  Other	
  research	
  groups	
  1,2,3
	
  have	
  also	
  investigated	
  this	
  protein	
  and	
  this	
  project	
  is	
  a	
  
continuation	
  of	
  their	
  work.	
  	
  The	
  purpose	
  of	
  this	
  report	
  is	
  to	
  describe	
  the	
  methods	
  and	
  results	
  of	
  
producing	
  D4	
  protein	
  and	
  binding	
  it	
  to	
  the	
  endosomes	
  of	
  N2A	
  cells.	
  	
  DNA	
  electrophoresis,	
  SDS-­‐PAGE,	
  
and	
  confocal	
  microscopy	
  were	
  used.	
  
Methods	
  
Cell	
  line	
  and	
  expression:	
  
The	
  DNA	
  for	
  D4	
  was	
  amplified	
  from	
  the	
  vector	
  BDV/pGex-­‐2T	
  by	
  PCR	
  with	
  a	
  5’	
  BAMHI-­‐glycine	
  extension	
  
and	
  a	
  3’	
  ECORI	
  extension	
  using	
  primers	
  
GCGGGATCCGGTCGTAAGGAAAACATCTCATCGATCAACATCATCAACG	
  and	
  
CCGGAATTCTTAGATAATCAGTTTATCCAGTTCAATCAGAAACACGCCCGACAGAC.	
  	
  The	
  vector	
  BDV/pGEX-­‐2T	
  
was	
  obtained	
  from	
  synthesized	
  DNA	
  by	
  Genscript	
  with	
  codon	
  optimized	
  for	
  E.	
  coli	
  expression.	
  	
  This	
  
insert	
  corresponded	
  to	
  amino	
  acids	
  593-­‐721	
  of	
  PDB	
  entry	
  2J42.	
  	
  The	
  amplified	
  fragment	
  was	
  ligated	
  into	
  
the	
  vector	
  pGEX-­‐2T	
  by	
  directional	
  cloning	
  at	
  the	
  restriction	
  sites	
  BamHI	
  and	
  EcoRI	
  to	
  make	
  the	
  
expression	
  vector	
  pGEX-­‐2T:D4.	
  	
  DH5α	
  was	
  transformed	
  to	
  propagate	
  the	
  vector	
  and	
  BL21	
  (DE3)	
  was	
  
chosen	
  as	
  the	
  expression	
  host	
  strain	
  and	
  transformed.	
  	
  The	
  D4	
  sequence	
  was	
  confirmed	
  by	
  Operon	
  
sequencing	
  services	
  and	
  did	
  not	
  contain	
  errors.	
  	
  	
  A	
  colony	
  was	
  grown	
  in	
  3	
  mL	
  culture	
  tubes	
  with	
  LB	
  
media	
  and	
  100	
  ug/mL	
  of	
  ampicillin.	
  	
  After	
  incubating	
  for	
  18	
  hours	
  at	
  37°C,	
  1	
  mL	
  of	
  the	
  culture	
  was	
  added	
  
to	
  400	
  mL	
  of	
  LB	
  media	
  and	
  grown	
  until	
  an	
  OD	
  of	
  0.3	
  –	
  0.5	
  was	
  reached.	
  	
  The	
  culture	
  was	
  induced	
  with	
  
0.5	
  mM	
  IPTG	
  once	
  it	
  had	
  reached	
  an	
  OD	
  of	
  0.5	
  –	
  0.8.	
  	
  It	
  was	
  then	
  incubated	
  for	
  three	
  hours.	
  	
  The	
  cells	
  
were	
  pelleted	
  by	
  centrifuging	
  the	
  mixture	
  at	
  5,000	
  rpm,	
  4°C,	
  for	
  10	
  minutes	
  using	
  100	
  mL	
  of	
  
culture/pellet.	
  	
  The	
  pellets	
  were	
  stored	
  at	
  -­‐20°C.	
  	
  	
  
Protein	
  extraction	
  and	
  purification:	
  
A	
  D4	
  cell	
  pellet	
  constituting	
  100	
  mL	
  of	
  culture	
  volume	
  was	
  resuspended	
  in	
  20	
  mL	
  of	
  1	
  x	
  PBS	
  +	
  1%	
  Triton	
  
pH	
  7.5.	
  	
  The	
  sample	
  was	
  pressed	
  3	
  times	
  at	
  1000	
  psig,	
  (~16,000	
  psia	
  cell	
  pressure)	
  using	
  a	
  French	
  press.	
  	
  
The	
  cell	
  debris	
  was	
  pelleted	
  in	
  a	
  centrifuge	
  at	
  10,000	
  rpm,	
  4°C,	
  for	
  20	
  minutes	
  and	
  the	
  supernatant	
  
containing	
  the	
  protein	
  was	
  decanted.	
  	
  This	
  supernatant	
  was	
  then	
  incubated	
  with	
  washed	
  immobilized	
  
glutathione	
  resin	
  (Genscript)	
  for	
  one	
  hour	
  at	
  4°C	
  to	
  let	
  the	
  protein	
  bind	
  with	
  the	
  resin.	
  	
  The	
  supernatant	
  
was	
  washed	
  of	
  excess	
  non-­‐binding	
  protein	
  by	
  centrifuging	
  the	
  resin	
  with	
  two	
  volumes	
  of	
  8	
  mL	
  of	
  1	
  x	
  PBS	
  
+	
  1%	
  Triton.	
  	
