SlideShare a Scribd company logo
1 of 1
Download to read offline
Inves&ga&on	
  of	
  the	
  Influence	
  	
  
of	
  Electrolytes	
  on	
  the	
  
Performance	
  of	
  Sodium-­‐Ion	
  
Ba<eries	
  
Ahmad	
  Ace	
  Haidrey	
  
Department	
  of	
  Engineering	
  
University	
  of	
  California,	
  
Berkeley	
  
Ahaidrey@berkeley.edu	
  
Abstract	
  
	
  
	
  Energy	
  storage	
  has	
  become	
  a	
  front	
  and	
  center	
  
issue	
  in	
  our	
  Ame,	
  causing	
  much	
  debate	
  and	
  deliberaAon.	
  
To	
  meet	
  the	
  high	
  projected	
  demand	
  for	
  these	
  energy	
  
storage	
  systems	
  such	
  as	
  smart	
  grids	
  and	
  electric	
  
vehicles,	
  the	
  next	
  generaAon	
  of	
  secondary	
  baEeries	
  is	
  
crucial.	
  Though	
  there	
  are	
  many	
  various	
  rechargeable	
  
baEery	
  systems,	
  Na-­‐ion	
  are	
  one	
  of	
  the	
  leading	
  
candidates	
  due	
  to	
  its	
  eco-­‐friendly	
  properAes,	
  its	
  natural	
  
abundance,	
  and	
  its	
  chemical	
  similarity	
  to	
  Li-­‐ions,	
  the	
  
current	
  standard	
  for	
  rechargeable	
  baEeries.	
  At	
  the	
  
University	
  of	
  Singapore,	
  we	
  were	
  studying	
  the	
  general	
  
similariAes	
  and	
  differences	
  of	
  Na-­‐ion	
  and	
  Li-­‐ion	
  baEeries	
  
with	
  regards	
  to	
  solid-­‐state	
  chemistry	
  and	
  
electrochemistry	
  of	
  the	
  posiAve	
  electrode,	
  the	
  negaAve	
  
electrode	
  and	
  the	
  electrolyte	
  materials.	
  Due	
  to	
  the	
  
larger	
  ionic	
  and	
  orbital	
  sizes	
  of	
  Na-­‐ions,	
  the	
  different	
  
kineAc	
  and	
  thermodynamic	
  properAes	
  lead	
  to	
  new	
  
phenomenon	
  never	
  encountered	
  with	
  Li-­‐ions.	
  	
  
	
  
Introduc&on	
  
	
  
	
  It	
  is	
  oNen	
  assumed	
  that	
  the	
  galvanostaAc	
  cycling	
  
of	
  electrode	
  materials	
  used	
  for	
  Na-­‐ion	
  baEeries	
  is	
  due	
  to	
  
the	
  working	
  electrode	
  while	
  the	
  counter	
  electrode	
  
remains	
  at	
  a	
  fixed	
  potenAal,	
  but	
  Professor	
  Bayala’s	
  lab	
  at	
  
the	
  NaAonal	
  University	
  of	
  Singapore	
  (NUS)	
  reported	
  a	
  
new	
  phenomenon	
  never	
  seen	
  before	
  in	
  the	
  field:	
  a	
  
voltage	
  step	
  present	
  in	
  the	
  discharge	
  profiles	
  at	
  high	
  rate	
  
cycling.[1]	
  This	
  phenomenon	
  doesn’t	
  originate	
  from	
  a	
  
potenAal	
  change	
  in	
  the	
  working	
  electrode	
  but	
  is	
  due	
  to	
  
increased	
  polarizaAon	
  of	
  the	
  counter	
  electrode.	
  It	
  is	
  
important	
  to	
  note	
  that	
  the	
  solvent	
  is	
  criAcal	
  for	
  the	
  step	
  
formaAon.	
  If	
  pure	
  EC	
  or	
  PC	
  is	
  used,	
  there	
  is	
  no	
  response	
  
