Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Vanessa Klee MSIV
What is an ABG? <ul><li>The Components </li></ul><ul><ul><li>pH / PaCO 2  / PaO 2  / HCO 3  / O 2 sat / BE </li></ul></ul>...
Why Order an ABG? <ul><li>Aids in establishing a diagnosis  </li></ul><ul><li>Helps guide treatment plan </li></ul><ul><li...
Logistics <ul><li>When to order an arterial line -- </li></ul><ul><ul><li>Need for continuous BP monitoring </li></ul></ul...
Acid Base Balance <ul><li>The body produces acids daily </li></ul><ul><ul><li>15,000 mmol CO 2 </li></ul></ul><ul><ul><li>...
Acid Base Balance <ul><li>Assessment of status via bicarbonate-carbon dioxide buffer system </li></ul><ul><ul><li>CO 2  + ...
The Terms <ul><li>ACIDS </li></ul><ul><ul><li>Acidemia </li></ul></ul><ul><ul><li>Acidosis  </li></ul></ul><ul><ul><ul><li...
Respiratory Acidosis <ul><li> ph,   CO 2,   Ventilation </li></ul><ul><li>Causes </li></ul><ul><ul><li>CNS depression <...
Respiratory Acidosis <ul><li>Acute vs Chronic </li></ul><ul><ul><li>Acute - little kidney involvement.  Buffering via titr...
Respiratory Alkalosis <ul><li> pH,   CO 2,   Ventilation </li></ul><ul><li>   CO 2        HCO 3  (  Cl to balance c...
Respiratory Alkalosis <ul><li>Acute vs. Chronic </li></ul><ul><ul><li>Acute -   HCO 3  by 2 mEq/L for every 10mmHg    in...
Metabolic Acidosis <ul><li> pH,   HCO 3 </li></ul><ul><li>12-24 hours for complete activation of respiratory compensatio...
The Causes <ul><li>Metabolic Gap Acidosis </li></ul><ul><ul><li>M - Methanol </li></ul></ul><ul><ul><li>U - Uremia </li></...
Metabolic Alkalosis <ul><li> pH,   HCO 3   </li></ul><ul><li> PCO 2  by 0.7 for every 1mEq/L    in HCO 3 </li></ul><ul...
Mixed Acid-Base Disorders <ul><li>Patients may have two or more acid-base disorders at one time </li></ul><ul><li>Delta Ga...
The Steps <ul><li>Start with the pH </li></ul><ul><li>Note the PCO 2 </li></ul><ul><li>Calculate anion gap </li></ul><ul><...
Sample Problem #1 <ul><li>An ill-appearing alcoholic male presents with nausea and vomiting. </li></ul><ul><ul><li>ABG - 7...
Sample Problem #1 <ul><li>Anion Gap = 137 - (90 + 22) = 25 </li></ul><ul><li>     anion gap metabolic acidosis </li></ul>...
Sample Problem #2 <ul><li>22 year old female presents for attempted overdose.  She has taken an unknown amount of Midol co...
Sample Problem #2 <ul><li>ABG - 7.47 / 19 / 123 / 14 </li></ul><ul><li>Na- 145 / K- 3.6 / Cl- 109 / HCO 3 - 17 </li></ul><...
Sample Problem #2 <ul><li>Anion Gap = 145 - (109 + 17) = 19 </li></ul><ul><li>     anion gap metabolic acidosis </li></ul...
Sample Problem #3 <ul><li>47 year old male experienced crush injury at construction site. </li></ul><ul><li>ABG - 7.3 / 32...
Sample Problem #3 <ul><li>Anion Gap = 135 - (98 + 15) = 22 </li></ul><ul><li>   anion gap metabolic acidosis </li></ul><u...
Sample Problem #4 <ul><li>1 month old male presents with projectile emesis x 2 days. </li></ul><ul><li>ABG - 7.49 / 40 / 9...
Sample Problem #4 <ul><li>Metabolic Alkalosis, hypochloremic </li></ul><ul><li>Winters Formula = 1.5 (30) + 8    2  </li>...
Upcoming SlideShare
Loading in …5
×

