SlideShare a Scribd company logo
1 of 25
Download to read offline
Simultaneous,Deep,Transfer,Across,
Domains,and,Tasks,
!
Presenta)on!by!Alejandro,Cartas!
Eric!Tzeng,!Judy!Hoffman,!Trevor!Darrell,!Kate!Saenko!
Domain Adaptation: Train on source adapt to target
backpack chair bike
Source Domain
lots of labeled data
⇠ PS(X, Y )
DS = {(xi, yi), 8i 2 {1, . . . , N}}
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
Domain Adaptation: Train on source adapt to target
backpack chair bike
Source Domain
lots of labeled data
⇠ PS(X, Y )
DS = {(xi, yi), 8i 2 {1, . . . , N}}
bike??
Target Domain
unlabeled or limited labels
⇠ PT (Z, H)
?DT = {(zj, ), 8j 2 {1, . . . , M}}
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
Domain Adaptation: Train on source adapt to target
backpack chair bike
Adapt
Source Domain
lots of labeled data
⇠ PS(X, Y )
DS = {(xi, yi), 8i 2 {1, . . . , N}}
bike??
Target Domain
unlabeled or limited labels
⇠ PT (Z, H)
?DT = {(zj, ), 8j 2 {1, . . . , M}}
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
Source Data
backpack chair bike
fc8conv1 conv5
source data
fc6 fc7 classif cation
loss
i
Adap)ng!across!domains!minimize!discrepancy!!
L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C)
+ Lconf (xS, xT , ✓D; ✓repr)
+⌫Lsoft(xT , yT ; ✓repr, ✓C)
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C)
+ Lconf (xS, xT , ✓D; ✓repr)
+⌫Lsoft(xT , yT ; ✓repr, ✓C)
Source Data
backpack chair bike
Target Databackpack
?
fc8conv1 conv5 fc6 fc7
labeled target data
fc8conv1 conv5
source data
fc6 fc7
classif cation
loss
shared
shared
shared
shared
i
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
q = softmax(✓T
Df(x; ✓repr))
Adap)ng!across!domains!minimize!discrepancy!!
✓C
object
classifier
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
q = softmax(✓T
Df(x; ✓repr))
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
✓C
object
classifier
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
q = softmax(✓T
Df(x; ✓repr))
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
✓C
object
classifier
Discrepancy
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
q = softmax(✓T
Df(x; ✓repr))
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
✓C
object
classifier domain
classifier
✓D
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
q = softmax(✓T
Df(x; ✓repr))
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
domain
classifier
✓D
q = softmax(✓T
Df(x; ✓repr))
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
LD(xS, xT , ✓repr; ✓D) =
X
d
[yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) =
X
d
1
D
log qd
q = softmax(✓T
Df(x; ✓repr))
✓C
object
classifier
Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
Adap)ng!across!domains!minimize!discrepancy!!
L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C)
+ Lconf (xS, xT , ✓D; ✓repr)
+⌫Lsoft(xT , yT ; ✓repr, ✓C)
Source Data
backpack chair bike
Target Databackpack
?
fc8conv1 conv5 fc6 fc7
alltargetdata
sourcedata
labeled target data
fc8conv1 conv5
source data
fcD
fc6 fc7
classif cation
loss
domain
confusion
loss
domain
classif er
loss
shared
shared
shared
shared
shared
i
i
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
Domain Adaptation: Train on source adapt to target
backpack chair bike
Adapt
Source Domain
lots of labeled data
⇠ PS(X, Y )
DS = {(xi, yi), 8i 2 {1, . . . , N}}
bike??
Target Domain
unlabeled or limited labels
⇠ PT (Z, H)
?DT = {(zj, ), 8j 2 {1, . . . , M}}
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
Domain Adaptation: Train on source adapt to target
backpack chair bike
Adapt
Source Domain
lots of labeled data
⇠ PS(X, Y )
DS = {(xi, yi), 8i 2 {1, . . . , N}}
bike??
Target Domain
unlabeled or limited labels
⇠ PT (Z, H)
?DT = {(zj, ), 8j 2 {1, . . . , M}}
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
Source!soKlabels!
Source
CNN
Source
CNN
Source
CNN
Bottle
Mug
Chair
Laptop
Keyboard
Bottle
Mug
Chair
Laptop
Keyboard
Bottle
Mug
Chair
Laptop
Keyboard
Bottle
Mug
Chair
Laptop
Keyboard
+
softmax
high
temp
softmax
high
temp
softmax
high
temp
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
l(bottle)
Source!soKlabels!
Bottle
Mug
Chair
Laptop
Keyboard
Bottle
Mug
Chair
Laptop
Keyboard
Adapt CNN
“Bottle”
Source Activations
Per Class
backprop
Cross Entropy Loss
softmax
high
temp
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
Lsoft(xT , yT ; ✓repr, ✓C) =
X
i
lyT
i log pi
p = softmax(✓T
Cf(xT ; ✓repr)/⌧)
Class!correla)on!transfer!loss!
L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C)
+ Lconf (xS, xT , ✓D; ✓repr)
+⌫Lsoft(xT , yT ; ✓repr, ✓C)
Source Data
backpack chair bike
Target Databackpack
?
fc8conv1 conv5 fc6 fc7
Source softlabels
alltargetdata
sourcedata
labeled target data
fc8conv1 conv5
source data
softmax
high temp
softlabel
loss
fcD
fc6 fc7
classif cation
loss
domain
confusion
loss
domain
classif er
loss
shared
shared
shared
shared
shared
i
i
Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
Office dataset ExperimentAdapting Visual Category Models to New Domains 9