  The	
  Triton	
  was	
  then	
  removed	
  by	
  centrifuging	
  with	
  three	
  volumes	
  of	
  1	
  x	
  PBS.	
  	
  All	
  spins	
  
involving	
  the	
  resin	
  were	
  done	
  at	
  2,000	
  rpm,	
  4°C,	
  for	
  five	
  minutes.	
  	
  The	
  final	
  total	
  volume	
  of	
  the	
  solution	
  
after	
  the	
  last	
  wash	
  was	
  then	
  reduced	
  to	
  1	
  mL,	
  and	
  10	
  units	
  of	
  thrombin	
  were	
  added	
  in	
  order	
  to	
  cleave	
  
the	
  protein	
  from	
  the	
  resin.	
  	
  The	
  resin	
  and	
  the	
  protein	
  dissolved	
  in	
  the	
  supernatant	
  were	
  separated	
  using	
  
a	
  syringe	
  plugged	
  with	
  glass	
  wool.	
  	
  The	
  protein	
  elution	
  was	
  concentrated	
  to	
  ~ten	
  times	
  the	
  initial	
  
concentration	
  using	
  3K	
  spin	
  column	
  filters	
  and	
  stored	
  at	
  4°C.	
  
Protein	
  Induction	
  with	
  N2A	
  Cells:	
  
Four	
  well	
  plates	
  on	
  a	
  24-­‐well	
  well	
  plate	
  were	
  seeded	
  with	
  100,000	
  N2A	
  cells	
  in	
  1	
  mL	
  of	
  EMEM	
  +	
  10%	
  FBS	
  
+	
  1%	
  Pen	
  Strep	
  and	
  grown	
  at	
  37°C	
  with	
  5%	
  CO2.	
  	
  After	
  24	
  hours,	
  three	
  of	
  the	
  wells	
  were	
  inoculated	
  with	
  
Bacmam	
  2.0	
  early	
  endosome	
  labeling	
  kit	
  (Molecular	
  Probes)	
  baculovirus	
  at	
  a	
  concentration	
  of	
  50	
  
particles	
  per	
  mammalian	
  cell	
  (PPC)	
  and	
  left	
  to	
  incubate	
  at	
  37°C	
  for	
  24	
  hours.	
  	
  D4	
  protein	
  labeled	
  with	
  
Alexa	
  Fluor	
  was	
  added	
  to	
  the	
  well	
  plates	
  at	
  following	
  concentrations:	
  0,	
  1,	
  5,	
  and	
  10	
  µg/mL.	
  	
  The	
  cells	
  
were	
  then	
  fixed	
  with	
  4%	
  paraformaldehyde	
  and	
  stained	
  with	
  DAPI.	
  	
  The	
  collagen	
  coverslips	
  were	
  
removed	
  and	
  mounted	
  on	
  glass	
  slides.	
  	
  The	
  cells	
  were	
  examined	
  using	
  confocal	
  microscopy	
  at	
  60X	
  zoom.	
  
Results	
  
Protein	
  purification	
  gel:	
  	
  
	
  
	
   	
  
Lanes	
  7	
  and	
  8	
  show	
  the	
  purified	
  D4	
  protein	
  after	
  it	
  has	
  been	
  cut	
  from	
  the	
  resin.	
  	
  The	
  amount	
  of	
  material	
  
present	
  in	
  lane	
  5	
  is	
  considerably	
  more	
  than	
  lane	
  9.	
  	
  This	
  suggests	
  that	
  the	
  protein	
  bound	
  to	
  the	
  resin	
  in	
  
lane	
  5	
  has	
  been	
  cut	
  off,	
  which	
  is	
  what	
  we	
  see	
  appearing	
  in	
  lanes	
  7	
  and	
  8.	
  	
  There	
  are	
  some	
  impurities	
  
present	
  in	
  lane	
  7,	
  which	
  can	
  be	
  seen	
  more	
  distinctly	
  in	
  lane	
  6,	
  which	
  is	
  the	
  concentrated	
  fraction.	
  	
  The	
  
purity	
  of	
  the	
  protein	
  in	
  lanes	
  7	
  and	
  8	
  is	
  estimated	
  to	
  be	
  90%.	
  
	
  
Lanes
1 – Ladder
2 – Cell debris pellet
3 – Supernatant
4 – Final wash supernatant
5 – Resin, pre-thrombin
6 – Concentrated elution fraction from 10/12
purification (same cell paste lot)
7 – Elution fraction 1
8 – Elution fraction 2
9 - Resin, post-thrombin
Expected	
  Masses	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   kDa
D4/pGex-­‐2T	
  	
   	
   	
   40
D4	
   	
   	
   	
   14
DNA	
  gel	
  of	
  restriction	
  digest	
  of	
  transformed	
  DH5a	
  to	
  screen	
  for	
  inserted	
  D4	
  DNA	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
This	
  gel	
  shows	
  a	
  digest	
  of	
  the	
  
vector	
  plus	
  D4	
  insert	
  by	
  
BamHI/EcoRI	
  restriction.	
  	
  This	
  
confirms	
  the	
  presence	
  of	
  the	
  D4	
  
gene	
  in	
  the	
  appropriate	
  cloning	
  site	
  
for	
  pGEX-­‐2T.	
  	
