SlideShare a Scribd company logo
1 of 8
Download to read offline
1Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
www.nature.com/scientificreports
Prenatal exposure to recreational
drugs affects global motion
perception in preschool children
Arijit Chakraborty1
, Nicola S. Anstice1
, Robert J. Jacobs1
, Linda L. LaGasse2
,
Barry M. Lester2
, Trecia A. Wouldes3,*
& Benjamin Thompson1,4,*
Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is
currently unknown whether visual brain areas are affected. To address this question, we investigated
the effect of prenatal drug exposure on global motion perception, a behavioural measure of
processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable
to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty-
five 4.5-year-old children who had been exposed to different combinations of methamphetamine,
alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use
by the mothers was verified by meconium analysis. We found that global motion perception was
impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana.
Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity
and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did
not influence visual function. Our results demonstrate that prenatal drug exposure can influence a
behavioural measure of visual development, but that the effects are dependent on the specific drugs
used during pregnancy.
Prenatal exposure to recreational drugs is a growing problem1,2
. Research into the impact of prenatal drug
exposure has focused primarily on cognitive and motor development following maternal use of opioids
such as cocaine or methadone3–5
. More recently, the effects of prenatal exposure to amphetamine-type
stimulants such as methamphetamine have been investigated because of the high prevalence of users, par-
ticularly within Australasia6,7
. Such studies include the Infant Development, Environment and Lifestyle
(IDEAL) study which has reported impaired motor development in young children exposed prenatally
to methamphetamine6,8
.
The effect of prenatal drug exposure on visual development is less well understood; however current
evidence suggests that prenatal drug exposure does affect the visual system. A recent large-scale retro-
spective comparative case series found substantial increases in the rate of strabismus and nystagmus in
infants with prenatal drug exposure that persisted at 5 years of age9
. There is also recent evidence that
prenatal drug exposure can affect visual cortex function. McGlone et al. found that 6-month old infants
with prenatal exposure to methadone exhibited abnormal visual evoked potentials10
, suggesting disrup-
tion within the visual pathway. Abnormal visual cortex responses have also been reported in a small
group of children with prenatal exposure to amphetamine11
.
1
School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland,
Private Bag 92019, Auckland, 1142, New Zealand. 2
Brown Center for the Study of Children at Risk, Warren Alpert
Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA. 3
Department of Psychological
Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New
Zealand. 4
School of Optometry andVision Science, Faculty of Science, University ofWaterloo, 200 Columbia Street
West, Waterloo, Ontario, ON N2L, Canada. *
These authors contributed equally to this work. Correspondence and
requests for materials should be addressed to B.T. (email: ben.thompson@uwaterloo.ca)
received: 03 July 2015
accepted: 22 October 2015
Published: 19 November 2015
OPEN
www.nature.com/scientificreports/
2Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
Participants in the IDEAL study were recruited to two groups on the basis of prenatal methampheta-
mine exposure (methamphetamine exposed vs. controls). Many mothers of methamphetamine-exposed
children were poly-drug users. The control group included children who were also exposed to a range
of drug combinations with the exception of methamphetamine as well as non-drug exposed children.
Prenatal drug exposure was verified objectively by meconium analysis. Therefore, this group of children
provided a unique opportunity to study the effects on visual development of prenatal exposure to a range
of substances.
The aim of this study was to investigate higher-level processing within the extrastriate visual cortex
in 4.5-year-old children enrolled in the New Zealand arm of the IDEAL study. Specifically, we assessed
the effect of prenatal drug exposure on a psychophysical measure of global motion perception, which is
dependant on visual areas such as V5 in the dorsal visual stream. This particular stream connects the
magnocellular layers of the lateral geniculate nucleus, the primary visual cortex and extrastriate areas
such as V3a and V5 within the occipito-parietal cortex12,13
. Visual areas V3a and V5 process global
motion by integrating local motion signals from the primary visual cortex14
.
Global motion perception was chosen as a measure of extrastriate visual function because it has been
suggested that dorsal stream function is particularly vulnerable to the effects of abnormal neurodevel-
opment; the dorsal stream vulnerability hypothesis15,16
. For example, impaired global motion perception
has been found in children born with developmental risk factors such as William’s syndrome, dyslexia,
autistic spectrum disorder and foetal alcohol syndrome17–22
. Poor global motion perception has also been
associated with deficits in visuomotor tasks involving reaching, grasping, and locomotor action17,23–25
.
Performance of such tasks is mediated by regions of the posterior parietal lobe that receive input from the
dorsal visual stream26,27
. In this context, our choice of global motion perception was further motivated by
the delayed motor development at birth28
and between 1 and 3 years of age8
that has been found within
the IDEAL study cohort.
Methods
The Auckland District Health Board ethics committee, the Waitematā District Health Board ethics com-
mittee, and the New Zealand Ministry of Health Northern Regional Ethics Committee approved the
study. All caregivers provided full informed consent and the study conformed to the principles of the
Declaration of Helsinki.
The design of the New Zealand IDEAL study is described in detail by Wouldes et al.6,8
. Mothers were
referred to the study by independent or hospital based midwives and prenatal drug use was assessed using
the Substance Use Inventory29
. In addition, meconium was collected soon after birth and was sent to
the United States Drug Testing Laboratory, Des Plaines, Illinois, USA for drug metabolite analysis using
gas chromatography – mass spectrometry in order to objectively determine prenatal drug exposure6
.
All methamphetamine and non-methamphetamine exposed children were matched for socio-economic
status, maternal education level (fifth form certificate achieved or not achieved), birth weight (grouped
as < 1500 g, 1500–2500 g and > 2500 g) and gestational age.
The Wechsler Preschool and Primary Scale of Intelligence (WPPSI)-III30
was administered by expe-
rienced assessors as part of a comprehensive neurodevelopmental assessment conducted at 4.5 years of
age for the IDEAL study cohort. The verbal IQ score from the WPPSI-III was used within this study of
visual funtion to control for any effects of cognitive or verbal development on performance of the global
motion perception task. The Verbal IQ score was chosen as it does not include any measures that rely
directly on visual function.
The IDEAL study cohort were assessed at 4.5 years of age because children start school after 5 years of
age in New Zealand and therefore data collected at an older age may have been influenced by differential
educational experiences. Measures of visual function were included in the 4.5 year assessment protocol
because 4.5-year-old children are capable of completing behavioural measures of visual acuity and global
motion perception.
Measurement of global motion perception.  Global motion perception was assessed using random
dot kinematograms (RDK) that consisted of 100 circular dots (dot diameter 0.24°, dot density 1.27 dot/
deg2
) presented within a circular aperture (10° diameter) at a viewing distance of 60 cm. Dot speed was
6°/second and the presentation time was 1 second. These parameters were chosen on the basis of previous
studies that have investigated global motion perception in children18,31,32
. Dots had a limited lifetime,
whereby each dot had a 5% chance of disappearing on each frame and being redrawn in a random loca-
tion. Dots were presented at maximum brightness (137 cd/m2
) on a grey background (45 cd/m2
) and dot
contrast was 0.51 as defined using the Michelson equation: (Ldots −  Lbackground)/(Ldots +  Lbackground). Signal
dots moved coherently upwards or downwards and noise dots moved in random directions. Dots that
reached the edge of the stimulus aperture were wrapped around to maintain an even dot density. Stimuli
were presented on a 15” Dell cathode ray tube (CRT) monitor (model: E771p) with a 120 Hz refresh rate
and 1024 ×  768 resolution. Stimuli were generated using MATLAB 2013a and psychtoolbox-333
. Prior
to threshold measurement, children were familiarized with the stimuli and task. First, the children were
presented with 100% coherent (all signal dots), high contrast RDKs moving up or down. After 4 succes-
sive correct responses at the 100% coherence level, the experimenter varied manually the direction and
coherence of the RDK to demonstrate the appearance of RDKs with different coherence levels. Once the
www.nature.com/scientificreports/
3Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
child was familiar with the stimulus and task, a 2-down-1-up adaptive staircase test was used to vary the
coherence of the RDK to measure a motion coherence threshold34
. Children were asked to judge whether
the dots were moving mostly up or mostly down and could respond verbally and/or by pointing to the
top or bottom of the screen. The staircase began at 100% coherence and had a proportional step size
of 50% until the first reversal and 25% thereafter. The staircase was terminated after 5 reversals and the
threshold was calculated by averaging the last 4 reversals.
A comprehensive vision screening was also conducted to rule out the influence of ocular disease,
significant refractive error or other visual deficits on global motion perception. This screening consisted
of measuring habitual visual acuity using the crowded Keeler logMAR chart, stereoacuity with the VAO
fly stereotest, ocular motility using a cover test, a broad H-test and a 20-prism-diopter base out test.
Ocular health was also assessed using the red reflex test, external inspection and pupillary evaluation.
Statistical analysis.  To understand the effect of individual drugs on global motion perception, a
univariate general linear model was constructed with fixed factors of drug exposure, sex and ethnic-
ity and covariates of verbal IQ, stereoacuity and better eye habitual visual acuity. The fixed factor of
drug exposure coded exposure to each of the following drugs as yes or no; nicotine, alcohol, marijuana
and methamphetamine. Note that exposure to opiates was an exclusion criterion for the IDEAL study.
Significant main effects and interactions were investigated using post-hoc paired sample t-tests.
As a secondary analysis, we assessed the relationship between the estimated extent of drug exposure
and global motion perception using multiple linear regression. This analysis was conducted only for mar-
ijuana and alcohol use, because only these two drugs had significant effects on global motion perception
in the primary analysis. Furthermore, this analysis was conducted only for children who were exposed
to marijuana in the absence of alcohol, or vice versa, as the effects of marijuana and alcohol were found
to interact in the primary analysis.
Drug exposure was estimated from the Substance Use Inventory based on the subset of questions
that addressed the frequency (how many times marijuana or alcohol was used per week) and amount
(amount of marijuana or alcohol that was consumed on each occasion) of drug use. The frequency of
use was categorized as < 1 day per week, 1–4 days per week, or 5–7 days per week. For marijuana, the
amount of drug was categorized as light (< 1 joint per occasion), moderate (1–2 joints per occasion), or
heavy (> 2 joints per occasion). Because joints can be shared, these responses were modified to reflect
the consumption of whole joints based on additional questionnaire data relating to joint sharing. For
alcohol, the amount of drug was categorized as light (< 2 drink per occasion), moderate (2–5 drinks
