SlideShare a Scribd company logo
1 of 153
Download to read offline
  	
   	
  
	
  
	
  
	
  
	
  
BARLEY	
  TO	
  BOILER	
  
Energy	
  and	
  Resource	
  Conservation	
  within	
  Craft	
  Brewing	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Aaron	
  Blaise	
  Treeson	
  
CVEN	
  6960	
  Building	
  Systems	
  Engineering	
  Masters	
  Report	
  
Monday,	
  July	
  20,	
  2015	
  
	
  
Masters	
  Project	
  Advisor	
  
Moncef	
  Krarti	
  PhD	
  
	
  
	
  
Master’s	
  Defense	
  Panel	
  
Moncef	
  Krarti	
  PhD	
  
Jon	
  Zhai	
  PhD	
  
Paul	
  Komor	
  PhD	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   2	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   3	
  
Abstract	
  
	
  
Touch	
  the	
  earth	
  lightly,	
  
use	
  the	
  earth	
  gently,	
  
nourish	
  the	
  life	
  of	
  the	
  world	
  in	
  our	
  care:	
  
gift	
  of	
  great	
  wonder,	
  
ours	
  to	
  surrender,	
  
trust	
  for	
  the	
  children	
  tomorrow	
  will	
  bear.	
  
-­‐Shirley	
  E.	
  Murray	
  
	
  
There	
  appears	
  to	
  be	
  a	
  contradiction	
  within	
  our	
  society;	
  we	
  consume	
  products	
  at	
  
higher	
  rates	
  and	
  generally	
  demand	
  increased	
  quality	
  and	
  yet	
  there	
  is	
  greater	
  awareness	
  
of	
  the	
  finite	
  resources	
  on	
  this	
  planet	
  and	
  the	
  impact	
  to	
  the	
  air,	
  water,	
  and	
  land	
  that	
  is	
  
incurred	
  by	
  our	
  quality	
  of	
  life.	
  	
  The	
  burgeoning	
  craft	
  brewing	
  industry	
  exemplifies	
  this	
  
dichotomy.	
   	
   The	
   growing	
   list	
   of	
   over	
   3,500	
   microbrewers	
   increases	
   in	
   sales,	
   annually	
  
acquiring	
  an	
  additional	
  one	
  percent	
  of	
  the	
  market	
  share	
  for	
  the	
  past	
  couple	
  years	
  of	
  
total	
  malt	
  beverage	
  sales.	
  	
  At	
  the	
  same	
  time,	
  consumers	
  associate	
  the	
  concept	
  of	
  ‘craft’	
  
as	
  having	
  an	
  implicit	
  social	
  and	
  environmental	
  component.	
  	
  While	
  this	
  is	
  often	
  not	
  the	
  
case;	
   the	
   following	
   report	
   details	
   the	
   brewing	
   process	
   specifically	
   from	
   a	
  
thermodynamic	
   analysis.	
   	
   The	
   report	
   describes	
   the	
   process	
   of	
   defining	
   systems	
  
boundaries	
  to	
  account	
  for	
  primary	
  and	
  secondary	
  energies	
  usage,	
  as	
  well	
  as	
  associated	
  
greenhouse	
  gas	
  emissions	
  and	
  wastewater	
  disposal.	
  	
  This	
  research	
  is	
  supplemented	
  with	
  
a	
  primary	
  case	
  study	
  of	
  resource	
  usage	
  and	
  proposed	
  conservation	
  measures	
  for	
  Diebolt	
  
Brewing	
  Company	
  in	
  Denver,	
  CO.	
  	
  With	
  the	
  efficient	
  used	
  of	
  onsite	
  heat	
  generation	
  and	
  
extraction,	
  reductions	
  in	
  systemic	
  internal	
  resistances,	
  possible	
  heat	
  recovery	
  or	
  power	
  
generation,	
   byproduct	
   reuse	
   and	
   upcycling,	
   and	
   a	
   list	
   of	
   other	
   best	
   practices,	
   a	
   craft	
  
brewery	
   can	
   continue	
   to	
   make	
   high	
   quality	
   microbrews	
   while	
   enhancing	
   their	
  
community,	
   conserving	
   resources	
   and	
   thereby	
   minimizing	
   their	
   impact	
   on	
   the	
  
environment,	
  and	
  spearheading	
  the	
  revolution	
  of	
  sustainable	
  brewing.	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   4	
  
Statement	
  of	
  Authorship	
  
	
  
Remember,	
  the	
  best	
  beer	
  in	
  the	
  world	
  is	
  the	
  one	
  you	
  brewed.	
  
-­‐Charlie	
  Papazian	
  
	
  
	
  
I,	
  Aaron	
  Blaise	
  Treeson,	
  have	
  produced	
  this	
  document	
  on	
  my	
  own	
  accord	
  in	
  full	
  
compliance	
  with	
  the	
  Honor	
  Code	
  and	
  Student	
  Bylaws	
  of	
  the	
  University	
  of	
  Colorado	
  of	
  
Boulder.	
  The	
  intention	
  of	
  this	
  document	
  is	
  to	
  act	
  as	
  a	
  consolidated	
  source	
  of	
  information	
  
on	
  resource	
  conservation	
  in	
  the	
  craft	
  brewing	
  process.	
  	
  While	
  scholarly	
  researched	
  and	
  
empirically	
  corroborated,	
  it	
  is	
  intended	
  to	
  also	
  be	
  accessible	
  to	
  the	
  layman	
  within	
  the	
  
field.	
  