  The	
  expected	
  masses	
  
of	
  the	
  fragments	
  are	
  4.9	
  kb	
  (pGex-­‐
2T)	
  and	
  0.4	
  kb	
  (D4).	
  
	
  
	
  
	
  
	
  
	
  
	
  
Screen	
  for	
  D4	
  inserted	
  in	
  pGex-­‐2T:	
  
D4	
  in	
  DH5α	
  DNA	
  gel	
  
1	
  –	
  GeneRule	
  1kb	
  Plus	
  DNA	
  ladder	
  
2	
  –	
  colony	
  4	
  from	
  isolate	
  patch	
  
plate	
  
3	
  –	
  colony	
  5	
  from	
  isolate	
  patch	
  
plate	
  
	
  
	
  
	
  
	
  
	
   	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
20000	
  
10000	
  
7000	
  
	
  
5000	
  
	
  4000	
  
	
  
3000	
  
	
  
2000	
  
	
  
1500	
  
	
  
1000	
  
	
  700	
  
	
  500	
  
	
  400	
  
	
  
1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  
Confocal	
  microscopy,	
  60	
  X	
  Zoom:	
  	
  
These	
  figures	
  show	
  N2A	
  cells	
  that	
  were	
  incubated	
  with	
  10	
  µg/mL	
  D4	
  protein.	
  	
  Bacmam	
  2.0	
  targets	
  
specifically	
  endosomes.	
  	
  The	
  overlap	
  of	
  green	
  and	
  red	
  areas	
  in	
  Figure	
  3	
  and	
  Figure	
  4	
  shows	
  the	
  
colocalization	
  of	
  Bacmam	
  2.0	
  and	
  D4.	
  
	
   	
  
	
  
	
  
Figure	
  1:	
  N2A	
  cells	
  incubated	
  with	
  Bacmam	
  2.0	
  (green),	
  
DAPI	
  (blue),	
  and	
  Alexa	
  Fluor	
  568	
  labeled	
  D4	
  (red).	
  	
  a)	
  
Bacmam	
  2.0	
  b)	
  Alexa	
  Fluor	
  568	
  c)	
  Bacmam	
  2.0	
  +	
  Alexa	
  Fluor	
  
568	
  d)	
  Bacmam	
  2.0	
  +	
  Alexa	
  Fluor	
  568	
  +	
  DAPI	
  
Figure	
  2:	
  Zoom	
  of	
  Figure	
  1c	
  
a)	
   b)	
  
c)	
   d)	
  
Figure	
  3:	
  Zoom	
  of	
  Figure	
  1d	
  
 
	
  
From	
  these	
  images	
  it	
  appears	
  that	
  there	
  is	
  colocalization	
  between	
  D4	
  and	
  early	
  endosomes	
  (Rab5a).	
  	
  In	
  
figure	
  1D	
  there	
  is	
  a	
  lack	
  of	
  green	
  label,	
  but	
  it	
  appears	
  that	
  D4	
  has	
  still	
  localized	
  to	
  a	
  similar	
  location	
  as	
  
protein	
  that	
  has	
  green	
  labeling	
  in	
  the	
  same	
  frame.	
  	
  Therefore,	
  we	
  are	
  assuming	
  that	
  this	
  protein	
  is	
  most	
  
likely	
  also	
  colocalized	
  to	
  endosomes.	
  
	
  
Discussion:	
  
The	
  confocal	
  microscope	
  images	
  show	
  cells	
  with	
  areas	
  where	
  Bacmam	
  2.0	
  and	
  labeled	
  D4	
  overlap	
  
(colocalization)	
  and	
  are	
  represented	
  by	
  a	
  yellow	
  color.	
  	
  Bacmam	
  2.0	
  targets	
  the	
  endosomes	
  of	
  cells	
  as	
  a	
  
GFP/Rab5a	
  fusion,	
  bringing	
  GFP	
  to	
  Rab5a	
  locations.	
  	
  Rab5a	
  is	
  a	
  protein	
  that	
  specifically	
  localizes	
  to	
  early	
  
endosomes.	
  	
  The	
  fact	
  that	
  the	
  two	
  are	
  present	
  in	
  the	
  same	
  areas	
  of	
  cells	
  shows	
  that	
  D4	
  is	
  in	
  the	
  same	
  
subcellular	
  location	
  as	
  the	
  endosomes	
  of	
  cells.	
  	
  Therefore,	
  it	
  is	
  plausible	
  that	
  D4	
  may	
  be	
  useful	
  as	
  an	
  
endosomal	
  targeting	
  moiety	
  in	
  a	
  drug	
  delivery	
  application.	
  	
  Based	
  on	
  the	
  SDS-­‐PAGE	
  results,	
  we	
  can	
  see	
  
that	
  this	
  purification	
  procedure	
  produces	
  D4	
  protein	
  at	
  an	
  estimated	
  90%	
  purity.	
  	
  Determining	
  the	
  
structure	
  of	
  this	
  protein	
  with	
  crystallography	
  would	
  require	
  ~15	
  mg	
  of	
  highly	
  pure	
  D4	
  protein.	
  	
  This	
  
batch	
  of	
  D4	
  E.	
  coli	
  cells	
  produced	
  0.5	
  mg/L.	
  	