per occasion), or heavy (> 5 drinks per occasion). Within the Substance Use Inventory, these questions
were completed separately for each trimester of pregnancy. A single estimate of frequency and a single
estimate of amount of drug use were calculated for each participant from the responses for each tri-
mester. To achieve this, we ranked the frequency of drug use in each of the trimesters (1 for < 1 day a
week, 2 for 1–4 days a week, and 3 for 5–7 days a week) and then took the median of the ranks across
all trimesters. Similarly, the amount of drug (marijuana or alcohol) use was also ranked for each of the
trimesters (1 for light users, 2 for moderate users and 3 for heavy users), and the median of the ranks
across all trimesters was used for the analysis. These categories were dummy coded (no =  0, yes =  1) for
multiple linear regression analyses. The multiple regression model controlled for other drug use (yes/no
for methamphetamine and nicotine), sex, ethnicity, stereoacuity, visual acuity, and verbal IQ.
Results
One hundred and seventy 4.5-year-old (54 ±  2 months) children were recruited from the New Zealand
arm of IDEAL study. One hundred and sixty-five children (93 male) successfully completed a psycho-
physical measure of global motion perception and a comprehensive vision screening including habitual
visual acuity, stereoacuity, ocular motility assessment and external eye examination. Demographically the
cohort was 52.5% European, 36.5% Māori and 11% other. The children had been exposed to a range of
different drugs: 75.2% to nicotine, 56.4% to alcohol, 44.2% to methamphetamine and 40% to marijuana.
The majority of children (81.3%) had been exposed to multiple drugs. Twenty-five children (15%) had
no drug exposure and provided a non-drug exposed comparison group.
Only alcohol and marijuana exposure had independent effects on global motion perception after con-
trolling for the effects of multiple drug exposure, verbal IQ, ethnicity, habitual visual acuity, stereoacuity,
and sex. Children who were exposed prenatally to alcohol had elevated (worse) motion coherence thresh-
olds (Fig. 1A) whereby global motion perception was significantly poorer (t163 =  − 2.26, p =  0.002) than
that of children not exposed to alcohol (alcohol exposed, n =  95: 59 ±  21% motion coherence threshold
vs alcohol non-exposed, n =  70: 50 ±  23%). Unexpectedly, children exposed to marijuana had signifi-
cantly lower (better) motion coherence thresholds (Fig. 1B) (t163 =  3.52, p =  0.001) than those of chil-
dren not exposed to marijuana [marijuana exposed, n =  67: 46 ±  20% vs marijuana non-exposed, n =  98:
63 ±  25%]. A significant interaction between the effects of alcohol exposure and marijuana exposure on
motion coherence thresholds was also present (Fig. 1C, F1,114 =  7.7, p =  0.006), whereby exposure to mar-
ijuana in the absence of alcohol was associated with improved global motion perception (mean motion
coherence threshold =  34 ±  11%, n =  20), which was significantly lower (better) (t41 =  4.42, p <  0.001)
than that of children who had not experienced prenatal drug exposure (mean motion coherence thresh-
old =  58 ±  23%, n =  25). However global motion perception for children exposed to both marijuana and
www.nature.com/scientificreports/
4Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
alcohol (mean motion coherence threshold =  53 ±  24%, n =  48) was no different (t70 =  − 0.28, p =  0.39)
from that of children who had no drug exposure (mean motion coherence threshold =  58 ±  23%, n =  25).
No other significant main effects or interactions between drugs were found for global motion percep-
tion. Also, visual acuity (measured with habitual refractive correction if worn), stereoacuity, and verbal
IQ (measured with Wechsler Preschool and Primary Scale of Intelligence-III) were unaffected by drug
exposure in this group of children.
Multiple linear regression conducted on the subset of children (n =  20) who were exposed to mar-
ijuana, but not to alcohol, revealed that both the frequency of maternal marijuana use (β  =  − 0.90;
F3,16 =  28.19, p <  0.001; adjusted R2
 =  0.75) and amount of joints consumed per occasion (β  =  − 0.89;
F3,16 =  33.26, p <  0.001; adjusted R2
 =  0.78) had a negative linear association with motion coherence
threshold. More frequent maternal use of marijuana (Fig. 2a) during pregnancy and more joints smoked
per occasion (Fig. 2b) were associated with lower motion coherence thresholds, indicating better global
motion perception. The opposite of this was true for children (n =  46) exposed to alcohol, but not to
marijuana, whereby both frequency of maternal alcohol use (β  =  0.62; F3,42 =  10.81, p <  0.001; adjusted
R2
 =  0.39) and amount of alcohol consumed per occasion (β  =  0.67; F3,42 =  12.06, p <  0.001; adjusted
R2
 =  0.42) had a positive linear association with motion coherence threshold. More frequent maternal
use of alcohol (Fig. 2a) during pregnancy and a greater number of alcoholic drinks per occasion (Fig. 2b)
were associated with higher motion coherence thresholds, indicating poorer global motion perception.
Discussion
Our results indicate that 1) global motion perception, a behavioural measure of extrastriate visual
function, is susceptible to the effects of prenatal drug exposure, and 2) interaction effects occur when
children are exposed to multiple drugs. Specifically, we found that alcohol exposure impaired, and mar-
ijuana exposure improved, global motion perception. These effects were dependant on the frequency
and amount of prenatal marijuana or alcohol exposure. Furthermore, these effects appeared to cancel
one another whereby prenatal exposure to both drugs resulted in no effect on global motion perception.
Our finding that prenatal alcohol exposure was associated with impaired global motion perception
is consistent with previous reports documenting detrimental effects of alcohol exposure on neurodevel-
opment35
and ocular development36,37
. However, the majority of prior studies have focused on children
Figure 1.  The effect of prenatal exposure to alcohol, marijuana and their combination on motion
coherence thresholds, a measure of global motion perception. (a) Prenatal alcohol exposure (n =  95)
impaired global motion perception (b) Prenatal marijuana exposure (n =  67) improved global motion
perception (c) Exposure to marijuana in the absence of alcohol (n =  20) was associated with a substantial
improvement in global motion perception that was significantly better (p <  0.001) than children with no
history of drug exposure (dotted line, n =  25). Error bars and the shaded area show standard error of the
mean.
www.nature.com/scientificreports/
5Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
with foetal alcohol syndrome. In contrast, none of the children in this study had been diagnosed with
foetal alcohol syndrome. This suggests that prenatal exposure to levels of alcohol that are not sufficient to
induce foetal alcohol syndrome can still impair the cortical processing of visual information as assessed
using a behavioural measure of global motion perception. Furthermore, this deficit would not be evident
from the results of a vision screening, as clinical measures of visual perception such as habitual visual
acuity and stereoacuity were unaffected in our group of children. However, clinical tests of stereopsis
such as the VAO Fly Stereotest used in this study are unlikely to be sensitive enough to detect small
differences in stereoacuity.
The finding that prenatal marijuana exposure influenced global motion perception was consistent
with the idea that extrastriate visual cortex development is effected by maternal drug use. However
the direction and size of the effect was unexpected; the children exposed to marijuana in the absence
of alcohol were almost 50% better at the global motion task than children with no drug exposure. It is
important to note that although prenatal marijuana exposure has not been studied widely, detrimen-
tal effects have been reported for motor and cognitive development38
. Therefore our results cannot be
extrapolated beyond global motion perception or interpreted as marijuana having beneficial effects on
foetal development. Furthermore, superior performance on a single behavioural task does not necessarily
indicate supernormal neurodevelopment. For example, children with autism have superior performance
on a mirror symmetric global pattern task compared to controls39
; however their motor control is poorer
than non-autistic individuals40–42
.
One possible explanation for the improved global motion perception we observed in marijuana-exposed
children relates to the potential neurochemical effects of this drug on the developing visual system.
Endocannabinoid receptors are present throughout the visual pathway of non-human primates and have
particularly high expression within dorsal stream brain areas such as the middle temporal area (MT;
the primate equivalent of human V5) and the middle superior temporal area (MST)43
. Both MT/V5
and MST are motion sensitive areas within the extrastriate visual cortex of humans and non-human
primates44,45
. Although the role of endocannabinoid receptors in dorsal stream function is unknown,
there is evidence that cannabinoids can enhance the function of specific neural pathways. For example,
cannabinoids improve movement and locomotion of rats in a dose-dependent manner46
. Therefore, it is
possible that prenatal marijuana exposure acts upon endocannabinoid receptors in MT/MST in a way
that improves global motion perception in human infants. It has also been found that cannabinoids facil-
itate neurogenesis by acting as anti-oxidants and regulating mitochondrial activity in preclinical models
of neurodegenerative disorders47
. These effects may also occur within the extrastriate visual cortex.
Previous studies have reported that prenatal exposure to heavy marijuana use impairs performance
on a range of standardized neuropsychological tests of attention, memory, and executive function that
involve a visual component48–53
. These tests typically require the encoding, memorization, and recog-
nition of visual patterns and objects. Therefore, they may involve processing within the ventral visual
stream that includes regions of extrastriate visual cortex specialized for object recognition26,27
. In com-
bination with our results, this raises the interesting possibility that prenatal marijuana exposure may
Figure 2.  The relationship between motion coherence thresholds and the (a) frequency and (b) amount
of maternal marijuana or alcohol use. The red and blue lines indicate maternal marijuana and alcohol use,
respectively. Data points in panel (a) indicate mean motion coherence thresholds for children who were
prenatally exposed to marijuana or alcohol < 1 day/week (marijuana n =  6, alcohol n =  10), 1–4 days/week
(marijuana n =  5, alcohol n =  14), or 5–7 days/week (marijuana n =  9, alcohol n =  22). Data points in panel
(b) indicate mean motion coherence thresholds for children whose marijuana or alcohol exposure on each
occasion was light (marijuana, < 1 joint, n =  6; alcohol, < 2 drinks, n =  19), moderate (marijuana, 1–2 joints,
n =  7; alcohol, 2–5 drinks, n =  9), or heavy (marijuana, > 2 joints, n =  7; alcohol, > 5 drinks, n =  18). Drug
use data are maternal self-report; see methods for further details. The error bars indicate standard error of
the mean. Other drug use (yes/no for methamphetamine and nicotine), sex, ethnicity, stereoacuity, visual
acuity, and verbal IQ were controlled for in the multiple regression model.
www.nature.com/scientificreports/
6Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
improve dorsal stream function but impair ventral stream function. Alternatively, the detrimental effects
of marijuana on visual processing reported in previous studies may reflect impairments at the level of
visual attention, visual memory, or response inhibition rather than visual perception53
.
The antagonistic effects we report for marijuana and alcohol exposure on motion processing highlight
the importance of considering poly-drug interactions when investigating the consequences of prenatal
drug exposure. Marijuana neutralizes the effect of nicotine in an animal model of addiction54
; however
interactions between drugs administered prenatally have not been explored comprehensively in animal
models. If antagonistic drug effects on foetal and infant neurodevelopment can be confirmed, a pathway
for the development of interventions that minimize the harmful effects of prenatal drug exposure may
be opened.