31 categories
keyboardheadphonesfile cabinet... laptop letter tray ...
amazon dSLR webcam
...
instance1instance2
...
...
...
instance5
...
instance1instance2
...
...
...
instance5
...
3 domains
Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.
popular way to acquire data, as it allows for easy access to large amounts of
• all classes have
source labeled
examples
• 15 classes have
target labeled
examples
• evaluate on remaining
16 classes
[saenko`10]Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
DeCAF6 S+T [9] 80.7 ± 2.3 – – 94.8 ± 1.2 – – –
DaNN [13] 53.6 ± 0.2 – – 71.2 ± 0.0 – 83.5 ± 0.0 –
Source CNN 56.5 ± 0.3 64.6 ± 0.4 47.6 ± 0.1 92.4 ± 0.3 42.7 ± 0.1 93.6 ± 0.2 66.22
Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 59.9 ± 0.3 81.8 ± 1.0 74.05
Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.8 ± 0.5 93.9 ± 0.5 65.2 ± 0.7 96.3 ± 0.5 81.50
Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 66.2 ± 0.4 95.6 ± 0.4 64.9 ± 0.5 97.5 ± 0.2 82.13
Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 66.0 ± 0.5 95.9 ± 0.6 65.2 ± 0.6 98.3 ± 0.3 82.17
Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 66.2 ± 0.3 95.7 ± 0.5 65.0 ± 0.5 97.6 ± 0.2 82.22
Table 1. Multi-class accuracy evaluation on the standard supervised adaptation setting with the Office dataset. We evaluate on all 31 categories
using the standard experimental protocol from [28]. Here, we compare against three state-of-the-art domain adaptation methods as well as a
CNN trained using only source data, only target data, or both source and target data together.
A ! W A ! D D ! A D ! W W ! A W ! D Average
MMDT [18] – 44.6 ± 0.3 – – – 58.3 ± 0.5 –
Source CNN 54.2 ± 0.6 63.2 ± 0.4 36.4 ± 0.1 89.3 ± 0.5 34.7 ± 0.1 94.5 ± 0.2 62.0
Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.2 ± 0.1 91.3 ± 0.4 41.1 ± 0.0 96.5 ± 0.1 64.8
Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 41.7 ± 0.3 89.6 ± 0.1 38.8 ± 0.4 96.5 ± 0.2 64.8
Ours: dom confusion+soft labels 59.3 ±0.6 68.0±0.5 43.1± 0.2 90.0± 0.2 40.5±0.2 97.5± 0.1 66.4
Table 2. Multi-class accuracy evaluation on the standard semi-supervised adaptation setting with the Office dataset. We evaluate on 16
held-out categories for which we have no access to target labeled data. We show results on these unsupervised categories for the source only
model, our model trained using only soft labels for the 15 auxiliary categories, and finally using domain confusion together with soft labels
on the 15 auxiliary categories.
target domain. We report accuracies on the remaining un-
labeled images, following the standard protocol introduced
with the dataset [28]. In addition to a variety of baselines, we
report numbers for both soft label fine-tuning alone as well
as soft labels with domain confusion in Table 1. Because the
Office dataset is imbalanced, we report multi-class accura-
following the standard protocol introduced with the Office
dataset [28]. We then evaluate our classification performance
on the remaining 16 categories for which no data was avail-
able at training time.
In Table 2 we present multi-class accuracies over the 16
held-out categories and compare our method to a previous
Office dataset Experiment
Multiclass accuracy over 16 classes which lack target labels
Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
back pack
bike
bike helmet
bookcase
bottle
calculator
desk chair
desk lamp
desktop computer
file cabinet
headphones
keyboard
laptop computer
letter tray
mobile phone
monitor
mouse
mug
paper notebook
pen
phone
printer
projector
punchers
ring binder
ruler
scissors
speaker
stapler
tape dispenser
trash can
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
Ours soft label
back pack
bike
bike helmet
bookcase
bottle
calculator
desk chair
desk lamp
desktop computer
file cabinet
headphones
keyboard
laptop computer
letter tray
mobile phone
monitor
mouse
mug
paper notebook
pen
phone
printer
projector
punchers
ring binder
ruler
scissors
speaker
stapler
tape dispenser
trash can
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
Baseline soft label
ring binder
monitor
Baseline soft activation
Our soft activation
Target test image
Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
back pack bike bike helmet
bookcase bottle calculator
desk chair desk lamp desktop computer
file cabinet headphones keyboard
laptop computer letter tray mobile phone
Source soft labels
Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
Cross-dataset Experiment Setup
Source: ImageNet
!
Target: Caltech256
!
40 categories
!
Evaluate adaptation performance with 0,1,3,5
target labeled examples per class
[tommasi`14]
Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
ImageNet adapted to Caltech
Number Labeled Target Examples per Category
0 1 3 5
Multi-classAccuracy
72
73
74
75
76
77
78
Source+Target CNN
Ours: softlabels only
Ours: dom confusion+softlabels
[ICCV 2015]
400 120 200
Number of labeled target examples
MulticlassAccuracy
Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015