	
  
	
  
	
  
	
  
________________________________________________________________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Aaron	
  	
  	
  Blaise	
  	
  	
  Treeson	
   Monday,	
  July	
  20,	
  2015	
  
	
  
	
  
	
  
abtreeson@gmail.com	
  
505.918.7071
	
  
Master	
  of	
  Sciences:	
  Building	
  Systems	
  Engineering,	
  2015	
  Pending	
  
The	
  University	
  of	
  Colorado	
  in	
  Boulder	
  
Graduate	
  Energy	
  Certificate,	
  2014	
  
The	
  Renewable	
  and	
  Sustainable	
  Energy	
  Institute	
  &	
  	
  
The	
  National	
  Renewable	
  Energy	
  Laboratory
Master	
  of	
  Architecture,	
  2012	
  
The	
  University	
  of	
  New	
  Mexico	
  
Bachelors	
  of	
  Fine	
  Arts,	
  2007	
  
Colorado	
  College
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   5	
  
Table	
  of	
  Contents	
  
Abstract	
  ..................................................................................................................................	
  3	
  
Statement	
  of	
  Authorship	
  .........................................................................................................	
  4	
  
List	
  of	
  Figures	
  ..........................................................................................................................	
  7	
  
Summary	
  Tables	
  of	
  Each	
  Section	
  .............................................................................................	
  9	
  
Introduction	
  to	
  Research	
  ........................................................................................................	
  10	
  
Craft	
  Brewing	
  Milieu,	
  Impacts	
  &	
  Impetus	
  ................................................................................	
  10	
  
Specifications,	
  Units,	
  &	
  Factors	
  ...............................................................................................	
  14	
  
Summary	
  Table	
  of	
  Introduction	
  to	
  Research	
  ...........................................................................	
  16	
  
Scope	
  of	
  Research,	
  Method	
  of	
  Analysis,	
  &	
  Barriers	
  .................................................................	
  17	
  
Holistic	
  Assessment	
  .................................................................................................................	
  17	
  
Defining	
  the	
  System	
  by	
  Establishing	
  its	
  Boundaries	
  ................................................................	
  18	
  
Conventional	
  System	
  Energy	
  Inputs	
  ........................................................................................	
  19	
  
Integrating	
  Conservation	
  into	
  a	
  Business	
  Model	
  .....................................................................	
  20	
  
Summary	
  Table	
  of	
  Scope	
  of	
  Research	
  &	
  Method	
  of	
  Analysis	
  ..................................................	
  22	
  
Brewing	
  Process	
  .....................................................................................................................	
  23	
  
Scale	
  of	
  Production	
  ..................................................................................................................	
  23	
  
Off	
  Site	
  Inputs	
  Brewery	
  Inputs	
  .................................................................................................	
  24	
  
The	
  Brewhouse	
  ........................................................................................................................	
  27	
  
Final	
  Production	
  &	
  Packaging	
  ..................................................................................................	
  33	
  
Summary	
  Table	
  of	
  the	
  Brewing	
  Process	
  ..................................................................................	
  36	
  
The	
  Impact	
  of	
  Craft	
  Brewing	
  &	
  Key	
  Performance	
  Indicators	
  ....................................................	
  37	
  
Secondary	
  Energy	
  ....................................................................................................................	
  37	
  
Onsite	
  Electricity	
  Consumption	
  ...............................................................................................	
  37	
  
Onsite	
  Natural	
  Gas	
  Consumption	
  ............................................................................................	
  39	
  
Primary	
  Energy	
  Use	
  Intensity	
  ...................................................................................................	
  41	
  
Emissions	
  Breakdown	
  ..............................................................................................................	
  42	
  
Water	
  Intensity:	
  Use	
  /	
  Production	
  ...........................................................................................	
  44	
  
Summary	
  Table	
  of	
  the	
  Impact	
  of	
  Craft	
  Brewing	
  &	
  Key	
  Performance	
  Indicators	
  ......................	
  46	
  
Brewhouse	
  Energy	
  Conservation	
  Opportunities	
  ......................................................................	
  47	
  
Energy	
  Conservation	
  Opportunities	
  in	
  the	
  Brewhouse	
  ...........................................................	
  47	
  
Steam	
  Boiler	
  &	
  Heat	
  Distribution	
  ............................................................................................	
  49	
  
Chillers	
  &	
  Heat	
  Extraction	
  ........................................................................................................	
  51	
  
Compressed	
  Air	
  ........................................................................................................................	
  54	
  
Motors	
  &	
  Driving	
  Systems	
  .......................................................................................................	
  54	
  
Heat	
  Exchangers,	
  Recovery,	
  &	
  Storage	
  ....................................................................................	
  56	
  
Brewing	
  Automation	
  Systems	
  ..................................................................................................	
  64	
  
Brew	
  Kettle	
  &	
  Related	
  Vessels	
  .................................................................................................	
  65	
  
Good	
  Housekeeping	
  &	
  Ancillary	
  Systems	
  ................................................................................	
  69	
  
Summary	
  Table	
  of	
  Brewhouse	
  Conservation	
  Opportunities	
  ...................................................	
  70	
  
Conservation	
  Opportunities	
  Outside	
  the	
  Brewing	
  Process	
  ......................................................	
  71	
  
Reduction,	
  Generation,	
  &	
  Coproduction:	
  Down,	
  Up	
  and	
  Lateral	
  Cycling	
  ................................	
  71	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   6	
  
Utility	
  Programs	
  and	
  the	
  Direct	
  Purchase	
  of	
  Offsets	
  ...............................................................	
  72	
  
Solar	
  Power	
  ..............................................................................................................................	
  73	
  
Water	
  Management	
  ................................................................................................................	
  75	
  
Reductions	
  in	
  Craft	
  Beer	
  Fresh	
  Water	
  Intensity	
  through	
  Brewhouse	
  Losses	
  ..........................	
  76	
  
Effluence	
  Management	
  ............................................................................................................	
  76	
  
Treat	
  and	
  Release	
  Effluence	
  ....................................................................................................	
  77	
  
Anaerobic	
  Effluence	
  Digestion	
  and	
  Combined	
  Heat	
  and	
  Power	
  ..............................................	
  79	
  
Spent	
  Grain	
  &	
  Other	
  Coproducts	
  .............................................................................................	
  81	
  
On	
  Site	
  Gas	
  Management	
  System	
  ............................................................................................	
  83	
  
Summary	
  Table	
  of	
  Brewhouse	
  Conservation	
  Opportunities	
  ...................................................	
  85	
  