Abg presentation

1,351 views

Published on

Published in: Health & Medicine, Education
  • Be the first to comment

  • Be the first to like this

Abg presentation

  1. 1. Vanessa Klee MSIV
  2. 2. What is an ABG? <ul><li>The Components </li></ul><ul><ul><li>pH / PaCO 2 / PaO 2 / HCO 3 / O 2 sat / BE </li></ul></ul><ul><li>Desired Ranges </li></ul><ul><ul><li>pH - 7.35 - 7.45 </li></ul></ul><ul><ul><li>PaCO 2 - 35-45 mmHg </li></ul></ul><ul><ul><li>PaO 2 - 80-100 mmHg </li></ul></ul><ul><ul><li>HCO 3 - 21-27 </li></ul></ul><ul><ul><li>O 2 sat - 95-100% </li></ul></ul><ul><ul><li>Base Excess - +/-2 mEq/L </li></ul></ul>
  3. 3. Why Order an ABG? <ul><li>Aids in establishing a diagnosis </li></ul><ul><li>Helps guide treatment plan </li></ul><ul><li>Aids in ventilator management </li></ul><ul><li>Improvement in acid/base management allows for optimal function of medications </li></ul><ul><li>Acid/base status may alter electrolyte levels critical to patient status/care </li></ul>
  4. 4. Logistics <ul><li>When to order an arterial line -- </li></ul><ul><ul><li>Need for continuous BP monitoring </li></ul></ul><ul><ul><li>Need for multiple ABGs </li></ul></ul><ul><li>Where to place -- the options </li></ul><ul><ul><li>Radial </li></ul></ul><ul><ul><li>Femoral </li></ul></ul><ul><ul><li>Brachial </li></ul></ul><ul><ul><li>Dorsalis Pedis </li></ul></ul><ul><ul><li>Axillary </li></ul></ul>
  5. 5. Acid Base Balance <ul><li>The body produces acids daily </li></ul><ul><ul><li>15,000 mmol CO 2 </li></ul></ul><ul><ul><li>50-100 mEq Nonvolatile acids </li></ul></ul><ul><li>The lungs and kidneys attempt to maintain balance </li></ul>
  6. 6. Acid Base Balance <ul><li>Assessment of status via bicarbonate-carbon dioxide buffer system </li></ul><ul><ul><li>CO 2 + H 2 O <--> H 2 CO 3 <--> HCO 3 - + H + </li></ul></ul><ul><ul><li>ph = 6.10 + log ([HCO 3 ] / [0.03 x PCO 2 ]) </li></ul></ul>
  7. 7. The Terms <ul><li>ACIDS </li></ul><ul><ul><li>Acidemia </li></ul></ul><ul><ul><li>Acidosis </li></ul></ul><ul><ul><ul><li>Respiratory </li></ul></ul></ul><ul><ul><ul><li> CO 2 </li></ul></ul></ul><ul><ul><ul><li>Metabolic </li></ul></ul></ul><ul><ul><ul><li> HCO 3 </li></ul></ul></ul><ul><li>BASES </li></ul><ul><ul><li>Alkalemia </li></ul></ul><ul><ul><li>Alkalosis </li></ul></ul><ul><ul><ul><li>Respiratory </li></ul></ul></ul><ul><ul><ul><li> CO 2 </li></ul></ul></ul><ul><ul><ul><li>Metabolic </li></ul></ul></ul><ul><ul><ul><li> HCO 3 </li></ul></ul></ul>
  8. 8. Respiratory Acidosis <ul><li> ph,  CO 2,  Ventilation </li></ul><ul><li>Causes </li></ul><ul><ul><li>CNS depression </li></ul></ul><ul><ul><li>Pleural disease </li></ul></ul><ul><ul><li>COPD/ARDS </li></ul></ul><ul><ul><li>Musculoskeletal disorders </li></ul></ul><ul><ul><li>Compensation for metabolic alkalosis </li></ul></ul>