  In	
  the	
  future,	
  we	
  will	
  explore	
  using	
  a	
  reactor	
  in	
  order	
  to	
  
produce	
  more	
  D4	
  protein.	
  	
  
	
  
Appendix:	
  D4	
  construct	
  sequences	
  	
  
This	
  corresponds	
  to	
  amino	
  acid	
  residues	
  593	
  to	
  721	
  with	
  the	
  addition	
  of	
  GR	
  at	
  the	
  N-­‐terminus	
  for	
  
thrombin	
  cleavage	
  consensus.	
  
Figure	
  4:	
  N2A	
  cells	
  incubated	
  with	
  Bacmam	
  2.0	
  (green),	
  DAPI	
  
(blue),	
  and	
  Alexa	
  Fluor	
  568	
  labeled	
  D4	
  (red).	
  	
  a)	
  Bacmam	
  2.0	
  +	
  
Alexa	
  Fluor	
  568	
  +	
  DAPI	
  b)	
  Alexa	
  Fluor	
  568	
  c)	
  Bacmam	
  2.0	
  d)	
  
Bacmam	
  2.0	
  +	
  Alexa	
  Fluor	
  568	
  
a)	
  
c)	
  
b)	
  
d)	
  
Figure	
  6:	
  Zoom	
  of	
  Figure	
  4a	
  
1 GRKENISSIN IINDTNFGVE SMTGLSKRIK GNDGIYRAST KSFSFKSKEI 50
51 KYPEGFYRMR FVIQSYEPFT CNFKLFNNLI YSNSFDIGYY DEFFYFYCNG 100
101 SKSFFDISCD IINSINRLSG VFLIELDKLI I 131
DNA sequence confirmed by sequencing
1 GGATCCGGAT TCATGCGTAA GGAAAACATC TCATCGATCA ACATCATCAA 50
51 CGACACGAAC TTCGGCGTGG AAAGTATGAC CGGTCTGTCC AAACGTATTA 100
101 AGGGCAACGA TGGTATCTAT CGCGCGTCAA CCAAATCGTT TAGCTTCAAA 150
151 TCGAAGGAAA TTAAGTACCC GGAAGGTTTT TATCGTATGC GCTTCGTTAT 200
201 CCAGTCTTAT GAACCGTTCA CCTGTAACTT CAAGCTGTTC AACAACCTGA 250
251 TCTACTCTAA CAGTTTCGAC ATCGGCTACT ACGATGAATT TTTCTACTTC 300
301 TACTGCAACG GTTCCAAATC ATTTTTCGAC ATCAGTTGTG ATATCATCAA 350
351 CTCAATCAAC CGTCTGTCGG GCGTGTTTCT GATTGAACTG GATAAACTGA 400
401 TTATCTAAGA ATTC 414
	
  
	
  
References	
  
1. Schleberg,	
  C.,	
  Hochmann,	
  H.,	
  Barth,	
  H.,	
  Aktories,	
  K.,	
  &	
  Schulz,	
  G.	
  E.	
  (2006)	
  Structure	
  and	
  
Action	
  of	
  the	
  Binary	
  C2	
  Toxin	
  from	
  Clostridium	
  botulinum.	
  Journal	
  of	
  Molecular	
  Biology,	
  364,	
  
705-­‐715.	
  
2. Eckhardt,	
  M.,	
  Barth,	
  H.,	
  Blöcker,	
  D.,	
  &	
  Aktories,	
  K.	
  (2000)	
  Binding	
  of	
  Clostridium	
  botulinum	
  C2	
  
Toxin	
  to	
  Asparagine-­‐linked	
  Complex	
  and	
  Hybrid	
  Carbohydrates.	
  The	
  Journal	
  of	
  Biological	
  
Chemistry,	
  275(4),	
  2328-­‐2334.	
  
3. Nagahama,	
  M.,	
  et	
  al.,	
  Binding	
  and	
  Internalization	
  of	
  Clostridium	
  botulinum	
  C2	
  Toxin.	
  Infection	
  
and	
  Immunity,	
  2009.	
  77(11):	
  p.	
  5139-­‐5148.	
  
	
  

More Related Content

What's hot

Glass bead transformation method for gram positive bacteria
Glass bead transformation method for gram positive bacteriaGlass bead transformation method for gram positive bacteria
Glass bead transformation method for gram positive bacteriaCAS0609
 
Proposal march 2012
Proposal march 2012Proposal march 2012
Proposal march 2012valrivera
 
Measuring apoptosis in real time with a new luminescent method
Measuring apoptosis in real time with a new luminescent methodMeasuring apoptosis in real time with a new luminescent method
Measuring apoptosis in real time with a new luminescent methodMourad FERHAT, PhD
 
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Rosana Lopez
 
76 Lab Review
76 Lab Review76 Lab Review
76 Lab Reviewflguppie
 
New tools bring greater understanding to cellular metabolism research
New tools bring greater understanding to cellular metabolism research New tools bring greater understanding to cellular metabolism research
New tools bring greater understanding to cellular metabolism research Mourad FERHAT, PhD
 
Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction
Specific enzymatic amplification of DNA in vitro: The polymerase chain reactionSpecific enzymatic amplification of DNA in vitro: The polymerase chain reaction
Specific enzymatic amplification of DNA in vitro: The polymerase chain reactionJosé Luis Moreno Garvayo
 