The absence of any effect of prenatal nicotine exposure on global motion perception is consistent with
previous neuropsychological studies suggesting that nicotine impairs global cognitive function and audi-
tory processing rather than tasks that involve visual processing49,48
. However, deficits in visual attention
have been reported in children with prenatal nicotine exposure55
. Our data indicate that any deficits in
visual attention do not impact on habitual visual acuity, stereopsis, or global motion perception in chil-
dren with prenatal nicotine exposure. Similarly, prenatal exposure to methamphetamine did not affect
habitual visual acuity, stereopsis, or global motion perception in our study cohort. No previous prospec-
tive studies have investigated the effect of methamphetamine on visual development in humans, although
there is evidence for ocular and optic nerve abnormalities in rats parentally exposed to methampheta-
mine56,57
. No children in our study exhibited visual deficits that would suggest serious ocular or optic
nerve pathology; however retinal structure was not specifically investigated as part of our study protocol.
The average motion coherence thresholds we report for non-drug exposed children are slightly
elevated (worse) compared to a number of previous studies of global motion perception in preschool
children58,59
. This was likely because of differing stimulus parameters and psychophysical techniques.
However, because children within the IDEAL study were matched for factors such as socioeconomic
status and maternal education, it is possible that low socioeconomic status and its related risk factors had
a negative impact on global motion development for the whole group. We also note that other studies
have reported higher (worse) global motion thresholds than ours for normally developing children of a
similar age60
.
Overall, our results demonstrate that the development of global motion perception is affected by pre-
natal exposure to alcohol or marijuana but not nicotine or methamphetamine. Our finding that global
motion perception was improved by marijuana exposure and that marijuana reduced the negative effect
of alcohol exposure may provide a foundation for further studies investigating new ways to prevent or
ameliorate the negative developmental effects of prenatal drug exposure.
References
1.	 Wouldes, T., Lagasse, L., Sheridan, J. & Lester, B. Maternal methamphetamine use during pregnancy and child outcome : what
do we know? Prenatal methamphetamine exposure and child development. N. Z. Med. J. 117, 1–9 (2004).
2.	 Kuczkowski, K. M. The effects of drug abuse on pregnancy. Curr. Opin. Obstet. Gynecol. 19, 578–585 (2007).
3.	 Miller-Loncar, C. et al. Predictors of motor development in children prenatally exposed to cocaine. Neurotoxicol. Teratol. 27,
213–220 (2005).
4.	 Minnes, S. et al. The effects of prenatal cocaine exposure on problem behavior in children 4–10 years. Neurotoxicol. Teratol. 32,
443–51 (2010).
5.	 Nulman, I. et al. Neurodevelopment of adopted children exposed in utero to cocaine: the Toronto Adoption Study. Clin. Invest.
Med. 24, 129–137 (2001).
6.	 Wouldes, T. A. et al. Co-morbidity of substance use disorder and psychopathology in women who use methamphetamine during
pregnancy in the US and New Zealand. Drug Alcohol Depend. 127, 101–107 (2013).
7.	 Abar, B. et al. Cross-national Comparison of Prenatal Methamphetamine Exposure on Infant and Early Child Physical Growth:
A Natural Experiment. Prev. Sci. 1–10 doi: 10.1007/s11121-013-0431-5 (2013).
8.	 Wouldes, T. A. et al. Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years.
Neurotoxicol. Teratol. 42, 77–84 (2014).
9.	 Cornish, S. K., Hrabovsky, M., Scott, N. W., Myerscough, E. & Reddy, A. R. The short- and long-term effects on the visual system
of children following exposure to maternal substance misuse in pregnancy. Am. J. Ophthalmol. 156, 190–4 (2013).
10.	 McGlone, L. et al. Visual outcome in infants born to drug-misusing mothers prescribed methadone in pregnancy. Br. J.
Ophthalmol. 98, 238–245 (2014).
11.	 Hansen, R. L., Struthers, J. M. & Gospe, S. M. Visual evoked potentials and visual processing in stimulant drug-exposed infants.
Dev. Med. Child Neurol. 35, 798–805 (1993).
12.	 De Haan, E. H. F. & Cowey, A. On the usefulness of ‘what’ and ‘where’ pathways in vision. Trends Cogn. Sci. 15, 460–466 (2011).
13.	 Grinter, E. J., Maybery, M. T. & Badcock, D. R. Vision in developmental disorders: is there a dorsal stream deficit? Brain Res.
Bull. 82, 147–160 (2010).
14.	 Andersen, R. A. Neural mechanisms of visual motion perception in primates. Neuron 18, 865–872 (1997).
15.	 Braddick, O., Atkinson, J. & Wattam-Bell, J. Normal and anomalous development of visual motion processing: motion coherence
and ‘dorsal-stream vulnerability’. Neuropsychologia 41, 1769–1784 (2003).
16.	 Spencer, J. et al. Motion processing in autism: evidence for a dorsal stream deficiency. Neuroreport 11, 2765–2767 (2000).
17.	 Atkinson, J. et al. A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport 8, 1919–1922 (1997).
18.	 Gunn, A. et al. Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport 13, 843–847 (2002).
19.	 Manning, C., Charman, T. & Pellicano, E. Processing Slow and Fast Motion in Children With Autism Spectrum Conditions.
Autism Res. 6, 531–541 (2013).
20.	 Raymond, J. E. & Sorensen, R. E. Visual Motion Perception in Children with Dyslexia : Normal Detection but Abnormal
Integration. Vis. cogn. 5, 389–404 (1998).
21.	 Manning, C., Charman, T. & Pellicano, E. Processing Slow and Fast Motion in Children With Autism Spectrum Conditions.
Autism Res. 531–541 doi: 10.1002/aur.1309 (2013).
www.nature.com/scientificreports/
7Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
22.	 Gummel, K., Ygge, J., Benassi, M. & Bolzani, R. Motion perception in children with foetal alcohol syndrome. Acta Paediatr. 101,
e324–332 (2012).
23.	 Almeida, J., Mahon Z., B. & Alfonso, C. The role of the dorsal visual processing stream in tool identification. Pyschol Sci 21,
772–778 (2010).
24.	 Atkinson, J. & Braddick, O. Visual and visuocognitive development in children born very prematurely. Prog. Brain Res. 164,
123–149 (2007).
25.	 Shirai, N. & Imura, T. Looking Away Before Moving Forward: Changes in Optic-Flow Perception Precede Locomotor
Development. Psychol. Sci. 25, 485–493 (2014).
26.	 Goodale, M. A. Separate visual systems for perception and action: a framework for understanding cortical visual impairment.
Dev. Med. Child Neurol. 55, 9–12 (2013).
27.	 Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
28.	 LaGasse, L. L. et al. Prenatal methamphetamine exposure and neonatal neurobehavioral outcome in the USA and New Zealand.
Neurotoxicol. Teratol. 33, 166–75 (2011).
29.	 Della Grotta, S. et al. Patterns of methamphetamine use during pregnancy: Results from the infant development, environment,
and lifestyle (IDEAL) study. Matern. Child Health J. 14, 519–527 (2010).
30.	 Welscher, D. Wechsler preschool and primary scale of intelligence. (Pearson, 2002).
31.	 Narasimhan, S. & Giaschi, D. The effect of dot speed and density on the development of global motion perception. Vision Res.
62, 102–107 (2012).
32.	 Lewis, T. L. & Maurer, D. Multiple sensitive periods in human visual development: Evidence from visually deprived children.
Dev. Psychobiol. 46, 163–183 (2005).
33.	 Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442
(1997).
34.	 Newsome, T. & Pare, E. B. A Selective Impairment of Motion Perception the Middle Temporal Visual Area (MT) Following
Lesions of. J. Neurosci. 8, 2201–2211 (1988).
35.	 Landgren, M., Svensson, L., Strömland, K. & Andersson Grönlund, M. Prenatal alcohol exposure and neurodevelopmental
disorders in children adopted from eastern Europe. Pediatrics 125, e1178–e1185 (2010).
36.	 Strömland, K. Visual impairment and ocular abnormalities in children with fetal alcohol syndrome. Addict. Biol. 9, 153–157
(2004).
37.	 Strömland, K. & Pinazo-Durán, M. D. Ophthalmic involvement in the fetal alcohol syndrome: clinical and animal model studies.
Alcohol Alcohol 37, 2–8 (2002).
38.	 Huizink, A. C. & Mulder, E. J. H. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and
cognitive functioning in human offspring. Neurosci. Biobehav. Rev. 30, 24–41 (2006).
39.	 Perreault, A., Gurnsey, R., Dawson, M., Mottron, L. & Bertone, A. Increased sensitivity to mirror symmetry in autism. PLoS One
6, 4–8 (2011).
40.	 Mostofsky, S. H. et al. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 132,
2413–2425 (2009).
41.	 Nayate, A., Bradshaw, J. L. & Rinehart, N. J. Autism and Asperger’s disorder: Are they movement disorders involving the
cerebellum and/or basal ganglia? Brain Res. Bull. 67, 327–334 (2005).
42.	 Jansiewicz, E. M. et al. Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls.
J. Autism Dev. Disord. 36, 613–621 (2006).
43.	 Javadi, P., Bouskila, J., Bouchard, J.-F. & Ptito, M. The endocannabinoid system within the dorsal lateral geniculate nucleus of the
vervet monkey. Neuroscience doi: 10.1016/j.neuroscience.2014.12.029 (2015).
44.	 Rudolph, K. & Pasternak, T. Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST
in the macaque monkey. Cereb. Cortex 9, 90–100 (1999).
45.	 Braddick, O. J. et al. Brain areas sensitive to coherent visual motion. Perception 30, 61–72 (2001).
46.	 Sañudo-Peña, M. C., Tsou, K. & Walker, J. M. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci. 65,
703–713 (1999).
47.	 Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
367, 3326–3341 (2012).
48.	 Fried, P. A. & Watkinson, B. Visuoperceptual functioning differs in 9- to 12-year olds prenatally exposed to cigarettes and
marihuana. Neurotoxicol. Teratol. 22, 11–20 (2000).
49.	 Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to
cigarettes and marihuana. Neurotoxicol. Teratol. 25, 427–436 (2003).
50.	 Day, N. L. et al. Effect of prenatal marijuana exposure on the cognitive development of offspring at age three. Neurotoxicol.
Teratol. 16, 169–175 (1994).
51.	 English, D. R., Hulse, G. K., Milne, E., Holman, C. D. & Bower, C. I. Maternal cannabis use and birth weight: a meta-analysis.
Addiction 92, 1553–1560 (1997).
52.	 Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning 9-to 12-year olds prenatally exposed to
cigarettes and marihuana. Neurotoxicol. Teratol. 20, 293–306 (1998).
53.	 Smith, A. M., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of prenatal marijuana on visuospatial working memory: an fMRI
study in young adults. Neurotoxicol. Teratol. 28, 286–295 (2006).
54.	 Han, J., Liu, Z., Ren, W. & Zhang, X. Counteractive effects of cannabinoid and nicotine-addictive behavior. Neuroreport 22,
181–184 (2011).
55.	 Jacobsen, L. K., Slotkin, T. A., Mencl, W. E., Frost, S. J. & Pugh, K. R. Gender-specific effects of prenatal and adolescent exposure
to tobacco smoke on auditory and visual attention. Neuropsychopharmacology 32, 2453–2464 (2007).
56.	 Melo, P., Rodrigues, L. G., Silva, M. C. & Tavares, M. A. Effects of prenatal exposure to methamphetamine on the development
of the rat retina. Ann. N. Y. Acad. Sci. 1074, 590–603 (2006).
57.	 Melo, P., Moreno, V. Z., Vázquez, S. P., Pinazo-Durán, M. D. & Tavares, M. A. Myelination changes in the rat optic nerve after
prenatal exposure to methamphetamine. Brain Res. 1106, 21–29 (2006).
58.	 Parrish, E. E., Giaschi, D. E., Boden, C. & Dougherty, R. The maturation of form and motion perception in school age children.
Vision Res. 45, 827–837 (2005).
59.	 MacKay, T. L. et al. Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia 43,
1738–1748 (2005).
60.	 Hadad, B. S., Maurer, D. & Lewis, T. L. Long trajectory for the development of sensitivity to global and biological motion. Dev.
Sci. 14, 1330–1339 (2011).
www.nature.com/scientificreports/
8Scientific Reports | 5:16921 | DOI: 10.1038/srep16921
Acknowledgements
This research was supported by the National Institutes on Drug Abuse grants 2RO1DA014948 and
RO1DA021757 and the Auckland Medical Research Foundation. We acknowledge the NZ IDEAL study
team: Jenny Rogers, Josephine Cliffe, Suzanne Cumming, and Heather Stewart.
Author Contributions
A.C. and B.T. wrote the manuscript. A.C., B.T., N.S.A., R.J.J. and T.A.W. designed the study. A.C., B.T.,
N.S.A., R.J.J., T.A.W., L.L.L. and B.M.L. reviewed the manuscript.
Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chakraborty, A. et al. Prenatal exposure to recreational drugs affects global
motion perception in preschool children. Sci. Rep. 5, 16921; doi: 10.1038/srep16921 (2015).
This work is licensed under a Creative Commons Attribution 4.0 International License. The
images or other third party material in this article are included in the article’s Creative Com-
mons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