  9. 9. Respiratory Acidosis <ul><li>Acute vs Chronic </li></ul><ul><ul><li>Acute - little kidney involvement. Buffering via titration via Hb for example </li></ul></ul><ul><ul><ul><li>pH  by 0.08 for 10mmHg  in CO 2 </li></ul></ul></ul><ul><ul><li>Chronic - Renal compensation via synthesis and retention of HCO 3 (  Cl to balance charges  hypochloremia) </li></ul></ul><ul><ul><ul><li>pH  by 0.03 for 10mmHg  in CO 2 </li></ul></ul></ul>
  10. 10. Respiratory Alkalosis <ul><li> pH,  CO 2,  Ventilation </li></ul><ul><li> CO 2   HCO 3 (  Cl to balance charges  hyperchloremia) </li></ul><ul><li>Causes </li></ul><ul><ul><li>Intracerebral hemorrhage </li></ul></ul><ul><ul><li>Salicylate and Progesterone drug usage </li></ul></ul><ul><ul><li>Anxiety   lung compliance </li></ul></ul><ul><ul><li>Cirrhosis of the liver </li></ul></ul><ul><ul><li>Sepsis </li></ul></ul>
  11. 11. Respiratory Alkalosis <ul><li>Acute vs. Chronic </li></ul><ul><ul><li>Acute -  HCO 3 by 2 mEq/L for every 10mmHg  in PCO 2 </li></ul></ul><ul><ul><li>Chronic - Ratio increases to 4 mEq/L of HCO 3 for every 10mmHg  in PCO 2 </li></ul></ul><ul><ul><li>Decreased bicarb reabsorption and decreased ammonium excretion to normalize pH </li></ul></ul>
  12. 12. Metabolic Acidosis <ul><li> pH,  HCO 3 </li></ul><ul><li>12-24 hours for complete activation of respiratory compensation </li></ul><ul><li> PCO 2 by 1.2mmHg for every 1 mEq/L  HCO 3 </li></ul><ul><li>The degree of compensation is assessed via the Winter’s Formula </li></ul><ul><ul><ul><li> PCO 2 = 1.5(HCO 3 ) +8  2 </li></ul></ul></ul>
  13. 13. The Causes <ul><li>Metabolic Gap Acidosis </li></ul><ul><ul><li>M - Methanol </li></ul></ul><ul><ul><li>U - Uremia </li></ul></ul><ul><ul><li>D - DKA </li></ul></ul><ul><ul><li>P - Paraldehyde </li></ul></ul><ul><ul><li>I - INH </li></ul></ul><ul><ul><li>L - Lactic Acidosis </li></ul></ul><ul><ul><li>E - Ehylene Glycol </li></ul></ul><ul><ul><li>S - Salicylate </li></ul></ul><ul><li>Non Gap Metabolic Acidosis </li></ul><ul><ul><li>Hyperalimentation </li></ul></ul><ul><ul><li>Acetazolamide </li></ul></ul><ul><ul><li>RTA (Calculate urine anion gap) </li></ul></ul><ul><ul><li>Diarrhea </li></ul></ul><ul><ul><li>Pancreatic Fistula </li></ul></ul>
  14. 14. Metabolic Alkalosis <ul><li> pH,  HCO 3 </li></ul><ul><li> PCO 2 by 0.7 for every 1mEq/L  in HCO 3 </li></ul><ul><li>Causes </li></ul><ul><ul><li>Vomiting </li></ul></ul><ul><ul><li>Diuretics </li></ul></ul><ul><ul><li>Chronic diarrhea </li></ul></ul><ul><ul><li>Hypokalemia </li></ul></ul><ul><ul><li>Renal Failure </li></ul></ul>