Barriers	
  ..................................................................................................................................	
  86	
  
Diebolt	
  Brewing	
  Company:	
  A	
  Case	
  Study	
  ................................................................................	
  88	
  
Introduction	
  to	
  Diebolt	
  Brewing	
  ..............................................................................................	
  88	
  
Brewhouse	
  Schedule,	
  Set	
  Up,	
  &	
  Energy	
  Systems	
  ....................................................................	
  90	
  
Dan	
  and	
  Jack	
  Diebolt:	
  Systems	
  Experience	
  &	
  Thoughts	
  on	
  Conservation	
  ...............................	
  94	
  
Energy	
  &	
  Resource	
  Use	
  in	
  Diebolt	
  Brewing	
  Company	
  .............................................................	
  95	
  
Beer	
  Production	
  at	
  Diebolt	
  Brewing	
  Company	
  ......................................................................	
  101	
  
Current	
  Energy	
  and	
  Resource	
  Use	
  Intensity	
  at	
  Diebolt	
  Brewing	
  Company	
  ...........................	
  103	
  
Conservation	
  Measures	
  Already	
  in	
  Place	
  ...............................................................................	
  105	
  
Summary	
  Table	
  of	
  Diebolt	
  Brewery	
  Company’s	
  Existing	
  Brewhouse	
  ....................................	
  109	
  
Potential	
  Energy,	
  Resource	
  &	
  Expense	
  Conservation	
  Opportunities	
  for	
  Diebolt	
  Brewing	
  
Company	
  ..............................................................................................................................	
  110	
  
Utility	
  Rate	
  Schedule	
  Change:	
  Rooftop	
  Photovoltaics	
  &	
  Demand	
  Side	
  Management	
  ...........	
  110	
  
Heat	
  Transfer	
  Exchanger	
  Redesign	
  ........................................................................................	
  124	
  
Lighting	
  Retrofit	
  in	
  Brewhouse	
  ..............................................................................................	
  132	
  
Recommendations	
  &	
  Concussions	
  for	
  Diebolt	
  Brewing	
  Company	
  ........................................	
  138	
  
Summary	
  Table	
  of	
  Diebolt	
  Brewing	
  Company’s	
  Proposed	
  ECOs	
  ...........................................	
  141	
  
Conclusion	
  ............................................................................................................................	
  142	
  
Appendix	
  1:	
  Glossary	
  &	
  Abbreviations	
  ..................................................................................	
  145	
  
Appendix	
  2	
  :	
  Intensities	
  &	
  Citations	
  ......................................................................................	
  147	
  
Works	
  Cited	
  ..........................................................................................................................	
  149	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   7	
  
List	
  of	
  Figures	
  
	
  
This	
  is	
  neither	
  beer	
  nor	
  glass	
  on	
  the	
  page,	
  nor	
  is	
  there	
  a	
  damp	
  and	
  icy	
  film.	
  	
  I	
  feel	
  certain	
  visual	
  stimuli,	
  colors,	
  spatial	
  
relationships,	
  incidences	
  of	
  light	
  and	
  I	
  coordinate	
  them	
  into	
  a	
  given	
  perceptual	
  structure.	
  	
  The	
  same	
  thing	
  happens	
  
when	
  I	
  look	
  at	
  an	
  actual	
  glass	
  of	
  beer;	
  I	
  connect	
  together	
  some	
  stimuli	
  coming	
  from	
  an	
  as	
  yet	
  unstructured	
  field	
  and	
  I	
  
produce	
  a	
  perceptum	
  based	
  on	
  a	
  previously	
  acquired	
  experience.	
  
-­‐Umberto	
  Eco,	
  Theory	
  of	
  Sign	
  Production	
  
	
  
Figure	
  1:	
  Profit	
  Increase	
  from	
  Energy	
  Savings	
  ..................................................................................................................	
  13	
  
Figure	
  2:	
  Ven	
  Diagram	
  of	
  the	
  Triple	
  Bottom	
  Line	
  Model	
  .................................................................................................	
  21	
  
Figure	
  3:	
  Simplified	
  Brewing	
  System	
  ................................................................................................................................	
  25	
  
Figure	
  4:	
  Linear	
  Brewing	
  Sequence	
  ..................................................................................................................................	
  28	
  
Figure	
  5:	
  Bar	
  Graph	
  of	
  Electricity	
  Intensity	
  Range	
  ............................................................................................................	
  38	
  
Figure	
  6:	
  Bar	
  Graph	
  of	
  Natural	
  Gas	
  Intensity	
  Range	
  ........................................................................................................	
  40	
  
Figure	
  7:	
  Bar	
  Graph	
  of	
  Green	
  House	
  Gas	
  Emissions	
  Intensity	
  Range	
  ...............................................................................	
  44	
  
Figure	
  8:	
  Bar	
  Graph	
  of	
  Water	
  Intensity	
  Range	
  .................................................................................................................	
  45	
  
Figure	
  9:	
  Boiler	
  and	
  Steam	
  ECOs	
  ......................................................................................................................................	
  51	
  
Figure	
  10:	
  Refrigeration	
  and	
  Cooling	
  ECOs	
  ......................................................................................................................	
  53	
  
Figure	
  11:	
  Drives	
  and	
  Motors	
  ECOs	
  ..................................................................................................................................	
  56	
  
Figure	
  12:	
  Heat	
  Exchanger	
  Network	
  with	
  Thermal	
  Storage	
  and	
  Vapor	
  Condensers	
  ........................................................	
  60	
  
Figure	
  13:	
  Pinch	
  Analysis	
  of	
  Streams,	
  Potential	
  Heat	
  Recovery,	
  and	
  Minimum	
  Load	
  ......................................................	
  62	
  
Figure	
  14:	
  Pinch	
  Analysis	
  of	
  the	
  Industrial	
  Green	
  Brewery	
  Concept	
  ................................................................................	
  63	
  
Figure	
  15:	
  Dynamic	
  Low	
  Pressure	
  Boiling	
  Process	
  ...........................................................................................................	
  67	
  