More Related Content

Similar to Simultaneous Deep Transfer Across Domains and Tasks

Cs221 lecture5-fall11
Cs221 lecture5-fall11Cs221 lecture5-fall11
Cs221 lecture5-fall11darwinrlo
 
COCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate AscentCOCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate Ascentjeykottalam
 
The Back Propagation Learning Algorithm
The Back Propagation Learning AlgorithmThe Back Propagation Learning Algorithm
The Back Propagation Learning AlgorithmESCOM
 
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'Seldon
 
Haskell for data science
Haskell for data scienceHaskell for data science
Haskell for data scienceJohn Cant
 
Chapter09.ppt
Chapter09.pptChapter09.ppt
Chapter09.pptbutest
 
Tips And Tricks For Bioinformatics Software Engineering
Tips And Tricks For Bioinformatics Software EngineeringTips And Tricks For Bioinformatics Software Engineering
Tips And Tricks For Bioinformatics Software Engineeringjtdudley
 
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)Changwon National University
 
Hands on Mahout!
Hands on Mahout!Hands on Mahout!
Hands on Mahout!OSCON Byrum
 
Project - Deep Locality Sensitive Hashing
Project - Deep Locality Sensitive HashingProject - Deep Locality Sensitive Hashing
Project - Deep Locality Sensitive HashingGabriele Angeletti
 
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...MongoDB
 
Dcn 20170823 yjy
Dcn 20170823 yjyDcn 20170823 yjy
Dcn 20170823 yjy재연 윤
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache CalciteJulian Hyde
 
Word2vec in Theory Practice with TensorFlow
Word2vec in Theory Practice with TensorFlowWord2vec in Theory Practice with TensorFlow
Word2vec in Theory Practice with TensorFlowBruno Gonçalves
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdfnyomans1
 
CuRious about R in Power BI? End to end R in Power BI for beginners
CuRious about R in Power BI? End to end R in Power BI for beginners CuRious about R in Power BI? End to end R in Power BI for beginners
CuRious about R in Power BI? End to end R in Power BI for beginners Jen Stirrup
 

Similar to Simultaneous Deep Transfer Across Domains and Tasks (20)

Cs221 lecture5-fall11
Cs221 lecture5-fall11Cs221 lecture5-fall11
Cs221 lecture5-fall11
 
COCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate AscentCOCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate Ascent
 
The Back Propagation Learning Algorithm
The Back Propagation Learning AlgorithmThe Back Propagation Learning Algorithm
The Back Propagation Learning Algorithm
 
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'
Tensorflow London 13: Zbigniew Wojna 'Deep Learning for Big Scale 2D Imagery'
 