  15. 15. Mixed Acid-Base Disorders <ul><li>Patients may have two or more acid-base disorders at one time </li></ul><ul><li>Delta Gap </li></ul><ul><ul><li>Delta HCO 3 = HCO 3 + Change in anion gap </li></ul></ul><ul><ul><li>>24 = metabolic alkalosis </li></ul></ul>
  16. 16. The Steps <ul><li>Start with the pH </li></ul><ul><li>Note the PCO 2 </li></ul><ul><li>Calculate anion gap </li></ul><ul><li>Determine compensation </li></ul>
  17. 17. Sample Problem #1 <ul><li>An ill-appearing alcoholic male presents with nausea and vomiting. </li></ul><ul><ul><li>ABG - 7.4 / 41 / 85 / 22 </li></ul></ul><ul><ul><li>Na- 137 / K- 3.8 / Cl- 90 / HCO 3 - 22 </li></ul></ul>
  18. 18. Sample Problem #1 <ul><li>Anion Gap = 137 - (90 + 22) = 25 </li></ul><ul><li>  anion gap metabolic acidosis </li></ul><ul><li>Winters Formula = 1.5(22) + 8  2 </li></ul><ul><li> = 39  2 </li></ul><ul><li>  compensated </li></ul><ul><li>Delta Gap = 25 - 10 = 15 </li></ul><ul><li>15 + 22 = 37 </li></ul><ul><li>  metabolic alkalosis </li></ul>
  19. 19. Sample Problem #2 <ul><li>22 year old female presents for attempted overdose. She has taken an unknown amount of Midol containing aspirin, cinnamedrine, and caffeine. On exam she is experiencing respiratory distress. </li></ul>
  20. 20. Sample Problem #2 <ul><li>ABG - 7.47 / 19 / 123 / 14 </li></ul><ul><li>Na- 145 / K- 3.6 / Cl- 109 / HCO 3 - 17 </li></ul><ul><li>ASA level - 38.2 mg/dL </li></ul>
  21. 21. Sample Problem #2 <ul><li>Anion Gap = 145 - (109 + 17) = 19 </li></ul><ul><li>  anion gap metabolic acidosis </li></ul><ul><li>Winters Formula = 1.5 (17) + 8  2 </li></ul><ul><li>= 34  2 </li></ul><ul><li>  uncompensated </li></ul><ul><li>Delta Gap = 19 - 10 = 9 </li></ul><ul><li>9 + 17 = 26 </li></ul><ul><li> no metabolic alkalosis </li></ul>
  22. 22. Sample Problem #3 <ul><li>47 year old male experienced crush injury at construction site. </li></ul><ul><li>ABG - 7.3 / 32 / 96 / 15 </li></ul><ul><li>Na- 135 / K-5 / Cl- 98 / HCO 3 - 15 / BUN- 38 / Cr- 1.7 </li></ul><ul><li>CK- 42, 346 </li></ul>
  23. 23. Sample Problem #3 <ul><li>Anion Gap = 135 - (98 + 15) = 22 </li></ul><ul><li> anion gap metabolic acidosis </li></ul><ul><li>Winters Formula = 1.5 (15) + 8  2 </li></ul><ul><li>= 30  2 </li></ul><ul><li>  compensated </li></ul><ul><li>Delta Gap = 22 - 10 = 12 </li></ul><ul><li>12 + 15 = 27 </li></ul><ul><li>  mild metabolic alkalosis </li></ul>
  24. 24. Sample Problem #4 <ul><li>1 month old male presents with projectile emesis x 2 days. </li></ul><ul><li>ABG - 7.49 / 40 / 98 / 30 </li></ul><ul><li>Na- 140 / K- 2.9 / Cl- 92 / HCO 3 - 32 </li></ul>
  25. 25. Sample Problem #4 <ul><li>Metabolic Alkalosis, hypochloremic </li></ul><ul><li>Winters Formula = 1.5 (30) + 8  2 </li></ul><ul><li>= 53  2 </li></ul><ul><li>  uncompensated </li></ul><ul><li> </li></ul>

×