Figure	
  16:	
  Merlin	
  Brew	
  Kettle	
  ..........................................................................................................................................	
  68	
  
Figure	
  17:	
  Brew	
  Kettle	
  ECOs	
  .............................................................................................................................................	
  69	
  
Figure	
  18:	
  Assorted	
  Other	
  ECOs	
  .......................................................................................................................................	
  69	
  
Figure	
  19:	
  Wastewater	
  Treat	
  and	
  Release	
  Process	
  ..........................................................................................................	
  78	
  
Figure	
  20:	
  Anaerobic	
  Digester	
  &	
  Power	
  Generation	
  Process	
  ...........................................................................................	
  80	
  
Figure	
  21:	
  Process	
  of	
  Recovering	
  Carbon	
  Dioxide	
  ............................................................................................................	
  84	
  
Figure	
  22:	
  Diebolt	
  Brewing	
  Company	
  ...............................................................................................................................	
  89	
  
Figure	
  23:	
  Nameplate	
  on	
  Wort	
  to	
  Fresh	
  Water	
  and	
  Glycol	
  Two	
  Stage	
  Heat	
  Exchanger	
  ..................................................	
  91	
  
Figure	
  24:	
  Grain	
  Mill	
  in	
  Far	
  Back	
  Middle,	
  Grist	
  Hopper	
  on	
  Left,	
  &	
  Mash/Lauter	
  Tun	
  on	
  Right	
  ........................................	
  92	
  
Figure	
  25:	
  Mash/Lauter	
  Tun	
  on	
  Left,	
  Brew	
  Kettle	
  in	
  Middle,	
  &	
  Hot	
  Liquor	
  Tank	
  on	
  Right	
  ..............................................	
  92	
  
Figure	
  26:	
  The	
  Four	
  Fermentation	
  &	
  Crash	
  Chill	
  Tanks	
  ....................................................................................................	
  93	
  
Figure	
  27:	
  Diebolt	
  Brewing	
  Company’s	
  Gross	
  Electricity	
  Consumption	
  in	
  kWh/month	
  ..................................................	
  96	
  
Figure	
  28:	
  Diebolt	
  Brewing	
  Company’s	
  Billable	
  Power	
  Demand	
  in	
  kW/month	
  ...............................................................	
  96	
  
Figure	
  29:	
  Diebolt	
  Brewing	
  Company’s	
  Gross	
  Natural	
  Gas	
  Consumption	
  in	
  therms/month	
  ...........................................	
  96	
  
Figure	
  30:	
  Diebolt	
  Brewing	
  Company’s	
  Gross	
  Fresh	
  Water	
  Consumption	
  in	
  bbl/month	
  .................................................	
  97	
  
Figure	
  31:	
  Diebolt	
  Brewing	
  Company’s	
  Gross	
  Sewage	
  Disposal	
  in	
  bbl/month	
  ................................................................	
  97	
  
Figure	
  32:	
  Diebolt	
  Brewing	
  Company’s	
  Levelized	
  Gross	
  Carbon	
  Dioxide	
  Consumption	
  in	
  kg/month	
  ..............................	
  97	
  
Figure	
  33:	
  Diebolt	
  Brewing	
  Company's	
  Monthly	
  Accumulated	
  Brewing	
  Related	
  Costs	
  ...................................................	
  99	
  
Figure	
  34:	
  Monthly	
  Beer	
  Production	
  at	
  Diebolt	
  Brewing	
  Company	
  ...............................................................................	
  102	
  
Figure	
  35:	
  Quarterly	
  Beer	
  Production	
  at	
  Diebolt	
  Brewing	
  Company	
  .............................................................................	
  102	
  
Figure	
  36:	
  Diebolt's	
  Production	
  over	
  the	
  Past	
  9	
  Months	
  ...............................................................................................	
  103	
  
Figure	
  37:	
  Diebolt	
  Brewing	
  Company	
  Source	
  Energy	
  Use	
  Intensity	
  Calculation	
  ............................................................	
  104	
  
Figure	
  38:	
  Bought	
  Carbon	
  Dioxide	
  and	
  Fresh	
  Water	
  Intensities	
  at	
  Diebolt	
  Brewing	
  Company	
  .....................................	
  105	
  
Figure	
  39:	
  Diebolt	
  Taphouse	
  Lighting	
  and	
  Air	
  Management	
  ..........................................................................................	
  106	
  
Figure	
  40:	
  VFD	
  for	
  Wort	
  Pump	
  in	
  Action	
  as	
  Wort	
  is	
  Pumped	
  from	
  the	
  Mash/Lauter	
  Tun	
  to	
  the	
  Brew	
  Kettle	
  ...............	
  107	
  
Figure	
  41:	
  Mash	
  Rake	
  inside	
  Mash/Lauter	
  Tun	
  ..............................................................................................................	
  108	
  
Figure	
  42:	
  VFD	
  connect	
  Mash	
  Rake	
  Drive	
  in	
  Blue	
  &	
  VFD	
  connected	
  Pump	
  on	
  the	
  Ground	
  with	
  Silver	
  Casing	
  ..............	
  108	
  
Figure	
  43:	
  Xcel	
  Shift	
  in	
  Rate	
  Schedule	
  Received	
  on	
  July	
  2013	
  and	
  Enacted	
  on	
  September	
  2013	
  ..................................	
  110	
  
Figure	
  44:	
  Comparison	
  of	
  C	
  &	
  SG	
  Rate	
  Structures	
  .........................................................................................................	
  111	
  
Figure	
  45:	
  An	
  Schematic	
  Example	
  of	
  DSM	
  assisted	
  Load	
  Shifting	
  ..................................................................................	
  113	
  
Figure	
  46:	
  NREL	
  System	
  Advisor	
  Model	
  of	
  10	
  kW	
  PV	
  Array	
  in	
  Denver	
  Colorado	
  ...........................................................	
  114	
  
Figure	
  47:	
  Scenario	
  A	
  -­‐	
  Peak	
  Demand	
  Impacted	
  by	
  Varying	
  PV	
  Capacity	
  on	
  an	
  Average	
  and	
  Clear	
  Day	
  .......................	
  115	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   8	
  