ポスター原案 6号0918
ポスター原案 6号0918ポスター原案 6号0918
ポスター原案 6号0918栄真 三井
 
Protein Purification and Analysis with PhyNexus and Caliper LifeSciences
Protein Purification and Analysis with PhyNexus and Caliper LifeSciencesProtein Purification and Analysis with PhyNexus and Caliper LifeSciences
Protein Purification and Analysis with PhyNexus and Caliper LifeSciencesChris Suh
 
Biochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationBiochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationMalathi Murugesan
 
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...A visual chip-based coimmunoprecipitation technique for analysis of protein–p...
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...Qing Chen
 
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell LineGeneration of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Linemdmitc
 

What's hot (17)

Glass bead transformation method for gram positive bacteria
Glass bead transformation method for gram positive bacteriaGlass bead transformation method for gram positive bacteria
Glass bead transformation method for gram positive bacteria
 
pratik_NCL
pratik_NCLpratik_NCL
pratik_NCL
 
Proposal march 2012
Proposal march 2012Proposal march 2012
Proposal march 2012
 
Measuring apoptosis in real time with a new luminescent method
Measuring apoptosis in real time with a new luminescent methodMeasuring apoptosis in real time with a new luminescent method
Measuring apoptosis in real time with a new luminescent method
 
JCTBT2
JCTBT2JCTBT2
JCTBT2
 
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
 
76 Lab Review
76 Lab Review76 Lab Review
76 Lab Review
 
New tools bring greater understanding to cellular metabolism research
New tools bring greater understanding to cellular metabolism research New tools bring greater understanding to cellular metabolism research
New tools bring greater understanding to cellular metabolism research
 
Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction
Specific enzymatic amplification of DNA in vitro: The polymerase chain reactionSpecific enzymatic amplification of DNA in vitro: The polymerase chain reaction
Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction
 
sustained release
sustained releasesustained release
sustained release
 
ポスター原案 6号0918
ポスター原案 6号0918ポスター原案 6号0918
ポスター原案 6号0918
 
IMViC test
IMViC testIMViC test
IMViC test
 
Histamine
HistamineHistamine
Histamine
 
Protein Purification and Analysis with PhyNexus and Caliper LifeSciences
Protein Purification and Analysis with PhyNexus and Caliper LifeSciencesProtein Purification and Analysis with PhyNexus and Caliper LifeSciences
Protein Purification and Analysis with PhyNexus and Caliper LifeSciences
 
Biochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationBiochemical reactions - Microbe identification
Biochemical reactions - Microbe identification
 
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...A visual chip-based coimmunoprecipitation technique for analysis of protein–p...
A visual chip-based coimmunoprecipitation technique for analysis of protein–p...
 
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell LineGeneration of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
 

Similar to UCARE report

Report on molecular biology techniques
Report on molecular biology techniquesReport on molecular biology techniques
Report on molecular biology techniquesraghavworah
 
DETECTION OF HELMINTHS BY USING RADIOACTIVE.
DETECTION OF HELMINTHS BY USING RADIOACTIVE.DETECTION OF HELMINTHS BY USING RADIOACTIVE.
DETECTION OF HELMINTHS BY USING RADIOACTIVE.SUMBUL AWAN
 
Various techniques in molecular bology
Various techniques in molecular bologyVarious techniques in molecular bology
Various techniques in molecular bologyKartikey Singh
 
Final ppt project and tour
Final ppt project and tourFinal ppt project and tour
Final ppt project and tourFriendsCyber1037
 
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...Expedeon
 
Lab Report on Yeast Transformation
Lab Report on Yeast TransformationLab Report on Yeast Transformation
Lab Report on Yeast TransformationEric Han
 
Carbohydrate, isolation and purification techniques. A complete view.
Carbohydrate, isolation and purification techniques. A complete view.Carbohydrate, isolation and purification techniques. A complete view.
Carbohydrate, isolation and purification techniques. A complete view.NEHA MISHRA
 
Honours Report Draft COMPLETE
Honours Report Draft COMPLETEHonours Report Draft COMPLETE
Honours Report Draft COMPLETEBjorn Hunter
 
molecular biology techniques -jaypee university of information technology- ra...
molecular biology techniques -jaypee university of information technology- ra...molecular biology techniques -jaypee university of information technology- ra...
molecular biology techniques -jaypee university of information technology- ra...RAVI RANJAN
 
Hugh Thompson P3 Summer Placement report 2014 (1)
Hugh Thompson P3 Summer Placement report 2014 (1)Hugh Thompson P3 Summer Placement report 2014 (1)
Hugh Thompson P3 Summer Placement report 2014 (1)Hugh E G Thompson
 
Molecular_bilogy_lab_report_1
Molecular_bilogy_lab_report_1Molecular_bilogy_lab_report_1
Molecular_bilogy_lab_report_1Elijah Willie
 
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIK
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIKB. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIK
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIKImran Nur Manik
 

Similar to UCARE report (20)

Report on molecular biology techniques
Report on molecular biology techniquesReport on molecular biology techniques
Report on molecular biology techniques
 
MGG2003-cDNA-AFLP
MGG2003-cDNA-AFLPMGG2003-cDNA-AFLP
MGG2003-cDNA-AFLP
 
DETECTION OF HELMINTHS BY USING RADIOACTIVE.
DETECTION OF HELMINTHS BY USING RADIOACTIVE.DETECTION OF HELMINTHS BY USING RADIOACTIVE.
DETECTION OF HELMINTHS BY USING RADIOACTIVE.
 