Word2vec and Friends
Word2vec and FriendsWord2vec and Friends
Word2vec and Friends
 
modeling.ppt
modeling.pptmodeling.ppt
modeling.ppt
 
Haskell for data science
Haskell for data scienceHaskell for data science
Haskell for data science
 
Chapter09.ppt
Chapter09.pptChapter09.ppt
Chapter09.ppt
 
Tips And Tricks For Bioinformatics Software Engineering
Tips And Tricks For Bioinformatics Software EngineeringTips And Tricks For Bioinformatics Software Engineering
Tips And Tricks For Bioinformatics Software Engineering
 
Explainable AI
Explainable AIExplainable AI
Explainable AI
 
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
 
Hands on Mahout!
Hands on Mahout!Hands on Mahout!
Hands on Mahout!
 
Project - Deep Locality Sensitive Hashing
Project - Deep Locality Sensitive HashingProject - Deep Locality Sensitive Hashing
Project - Deep Locality Sensitive Hashing
 
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...
Ensuring High Availability for Real-time Analytics featuring Boxed Ice / Serv...
 
Dcn 20170823 yjy
Dcn 20170823 yjyDcn 20170823 yjy
Dcn 20170823 yjy
 
DeepLearning
DeepLearningDeepLearning
DeepLearning
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache Calcite
 
Word2vec in Theory Practice with TensorFlow
Word2vec in Theory Practice with TensorFlowWord2vec in Theory Practice with TensorFlow
Word2vec in Theory Practice with TensorFlow
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdf
 
CuRious about R in Power BI? End to end R in Power BI for beginners
CuRious about R in Power BI? End to end R in Power BI for beginners CuRious about R in Power BI? End to end R in Power BI for beginners
CuRious about R in Power BI? End to end R in Power BI for beginners
 

Recently uploaded

科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理e4aez8ss
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一F La
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degreeyuu sss
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]📊 Markus Baersch
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Cantervoginip
 
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptx
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptxAmazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptx
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptxAbdelrhman abooda
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.natarajan8993
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...Boston Institute of Analytics
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFAAndrei Kaleshka
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样vhwb25kk
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfSocial Samosa
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubaihf8803863
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 

Recently uploaded (20)

科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
办美国阿肯色大学小石城分校毕业证成绩单pdf电子版制作修改#真实留信入库#永久存档#真实可查#diploma#degree
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Canter
 
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptx
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptxAmazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptx
Amazon TQM (2) Amazon TQM (2)Amazon TQM (2).pptx
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFA
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 