Figure	
  48:	
  Scenario	
  B	
  -­‐	
  Peak	
  Demand	
  Impacted	
  by	
  Varying	
  PV	
  Capacity	
  on	
  a	
  High	
  Demand	
  and	
  Sunny	
  Day	
  ...............	
  115	
  
Figure	
  49:	
  Scenario	
  C	
  -­‐	
  Peak	
  Demand	
  Impacted	
  by	
  Varying	
  PV	
  Capacity	
  on	
  an	
  Off-­‐and-­‐On	
  Cloudy	
  Day	
  .......................	
  115	
  
Figure	
  50:	
  Annual	
  Savings	
  for	
  Diebolt	
  between	
  Iterations	
  (I)	
  Current	
  Schedule	
  SG	
  &	
  (II)	
  Schedule	
  C	
  with	
  PV	
  &	
  DSM	
  ..	
  118	
  
Figure	
  51:	
  Assumptions	
  &	
  Abbreviations	
  in	
  Further	
  Financial	
  Analysis	
  with	
  Citations	
  ..................................................	
  119	
  
Figure	
  52:	
  Annual	
  Accounting	
  of	
  BAU	
  vs.	
  PV	
  &	
  DSM	
  with	
  Notations	
  made	
  at	
  8	
  Years,	
  15	
  Years,	
  &	
  25	
  Years	
  ...............	
  120	
  
Figure	
  53:	
  BAU	
  vs.	
  PV	
  &	
  DSM	
  :	
  Net	
  Projected	
  Costs,	
  Net	
  Projected	
  Costs,	
  &	
  Savings	
  ...................................................	
  121	
  
Figure	
  54:	
  Total	
  Cost:	
  BAU	
  vs.	
  PV	
  &	
  DSM	
  Savings	
  at	
  Intervals	
  .......................................................................................	
  122	
  
Figure	
  55:	
  Net	
  Present	
  Cost:	
  BAU	
  vs.	
  PV	
  &	
  DSM	
  ............................................................................................................	
  122	
  
Figure	
  56:	
  BAU	
  vs.	
  PV	
  &	
  DSM:	
  Percent	
  Reductions	
  in	
  Gross	
  Future	
  and	
  Net	
  Future-­‐Discounted	
  Costs	
  ........................	
  123	
  
Figure	
  57:	
  Two	
  Stage	
  Heat	
  Exchanger	
  with	
  15	
  bbl	
  Hot	
  Liquor	
  Tank	
  in	
  Upper	
  Right	
  Corner	
  ..........................................	
  125	
  
Figure	
  58:	
  Brewer's	
  Notes	
  on	
  Heat	
  Transfer	
  Process	
  After	
  Boiling	
  Wort	
  .......................................................................	
  125	
  
Figure	
  60:	
  Calculation	
  for	
  Single	
  Stage	
  Heat	
  Exchanger	
  and	
  Filtration	
  for	
  Diebolt	
  I	
  ......................................................	
  129	
  
Figure	
  61:	
  Calculation	
  for	
  Single	
  Stage	
  Heat	
  Exchanger	
  and	
  Filtration	
  for	
  Diebolt	
  II	
  .....................................................	
  130	
  
Figure	
  62:	
  Financial	
  Analysis	
  of	
  Heat	
  Exchanger	
  and	
  Filtration	
  Retrofit	
  ........................................................................	
  131	
  
Figure	
  63:	
  Illuminating	
  Engineer	
  Society	
  Recommended	
  Foot-­‐Candle	
  Ranges	
  ..............................................................	
  133	
  
Figure	
  64:	
  Diebolt	
  Brewing	
  Company	
  Proposed	
  Lighting	
  Retrofits	
  ................................................................................	
  134	
  
Figure	
  65:	
  Diebolt	
  Lighting	
  Retrofit:	
  Impact	
  on	
  Power	
  Demand	
  and	
  Energy	
  Consumption	
  ...........................................	
  135	
  
Figure	
  66:	
  Diebolt	
  Lighting	
  Retrofit:	
  Savings	
  with	
  Utility	
  Schedule	
  C	
  vs.	
  SG	
  ..................................................................	
  136	
  
Figure	
  67:	
  NPV	
  NURB	
  Surface	
  of	
  Lighting	
  Retrofit	
  Increments	
  for	
  Diebolt	
  Brewhouse	
  .................................................	
  137	
  
Figure	
  68:	
  Final	
  Impact	
  on	
  Diebolt	
  Brewing	
  Company's	
  EUI	
  with	
  Proposed	
  ECOs	
  .........................................................	
  139	
  
	
  
	
  
	
  
	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   9	
  
Summary	
  Tables	
  of	
  Each	
  Section	
  
	
  
I	
  am	
  a	
  firm	
  believer	
  in	
  the	
  people.	
  If	
  given	
  the	
  truth,	
  they	
  can	
  be	
  depended	
  upon	
  to	
  meet	
  any	
  
national	
  crisis.	
  The	
  great	
  point	
  is	
  to	
  bring	
  them	
  the	
  real	
  facts,	
  and	
  beer.	
  
-­‐Abraham	
  Lincoln	
  
	
  
	
  
Summary	
  Table	
  1:	
  Introduction	
  to	
  Research	
  ....................................................................................................................	
  16	
  
Summary	
  Table	
  2:	
  Scope	
  of	
  Research	
  &	
  Method	
  of	
  Analysis	
  ...........................................................................................	
  22	
  
Summary	
  Table	
  3:	
  Brewing	
  Processes	
  ..............................................................................................................................	
  36	
  
Summary	
  Table	
  4:	
  Impact	
  of	
  Craft	
  Brewing	
  &	
  Key	
  Performance	
  Indicators	
  ....................................................................	
  46	
  
Summary	
  Table	
  5:	
  Brewhouse	
  Conservation	
  Opportunities	
  ............................................................................................	
  70	
  
Summary	
  Table	
  6:	
  Brewhouse	
  Conservation	
  Opportunities	
  ............................................................................................	
  85	
  
Summary	
  Table	
  7:	
  Conservation	
  Opportunities	
  outside	
  of	
  the	
  Brewhouse	
  ...................................................................	
  109	
  
Summary	
  Table	
  8:	
  Diebolt	
  Brewing	
  Company’s	
  Proposed	
  Conservation	
  Opportunities	
  ...............................................	
  141	
  
	
  
	
  
	
  
	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   10	
  
Introduction	
  to	
  Research	
  
	
  
People	
  who	
  drink	
  light	
  'beer'	
  don't	
  like	
  the	
  taste	
  of	
  beer;	
  they	
  just	
  like	
  to	
  pee	
  a	
  lot.	
  