but	
  using	
  EC:PC	
  (1v/1v)	
  has	
  an	
  evident	
  step,	
  which	
  can	
  
be	
  seen	
  in	
  figure	
  1	
  below.	
  A	
  passivaAon	
  layer	
  grows	
  on	
  
the	
  sodium	
  counter	
  electrode.	
  The	
  step	
  also	
  is	
  only	
  
noAced	
  in	
  the	
  presence	
  of	
  sodium	
  metal	
  counter	
  
electrode;	
  it	
  is	
  not	
  seen	
  in	
  a	
  Na-­‐ion	
  full	
  cell	
  or	
  in	
  any	
  Li-­‐
ion	
  cells.	
  In	
  recent	
  publicaAon,	
  a	
  voltage	
  step	
  was	
  
spoEed	
  in	
  the	
  galvanostaAc	
  profiles	
  of	
  NaV2(PO4)3	
  (NVP)	
  
during	
  sodium	
  inserAon	
  (or	
  discharge)	
  while	
  cycling	
  in	
  a	
  
sodium	
  half	
  cell.	
  [2]	
  The	
  step	
  was	
  only	
  seen	
  at	
  high	
  rates	
  
of	
  discharge,	
  and	
  never	
  during	
  the	
  sodium	
  extracAon	
  
cycle	
  (charging).	
  The	
  step	
  is	
  not	
  due	
  to	
  changes	
  in	
  the	
  
working	
  electrode	
  but	
  rather	
  due	
  to	
  the	
  passivaAon	
  layer	
  
formed	
  on	
  the	
  Na-­‐ion	
  counter	
  electrode	
  caused	
  by	
  
solvent	
  interacAons	
  that	
  produces	
  surface	
  species.	
  [3]	
  
	
   	
   	
   	
   	
   	
   	
  	
  
	
  
	
  
Results	
  	
  
	
  
	
  The	
  experiments	
  were	
  conducted	
  using	
  a	
  sodium	
  metal	
  
counter	
  electrode	
  with	
  NaTi2(PO4)3	
  (NTP)	
  working	
  electrode	
  due	
  
to	
  its	
  flat	
  cycling	
  profile	
  and	
  its	
  redox	
  potenAal	
  lying	
  in	
  the	
  
middle	
  of	
  the	
  electrochemical	
  window	
  of	
  electrolyte	
  soluAons	
  
based	
  on	
  alkyl	
  carbonate	
  solvents.	
  [4]	
  ANer	
  noAcing	
  the	
  visible	
  
step	
  in	
  an	
  EC:PC	
  solvent	
  and	
  not	
  in	
  the	
  pure	
  EC	
  or	
  pure	
  PC	
  
solvents,	
  further	
  tesAng	
  went	
  on	
  to	
  observe	
  different	
  solvent	
  
mixtures	
  as	
  can	
  be	
  seen	
  in	
  figure	
  2	
  and	
  3.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
What	
  can	
  be	
  concluded	
  from	
  the	
  above	
  plots	
  is	
  that	
  EC	
  is	
  causing	
  
a	
  barrier	
  which	
  results	
  in	
  the	
  voltage	
  step.	
  Altering	
  solvents	
  with	
  
PC	
  mixtures	
  didn’t	
  produce	
  a	
  visible	
  voltage	
  step.	
  	
  
	
  The	
  next	
  step	
  was	
  to	
  see	
  how	
  altering	
  the	
  
concentraAon	
  of	
  EC	
  affects	
  the	
  locaAon	
  of	
  the	
  voltage	
  step	
  and	
  
by	
  observing	
  figure	
  4,	
  it	
  can	
  be	
  seen	
  that	
  a	
  less	
  concentrated	
  EC	
  
mixture	
  poses	
  an	
  earlier	
  step	
  while	
  a	
  more	
  heavily	
  concentrated	
  