More Related Content

Viewers also liked

CFUW resolution 11 North Bay, Ontario. 2016
CFUW resolution 11  North Bay, Ontario. 2016CFUW resolution 11  North Bay, Ontario. 2016
CFUW resolution 11 North Bay, Ontario. 2016BARRY STANLEY 2 fasd
 
Lancet.docx comorbidity of fetal alcohol spectrum disorder a systematic revi...
Lancet.docx comorbidity of fetal alcohol spectrum disorder  a systematic revi...Lancet.docx comorbidity of fetal alcohol spectrum disorder  a systematic revi...
Lancet.docx comorbidity of fetal alcohol spectrum disorder a systematic revi...BARRY STANLEY 2 fasd
 
FASD and Mental Illness: Correlations.
FASD and Mental Illness: Correlations. FASD and Mental Illness: Correlations.
FASD and Mental Illness: Correlations. BARRY STANLEY 2 fasd
 
Incidence and Prevalence of FAS and ARND
Incidence and Prevalence of FAS and ARNDIncidence and Prevalence of FAS and ARND
Incidence and Prevalence of FAS and ARNDBARRY STANLEY 2 fasd
 
Disruption of histone methylation in developing sperm impairs offspring healt...
Disruption of histone methylation in developing sperm impairs offspring healt...Disruption of histone methylation in developing sperm impairs offspring healt...
Disruption of histone methylation in developing sperm impairs offspring healt...BARRY STANLEY 2 fasd
 
Comment on Infant sleep predicts attention regulation and behavior
Comment on Infant sleep predicts attention regulation and behaviorComment on Infant sleep predicts attention regulation and behavior
Comment on Infant sleep predicts attention regulation and behaviorBARRY STANLEY 2 fasd
 
Biomarkers outperform symptoms in parsing psychosis subgroups
Biomarkers outperform symptoms in parsing psychosis subgroupsBiomarkers outperform symptoms in parsing psychosis subgroups
Biomarkers outperform symptoms in parsing psychosis subgroupsBARRY STANLEY 2 fasd
 
jama letter- Rethinking Mental Illness
jama letter- Rethinking Mental Illnessjama letter- Rethinking Mental Illness
jama letter- Rethinking Mental IllnessBARRY STANLEY 2 fasd
 
Abstract of Vienna presentation. 2015.
Abstract of Vienna presentation. 2015.Abstract of Vienna presentation. 2015.
Abstract of Vienna presentation. 2015.BARRY STANLEY 2 fasd
 
Slides and references, Vienna presentation. 2015
Slides and references, Vienna presentation. 2015Slides and references, Vienna presentation. 2015
Slides and references, Vienna presentation. 2015BARRY STANLEY 2 fasd
 
Sadeh 2015 infant sleep pedicts attnetion regulation
Sadeh 2015   infant sleep pedicts attnetion regulationSadeh 2015   infant sleep pedicts attnetion regulation
Sadeh 2015 infant sleep pedicts attnetion regulationBARRY STANLEY 2 fasd
 
Breast Cancer and Prenatal Alcohol Exposure
Breast Cancer and Prenatal Alcohol ExposureBreast Cancer and Prenatal Alcohol Exposure
Breast Cancer and Prenatal Alcohol ExposureBARRY STANLEY 2 fasd
 
The Problem with Evidence-Based Policies
The Problem with Evidence-Based PoliciesThe Problem with Evidence-Based Policies
The Problem with Evidence-Based PoliciesBARRY STANLEY 2 fasd
 
Submission to the Ontario Select Committee on developmental services.
Submission to the Ontario Select Committee on developmental services. Submission to the Ontario Select Committee on developmental services.
Submission to the Ontario Select Committee on developmental services. BARRY STANLEY 2 fasd
 
The nomenclature of prenatal alcohol exposure
The nomenclature of prenatal alcohol  exposureThe nomenclature of prenatal alcohol  exposure
The nomenclature of prenatal alcohol exposureBARRY STANLEY 2 fasd
 

Viewers also liked (20)

CFUW resolution 11 North Bay, Ontario. 2016
CFUW resolution 11  North Bay, Ontario. 2016CFUW resolution 11  North Bay, Ontario. 2016
CFUW resolution 11 North Bay, Ontario. 2016
 
Fasd roundtable report
Fasd roundtable reportFasd roundtable report
Fasd roundtable report
 
Lancet.docx comorbidity of fetal alcohol spectrum disorder a systematic revi...
Lancet.docx comorbidity of fetal alcohol spectrum disorder  a systematic revi...Lancet.docx comorbidity of fetal alcohol spectrum disorder  a systematic revi...
Lancet.docx comorbidity of fetal alcohol spectrum disorder a systematic revi...
 
FASD and Mental Illness: Correlations.
FASD and Mental Illness: Correlations. FASD and Mental Illness: Correlations.
FASD and Mental Illness: Correlations.
 
Incidence and Prevalence of FAS and ARND
Incidence and Prevalence of FAS and ARNDIncidence and Prevalence of FAS and ARND
Incidence and Prevalence of FAS and ARND
 
Bill c 235
Bill c 235Bill c 235
Bill c 235
 
Disruption of histone methylation in developing sperm impairs offspring healt...
Disruption of histone methylation in developing sperm impairs offspring healt...Disruption of histone methylation in developing sperm impairs offspring healt...
Disruption of histone methylation in developing sperm impairs offspring healt...
 
Jody Crowe Vienna 2015
Jody Crowe  Vienna 2015Jody Crowe  Vienna 2015
Jody Crowe Vienna 2015
 
Comment on Infant sleep predicts attention regulation and behavior
Comment on Infant sleep predicts attention regulation and behaviorComment on Infant sleep predicts attention regulation and behavior
Comment on Infant sleep predicts attention regulation and behavior
 
Presentation. Vienna, 2015
Presentation. Vienna, 2015Presentation. Vienna, 2015
Presentation. Vienna, 2015
 
Biomarkers outperform symptoms in parsing psychosis subgroups
Biomarkers outperform symptoms in parsing psychosis subgroupsBiomarkers outperform symptoms in parsing psychosis subgroups
Biomarkers outperform symptoms in parsing psychosis subgroups
 
jama letter- Rethinking Mental Illness
jama letter- Rethinking Mental Illnessjama letter- Rethinking Mental Illness
jama letter- Rethinking Mental Illness
 
Abstract of Vienna presentation. 2015.
Abstract of Vienna presentation. 2015.Abstract of Vienna presentation. 2015.
Abstract of Vienna presentation. 2015.
 
Slides and references, Vienna presentation. 2015
Slides and references, Vienna presentation. 2015Slides and references, Vienna presentation. 2015
Slides and references, Vienna presentation. 2015
 
Sadeh 2015 infant sleep pedicts attnetion regulation
Sadeh 2015   infant sleep pedicts attnetion regulationSadeh 2015   infant sleep pedicts attnetion regulation
Sadeh 2015 infant sleep pedicts attnetion regulation
 
Breast Cancer and Prenatal Alcohol Exposure
Breast Cancer and Prenatal Alcohol ExposureBreast Cancer and Prenatal Alcohol Exposure
Breast Cancer and Prenatal Alcohol Exposure
 
The Problem with Evidence-Based Policies
The Problem with Evidence-Based PoliciesThe Problem with Evidence-Based Policies
The Problem with Evidence-Based Policies
 
Submission to the Ontario Select Committee on developmental services.
Submission to the Ontario Select Committee on developmental services. Submission to the Ontario Select Committee on developmental services.
Submission to the Ontario Select Committee on developmental services.
 
The nomenclature of prenatal alcohol exposure
The nomenclature of prenatal alcohol  exposureThe nomenclature of prenatal alcohol  exposure
The nomenclature of prenatal alcohol exposure
 
Reply from Prof. Skinner
Reply from Prof. SkinnerReply from Prof. Skinner
Reply from Prof. Skinner
 

Similar to Prenatal exposure to recreational drugs affects global motion perception in preschool children Arijit Chakraborty1, Nicola S. Anstice1, Robert J. Jacobs1, Linda L. LaGasse2, Barry M. Lester2, Trecia A. Wouldes3,* & Benjamin Thompson1,

Alcohol delays the emergence of the fetal elicited startle response, but only...
Alcohol delays the emergence of the fetal elicited startle response, but only...Alcohol delays the emergence of the fetal elicited startle response, but only...
Alcohol delays the emergence of the fetal elicited startle response, but only...BARRY STANLEY 2 fasd
 
Screening Tool for Developmental Disorders in Children
Screening Tool for Developmental Disorders in ChildrenScreening Tool for Developmental Disorders in Children
Screening Tool for Developmental Disorders in ChildrenApollo Hospitals
 
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...Colin MacKichan
 
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...Act addiction and evolutionary process, common aspects in pharmaco toxicologi...
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...M. Luisetto Pharm.D.Spec. Pharmacology
 
SIO 2022 Pediatric SSNHL.pptx.pdf
SIO 2022 Pediatric SSNHL.pptx.pdfSIO 2022 Pediatric SSNHL.pptx.pdf
SIO 2022 Pediatric SSNHL.pptx.pdfAndreaFrosolini
 
Intrauterine alcohol exposure and offspring mental health: A systematic review
Intrauterine alcohol exposure and offspring mental health: A systematic reviewIntrauterine alcohol exposure and offspring mental health: A systematic review
Intrauterine alcohol exposure and offspring mental health: A systematic reviewBARRY STANLEY 2 fasd
 
Randomized, Controlled Trial of an Intervention forToddlersW.docx
Randomized, Controlled Trial of an Intervention forToddlersW.docxRandomized, Controlled Trial of an Intervention forToddlersW.docx
Randomized, Controlled Trial of an Intervention forToddlersW.docxmakdul
 