Various techniques in molecular bology
Various techniques in molecular bologyVarious techniques in molecular bology
Various techniques in molecular bology
 
Final ppt project and tour
Final ppt project and tourFinal ppt project and tour
Final ppt project and tour
 
Mammalian project poster
Mammalian project posterMammalian project poster
Mammalian project poster
 
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...
Advances in Capillary Liquid Chromatography for High-Throughput Top Down Prot...
 
Lab Report on Yeast Transformation
Lab Report on Yeast TransformationLab Report on Yeast Transformation
Lab Report on Yeast Transformation
 
Carbohydrate, isolation and purification techniques. A complete view.
Carbohydrate, isolation and purification techniques. A complete view.Carbohydrate, isolation and purification techniques. A complete view.
Carbohydrate, isolation and purification techniques. A complete view.
 
Honours Report Draft COMPLETE
Honours Report Draft COMPLETEHonours Report Draft COMPLETE
Honours Report Draft COMPLETE
 
Ex Bio 2016 poster
Ex Bio 2016 posterEx Bio 2016 poster
Ex Bio 2016 poster
 
molecular biology techniques -jaypee university of information technology- ra...
molecular biology techniques -jaypee university of information technology- ra...molecular biology techniques -jaypee university of information technology- ra...
molecular biology techniques -jaypee university of information technology- ra...
 
131116 paper study 준섭
131116 paper study 준섭131116 paper study 준섭
131116 paper study 준섭
 
131116 paper study 준섭
131116 paper study 준섭131116 paper study 준섭
131116 paper study 준섭
 
Isolation of DNA
Isolation of DNA Isolation of DNA
Isolation of DNA
 
Hugh Thompson P3 Summer Placement report 2014 (1)
Hugh Thompson P3 Summer Placement report 2014 (1)Hugh Thompson P3 Summer Placement report 2014 (1)
Hugh Thompson P3 Summer Placement report 2014 (1)
 
Molecular_bilogy_lab_report_1
Molecular_bilogy_lab_report_1Molecular_bilogy_lab_report_1
Molecular_bilogy_lab_report_1
 
DNA Extraction & PCR protocol
DNA Extraction & PCR protocolDNA Extraction & PCR protocol
DNA Extraction & PCR protocol
 
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIK
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIKB. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIK
B. Pharm. (Honours) Part-IV Practical,Molecular biology & Biotechnology, MANIK
 
131116 paper study 준섭
131116 paper study 준섭131116 paper study 준섭
131116 paper study 준섭
 