EC	
  mixture	
  poses	
  a	
  laEer	
  voltage	
  step.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  While	
  all	
  of	
  these	
  phenomenon	
  were	
  occurring	
  in	
  NTP	
  
using	
  NaClO4,	
  we	
  wanted	
  to	
  see	
  if	
  similar	
  results	
  would	
  be	
  
shown	
  in	
  other	
  electrolytes:	
  NaPF6,	
  NaFSI,	
  and	
  NaTFSI.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
In	
  figure	
  5,	
  the	
  results	
  seem	
  to	
  support	
  that	
  the	
  electrolyte	
  
doesn’t	
  play	
  a	
  huge	
  impact	
  on	
  the	
  step	
  compared	
  to	
  the	
  solvent	
  
mixture	
  it	
  is	
  in.	
  NaFSI	
  is	
  an	
  outlier	
  due	
  to	
  its	
  unstable	
  nature	
  and	
  
high	
  polarizaAon.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Conclusions	
  
	
  
	
  In	
  this	
  set	
  of	
  experiments,	
  we	
  have	
  added	
  on	
  
needed	
  informaAon	
  about	
  the	
  newly	
  uncovered	
  
voltage	
  step	
  seen	
  in	
  cycling	
  profiles	
  for	
  NVP	
  or	
  NTP	
  
when	
  cycled	
  against	
  sodium	
  metal	
  in	
  different	
  
mixtures	
  of	
  soluAons.	
  By	
  looking	
  observing	
  only	
  the	
  
data	
  extracted	
  from	
  the	
  graphs,	
  it	
  seems	
  that	
  EC	
  is	
  a	
  
major	
  contributor	
  to	
  the	
  voltage	
  step,	
  which	
  is	
  most	
  
likely	
  the	
  primary	
  source	
  to	
  the	
  polarizaAon	
  that	
  arises	
  
due	
  to	
  a	
  passivaAon	
  layer	
  formed	
  on	
  the	
  sodium	
  
counter	
  electrode.	
  In	
  past	
  arAcles,	
  EIS	
  processing	
  
shows	
  that	
  passivaAon	
  layers	
  are	
  formed	
  with	
  PC	
  
mixtures	
  as	
  well	
  but	
  just	
  different	
  in	
  nature	
  because	
  it	
  
doesn’t	
  result	
  in	
  a	
  voltage	
  step.	
  [1]	
  Using	
  EC:DMC	
  or	
  
EC:DEC	
  sAll	
  provide	
  a	
  voltage	
  step	
  while	
  using	
  PC:DEC	
  
or	
  PC:DMC	
  does	
  not.	
  We	
  also	
  now	
  know	
  the	
  
concentraAon	
  level	
  of	
  EC	
  does	
  play	
  an	
  impact	
  on	
  the	
  
locaAon	
  of	
  the	
  step	
  and	
  that	
  changing	
  the	
  electrolyte,	
  
from	
  the	
  ones	
  we	
  have	
  selected	
  and	
  tested,	
  don’t	
  
seem	
  to	
  be	
  affected	
  in	
  regards	
  to	
  the	
  voltage	
  step	
  as	
  
long	
  as	
  it	
  is	
  a	
  stable	
  soluAon.	
  	
  
	
  The	
  next	
  set	
  of	
  work	
  would	
  be	
  to	
  create	
  three	
  
electrode	
  cells	
  and	
  do	
  impedance	
  tesAng	
  to	
  be	
  able	
  to	
  
explain	
  why	
  these	
  set	
  of	
  results	
  are	
  happening.	
  	
  
References	
  
	
  
[1]	
  A.	
  Rudola,	
  K.	
  Saravanan,	
  S.	
  Devaraj,	
  H.	
  Gong,	
  P.	
  Balaya,	
  
Chemical	
  CommunicaAons,	
  49	
  (2013)	
  7451-­‐	
  7453.	
  
[2]	
  K.	
  Saravanan,	
  C.W.	
  Mason,	
  A.	
  Rudola,	
  K.H.	
  Wong,	
  P.	
  