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...joaquin_project
 
Attitudes Of The Autism Community To Early Autism Research
Attitudes Of The Autism Community To Early Autism ResearchAttitudes Of The Autism Community To Early Autism Research
Attitudes Of The Autism Community To Early Autism ResearchFaith Brown
 
Sacral Neuromodulation in Children with Neurogenic Bladder Dysfunction
Sacral Neuromodulation in Children with Neurogenic Bladder DysfunctionSacral Neuromodulation in Children with Neurogenic Bladder Dysfunction
Sacral Neuromodulation in Children with Neurogenic Bladder DysfunctionCrimsonpublisherssmoaj
 
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...BARRY STANLEY 2 fasd
 
Screening Children with Autism by Developing Smart Toy Cars
Screening Children with Autism by Developing Smart Toy CarsScreening Children with Autism by Developing Smart Toy Cars
Screening Children with Autism by Developing Smart Toy CarsIJRES Journal
 
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docx
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docxRai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docx
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docxmakdul
 
The effect of regular home visits on the development indices of low birth wei...
The effect of regular home visits on the development indices of low birth wei...The effect of regular home visits on the development indices of low birth wei...
The effect of regular home visits on the development indices of low birth wei...Journal of Research in Biology
 

Similar to Prenatal exposure to recreational drugs affects global motion perception in preschool children Arijit Chakraborty1, Nicola S. Anstice1, Robert J. Jacobs1, Linda L. LaGasse2, Barry M. Lester2, Trecia A. Wouldes3,* & Benjamin Thompson1, (20)

Alcohol delays the emergence of the fetal elicited startle response, but only...
Alcohol delays the emergence of the fetal elicited startle response, but only...Alcohol delays the emergence of the fetal elicited startle response, but only...
Alcohol delays the emergence of the fetal elicited startle response, but only...
 
Screening Tool for Developmental Disorders in Children
Screening Tool for Developmental Disorders in ChildrenScreening Tool for Developmental Disorders in Children
Screening Tool for Developmental Disorders in Children
 
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...
DOES METHYLPHENIDATE STIMULANT MEDICATION OR AMPHETAMINE STIMULANT MEDICATION...
 
science research journal.pdf
science research journal.pdfscience research journal.pdf
science research journal.pdf
 
science research journal.pdf
science research journal.pdfscience research journal.pdf
science research journal.pdf
 
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...Act addiction and evolutionary process, common aspects in pharmaco toxicologi...
Act addiction and evolutionary process, common aspects in pharmaco toxicologi...
 
299-305 S. Nili
299-305 S. Nili299-305 S. Nili
299-305 S. Nili
 
SIO 2022 Pediatric SSNHL.pptx.pdf
SIO 2022 Pediatric SSNHL.pptx.pdfSIO 2022 Pediatric SSNHL.pptx.pdf
SIO 2022 Pediatric SSNHL.pptx.pdf
 
paediatrics
paediatricspaediatrics
paediatrics
 
Intrauterine alcohol exposure and offspring mental health: A systematic review
Intrauterine alcohol exposure and offspring mental health: A systematic reviewIntrauterine alcohol exposure and offspring mental health: A systematic review
Intrauterine alcohol exposure and offspring mental health: A systematic review
 
Randomized, Controlled Trial of an Intervention forToddlersW.docx
Randomized, Controlled Trial of an Intervention forToddlersW.docxRandomized, Controlled Trial of an Intervention forToddlersW.docx
Randomized, Controlled Trial of an Intervention forToddlersW.docx
 
2007-08best_abstract
2007-08best_abstract2007-08best_abstract
2007-08best_abstract
 
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...
Autism Spectrum Disorder and Particulate Matter Air Pollution before, during ...
 
Attitudes Of The Autism Community To Early Autism Research
Attitudes Of The Autism Community To Early Autism ResearchAttitudes Of The Autism Community To Early Autism Research
Attitudes Of The Autism Community To Early Autism Research
 
Sacral Neuromodulation in Children with Neurogenic Bladder Dysfunction
Sacral Neuromodulation in Children with Neurogenic Bladder DysfunctionSacral Neuromodulation in Children with Neurogenic Bladder Dysfunction
Sacral Neuromodulation in Children with Neurogenic Bladder Dysfunction
 
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...
Fetal Brain Function in Response to Maternal Alcohol Consumption: Early Evide...
 
Screening Children with Autism by Developing Smart Toy Cars
Screening Children with Autism by Developing Smart Toy CarsScreening Children with Autism by Developing Smart Toy Cars
Screening Children with Autism by Developing Smart Toy Cars
 
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docx
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docxRai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docx
Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnuss.docx
 
The effect of regular home visits on the development indices of low birth wei...
The effect of regular home visits on the development indices of low birth wei...The effect of regular home visits on the development indices of low birth wei...
The effect of regular home visits on the development indices of low birth wei...
 
McNeill_Thesis_2016
McNeill_Thesis_2016McNeill_Thesis_2016
McNeill_Thesis_2016
 

More from BARRY STANLEY 2 fasd

2 the mcmechan reservoir development
2 the mcmechan reservoir development2 the mcmechan reservoir development
2 the mcmechan reservoir developmentBARRY STANLEY 2 fasd
 
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...BARRY STANLEY 2 fasd
 
Aqua study updates | murdoch children's research institute
Aqua study updates | murdoch children's research instituteAqua study updates | murdoch children's research institute
Aqua study updates | murdoch children's research instituteBARRY STANLEY 2 fasd
 
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...BARRY STANLEY 2 fasd
 
Landmark legislation a victory for the fasd community
Landmark legislation  a victory for the fasd communityLandmark legislation  a victory for the fasd community
Landmark legislation a victory for the fasd communityBARRY STANLEY 2 fasd
 
Four year follow-up of a randomized controlled trial of choline for neurodeve...
Four year follow-up of a randomized controlled trial of choline for neurodeve...Four year follow-up of a randomized controlled trial of choline for neurodeve...
Four year follow-up of a randomized controlled trial of choline for neurodeve...BARRY STANLEY 2 fasd
 
The Resting State and its Default Mode: in those with FASD
The Resting State and its Default Mode: in those with FASDThe Resting State and its Default Mode: in those with FASD
The Resting State and its Default Mode: in those with FASDBARRY STANLEY 2 fasd
 
Australia and new zealand are showing the way to canada
Australia and new zealand are showing the way to canadaAustralia and new zealand are showing the way to canada
Australia and new zealand are showing the way to canadaBARRY STANLEY 2 fasd
 
Work requirements for individuals with fasd, in the time of covid 19
Work requirements for individuals with fasd, in the time of covid 19Work requirements for individuals with fasd, in the time of covid 19
Work requirements for individuals with fasd, in the time of covid 19BARRY STANLEY 2 fasd
 
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...BARRY STANLEY 2 fasd
 
New insight on maternal infections and neurodevelopmental disorders: mouse st...
New insight on maternal infections and neurodevelopmental disorders: mouse st...New insight on maternal infections and neurodevelopmental disorders: mouse st...
New insight on maternal infections and neurodevelopmental disorders: mouse st...BARRY STANLEY 2 fasd
 
Clinical course and risk factors for mortality of adult inpatients with covid...
Clinical course and risk factors for mortality of adult inpatients with covid...Clinical course and risk factors for mortality of adult inpatients with covid...
Clinical course and risk factors for mortality of adult inpatients with covid...BARRY STANLEY 2 fasd
 
Preconceptual alcohol and the need for a diagnostic classification of alcoho...
 Preconceptual alcohol and the need for a diagnostic classification of alcoho... Preconceptual alcohol and the need for a diagnostic classification of alcoho...
Preconceptual alcohol and the need for a diagnostic classification of alcoho...BARRY STANLEY 2 fasd
 
The importance and significance of the diagnosis the personal testimony of r...
The importance and significance of the diagnosis  the personal testimony of r...The importance and significance of the diagnosis  the personal testimony of r...
The importance and significance of the diagnosis the personal testimony of r...BARRY STANLEY 2 fasd
 

More from BARRY STANLEY 2 fasd (20)

Response to "Winter Formal"
Response to "Winter Formal"Response to "Winter Formal"
Response to "Winter Formal"
 
2 the mcmechan reservoir development
2 the mcmechan reservoir development2 the mcmechan reservoir development
2 the mcmechan reservoir development
 
Mansfield Mela.scholar.google.ca
 Mansfield Mela.scholar.google.ca  Mansfield Mela.scholar.google.ca
Mansfield Mela.scholar.google.ca
 
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...
The Nomenclature of the Consequences of Prenatal Alcohol Exposure: PAE, and t...
 
Aqua study updates | murdoch children's research institute
Aqua study updates | murdoch children's research instituteAqua study updates | murdoch children's research institute
Aqua study updates | murdoch children's research institute
 
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...
Effects of Hyperbaric Oxygen Therapy on Brain Perfusion, Cognition and Behavi...
 
Landmark legislation a victory for the fasd community
Landmark legislation  a victory for the fasd communityLandmark legislation  a victory for the fasd community
Landmark legislation a victory for the fasd community
 
Four year follow-up of a randomized controlled trial of choline for neurodeve...
Four year follow-up of a randomized controlled trial of choline for neurodeve...Four year follow-up of a randomized controlled trial of choline for neurodeve...
Four year follow-up of a randomized controlled trial of choline for neurodeve...
 
The Resting State and its Default Mode: in those with FASD
The Resting State and its Default Mode: in those with FASDThe Resting State and its Default Mode: in those with FASD
The Resting State and its Default Mode: in those with FASD
 
Australia and new zealand are showing the way to canada
Australia and new zealand are showing the way to canadaAustralia and new zealand are showing the way to canada
Australia and new zealand are showing the way to canada
 
Work requirements for individuals with fasd, in the time of covid 19
Work requirements for individuals with fasd, in the time of covid 19Work requirements for individuals with fasd, in the time of covid 19
Work requirements for individuals with fasd, in the time of covid 19
 
Covid 19 and alcohol
Covid   19 and alcoholCovid   19 and alcohol
Covid 19 and alcohol
 
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...
Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Bra...
 
New insight on maternal infections and neurodevelopmental disorders: mouse st...
New insight on maternal infections and neurodevelopmental disorders: mouse st...New insight on maternal infections and neurodevelopmental disorders: mouse st...
New insight on maternal infections and neurodevelopmental disorders: mouse st...
 
2 scotland
2 scotland2 scotland
2 scotland
 
Clinical course and risk factors for mortality of adult inpatients with covid...
Clinical course and risk factors for mortality of adult inpatients with covid...Clinical course and risk factors for mortality of adult inpatients with covid...
Clinical course and risk factors for mortality of adult inpatients with covid...
 
Preconceptual alcohol and the need for a diagnostic classification of alcoho...
 Preconceptual alcohol and the need for a diagnostic classification of alcoho... Preconceptual alcohol and the need for a diagnostic classification of alcoho...
Preconceptual alcohol and the need for a diagnostic classification of alcoho...
 
The importance and significance of the diagnosis the personal testimony of r...
The importance and significance of the diagnosis  the personal testimony of r...The importance and significance of the diagnosis  the personal testimony of r...
The importance and significance of the diagnosis the personal testimony of r...
 