Simultaneous Deep Transfer Across Domains and Tasks

  • 2. Domain Adaptation: Train on source adapt to target backpack chair bike Source Domain lots of labeled data ⇠ PS(X, Y ) DS = {(xi, yi), 8i 2 {1, . . . , N}} Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 3. Domain Adaptation: Train on source adapt to target backpack chair bike Source Domain lots of labeled data ⇠ PS(X, Y ) DS = {(xi, yi), 8i 2 {1, . . . , N}} bike?? Target Domain unlabeled or limited labels ⇠ PT (Z, H) ?DT = {(zj, ), 8j 2 {1, . . . , M}} Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 4. Domain Adaptation: Train on source adapt to target backpack chair bike Adapt Source Domain lots of labeled data ⇠ PS(X, Y ) DS = {(xi, yi), 8i 2 {1, . . . , N}} bike?? Target Domain unlabeled or limited labels ⇠ PT (Z, H) ?DT = {(zj, ), 8j 2 {1, . . . , M}} Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 5. Source Data backpack chair bike fc8conv1 conv5 source data fc6 fc7 classif cation loss i Adap)ng!across!domains!minimize!discrepancy!! L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C) + Lconf (xS, xT , ✓D; ✓repr) +⌫Lsoft(xT , yT ; ✓repr, ✓C) Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
  • 6. Adap)ng!across!domains!minimize!discrepancy!! L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C) + Lconf (xS, xT , ✓D; ✓repr) +⌫Lsoft(xT , yT ; ✓repr, ✓C) Source Data backpack chair bike Target Databackpack ? fc8conv1 conv5 fc6 fc7 labeled target data fc8conv1 conv5 source data fc6 fc7 classif cation loss shared shared shared shared i Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
  • 7. Adap)ng!across!domains!minimize!discrepancy!! LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015! q = softmax(✓T Df(x; ✓repr))
  • 8. Adap)ng!across!domains!minimize!discrepancy!! ✓C object classifier LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd q = softmax(✓T Df(x; ✓repr)) Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 9. Adap)ng!across!domains!minimize!discrepancy!! ✓C object classifier LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd q = softmax(✓T Df(x; ✓repr)) Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 10. Adap)ng!across!domains!minimize!discrepancy!! ✓C object classifier Discrepancy LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd q = softmax(✓T Df(x; ✓repr)) Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 11. Adap)ng!across!domains!minimize!discrepancy!! ✓C object classifier domain classifier ✓D LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd q = softmax(✓T Df(x; ✓repr)) Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 12. Adap)ng!across!domains!minimize!discrepancy!! LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd domain classifier ✓D q = softmax(✓T Df(x; ✓repr)) Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 13. Adap)ng!across!domains!minimize!discrepancy!! LD(xS, xT , ✓repr; ✓D) = X d [yD = d] log qd Lconf (xS, xT , ✓D; ✓repr) = X d 1 D log qd q = softmax(✓T Df(x; ✓repr)) ✓C object classifier Adapted!from!J.!Hoffman,!Adap)ng!Deep!Networks!Across!Domains,!Modali)es,!and!Tasks,!2015!
  • 14. Adap)ng!across!domains!minimize!discrepancy!! L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C) + Lconf (xS, xT , ✓D; ✓repr) +⌫Lsoft(xT , yT ; ✓repr, ✓C) Source Data backpack chair bike Target Databackpack ? fc8conv1 conv5 fc6 fc7 alltargetdata sourcedata labeled target data fc8conv1 conv5 source data fcD fc6 fc7 classif cation loss domain confusion loss domain classif er loss shared shared shared shared shared i i Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
  • 15. Domain Adaptation: Train on source adapt to target backpack chair bike Adapt Source Domain lots of labeled data ⇠ PS(X, Y ) DS = {(xi, yi), 8i 2 {1, . . . , N}} bike?? Target Domain unlabeled or limited labels ⇠ PT (Z, H) ?DT = {(zj, ), 8j 2 {1, . . . , M}} Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 16. Domain Adaptation: Train on source adapt to target backpack chair bike Adapt Source Domain lots of labeled data ⇠ PS(X, Y ) DS = {(xi, yi), 8i 2 {1, . . . , N}} bike?? Target Domain unlabeled or limited labels ⇠ PT (Z, H) ?DT = {(zj, ), 8j 2 {1, . . . , M}} Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 18. Source!soKlabels! Bottle Mug Chair Laptop Keyboard Bottle Mug Chair Laptop Keyboard Adapt CNN “Bottle” Source Activations Per Class backprop Cross Entropy Loss softmax high temp Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015! Lsoft(xT , yT ; ✓repr, ✓C) = X i lyT i log pi p = softmax(✓T Cf(xT ; ✓repr)/⌧)
  • 19. Class!correla)on!transfer!loss! L(xS, yS, xT , yT , ✓D; ✓repr, ✓C) = LC(xS, yS, xT , yT ; ✓repr, ✓C) + Lconf (xS, xT , ✓D; ✓repr) +⌫Lsoft(xT , yT ; ✓repr, ✓C) Source Data backpack chair bike Target Databackpack ? fc8conv1 conv5 fc6 fc7 Source softlabels alltargetdata sourcedata labeled target data fc8conv1 conv5 source data softmax high temp softlabel loss fcD fc6 fc7 classif cation loss domain confusion loss domain classif er loss shared shared shared shared shared i i Eric!Tzeng,!et.!al.!Simultaneous!Deep!Transfer!Across!Domains!and!Tasks,!2015!