-­‐	
  Ed	
  Janus,	
  Capital	
  Brewery	
  
	
  
Craft	
  Brewing	
  Milieu,	
  Impacts	
  &	
  Impetus	
  
	
  
During	
  the	
  past	
  several	
  decades	
  there	
  have	
  been	
  dramatic	
  shifts	
  in	
  the	
  brewing	
  
industry	
  as	
  craft	
  brewing	
  has	
  gained	
  a	
  market	
  share,	
  introduced	
  the	
  consuming	
  public	
  to	
  
higher	
   quality	
   and	
   greater	
   variation	
   in	
   beer,	
   and	
   presented	
   an	
   opportunity	
   for	
  
innovative	
  engineering	
  to	
  increase	
  the	
  energy	
  and	
  resource	
  efficiency	
  of	
  these	
  smaller	
  
production	
  facilities.	
  	
  There	
  are	
  currently	
  over	
  3,500	
  craft	
  breweries	
  licensed	
  in	
  the	
  US,	
  
producing	
  over	
  470	
  million	
  gallons	
  of	
  craft	
  beer	
  per	
  year.	
  	
  The	
  gross	
  sales	
  of	
  craft	
  beer,	
  a	
  
term	
   used	
   interchangeably	
   with	
   microbrew,	
   totals	
   $14.5	
   billion	
   annually	
   (Brewers	
  
Association	
   2015).	
   	
   Within	
   the	
   craft	
   brewery	
   movement	
   there	
   is	
   currently	
   a	
   shift	
   in	
  
zeitgeist	
  towards	
  increased	
  awareness	
  of	
  sustainability,	
  value	
  engineering,	
  and	
  resource	
  
conservation.	
   	
   Microbreweries	
   do	
   not	
   have	
   access	
   to	
   the	
   economies	
   of	
   scale	
   and	
  
efficiency	
  engineering	
  of	
  their	
  industrial	
  competitors	
  and	
  thus	
  produce	
  a	
  more	
  resource	
  
intensive	
  product,	
  including	
  their	
  use	
  of	
  electricity,	
  fossil	
  fuel,	
  water	
  and	
  other	
  material	
  
inputs.	
  	
  With	
  access	
  to	
  research	
  into	
  efficient	
  brewing	
  processes,	
  the	
  evolving	
  market	
  
will	
   demand	
   more	
   environmentally	
   friendly	
   products,	
   and	
   integrated	
   systems	
  
engineering,	
   craft	
   brewing	
   will	
   be	
   able	
   to	
   reduce	
   its	
   resource	
   impact	
   and	
   carbon	
  
footprint	
  while	
  maintaining	
  a	
  high	
  quality	
  product.	
  	
  Craft	
  beer	
  producers	
  in	
  the	
  forefront	
  
of	
   these	
   changes	
   will	
   see	
   reel	
   opportunities	
   for	
   substantial	
   fiscal	
   savings	
   by	
   reducing	
  
energy	
  and	
  water	
  demand.	
  
	
  
Craft	
  brewing	
  now	
  makes	
  up	
  7.8%	
  of	
  total	
  beer	
  sales	
  in	
  the	
  US	
  and	
  is	
  currently	
  
increasing	
  this	
  share	
  by	
  roughly	
  20%	
  annually	
  with	
  no	
  signs	
  of	
  hitting	
  a	
  ceiling	
  (Brewers	
  
Association	
   2014).	
   However,	
   it	
   has	
   not	
   always	
   been	
   this	
   way.	
   	
   Prohibition,	
   post-­‐
prohibition	
  industrial	
  scale	
  brewing,	
  and	
  corporate	
  mergers	
  and	
  acquisitions	
  resulted	
  in	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   11	
  
a	
   homogenized	
   market	
   for	
   beer	
   with	
   only	
   a	
   handful	
   of	
   large	
   American	
   breweries	
  
producing	
  drinkable	
  lagers	
  in	
  addition	
  to	
  some	
  European	
  imports.	
  	
  Beginning	
  in	
  the	
  late	
  
1970s	
  and	
  continuing	
  through	
  the	
  1980s,	
  small	
  breweries,	
  some	
  of	
  which	
  now	
  have	
  very	
  
recognizable	
   brands	
   such	
   as	
   Samuel	
   Adams	
   Brewing	
   Company	
   and	
   Sierra	
   Nevada	
  
Brewing	
  Company,	
  began	
  making	
  a	
  different	
  style	
  of	
  beer,	
  something	
  that	
  would	
  come	
  
to	
  be	
  known	
  as	
  craft	
  beer	
  or	
  microbrew.	
  	
  These	
  new	
  varieties	
  of	
  beer	
  were	
  fermented	
  
using	
  diverse	
  and	
  flavorful	
  ale	
  yeasts,	
  increasing	
  the	
  alcohol	
  content,	
  and	
  introducing	
  a	
  
palate	
   of	
   flavors	
   not	
   found	
   in	
   generic	
   beer	
   through	
   new	
   grains,	
   hops,	
   and	
   brewing	
  
techniques.	
  	
  The	
  craft	
  brewery	
  movement	
  was	
  notably	
  different	
  due	
  to	
  its	
  small-­‐scale	
  
production,	
  non-­‐industrial	
  process,	
  and	
  consumption	
  largely	
  by	
  a	
  local	
  market.	
  