Balaya,	
  Advanced	
  Energy	
  Materials,	
  3	
  (2013)	
  
444-­‐450.	
  
[3]	
  Y.H.	
  Jung,	
  C.H.	
  Lim,	
  D.K.	
  Kim,	
  Journal	
  of	
  Materials	
  
Chemistry	
  A,	
  1	
  (2013)	
  11350-­‐11354.	
  
[4]	
  C.	
  Delmas,	
  F.	
  Cherkaoui,	
  A.	
  Nadiri,	
  P.	
  Hagenmuller,	
  
Materials	
  Research	
  BulleAn,	
  22	
  (1987)	
  631-­‐639.	
  	
  
	
  
	
  
	
  
Figure 1: The voltage step is
evident in a solution mixture.
Figure 2: Fixed EC mixtures Figure 3: Fixed PC mixtures
Figure 4: Changing EC concentration
Figure 5: Changing the electrolyte in
EC:PC (1:1 v/v) solvent
Acknowledgements	
  
	
  
	
  I	
  would	
  like	
  to	
  thank	
  U.C.	
  Berkeley,	
  Cal	
  Energy	
  
Corps,	
  Professor	
  Palani	
  Balaya,	
  Ph.D.	
  Ashisht	
  Rudola,	
  
Professor	
  Paul	
  Wright,	
  Tracy	
  Turner,	
  Orion	
  Kew,	
  NUS,	
  my	
  
family,	
  and	
  anyone	
  else	
  involved	
  to	
  make	
  this	
  experience	
  
happen.	
  Thank	
  you.	
  	
  
	
  

More Related Content

What's hot

4th Lecture on Electrochemistry | Chemistry Part I | 12th Std
4th Lecture on Electrochemistry | Chemistry Part I | 12th Std4th Lecture on Electrochemistry | Chemistry Part I | 12th Std
4th Lecture on Electrochemistry | Chemistry Part I | 12th StdAnsari Usama
 
ORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMSORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMSProtik Biswas
 
3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std
3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std
3rd Lecture on Electrochemistry | Chemistry Part I | 12th StdAnsari Usama
 
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi Institute
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi InstituteCBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi Institute
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi InstituteHomi Institute
 
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...AI Publications
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistryDagobert Aldus
 
Paper_12689_extendedabstract_3599_0 (1)
Paper_12689_extendedabstract_3599_0 (1)Paper_12689_extendedabstract_3599_0 (1)
Paper_12689_extendedabstract_3599_0 (1)Bob Rahardjo
 
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)Electrochemistry class 12 ( a continuation of redox reaction of grade 11)
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)ritik
 
1st Lecture on Electrochemistry | Chemistry Part I | 12th Std
1st Lecture on Electrochemistry | Chemistry Part I | 12th Std1st Lecture on Electrochemistry | Chemistry Part I | 12th Std
1st Lecture on Electrochemistry | Chemistry Part I | 12th StdAnsari Usama
 
Unit iv (4.1. electrochemistry - I
Unit   iv (4.1. electrochemistry - IUnit   iv (4.1. electrochemistry - I
Unit iv (4.1. electrochemistry - Iganapathimurugan1
 
Carbenes - octet defying molecules
Carbenes - octet defying moleculesCarbenes - octet defying molecules
Carbenes - octet defying moleculesRoshen Reji Idiculla
 
Biological oxidation and reduction
Biological oxidation and reductionBiological oxidation and reduction
Biological oxidation and reductionWishal Butt
 
Conductometry (Pharmaceutical analysis)
Conductometry (Pharmaceutical analysis)Conductometry (Pharmaceutical analysis)
Conductometry (Pharmaceutical analysis)Yunesalsayadi
 
Determination of equivalence conductance, degree of dissociation and dissocia...
Determination of equivalence conductance, degree of dissociation and dissocia...Determination of equivalence conductance, degree of dissociation and dissocia...
Determination of equivalence conductance, degree of dissociation and dissocia...Mithil Fal Desai
 