Parallel Tracks
Parallel TracksParallel Tracks
Parallel Tracks
 
Preconceptual alcohol
Preconceptual alcoholPreconceptual alcohol
Preconceptual alcohol
 

Recently uploaded

Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Servicemakika9823
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Miss joya
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls ServiceMiss joya
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls ServiceMiss joya
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...Garima Khatri
 

Recently uploaded (20)

Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
 

Prenatal exposure to recreational drugs affects global motion perception in preschool children Arijit Chakraborty1, Nicola S. Anstice1, Robert J. Jacobs1, Linda L. LaGasse2, Barry M. Lester2, Trecia A. Wouldes3,* & Benjamin Thompson1,

  • 1. 1Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 www.nature.com/scientificreports Prenatal exposure to recreational drugs affects global motion perception in preschool children Arijit Chakraborty1 , Nicola S. Anstice1 , Robert J. Jacobs1 , Linda L. LaGasse2 , Barry M. Lester2 , Trecia A. Wouldes3,* & Benjamin Thompson1,4,* Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is currently unknown whether visual brain areas are affected. To address this question, we investigated the effect of prenatal drug exposure on global motion perception, a behavioural measure of processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty- five 4.5-year-old children who had been exposed to different combinations of methamphetamine, alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use by the mothers was verified by meconium analysis. We found that global motion perception was impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana. Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did not influence visual function. Our results demonstrate that prenatal drug exposure can influence a behavioural measure of visual development, but that the effects are dependent on the specific drugs used during pregnancy. Prenatal exposure to recreational drugs is a growing problem1,2 . Research into the impact of prenatal drug exposure has focused primarily on cognitive and motor development following maternal use of opioids such as cocaine or methadone3–5 . More recently, the effects of prenatal exposure to amphetamine-type stimulants such as methamphetamine have been investigated because of the high prevalence of users, par- ticularly within Australasia6,7 . Such studies include the Infant Development, Environment and Lifestyle (IDEAL) study which has reported impaired motor development in young children exposed prenatally to methamphetamine6,8 . The effect of prenatal drug exposure on visual development is less well understood; however current evidence suggests that prenatal drug exposure does affect the visual system. A recent large-scale retro- spective comparative case series found substantial increases in the rate of strabismus and nystagmus in infants with prenatal drug exposure that persisted at 5 years of age9 . There is also recent evidence that prenatal drug exposure can affect visual cortex function. McGlone et al. found that 6-month old infants with prenatal exposure to methadone exhibited abnormal visual evoked potentials10 , suggesting disrup- tion within the visual pathway. Abnormal visual cortex responses have also been reported in a small group of children with prenatal exposure to amphetamine11 . 1 School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. 2 Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA. 3 Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. 4 School of Optometry andVision Science, Faculty of Science, University ofWaterloo, 200 Columbia Street West, Waterloo, Ontario, ON N2L, Canada. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to B.T. (email: ben.thompson@uwaterloo.ca) received: 03 July 2015 accepted: 22 October 2015 Published: 19 November 2015 OPEN
  • 2. www.nature.com/scientificreports/ 2Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 Participants in the IDEAL study were recruited to two groups on the basis of prenatal methampheta- mine exposure (methamphetamine exposed vs. controls). Many mothers of methamphetamine-exposed children were poly-drug users. The control group included children who were also exposed to a range of drug combinations with the exception of methamphetamine as well as non-drug exposed children. Prenatal drug exposure was verified objectively by meconium analysis. Therefore, this group of children provided a unique opportunity to study the effects on visual development of prenatal exposure to a range of substances. The aim of this study was to investigate higher-level processing within the extrastriate visual cortex in 4.5-year-old children enrolled in the New Zealand arm of the IDEAL study. Specifically, we assessed the effect of prenatal drug exposure on a psychophysical measure of global motion perception, which is dependant on visual areas such as V5 in the dorsal visual stream. This particular stream connects the magnocellular layers of the lateral geniculate nucleus, the primary visual cortex and extrastriate areas such as V3a and V5 within the occipito-parietal cortex12,13 . Visual areas V3a and V5 process global motion by integrating local motion signals from the primary visual cortex14 . Global motion perception was chosen as a measure of extrastriate visual function because it has been suggested that dorsal stream function is particularly vulnerable to the effects of abnormal neurodevel- opment; the dorsal stream vulnerability hypothesis15,16 . For example, impaired global motion perception has been found in children born with developmental risk factors such as William’s syndrome, dyslexia, autistic spectrum disorder and foetal alcohol syndrome17–22 . Poor global motion perception has also been associated with deficits in visuomotor tasks involving reaching, grasping, and locomotor action17,23–25 . Performance of such tasks is mediated by regions of the posterior parietal lobe that receive input from the dorsal visual stream26,27 . In this context, our choice of global motion perception was further motivated by the delayed motor development at birth28 and between 1 and 3 years of age8 that has been found within the IDEAL study cohort. Methods The Auckland District Health Board ethics committee, the Waitematā District Health Board ethics com- mittee, and the New Zealand Ministry of Health Northern Regional Ethics Committee approved the study. All caregivers provided full informed consent and the study conformed to the principles of the Declaration of Helsinki. The design of the New Zealand IDEAL study is described in detail by Wouldes et al.6,8 . Mothers were referred to the study by independent or hospital based midwives and prenatal drug use was assessed using the Substance Use Inventory29 . In addition, meconium was collected soon after birth and was sent to the United States Drug Testing Laboratory, Des Plaines, Illinois, USA for drug metabolite analysis using gas chromatography – mass spectrometry in order to objectively determine prenatal drug exposure6 . All methamphetamine and non-methamphetamine exposed children were matched for socio-economic status, maternal education level (fifth form certificate achieved or not achieved), birth weight (grouped as < 1500 g, 1500–2500 g and > 2500 g) and gestational age. The Wechsler Preschool and Primary Scale of Intelligence (WPPSI)-III30 was administered by expe- rienced assessors as part of a comprehensive neurodevelopmental assessment conducted at 4.5 years of age for the IDEAL study cohort. The verbal IQ score from the WPPSI-III was used within this study of visual funtion to control for any effects of cognitive or verbal development on performance of the global motion perception task. The Verbal IQ score was chosen as it does not include any measures that rely directly on visual function. The IDEAL study cohort were assessed at 4.5 years of age because children start school after 5 years of age in New Zealand and therefore data collected at an older age may have been influenced by differential educational experiences. Measures of visual function were included in the 4.5 year assessment protocol because 4.5-year-old children are capable of completing behavioural measures of visual acuity and global motion perception. Measurement of global motion perception.  Global motion perception was assessed using random dot kinematograms (RDK) that consisted of 100 circular dots (dot diameter 0.24°, dot density 1.27 dot/ deg2 ) presented within a circular aperture (10° diameter) at a viewing distance of 60 cm. Dot speed was 6°/second and the presentation time was 1 second. These parameters were chosen on the basis of previous studies that have investigated global motion perception in children18,31,32 . Dots had a limited lifetime, whereby each dot had a 5% chance of disappearing on each frame and being redrawn in a random loca- tion. Dots were presented at maximum brightness (137 cd/m2 ) on a grey background (45 cd/m2 ) and dot contrast was 0.51 as defined using the Michelson equation: (Ldots −  Lbackground)/(Ldots +  Lbackground). Signal dots moved coherently upwards or downwards and noise dots moved in random directions. Dots that reached the edge of the stimulus aperture were wrapped around to maintain an even dot density. Stimuli were presented on a 15” Dell cathode ray tube (CRT) monitor (model: E771p) with a 120 Hz refresh rate and 1024 ×  768 resolution. Stimuli were generated using MATLAB 2013a and psychtoolbox-333 . Prior to threshold measurement, children were familiarized with the stimuli and task. First, the children were presented with 100% coherent (all signal dots), high contrast RDKs moving up or down. After 4 succes- sive correct responses at the 100% coherence level, the experimenter varied manually the direction and coherence of the RDK to demonstrate the appearance of RDKs with different coherence levels. Once the
  • 3. www.nature.com/scientificreports/ 3Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 child was familiar with the stimulus and task, a 2-down-1-up adaptive staircase test was used to vary the coherence of the RDK to measure a motion coherence threshold34 . Children were asked to judge whether the dots were moving mostly up or mostly down and could respond verbally and/or by pointing to the top or bottom of the screen. The staircase began at 100% coherence and had a proportional step size of 50% until the first reversal and 25% thereafter. The staircase was terminated after 5 reversals and the threshold was calculated by averaging the last 4 reversals. A comprehensive vision screening was also conducted to rule out the influence of ocular disease, significant refractive error or other visual deficits on global motion perception. This screening consisted of measuring habitual visual acuity using the crowded Keeler logMAR chart, stereoacuity with the VAO fly stereotest, ocular motility using a cover test, a broad H-test and a 20-prism-diopter base out test. Ocular health was also assessed using the red reflex test, external inspection and pupillary evaluation. Statistical analysis.  