	
  
As	
   popularity	
   and	
   demand	
   rose,	
   microbreweries	
   were	
   able	
   to	
   increase	
  
production	
   and	
   grow	
   in	
   number.	
   	
   This	
   also	
   brought	
   about	
   ever-­‐escalating	
   electricity,	
  
natural	
  gas,	
  water,	
  and	
  sewage	
  use	
  and	
  expense.	
  	
  With	
  onsite	
  utility	
  bills	
  making	
  up	
  only	
  
3-­‐8%	
  of	
  a	
  craft	
  brewer’s	
  monthly	
  expenses,	
  there	
  is	
  not	
  yet	
  a	
  strong	
  financial	
  incentive	
  
to	
   install	
   energy	
   efficiency	
   upgrades	
   and	
   conserve	
   what	
   is	
   presently	
   a	
   cheap,	
   but	
  
ultimately	
  finite,	
  fossil	
  fuel	
  resource	
  which	
  composes	
  the	
  vast	
  majority	
  of	
  a	
  brewery’s	
  
onsite	
  and	
  upstream	
  energy	
  generation	
  (Olajira	
  2012	
  p7	
  &	
  Lacey	
  2010	
  p8).	
  	
  	
  
	
  
Craft	
  brewing	
  is	
  now	
  poised	
  for	
  a	
  sustainability	
  transformation	
  due	
  to	
  the	
  shift	
  in	
  
climate	
  consciousness,	
  trickle	
  down	
  technology	
  and	
  energy	
  conservation	
  controls	
  from	
  
industrial	
  scale	
  enterprises,	
  and	
  changing	
  market	
  forces.	
  Indeed,	
  increased	
  sustainability	
  
measures	
   may	
   present	
   a	
   way	
   for	
   craft	
   breweries	
   to	
   distinguish	
   themselves	
   in	
   the	
  
growing	
  market:	
  
	
  
Sustainable	
  breweries…	
  while	
  growing,	
  still	
  represent	
  a	
  small	
  slice	
  of	
  the	
  total	
  market,	
  a	
  position	
  
that	
  seems	
  to	
  foster	
  a	
  healthy	
  mix	
  of	
  solidarity	
  and	
  fierce	
  competition.	
  To	
  expand	
  their	
  market	
  
share,	
  they	
  have	
  to	
  work	
  together;	
  to	
  distinguish	
  themselves	
  within	
  the	
  small	
  pack,	
  they	
  have	
  to	
  
be	
  creative.	
  (Buck	
  2014	
  p28).	
  
	
  
A	
   simultaneous	
   shift	
   of	
   producer	
   objectives	
   and	
   consumer	
   demand	
   is	
   pushing	
   the	
  
market	
  niche	
  of	
  craft	
  beer	
  towards	
  an	
  ever-­‐increasing	
  awareness	
  of	
  creating	
  a	
  greener	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   12	
  
product.	
  	
  Marketing	
  around	
  many	
  products	
  revolves	
  around	
  “conspicuous	
  consumption”	
  
of	
  name	
  brand	
  products.	
  	
  In	
  some	
  sectors	
  this	
  mode	
  of	
  branding	
  in	
  beginning	
  to	
  change	
  
and	
   now	
   portions	
   of	
   the	
   market	
   are	
   gravitating	
   towards	
   a	
   new	
   force,	
   christened	
  
“conspicuous	
   conservation,”	
   as	
   exemplified	
   by	
   the	
   Prius	
   Effect,	
   in	
   which	
   a	
   product	
  
accrues	
  social	
  cachet	
  and	
  added	
  value	
  due	
  to	
  the	
  perception	
  of	
  increased	
  sustainability.	
  
Craft	
  breweries	
  have	
  been	
  successful	
  in	
  marketing	
  specific	
  microbrews	
  as	
  “sustainable,”	
  
despite	
  the	
  ignorance	
  or	
  omission	
  of	
  much	
  higher	
  usages	
  of	
  energy,	
  water,	
  and	
  other	
  
resources	
  by	
  volume,	
  with	
  consumers	
  preferring	
  beer	
  that	
  is	
  organic,	
  locally	
  sourced,	
  
and	
  produced	
  with	
  renewable	
  energy.	
  
	
  
What	
  is	
  it	
  that	
  makes	
  a	
  craft	
  brewery?	
  	
  According	
  to	
  the	
  Brewers	
  Association,	
  a	
  
craft	
  brewery	
  is	
  small	
  in	
  scale	
  when	
  compared	
  to	
  name	
  brand	
  large	
  corporate	
  rivals,	
  
producing	
   less	
   than	
   6	
   million	
   barrels	
   of	
   microbrew	
   per	
   year.	
   	
   Ownership	
   is	
   largely	
  
privately	
  held,	
  such	
  as	
  in	
  a	
  limited	
  liability	
  company,	
  amongst	
  one	
  or	
  more	
  individuals,	
  
usually	
  giving	
  primary	
  ownership	
  to	
  the	
  head	
  brewer.	
  	
  Some	
  craft	
  brewers	
  are	
  pursuing	
  
different	
  business	
  models	
  with	
  varying	
  tax	
  implications,	
  such	
  as	
  employee-­‐ownership	
  B	
  
Corporations	
  and	
  member-­‐owned	
  for-­‐profit	
  cooperatives.	
  
	
  
It	
  is	
  in	
  the	
  craft	
  brewing	
  sector’s	
  on	
  to	
  promote	
  sustainable	
  business	
  models	
  and	
  
production	
  in	
  order	
  to	
  improve	
  microbreweries’	
  bottom	
  line,	
  invest	
  in	
  their	
  consumer’s	
  
communities,	
   and	
   embody	
   the	
   value	
   of	
   resource	
   conservation.	
   	
   From	
   a	
   financial	
  
perspective,	
  the	
  vast	
  majority	
  of	
  a	
  brewery’s	
  energy	
  goes	
  into	
  the	
  thermally	
  intensive	
  
process	
  of	
  bringing	
  large	
  volumes	
  of	
  a	
  sweet	
  malted	
  barley	
  and	
  water	
  mixture,	
  known	
  as	
  
wort,	
  to	
  a	
  sustained	
  boil.	
  	