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationComputational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationKaram Idrees
 
Rearrangement of carbocation
Rearrangement of carbocationRearrangement of carbocation
Rearrangement of carbocationSandhyaPunetha1
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reductionsom allul
 

What's hot (19)

4th Lecture on Electrochemistry | Chemistry Part I | 12th Std
4th Lecture on Electrochemistry | Chemistry Part I | 12th Std4th Lecture on Electrochemistry | Chemistry Part I | 12th Std
4th Lecture on Electrochemistry | Chemistry Part I | 12th Std
 
ORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMSORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMS
 
3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std
3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std
3rd Lecture on Electrochemistry | Chemistry Part I | 12th Std
 
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi Institute
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi InstituteCBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi Institute
CBSE Class 12 Chemistry Chapter 3 (Electrochemistry) | Homi Institute
 
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...
Determination of the hydrogen coefficient diffusion DH in the MmNi3.55Mn0.4Al...
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Electrodeposition of CdSe
Electrodeposition of CdSeElectrodeposition of CdSe
Electrodeposition of CdSe
 
Paper_12689_extendedabstract_3599_0 (1)
Paper_12689_extendedabstract_3599_0 (1)Paper_12689_extendedabstract_3599_0 (1)
Paper_12689_extendedabstract_3599_0 (1)
 
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)Electrochemistry class 12 ( a continuation of redox reaction of grade 11)
Electrochemistry class 12 ( a continuation of redox reaction of grade 11)
 
1st Lecture on Electrochemistry | Chemistry Part I | 12th Std
1st Lecture on Electrochemistry | Chemistry Part I | 12th Std1st Lecture on Electrochemistry | Chemistry Part I | 12th Std
1st Lecture on Electrochemistry | Chemistry Part I | 12th Std
 
Unit iv (4.1. electrochemistry - I
Unit   iv (4.1. electrochemistry - IUnit   iv (4.1. electrochemistry - I
Unit iv (4.1. electrochemistry - I
 
Carbenes - octet defying molecules
Carbenes - octet defying moleculesCarbenes - octet defying molecules
Carbenes - octet defying molecules
 
Biological oxidation and reduction
Biological oxidation and reductionBiological oxidation and reduction
Biological oxidation and reduction
 
Conductometry (Pharmaceutical analysis)
Conductometry (Pharmaceutical analysis)Conductometry (Pharmaceutical analysis)
Conductometry (Pharmaceutical analysis)
 
Determination of equivalence conductance, degree of dissociation and dissocia...
Determination of equivalence conductance, degree of dissociation and dissocia...Determination of equivalence conductance, degree of dissociation and dissocia...
Determination of equivalence conductance, degree of dissociation and dissocia...
 
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationComputational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
 
Rearrangement of carbocation
Rearrangement of carbocationRearrangement of carbocation
Rearrangement of carbocation
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reduction
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 

Similar to Final_Poster_PDF

Ikatan kimia (Chemical bonding)
Ikatan kimia (Chemical bonding)Ikatan kimia (Chemical bonding)
Ikatan kimia (Chemical bonding)dasi anto
 
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...Darren Martin Leith
 
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)Malik Xufyan
 
FYP Report-Xing Dan
FYP Report-Xing DanFYP Report-Xing Dan
FYP Report-Xing Dan#Xing Dan#
 
Electrodes and potentiometry
Electrodes and potentiometryElectrodes and potentiometry
Electrodes and potentiometryCleophas Rwemera
 
Lead Acid Battery Lecture.pdf
Lead Acid Battery Lecture.pdfLead Acid Battery Lecture.pdf
Lead Acid Battery Lecture.pdfImran Shahnawaz
 
Lecture on Lead Acid Battery
Lecture on Lead Acid BatteryLecture on Lead Acid Battery
Lecture on Lead Acid BatteryAniket Singh
 