UCARE report

  • 1. Production  and  binding  of  D4  protein   Bree  Drda   Purpose     C.  botulinium  C2II  domain  four  (D4)  is  a  toxin  binding  domain  protein  with  a  general  specificity  towards   eukaryotic  cell  surface  glycosylation  patterns  which  promotes  cellular  recognition  and  endocytosis  of   the  toxin.    It  has  not  yet  been  characterized  by  crystallography  or  used  in  a  biomedical  application  as  a   binding  domain.    Other  research  groups  1,2,3  have  also  investigated  this  protein  and  this  project  is  a   continuation  of  their  work.    The  purpose  of  this  report  is  to  describe  the  methods  and  results  of   producing  D4  protein  and  binding  it  to  the  endosomes  of  N2A  cells.    DNA  electrophoresis,  SDS-­‐PAGE,   and  confocal  microscopy  were  used.   Methods   Cell  line  and  expression:   The  DNA  for  D4  was  amplified  from  the  vector  BDV/pGex-­‐2T  by  PCR  with  a  5’  BAMHI-­‐glycine  extension   and  a  3’  ECORI  extension  using  primers   GCGGGATCCGGTCGTAAGGAAAACATCTCATCGATCAACATCATCAACG  and   CCGGAATTCTTAGATAATCAGTTTATCCAGTTCAATCAGAAACACGCCCGACAGAC.    The  vector  BDV/pGEX-­‐2T   was  obtained  from  synthesized  DNA  by  Genscript  with  codon  optimized  for  E.  coli  expression.    This   insert  corresponded  to  amino  acids  593-­‐721  of  PDB  entry  2J42.    The  amplified  fragment  was  ligated  into   the  vector  pGEX-­‐2T  by  directional  cloning  at  the  restriction  sites  BamHI  and  EcoRI  to  make  the   expression  vector  pGEX-­‐2T:D4.    DH5α  was  transformed  to  propagate  the  vector  and  BL21  (DE3)  was   chosen  as  the  expression  host  strain  and  transformed.    The  D4  sequence  was  confirmed  by  Operon   sequencing  services  and  did  not  contain  errors.      A  colony  was  grown  in  3  mL  culture  tubes  with  LB   media  and  100  ug/mL  of  ampicillin.    After  incubating  for  18  hours  at  37°C,  1  mL  of  the  culture  was  added   to  400  mL  of  LB  media  and  grown  until  an  OD  of  0.3  –  0.5  was  reached.    The  culture  was  induced  with   0.5  mM  IPTG  once  it  had  reached  an  OD  of  0.5  –  0.8.    It  was  then  incubated  for  three  hours.    The  cells   were  pelleted  by  centrifuging  the  mixture  at  5,000  rpm,  4°C,  for  10  minutes  using  100  mL  of   culture/pellet.    The  pellets  were  stored  at  -­‐20°C.       Protein  extraction  and  purification:   A  D4  cell  pellet  constituting  100  mL  of  culture  volume  was  resuspended  in  20  mL  of  1  x  PBS  +  1%  Triton   pH  7.5.    The  sample  was  pressed  3  times  at  1000  psig,  (~16,000  psia  cell  pressure)  using  a  French  press.     The  cell  debris  was  pelleted  in  a  centrifuge  at  10,000  rpm,  4°C,  for  20  minutes  and  the  supernatant   containing  the  protein  was  decanted.    This  supernatant  was  then  incubated  with  washed  immobilized   glutathione  resin  (Genscript)  for  one  hour  at  4°C  to  let  the  protein  bind  with  the  resin.    The  supernatant   was  washed  of  excess  non-­‐binding  protein  by  centrifuging  the  resin  with  two  volumes  of  8  mL  of  1  x  PBS   +  1%  Triton.    The  Triton  was  then  removed  by  centrifuging  with  three  volumes  of  1  x  PBS.    All  spins   involving  the  resin  were  done  at  2,000  rpm,  4°C,  for  five  minutes.    The  final  total  volume  of  the  solution   after  the  last  wash  was  then  reduced  to  1  mL,  and  10  units  of  thrombin  were  added  in  order  to  cleave   the  protein  from  the  resin.    The  resin  and  the  protein  dissolved  in  the  supernatant  were  separated  using   a  syringe  plugged  with  glass  wool.    The  protein  elution  was  concentrated  to  ~ten  times  the  initial   concentration  using  3K  spin  column  filters  and  stored  at  4°C.  
  • 2. Protein  Induction  with  N2A  Cells:   Four  well  plates  on  a  24-­‐well  well  plate  were  seeded  with  100,000  N2A  cells  in  1  mL  of  EMEM  +  10%  FBS   +  1%  Pen  Strep  and  grown  at  37°C  with  5%  CO2.    After  24  hours,  three  of  the  wells  were  inoculated  with   Bacmam  2.0  early  endosome  labeling  kit  (Molecular  Probes)  baculovirus  at  a  concentration  of  50   particles  per  mammalian  cell  (PPC)  and  left  to  incubate  at  37°C  for  24  hours.    D4  protein  labeled  with   Alexa  Fluor  was  added  to  the  well  plates  at  following  concentrations:  0,  1,  5,  and  10  µg/mL.    The  cells   were  then  fixed  with  4%  paraformaldehyde  and  stained  with  DAPI.    The  collagen  coverslips  were   removed  and  mounted  on  glass  slides.    The  cells  were  examined  using  confocal  microscopy  at  60X  zoom.   Results   Protein  purification  gel:           Lanes  7  and  8  show  the  purified  D4  protein  after  it  has  been  cut  from  the  resin.    The  amount  of  material   present  in  lane  5  is  considerably  more  than  lane  9.    This  suggests  that  the  protein  bound  to  the  resin  in   lane  5  has  been  cut  off,  which  is  what  we  see  appearing  in  lanes  7  and  8.    There  are  some  impurities   present  in  lane  7,  which  can  be  seen  more  distinctly  in  lane  6,  which  is  the  concentrated  fraction.    The   purity  of  the  protein  in  lanes  7  and  8  is  estimated  to  be  90%.     Lanes 1 – Ladder 2 – Cell debris pellet 3 – Supernatant 4 – Final wash supernatant 5 – Resin, pre-thrombin 6 – Concentrated elution fraction from 10/12 purification (same cell paste lot) 7 – Elution fraction 1 8 – Elution fraction 2 9 - Resin, post-thrombin Expected  Masses                           kDa D4/pGex-­‐2T         40 D4         14