To understand the effect of individual drugs on global motion perception, a univariate general linear model was constructed with fixed factors of drug exposure, sex and ethnic- ity and covariates of verbal IQ, stereoacuity and better eye habitual visual acuity. The fixed factor of drug exposure coded exposure to each of the following drugs as yes or no; nicotine, alcohol, marijuana and methamphetamine. Note that exposure to opiates was an exclusion criterion for the IDEAL study. Significant main effects and interactions were investigated using post-hoc paired sample t-tests. As a secondary analysis, we assessed the relationship between the estimated extent of drug exposure and global motion perception using multiple linear regression. This analysis was conducted only for mar- ijuana and alcohol use, because only these two drugs had significant effects on global motion perception in the primary analysis. Furthermore, this analysis was conducted only for children who were exposed to marijuana in the absence of alcohol, or vice versa, as the effects of marijuana and alcohol were found to interact in the primary analysis. Drug exposure was estimated from the Substance Use Inventory based on the subset of questions that addressed the frequency (how many times marijuana or alcohol was used per week) and amount (amount of marijuana or alcohol that was consumed on each occasion) of drug use. The frequency of use was categorized as < 1 day per week, 1–4 days per week, or 5–7 days per week. For marijuana, the amount of drug was categorized as light (< 1 joint per occasion), moderate (1–2 joints per occasion), or heavy (> 2 joints per occasion). Because joints can be shared, these responses were modified to reflect the consumption of whole joints based on additional questionnaire data relating to joint sharing. For alcohol, the amount of drug was categorized as light (< 2 drink per occasion), moderate (2–5 drinks per occasion), or heavy (> 5 drinks per occasion). Within the Substance Use Inventory, these questions were completed separately for each trimester of pregnancy. A single estimate of frequency and a single estimate of amount of drug use were calculated for each participant from the responses for each tri- mester. To achieve this, we ranked the frequency of drug use in each of the trimesters (1 for < 1 day a week, 2 for 1–4 days a week, and 3 for 5–7 days a week) and then took the median of the ranks across all trimesters. Similarly, the amount of drug (marijuana or alcohol) use was also ranked for each of the trimesters (1 for light users, 2 for moderate users and 3 for heavy users), and the median of the ranks across all trimesters was used for the analysis. These categories were dummy coded (no =  0, yes =  1) for multiple linear regression analyses. The multiple regression model controlled for other drug use (yes/no for methamphetamine and nicotine), sex, ethnicity, stereoacuity, visual acuity, and verbal IQ. Results One hundred and seventy 4.5-year-old (54 ±  2 months) children were recruited from the New Zealand arm of IDEAL study. One hundred and sixty-five children (93 male) successfully completed a psycho- physical measure of global motion perception and a comprehensive vision screening including habitual visual acuity, stereoacuity, ocular motility assessment and external eye examination. Demographically the cohort was 52.5% European, 36.5% Māori and 11% other. The children had been exposed to a range of different drugs: 75.2% to nicotine, 56.4% to alcohol, 44.2% to methamphetamine and 40% to marijuana. The majority of children (81.3%) had been exposed to multiple drugs. Twenty-five children (15%) had no drug exposure and provided a non-drug exposed comparison group. Only alcohol and marijuana exposure had independent effects on global motion perception after con- trolling for the effects of multiple drug exposure, verbal IQ, ethnicity, habitual visual acuity, stereoacuity, and sex. Children who were exposed prenatally to alcohol had elevated (worse) motion coherence thresh- olds (Fig. 1A) whereby global motion perception was significantly poorer (t163 =  − 2.26, p =  0.002) than that of children not exposed to alcohol (alcohol exposed, n =  95: 59 ±  21% motion coherence threshold vs alcohol non-exposed, n =  70: 50 ±  23%). Unexpectedly, children exposed to marijuana had signifi- cantly lower (better) motion coherence thresholds (Fig. 1B) (t163 =  3.52, p =  0.001) than those of chil- dren not exposed to marijuana [marijuana exposed, n =  67: 46 ±  20% vs marijuana non-exposed, n =  98: 63 ±  25%]. A significant interaction between the effects of alcohol exposure and marijuana exposure on motion coherence thresholds was also present (Fig. 1C, F1,114 =  7.7, p =  0.006), whereby exposure to mar- ijuana in the absence of alcohol was associated with improved global motion perception (mean motion coherence threshold =  34 ±  11%, n =  20), which was significantly lower (better) (t41 =  4.42, p <  0.001) than that of children who had not experienced prenatal drug exposure (mean motion coherence thresh- old =  58 ±  23%, n =  25). However global motion perception for children exposed to both marijuana and
  • 4. www.nature.com/scientificreports/ 4Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 alcohol (mean motion coherence threshold =  53 ±  24%, n =  48) was no different (t70 =  − 0.28, p =  0.39) from that of children who had no drug exposure (mean motion coherence threshold =  58 ±  23%, n =  25). No other significant main effects or interactions between drugs were found for global motion percep- tion. Also, visual acuity (measured with habitual refractive correction if worn), stereoacuity, and verbal IQ (measured with Wechsler Preschool and Primary Scale of Intelligence-III) were unaffected by drug exposure in this group of children. Multiple linear regression conducted on the subset of children (n =  20) who were exposed to mar- ijuana, but not to alcohol, revealed that both the frequency of maternal marijuana use (β  =  − 0.90; F3,16 =  28.19, p <  0.001; adjusted R2  =  0.75) and amount of joints consumed per occasion (β  =  − 0.89; F3,16 =  33.26, p <  0.001; adjusted R2  =  0.78) had a negative linear association with motion coherence threshold. More frequent maternal use of marijuana (Fig. 2a) during pregnancy and more joints smoked per occasion (Fig. 2b) were associated with lower motion coherence thresholds, indicating better global motion perception. The opposite of this was true for children (n =  46) exposed to alcohol, but not to marijuana, whereby both frequency of maternal alcohol use (β  =  0.62; F3,42 =  10.81, p <  0.001; adjusted R2  =  0.39) and amount of alcohol consumed per occasion (β  =  0.67; F3,42 =  12.06, p <  0.001; adjusted R2  =  0.42) had a positive linear association with motion coherence threshold. More frequent maternal use of alcohol (Fig. 2a) during pregnancy and a greater number of alcoholic drinks per occasion (Fig. 2b) were associated with higher motion coherence thresholds, indicating poorer global motion perception. Discussion Our results indicate that 1) global motion perception, a behavioural measure of extrastriate visual function, is susceptible to the effects of prenatal drug exposure, and 2) interaction effects occur when children are exposed to multiple drugs. Specifically, we found that alcohol exposure impaired, and mar- ijuana exposure improved, global motion perception. These effects were dependant on the frequency and amount of prenatal marijuana or alcohol exposure. Furthermore, these effects appeared to cancel one another whereby prenatal exposure to both drugs resulted in no effect on global motion perception. Our finding that prenatal alcohol exposure was associated with impaired global motion perception is consistent with previous reports documenting detrimental effects of alcohol exposure on neurodevel- opment35 and ocular development36,37 . However, the majority of prior studies have focused on children Figure 1.  The effect of prenatal exposure to alcohol, marijuana and their combination on motion coherence thresholds, a measure of global motion perception. (a) Prenatal alcohol exposure (n =  95) impaired global motion perception (b) Prenatal marijuana exposure (n =  67) improved global motion perception (c) Exposure to marijuana in the absence of alcohol (n =  20) was associated with a substantial improvement in global motion perception that was significantly better (p <  0.001) than children with no history of drug exposure (dotted line, n =  25). Error bars and the shaded area show standard error of the mean.
  • 5. www.nature.com/scientificreports/ 5Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 with foetal alcohol syndrome. In contrast, none of the children in this study had been diagnosed with foetal alcohol syndrome. This suggests that prenatal exposure to levels of alcohol that are not sufficient to induce foetal alcohol syndrome can still impair the cortical processing of visual information as assessed using a behavioural measure of global motion perception. Furthermore, this deficit would not be evident from the results of a vision screening, as clinical measures of visual perception such as habitual visual acuity and stereoacuity were unaffected in our group of children. However, clinical tests of stereopsis such as the VAO Fly Stereotest used in this study are unlikely to be sensitive enough to detect small differences in stereoacuity. The finding that prenatal marijuana exposure influenced global motion perception was consistent with the idea that extrastriate visual cortex development is effected by maternal drug use. However the direction and size of the effect was unexpected; the children exposed to marijuana in the absence of alcohol were almost 50% better at the global motion task than children with no drug exposure. It is important to note that although prenatal marijuana exposure has not been studied widely, detrimen- tal effects have been reported for motor and cognitive development38 . Therefore our results cannot be extrapolated beyond global motion perception or interpreted as marijuana having beneficial effects on foetal development. Furthermore, superior performance on a single behavioural task does not necessarily indicate supernormal neurodevelopment. For example, children with autism have superior performance on a mirror symmetric global pattern task compared to controls39 ; however their motor control is poorer than non-autistic individuals40–42 . One possible explanation for the improved global motion perception we observed in marijuana-exposed children relates to the potential neurochemical effects of this drug on the developing visual system. Endocannabinoid receptors are present throughout the visual pathway of non-human primates and have particularly high expression within dorsal stream brain areas such as the middle temporal area (MT; the primate equivalent of human V5) and the middle superior temporal area (MST)43 . Both MT/V5 and MST are motion sensitive areas within the extrastriate visual cortex of humans and non-human primates44,45 . Although the role of endocannabinoid receptors in dorsal stream function is unknown, there is evidence that cannabinoids can enhance the function of specific neural pathways. For example, cannabinoids improve movement and locomotion of rats in a dose-dependent manner46 . Therefore, it is possible that prenatal marijuana exposure acts upon endocannabinoid receptors in MT/MST in a way that improves global motion perception in human infants. It has also been found that cannabinoids facil- itate neurogenesis by acting as anti-oxidants and regulating mitochondrial activity in preclinical models of neurodegenerative disorders47 . These effects may also occur within the extrastriate visual cortex. Previous studies have reported that prenatal exposure to heavy marijuana use impairs performance on a range of standardized neuropsychological tests of attention, memory, and executive function that involve a visual component48–53 . These tests typically require the encoding, memorization, and recog- nition of visual patterns and objects. Therefore, they may involve processing within the ventral visual stream that includes regions of extrastriate visual cortex specialized for object recognition26,27 . In com- bination with our results, this raises the interesting possibility that prenatal marijuana exposure may Figure 2.  The relationship between motion coherence thresholds and the (a) frequency and (b) amount of maternal marijuana or alcohol use. The red and blue lines indicate maternal marijuana and alcohol use, respectively. Data points in panel (a) indicate mean motion coherence thresholds for children who were prenatally exposed to marijuana or alcohol < 1 day/week (marijuana n =  6, alcohol n =  10), 1–4 days/week (marijuana n =  5, alcohol n =  14), or 5–7 days/week (marijuana n =  9, alcohol n =  22). Data points in panel (b) indicate mean motion coherence thresholds for children whose marijuana or alcohol exposure on each occasion was light (marijuana, < 1 joint, n =  6; alcohol, < 2 drinks, n =  19), moderate (marijuana, 1–2 joints, n =  7; alcohol, 2–5 drinks, n =  9), or heavy (marijuana, > 2 joints, n =  7; alcohol, > 5 drinks, n =  18). Drug use data are maternal self-report; see methods for further details. The error bars indicate standard error of the mean. Other drug use (yes/no for methamphetamine and nicotine), sex, ethnicity, stereoacuity, visual acuity, and verbal IQ were controlled for in the multiple regression model.