Instrumental methods ii and basics of electrochemistry
Instrumental methods ii and basics of electrochemistryInstrumental methods ii and basics of electrochemistry
Instrumental methods ii and basics of electrochemistryJLoknathDora
 
Chemical bonding-I
Chemical bonding-IChemical bonding-I
Chemical bonding-ILATHAV18
 
Bioorganic Chemistry, Lecture 3.ppt
Bioorganic Chemistry, Lecture 3.pptBioorganic Chemistry, Lecture 3.ppt
Bioorganic Chemistry, Lecture 3.pptGopikaRaman1
 
lecture 1.pptx
lecture 1.pptxlecture 1.pptx
lecture 1.pptxAhmed43480
 
Experiment 4 Electropolymerized Conducting Polymers. In.docx
Experiment 4 Electropolymerized Conducting Polymers.         In.docxExperiment 4 Electropolymerized Conducting Polymers.         In.docx
Experiment 4 Electropolymerized Conducting Polymers. In.docxgitagrimston
 
CTW Final Poster
CTW Final PosterCTW Final Poster
CTW Final PosterCharles Wan
 

Similar to Final_Poster_PDF (20)

Ikatan kimia (Chemical bonding)
Ikatan kimia (Chemical bonding)Ikatan kimia (Chemical bonding)
Ikatan kimia (Chemical bonding)
 
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...
A molecular-dynamics-investigation-of-the-stability-of-a-charged-electroactiv...
 
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.10.Test (Malik Xufyan)
 
FYP Report-Xing Dan
FYP Report-Xing DanFYP Report-Xing Dan
FYP Report-Xing Dan
 
Electrodes and potentiometry
Electrodes and potentiometryElectrodes and potentiometry
Electrodes and potentiometry
 
Lead Acid Battery Lecture.pdf
Lead Acid Battery Lecture.pdfLead Acid Battery Lecture.pdf
Lead Acid Battery Lecture.pdf
 
Lecture on Lead Acid Battery
Lecture on Lead Acid BatteryLecture on Lead Acid Battery
Lecture on Lead Acid Battery
 
Gupta2007
Gupta2007Gupta2007
Gupta2007
 
Laksman2014-Cysteine
Laksman2014-CysteineLaksman2014-Cysteine
Laksman2014-Cysteine
 
introduction to electrochemistry
 introduction to electrochemistry introduction to electrochemistry
introduction to electrochemistry
 
Instrumental methods ii and basics of electrochemistry
Instrumental methods ii and basics of electrochemistryInstrumental methods ii and basics of electrochemistry
Instrumental methods ii and basics of electrochemistry
 
ja503603k
ja503603kja503603k
ja503603k
 
Chemical bonding-I
Chemical bonding-IChemical bonding-I
Chemical bonding-I
 
Bioorganic Chemistry, Lecture 3.ppt
Bioorganic Chemistry, Lecture 3.pptBioorganic Chemistry, Lecture 3.ppt
Bioorganic Chemistry, Lecture 3.ppt
 
Adv Mat 2015
Adv Mat 2015Adv Mat 2015
Adv Mat 2015
 
lecture 1.pptx
lecture 1.pptxlecture 1.pptx
lecture 1.pptx
 
chapter-14.ppt
chapter-14.pptchapter-14.ppt
chapter-14.ppt
 
chapter-14.ppt
chapter-14.pptchapter-14.ppt
chapter-14.ppt
 
Experiment 4 Electropolymerized Conducting Polymers. In.docx
Experiment 4 Electropolymerized Conducting Polymers.         In.docxExperiment 4 Electropolymerized Conducting Polymers.         In.docx
Experiment 4 Electropolymerized Conducting Polymers. In.docx
 