  • 20. Office dataset ExperimentAdapting Visual Category Models to New Domains 9 31 categories keyboardheadphonesfile cabinet... laptop letter tray ... amazon dSLR webcam ... instance1instance2 ... ... ... instance5 ... instance1instance2 ... ... ... instance5 ... 3 domains Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks. Images of objects from 31 categories are downloaded from the web as well as captured by a high definition and a low definition camera. popular way to acquire data, as it allows for easy access to large amounts of • all classes have source labeled examples • 15 classes have target labeled examples • evaluate on remaining 16 classes [saenko`10]Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 21. DeCAF6 S+T [9] 80.7 ± 2.3 – – 94.8 ± 1.2 – – – DaNN [13] 53.6 ± 0.2 – – 71.2 ± 0.0 – 83.5 ± 0.0 – Source CNN 56.5 ± 0.3 64.6 ± 0.4 47.6 ± 0.1 92.4 ± 0.3 42.7 ± 0.1 93.6 ± 0.2 66.22 Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 59.9 ± 0.3 81.8 ± 1.0 74.05 Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.8 ± 0.5 93.9 ± 0.5 65.2 ± 0.7 96.3 ± 0.5 81.50 Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 66.2 ± 0.4 95.6 ± 0.4 64.9 ± 0.5 97.5 ± 0.2 82.13 Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 66.0 ± 0.5 95.9 ± 0.6 65.2 ± 0.6 98.3 ± 0.3 82.17 Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 66.2 ± 0.3 95.7 ± 0.5 65.0 ± 0.5 97.6 ± 0.2 82.22 Table 1. Multi-class accuracy evaluation on the standard supervised adaptation setting with the Office dataset. We evaluate on all 31 categories using the standard experimental protocol from [28]. Here, we compare against three state-of-the-art domain adaptation methods as well as a CNN trained using only source data, only target data, or both source and target data together. A ! W A ! D D ! A D ! W W ! A W ! D Average MMDT [18] – 44.6 ± 0.3 – – – 58.3 ± 0.5 – Source CNN 54.2 ± 0.6 63.2 ± 0.4 36.4 ± 0.1 89.3 ± 0.5 34.7 ± 0.1 94.5 ± 0.2 62.0 Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.2 ± 0.1 91.3 ± 0.4 41.1 ± 0.0 96.5 ± 0.1 64.8 Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 41.7 ± 0.3 89.6 ± 0.1 38.8 ± 0.4 96.5 ± 0.2 64.8 Ours: dom confusion+soft labels 59.3 ±0.6 68.0±0.5 43.1± 0.2 90.0± 0.2 40.5±0.2 97.5± 0.1 66.4 Table 2. Multi-class accuracy evaluation on the standard semi-supervised adaptation setting with the Office dataset. We evaluate on 16 held-out categories for which we have no access to target labeled data. We show results on these unsupervised categories for the source only model, our model trained using only soft labels for the 15 auxiliary categories, and finally using domain confusion together with soft labels on the 15 auxiliary categories. target domain. We report accuracies on the remaining un- labeled images, following the standard protocol introduced with the dataset [28]. In addition to a variety of baselines, we report numbers for both soft label fine-tuning alone as well as soft labels with domain confusion in Table 1. Because the Office dataset is imbalanced, we report multi-class accura- following the standard protocol introduced with the Office dataset [28]. We then evaluate our classification performance on the remaining 16 categories for which no data was avail- able at training time. In Table 2 we present multi-class accuracies over the 16 held-out categories and compare our method to a previous Office dataset Experiment Multiclass accuracy over 16 classes which lack target labels Original slide: J. Hoffman, Adapting Deep Networks Across Domains, Modalities, and Tasks, ICCV 2015
  • 22. back pack bike bike helmet bookcase bottle calculator desk chair desk lamp desktop computer file cabinet headphones keyboard laptop computer letter tray mobile phone monitor mouse mug paper notebook pen phone printer projector punchers ring binder ruler scissors speaker stapler tape dispenser trash can 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Ours soft label back pack bike bike helmet bookcase bottle calculator desk chair desk lamp desktop computer file cabinet headphones keyboard laptop computer letter tray mobile phone monitor mouse mug paper notebook pen phone printer projector punchers ring binder ruler scissors speaker stapler tape dispenser trash can 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Baseline soft label ring binder monitor Baseline soft activation Our soft activation Target test image Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
  • 23. back pack bike bike helmet bookcase bottle calculator desk chair desk lamp desktop computer file cabinet headphones keyboard laptop computer letter tray mobile phone Source soft labels Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
  • 24. Cross-dataset Experiment Setup Source: ImageNet ! Target: Caltech256 ! 40 categories ! Evaluate adaptation performance with 0,1,3,5 target labeled examples per class [tommasi`14] Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015
  • 25. ImageNet adapted to Caltech Number Labeled Target Examples per Category 0 1 3 5 Multi-classAccuracy 72 73 74 75 76 77 78 Source+Target CNN Ours: softlabels only Ours: dom confusion+softlabels [ICCV 2015] 400 120 200 Number of labeled target examples MulticlassAccuracy Originalslide:J.Hoffman,AdaptingDeepNetworksAcrossDomains,Modalities,andTasks,ICCV2015