  • 3. DNA  gel  of  restriction  digest  of  transformed  DH5a  to  screen  for  inserted  D4  DNA                 This  gel  shows  a  digest  of  the   vector  plus  D4  insert  by   BamHI/EcoRI  restriction.    This   confirms  the  presence  of  the  D4   gene  in  the  appropriate  cloning  site   for  pGEX-­‐2T.    The  expected  masses   of  the  fragments  are  4.9  kb  (pGex-­‐ 2T)  and  0.4  kb  (D4).               Screen  for  D4  inserted  in  pGex-­‐2T:   D4  in  DH5α  DNA  gel   1  –  GeneRule  1kb  Plus  DNA  ladder   2  –  colony  4  from  isolate  patch   plate   3  –  colony  5  from  isolate  patch   plate                                   20000   10000   7000     5000    4000     3000     2000     1500     1000    700    500    400     1                    2                      3  
  • 4. Confocal  microscopy,  60  X  Zoom:     These  figures  show  N2A  cells  that  were  incubated  with  10  µg/mL  D4  protein.    Bacmam  2.0  targets   specifically  endosomes.    The  overlap  of  green  and  red  areas  in  Figure  3  and  Figure  4  shows  the   colocalization  of  Bacmam  2.0  and  D4.           Figure  1:  N2A  cells  incubated  with  Bacmam  2.0  (green),   DAPI  (blue),  and  Alexa  Fluor  568  labeled  D4  (red).    a)   Bacmam  2.0  b)  Alexa  Fluor  568  c)  Bacmam  2.0  +  Alexa  Fluor   568  d)  Bacmam  2.0  +  Alexa  Fluor  568  +  DAPI   Figure  2:  Zoom  of  Figure  1c   a)   b)   c)   d)   Figure  3:  Zoom  of  Figure  1d  
  • 5.     From  these  images  it  appears  that  there  is  colocalization  between  D4  and  early  endosomes  (Rab5a).    In   figure  1D  there  is  a  lack  of  green  label,  but  it  appears  that  D4  has  still  localized  to  a  similar  location  as   protein  that  has  green  labeling  in  the  same  frame.    Therefore,  we  are  assuming  that  this  protein  is  most   likely  also  colocalized  to  endosomes.     Discussion:   The  confocal  microscope  images  show  cells  with  areas  where  Bacmam  2.0  and  labeled  D4  overlap   (colocalization)  and  are  represented  by  a  yellow  color.    Bacmam  2.0  targets  the  endosomes  of  cells  as  a   GFP/Rab5a  fusion,  bringing  GFP  to  Rab5a  locations.    Rab5a  is  a  protein  that  specifically  localizes  to  early   endosomes.    The  fact  that  the  two  are  present  in  the  same  areas  of  cells  shows  that  D4  is  in  the  same   subcellular  location  as  the  endosomes  of  cells.    Therefore,  it  is  plausible  that  D4  may  be  useful  as  an   endosomal  targeting  moiety  in  a  drug  delivery  application.    Based  on  the  SDS-­‐PAGE  results,  we  can  see   that  this  purification  procedure  produces  D4  protein  at  an  estimated  90%  purity.    Determining  the   structure  of  this  protein  with  crystallography  would  require  ~15  mg  of  highly  pure  D4  protein.    This   batch  of  D4  E.  coli  cells  produced  0.5  mg/L.    In  the  future,  we  will  explore  using  a  reactor  in  order  to   produce  more  D4  protein.       Appendix:  D4  construct  sequences     This  corresponds  to  amino  acid  residues  593  to  721  with  the  addition  of  GR  at  the  N-­‐terminus  for   thrombin  cleavage  consensus.   Figure  4:  N2A  cells  incubated  with  Bacmam  2.0  (green),  DAPI   (blue),  and  Alexa  Fluor  568  labeled  D4  (red).    a)  Bacmam  2.0  +   Alexa  Fluor  568  +  DAPI  b)  Alexa  Fluor  568  c)  Bacmam  2.0  d)   Bacmam  2.0  +  Alexa  Fluor  568   a)   c)   b)   d)   Figure  6:  Zoom  of  Figure  4a  
  • 6. 1 GRKENISSIN IINDTNFGVE SMTGLSKRIK GNDGIYRAST KSFSFKSKEI 50 51 KYPEGFYRMR FVIQSYEPFT CNFKLFNNLI YSNSFDIGYY DEFFYFYCNG 100 101 SKSFFDISCD IINSINRLSG VFLIELDKLI I 131 DNA sequence confirmed by sequencing 1 GGATCCGGAT TCATGCGTAA GGAAAACATC TCATCGATCA ACATCATCAA 50 51 CGACACGAAC TTCGGCGTGG AAAGTATGAC CGGTCTGTCC AAACGTATTA 100 101 AGGGCAACGA TGGTATCTAT CGCGCGTCAA CCAAATCGTT TAGCTTCAAA 150 151 TCGAAGGAAA TTAAGTACCC GGAAGGTTTT TATCGTATGC GCTTCGTTAT 200 201 CCAGTCTTAT GAACCGTTCA CCTGTAACTT CAAGCTGTTC AACAACCTGA 250 251 TCTACTCTAA CAGTTTCGAC ATCGGCTACT ACGATGAATT TTTCTACTTC 300 301 TACTGCAACG GTTCCAAATC ATTTTTCGAC ATCAGTTGTG ATATCATCAA 350 351 CTCAATCAAC CGTCTGTCGG GCGTGTTTCT GATTGAACTG GATAAACTGA 400 401 TTATCTAAGA ATTC 414     References   1. Schleberg,  C.,  Hochmann,  H.,  Barth,  H.,  Aktories,  K.,  &  Schulz,  G.  E.  (2006)  Structure  and   Action  of  the  Binary  C2  Toxin  from  Clostridium  botulinum.  Journal  of  Molecular  Biology,  364,   705-­‐715.   2. Eckhardt,  M.,  Barth,  H.,  Blöcker,  D.,  &  Aktories,  K.  (2000)  Binding  of  Clostridium  botulinum  C2   Toxin  to  Asparagine-­‐linked  Complex  and  Hybrid  Carbohydrates.  The  Journal  of  Biological   Chemistry,  275(4),  2328-­‐2334.   3. Nagahama,  M.,  et  al.,  Binding  and  Internalization  of  Clostridium  botulinum  C2  Toxin.  Infection   and  Immunity,  2009.  77(11):  p.  5139-­‐5148.