  • 6. www.nature.com/scientificreports/ 6Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 improve dorsal stream function but impair ventral stream function. Alternatively, the detrimental effects of marijuana on visual processing reported in previous studies may reflect impairments at the level of visual attention, visual memory, or response inhibition rather than visual perception53 . The antagonistic effects we report for marijuana and alcohol exposure on motion processing highlight the importance of considering poly-drug interactions when investigating the consequences of prenatal drug exposure. Marijuana neutralizes the effect of nicotine in an animal model of addiction54 ; however interactions between drugs administered prenatally have not been explored comprehensively in animal models. If antagonistic drug effects on foetal and infant neurodevelopment can be confirmed, a pathway for the development of interventions that minimize the harmful effects of prenatal drug exposure may be opened. The absence of any effect of prenatal nicotine exposure on global motion perception is consistent with previous neuropsychological studies suggesting that nicotine impairs global cognitive function and audi- tory processing rather than tasks that involve visual processing49,48 . However, deficits in visual attention have been reported in children with prenatal nicotine exposure55 . Our data indicate that any deficits in visual attention do not impact on habitual visual acuity, stereopsis, or global motion perception in chil- dren with prenatal nicotine exposure. Similarly, prenatal exposure to methamphetamine did not affect habitual visual acuity, stereopsis, or global motion perception in our study cohort. No previous prospec- tive studies have investigated the effect of methamphetamine on visual development in humans, although there is evidence for ocular and optic nerve abnormalities in rats parentally exposed to methampheta- mine56,57 . No children in our study exhibited visual deficits that would suggest serious ocular or optic nerve pathology; however retinal structure was not specifically investigated as part of our study protocol. The average motion coherence thresholds we report for non-drug exposed children are slightly elevated (worse) compared to a number of previous studies of global motion perception in preschool children58,59 . This was likely because of differing stimulus parameters and psychophysical techniques. However, because children within the IDEAL study were matched for factors such as socioeconomic status and maternal education, it is possible that low socioeconomic status and its related risk factors had a negative impact on global motion development for the whole group. We also note that other studies have reported higher (worse) global motion thresholds than ours for normally developing children of a similar age60 . Overall, our results demonstrate that the development of global motion perception is affected by pre- natal exposure to alcohol or marijuana but not nicotine or methamphetamine. Our finding that global motion perception was improved by marijuana exposure and that marijuana reduced the negative effect of alcohol exposure may provide a foundation for further studies investigating new ways to prevent or ameliorate the negative developmental effects of prenatal drug exposure. References 1. Wouldes, T., Lagasse, L., Sheridan, J. & Lester, B. Maternal methamphetamine use during pregnancy and child outcome : what do we know? Prenatal methamphetamine exposure and child development. N. Z. Med. J. 117, 1–9 (2004). 2. Kuczkowski, K. M. The effects of drug abuse on pregnancy. Curr. Opin. Obstet. Gynecol. 19, 578–585 (2007). 3. Miller-Loncar, C. et al. Predictors of motor development in children prenatally exposed to cocaine. Neurotoxicol. Teratol. 27, 213–220 (2005). 4. Minnes, S. et al. The effects of prenatal cocaine exposure on problem behavior in children 4–10 years. Neurotoxicol. Teratol. 32, 443–51 (2010). 5. Nulman, I. et al. Neurodevelopment of adopted children exposed in utero to cocaine: the Toronto Adoption Study. Clin. Invest. Med. 24, 129–137 (2001). 6. Wouldes, T. A. et al. Co-morbidity of substance use disorder and psychopathology in women who use methamphetamine during pregnancy in the US and New Zealand. Drug Alcohol Depend. 127, 101–107 (2013). 7. Abar, B. et al. Cross-national Comparison of Prenatal Methamphetamine Exposure on Infant and Early Child Physical Growth: A Natural Experiment. Prev. Sci. 1–10 doi: 10.1007/s11121-013-0431-5 (2013). 8. Wouldes, T. A. et al. Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years. Neurotoxicol. Teratol. 42, 77–84 (2014). 9. Cornish, S. K., Hrabovsky, M., Scott, N. W., Myerscough, E. & Reddy, A. R. The short- and long-term effects on the visual system of children following exposure to maternal substance misuse in pregnancy. Am. J. Ophthalmol. 156, 190–4 (2013). 10. McGlone, L. et al. Visual outcome in infants born to drug-misusing mothers prescribed methadone in pregnancy. Br. J. Ophthalmol. 98, 238–245 (2014). 11. Hansen, R. L., Struthers, J. M. & Gospe, S. M. Visual evoked potentials and visual processing in stimulant drug-exposed infants. Dev. Med. Child Neurol. 35, 798–805 (1993). 12. De Haan, E. H. F. & Cowey, A. On the usefulness of ‘what’ and ‘where’ pathways in vision. Trends Cogn. Sci. 15, 460–466 (2011). 13. Grinter, E. J., Maybery, M. T. & Badcock, D. R. Vision in developmental disorders: is there a dorsal stream deficit? Brain Res. Bull. 82, 147–160 (2010). 14. Andersen, R. A. Neural mechanisms of visual motion perception in primates. Neuron 18, 865–872 (1997). 15. Braddick, O., Atkinson, J. & Wattam-Bell, J. Normal and anomalous development of visual motion processing: motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia 41, 1769–1784 (2003). 16. Spencer, J. et al. Motion processing in autism: evidence for a dorsal stream deficiency. Neuroreport 11, 2765–2767 (2000). 17. Atkinson, J. et al. A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport 8, 1919–1922 (1997). 18. Gunn, A. et al. Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport 13, 843–847 (2002). 19. Manning, C., Charman, T. & Pellicano, E. Processing Slow and Fast Motion in Children With Autism Spectrum Conditions. Autism Res. 6, 531–541 (2013). 20. Raymond, J. E. & Sorensen, R. E. Visual Motion Perception in Children with Dyslexia : Normal Detection but Abnormal Integration. Vis. cogn. 5, 389–404 (1998). 21. Manning, C., Charman, T. & Pellicano, E. Processing Slow and Fast Motion in Children With Autism Spectrum Conditions. Autism Res. 531–541 doi: 10.1002/aur.1309 (2013).
  • 7. www.nature.com/scientificreports/ 7Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 22. Gummel, K., Ygge, J., Benassi, M. & Bolzani, R. Motion perception in children with foetal alcohol syndrome. Acta Paediatr. 101, e324–332 (2012). 23. Almeida, J., Mahon Z., B. & Alfonso, C. The role of the dorsal visual processing stream in tool identification. Pyschol Sci 21, 772–778 (2010). 24. Atkinson, J. & Braddick, O. Visual and visuocognitive development in children born very prematurely. Prog. Brain Res. 164, 123–149 (2007). 25. Shirai, N. & Imura, T. Looking Away Before Moving Forward: Changes in Optic-Flow Perception Precede Locomotor Development. Psychol. Sci. 25, 485–493 (2014). 26. Goodale, M. A. Separate visual systems for perception and action: a framework for understanding cortical visual impairment. Dev. Med. Child Neurol. 55, 9–12 (2013). 27. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992). 28. LaGasse, L. L. et al. Prenatal methamphetamine exposure and neonatal neurobehavioral outcome in the USA and New Zealand. Neurotoxicol. Teratol. 33, 166–75 (2011). 29. Della Grotta, S. et al. Patterns of methamphetamine use during pregnancy: Results from the infant development, environment, and lifestyle (IDEAL) study. Matern. Child Health J. 14, 519–527 (2010). 30. Welscher, D. Wechsler preschool and primary scale of intelligence. (Pearson, 2002). 31. Narasimhan, S. & Giaschi, D. The effect of dot speed and density on the development of global motion perception. Vision Res. 62, 102–107 (2012). 32. Lewis, T. L. & Maurer, D. Multiple sensitive periods in human visual development: Evidence from visually deprived children. Dev. Psychobiol. 46, 163–183 (2005). 33. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997). 34. Newsome, T. & Pare, E. B. A Selective Impairment of Motion Perception the Middle Temporal Visual Area (MT) Following Lesions of. J. Neurosci. 8, 2201–2211 (1988). 35. Landgren, M., Svensson, L., Strömland, K. & Andersson Grönlund, M. Prenatal alcohol exposure and neurodevelopmental disorders in children adopted from eastern Europe. Pediatrics 125, e1178–e1185 (2010). 36. Strömland, K. Visual impairment and ocular abnormalities in children with fetal alcohol syndrome. Addict. Biol. 9, 153–157 (2004). 37. Strömland, K. & Pinazo-Durán, M. D. Ophthalmic involvement in the fetal alcohol syndrome: clinical and animal model studies. Alcohol Alcohol 37, 2–8 (2002). 38. Huizink, A. C. & Mulder, E. J. H. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci. Biobehav. Rev. 30, 24–41 (2006). 39. Perreault, A., Gurnsey, R., Dawson, M., Mottron, L. & Bertone, A. Increased sensitivity to mirror symmetry in autism. PLoS One 6, 4–8 (2011). 40. Mostofsky, S. H. et al. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 132, 2413–2425 (2009). 41. Nayate, A., Bradshaw, J. L. & Rinehart, N. J. Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Res. Bull. 67, 327–334 (2005). 42. Jansiewicz, E. M. et al. Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. J. Autism Dev. Disord. 36, 613–621 (2006). 43. Javadi, P., Bouskila, J., Bouchard, J.-F. & Ptito, M. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey. Neuroscience doi: 10.1016/j.neuroscience.2014.12.029 (2015). 44. Rudolph, K. & Pasternak, T. Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb. Cortex 9, 90–100 (1999). 45. Braddick, O. J. et al. Brain areas sensitive to coherent visual motion. Perception 30, 61–72 (2001). 46. Sañudo-Peña, M. C., Tsou, K. & Walker, J. M. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci. 65, 703–713 (1999). 47. Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 3326–3341 (2012). 48. Fried, P. A. & Watkinson, B. Visuoperceptual functioning differs in 9- to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 22, 11–20 (2000). 49. Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 25, 427–436 (2003). 50. Day, N. L. et al. Effect of prenatal marijuana exposure on the cognitive development of offspring at age three. Neurotoxicol. Teratol. 16, 169–175 (1994). 51. English, D. R., Hulse, G. K., Milne, E., Holman, C. D. & Bower, C. I. Maternal cannabis use and birth weight: a meta-analysis. Addiction 92, 1553–1560 (1997). 52. Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning 9-to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 20, 293–306 (1998). 53. Smith, A. M., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults. Neurotoxicol. Teratol. 28, 286–295 (2006). 54. Han, J., Liu, Z., Ren, W. & Zhang, X. Counteractive effects of cannabinoid and nicotine-addictive behavior. Neuroreport 22, 181–184 (2011). 55. Jacobsen, L. K., Slotkin, T. A., Mencl, W. E., Frost, S. J. & Pugh, K. R. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention. Neuropsychopharmacology 32, 2453–2464 (2007). 56. Melo, P., Rodrigues, L. G., Silva, M. C. & Tavares, M. A. Effects of prenatal exposure to methamphetamine on the development of the rat retina. Ann. N. Y. Acad. Sci. 1074, 590–603 (2006). 57. Melo, P., Moreno, V. Z., Vázquez, S. P., Pinazo-Durán, M. D. & Tavares, M. A. Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res. 1106, 21–29 (2006). 58. Parrish, E. E., Giaschi, D. E., Boden, C. & Dougherty, R. The maturation of form and motion perception in school age children. Vision Res. 45, 827–837 (2005). 59. MacKay, T. L. et al. Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia 43, 1738–1748 (2005). 60. Hadad, B. S., Maurer, D. & Lewis, T. L. Long trajectory for the development of sensitivity to global and biological motion. Dev. Sci. 14, 1330–1339 (2011).
  • 8. www.nature.com/scientificreports/ 8Scientific Reports | 5:16921 | DOI: 10.1038/srep16921 Acknowledgements This research was supported by the National Institutes on Drug Abuse grants 2RO1DA014948 and RO1DA021757 and the Auckland Medical Research Foundation. We acknowledge the NZ IDEAL study team: Jenny Rogers, Josephine Cliffe, Suzanne Cumming, and Heather Stewart. Author Contributions A.C. and B.T. wrote the manuscript. A.C., B.T., N.S.A., R.J.J. and T.A.W. designed the study. A.C., B.T., N.S.A., R.J.J., T.A.W., L.L.L. and B.M.L. reviewed the manuscript. Additional Information Competing financial interests: The authors declare no competing financial interests. How to cite this article: Chakraborty, A. et al. Prenatal exposure to recreational drugs affects global motion perception in preschool children. Sci. Rep. 5, 16921; doi: 10.1038/srep16921 (2015). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Com- mons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/