CTW Final Poster
CTW Final PosterCTW Final Poster
CTW Final Poster
 

Final_Poster_PDF

  • 1. Inves&ga&on  of  the  Influence     of  Electrolytes  on  the   Performance  of  Sodium-­‐Ion   Ba<eries   Ahmad  Ace  Haidrey   Department  of  Engineering   University  of  California,   Berkeley   Ahaidrey@berkeley.edu   Abstract      Energy  storage  has  become  a  front  and  center   issue  in  our  Ame,  causing  much  debate  and  deliberaAon.   To  meet  the  high  projected  demand  for  these  energy   storage  systems  such  as  smart  grids  and  electric   vehicles,  the  next  generaAon  of  secondary  baEeries  is   crucial.  Though  there  are  many  various  rechargeable   baEery  systems,  Na-­‐ion  are  one  of  the  leading   candidates  due  to  its  eco-­‐friendly  properAes,  its  natural   abundance,  and  its  chemical  similarity  to  Li-­‐ions,  the   current  standard  for  rechargeable  baEeries.  At  the   University  of  Singapore,  we  were  studying  the  general   similariAes  and  differences  of  Na-­‐ion  and  Li-­‐ion  baEeries   with  regards  to  solid-­‐state  chemistry  and   electrochemistry  of  the  posiAve  electrode,  the  negaAve   electrode  and  the  electrolyte  materials.  Due  to  the   larger  ionic  and  orbital  sizes  of  Na-­‐ions,  the  different   kineAc  and  thermodynamic  properAes  lead  to  new   phenomenon  never  encountered  with  Li-­‐ions.       Introduc&on      It  is  oNen  assumed  that  the  galvanostaAc  cycling   of  electrode  materials  used  for  Na-­‐ion  baEeries  is  due  to   the  working  electrode  while  the  counter  electrode   remains  at  a  fixed  potenAal,  but  Professor  Bayala’s  lab  at   the  NaAonal  University  of  Singapore  (NUS)  reported  a   new  phenomenon  never  seen  before  in  the  field:  a   voltage  step  present  in  the  discharge  profiles  at  high  rate   cycling.[1]  This  phenomenon  doesn’t  originate  from  a   potenAal  change  in  the  working  electrode  but  is  due  to   increased  polarizaAon  of  the  counter  electrode.  It  is   important  to  note  that  the  solvent  is  criAcal  for  the  step   formaAon.  If  pure  EC  or  PC  is  used,  there  is  no  response   but  using  EC:PC  (1v/1v)  has  an  evident  step,  which  can   be  seen  in  figure  1  below.  A  passivaAon  layer  grows  on   the  sodium  counter  electrode.  The  step  also  is  only   noAced  in  the  presence  of  sodium  metal  counter   electrode;  it  is  not  seen  in  a  Na-­‐ion  full  cell  or  in  any  Li-­‐ ion  cells.  In  recent  publicaAon,  a  voltage  step  was   spoEed  in  the  galvanostaAc  profiles  of  NaV2(PO4)3  (NVP)   during  sodium  inserAon  (or  discharge)  while  cycling  in  a   sodium  half  cell.  [2]  The  step  was  only  seen  at  high  rates   of  discharge,  and  never  during  the  sodium  extracAon   cycle  (charging).  The  step  is  not  due  to  changes  in  the   working  electrode  but  rather  due  to  the  passivaAon  layer   formed  on  the  Na-­‐ion  counter  electrode  caused  by   solvent  interacAons  that  produces  surface  species.  [3]                       Results        The  experiments  were  conducted  using  a  sodium  metal   counter  electrode  with  NaTi2(PO4)3  (NTP)  working  electrode  due   to  its  flat  cycling  profile  and  its  redox  potenAal  lying  in  the   middle  of  the  electrochemical  window  of  electrolyte  soluAons   based  on  alkyl  carbonate  solvents.  [4]  ANer  noAcing  the  visible   step  in  an  EC:PC  solvent  and  not  in  the  pure  EC  or  pure  PC   solvents,  further  tesAng  went  on  to  observe  different  solvent   mixtures  as  can  be  seen  in  figure  2  and  3.                             What  can  be  concluded  from  the  above  plots  is  that  EC  is  causing   a  barrier  which  results  in  the  voltage  step.  Altering  solvents  with   PC  mixtures  didn’t  produce  a  visible  voltage  step.      The  next  step  was  to  see  how  altering  the   concentraAon  of  EC  affects  the  locaAon  of  the  voltage  step  and   by  observing  figure  4,  it  can  be  seen  that  a  less  concentrated  EC   mixture  poses  an  earlier  step  while  a  more  heavily  concentrated   EC  mixture  poses  a  laEer  voltage  step.                              While  all  of  these  phenomenon  were  occurring  in  NTP   using  NaClO4,  we  wanted  to  see  if  similar  results  would  be   shown  in  other  electrolytes:  NaPF6,  NaFSI,  and  NaTFSI.                               In  figure  5,  the  results  seem  to  support  that  the  electrolyte   doesn’t  play  a  huge  impact  on  the  step  compared  to  the  solvent   mixture  it  is  in.  NaFSI  is  an  outlier  due  to  its  unstable  nature  and   high  polarizaAon.                 Conclusions      In  this  set  of  experiments,  we  have  added  on   needed  informaAon  about  the  newly  uncovered   voltage  step  seen  in  cycling  profiles  for  NVP  or  NTP   when  cycled  against  sodium  metal  in  different   mixtures  of  soluAons.  By  looking  observing  only  the   data  extracted  from  the  graphs,  it  seems  that  EC  is  a   major  contributor  to  the  voltage  step,  which  is  most   likely  the  primary  source  to  the  polarizaAon  that  arises   due  to  a  passivaAon  layer  formed  on  the  sodium   counter  electrode.  In  past  arAcles,  EIS  processing   shows  that  passivaAon  layers  are  formed  with  PC   mixtures  as  well  but  just  different  in  nature  because  it   doesn’t  result  in  a  voltage  step.  [1]  Using  EC:DMC  or   EC:DEC  sAll  provide  a  voltage  step  while  using  PC:DEC   or  PC:DMC  does  not.  We  also  now  know  the   concentraAon  level  of  EC  does  play  an  impact  on  the   locaAon  of  the  step  and  that  changing  the  electrolyte,   from  the  ones  we  have  selected  and  tested,  don’t   seem  to  be  affected  in  regards  to  the  voltage  step  as   long  as  it  is  a  stable  soluAon.      The  next  set  of  work  would  be  to  create  three   electrode  cells  and  do  impedance  tesAng  to  be  able  to   explain  why  these  set  of  results  are  happening.     References     [1]  A.  Rudola,  K.  Saravanan,  S.  Devaraj,  H.  Gong,  P.  Balaya,   Chemical  CommunicaAons,  49  (2013)  7451-­‐  7453.   [2]  K.  Saravanan,  C.W.  Mason,  A.  Rudola,  K.H.  Wong,  P.   Balaya,  Advanced  Energy  Materials,  3  (2013)   444-­‐450.   [3]  Y.H.  Jung,  C.H.  Lim,  D.K.  Kim,  Journal  of  Materials   Chemistry  A,  1  (2013)  11350-­‐11354.   [4]  C.  Delmas,  F.  Cherkaoui,  A.  Nadiri,  P.  Hagenmuller,   Materials  Research  BulleAn,  22  (1987)  631-­‐639.           Figure 1: The voltage step is evident in a solution mixture. Figure 2: Fixed EC mixtures Figure 3: Fixed PC mixtures Figure 4: Changing EC concentration Figure 5: Changing the electrolyte in EC:PC (1:1 v/v) solvent Acknowledgements      I  would  like  to  thank  U.C.  Berkeley,  Cal  Energy   Corps,  Professor  Palani  Balaya,  Ph.D.  Ashisht  Rudola,   Professor  Paul  Wright,  Tracy  Turner,  Orion  Kew,  NUS,  my   family,  and  anyone  else  involved  to  make  this  experience   happen.  Thank  you.