  A	
  smaller	
  portion	
  of	
  the	
  brewing	
  site’s	
  energy	
  takes	
  the	
  form	
  
of	
   costlier	
   electricity,	
   largely	
   used	
   in	
   refrigeration	
   and	
   mechanized	
   drives.	
   	
   A	
   more	
  
effective	
   use	
   of	
   existing	
   systems	
   and	
   the	
   installation	
   of	
   new	
   energy	
   conservation	
  
equipment	
   holds	
   large	
   potential	
   savings.	
   	
   For	
   instance,	
   it	
   could	
   reduce	
   a	
   brewery’s	
  
monthly	
  utility	
  bills	
  and	
  decrease	
  its	
  exposure	
  to	
  the	
  price	
  volatility	
  of	
  input	
  resources	
  or	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   13	
  
potential	
   penalization	
   due	
   to	
   discharged	
   byproducts.	
   Figure	
   1	
   from	
   the	
   Brewers	
  
Association	
  of	
  Canada	
  shows	
  the	
  increase	
  of	
  profits	
  relative	
  to	
  percent	
  energy	
  savings.	
  
	
  
	
  
Figure	
  1:	
  Profit	
  Increase	
  from	
  Energy	
  Savings	
  	
   	
  
(Brewers	
  Association	
  of	
  Canada	
  2010	
  p54)	
  
	
  
In	
   addition	
   to	
   the	
   possible	
   financial	
   savings	
   from	
   implementing	
   sustainability	
  
measures,	
  a	
  potentially	
  more	
  important	
  outcome	
  for	
  the	
  brewery	
  is	
  that	
  a	
  “greener”	
  
product	
  and	
  at	
  the	
  price	
  an	
  affluent	
  and	
  informed	
  consumer	
  will	
  pay	
  for	
  it.	
  	
  In	
  recent	
  
history	
  growing	
  numbers	
  of	
  the	
  American	
  public	
  have	
  become	
  conscientious	
  consumers	
  
and	
  seek	
  green	
  commodities	
  in	
  an	
  attempt	
  to	
  support	
  a	
  more	
  sustainable	
  society.	
  	
  An	
  
identifiably	
   environmentally	
   friendly	
   craft	
   beer	
   can	
   integrate	
   with	
   a	
   conscientious	
  
consumer’s	
  identity	
  and	
  therefore	
  can	
  command	
  a	
  higher	
  price	
  point	
  and	
  provide	
  an	
  
ideological	
  and	
  economic	
  justification	
  for	
  upgrades	
  and	
  efficiency	
  within	
  the	
  brewery.	
  	
  
This	
  statement	
  of	
  sustainability,	
  even	
  if	
  incremental,	
  is	
  a	
  powerful	
  marketing	
  tool.	
  	
  It’s	
  
not	
   a	
   binary	
   choice,	
   there’s	
   a	
   spectrum	
   of	
   technologies	
   to	
   promote	
   conservationism	
  
within	
   a	
   craft	
   brewery	
   while	
   also	
   increasing	
   the	
   bottom	
   line	
   and	
   engaging	
   in	
   social	
  
responsibility.	
  	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   14	
  
Specifications,	
  Units,	
  &	
  Factors	
  
	
  
Within	
   the	
   following	
   text	
   many	
   acronyms	
   and	
   units	
   will	
   be	
   used	
   standardly.	
  	
  
Please	
  refer	
  to	
  Appendix	
  1	
  for	
  a	
  full	
  term	
  glossary.	
  	
  The	
  following	
  should	
  help	
  clarify	
  
brewing	
  industry	
  standards	
  and	
  establish	
  a	
  system	
  of	
  units	
  to	
  this	
  publication.	
  	
  The	
  beer	
  
US	
   industry	
   standard	
   when	
   speaking	
   of	
   liquid	
   volume	
   is	
   barrels	
   (bbl).	
   	
   Most	
   other	
  
nations	
  use	
  the	
  SI	
  unit	
  hectoliters	
  (hl).	
  
	
  
1	
  bbl	
  =	
  31.5	
  gallons	
  (frequently	
  1.5	
  -­‐	
  0.5	
  gallons	
  are	
  left	
  off	
  due	
  to	
  assumed	
  post	
  production	
  losses)	
  
1	
  bbl	
  =	
  2	
  standard	
  kegs	
  
1	
  bbl	
  =	
  330	
  standard	
  12	
  ounce	
  cans/bottles	
  
1	
  bbl	
  =	
  1.17	
  hl	
  
	
  
Flows	
  are	
  indicated	
  in	
  a	
  number	
  of	
  ways.	
  	
  Liquid	
  volumetric	
  flows,	
  like	
  from	
  a	
  
pump,	
  are	
  noted	
  as	
  gallons	
  per	
  minute	
  (gpm)	
  and	
  gaseous	
  volumetric	
  flows,	
  like	
  from	
  a	
  
fan,	
   are	
   noted	
   as	
   cubic	
   feet	
   per	
   minute	
   (cfm).	
   	
   Steam,	
   like	
   from	
   a	
   boiler,	
   is	
   typically	
  
measured	
   in	
   a	
   mass	
   flow	
   of	
   pounds	
   mass	
   of	
   steam	
   per	
   hour	
   (lbm/hr)	
   at	
   a	
   specified	
  
temperature	
  (F)	
  and/or	
  pressure	
  (psi)	
  thus	
  it	
  is	
  actually	
  a	
  unit	
  of	
  energy	
  transfer	
  over	
  
time	
  or	
  power,	
  which	
  is	
  elucidated	
  in	
  several	
  paragraphs.	
  
	
  
Mass	
   will	
   almost	
   always	
   be	
   expressed	
   in	
   pounds	
   mass	
   (lbm).	
   	
   However	
   it	
   is	
   a	
  
global	
  standard	
  when	
  speaking	
  of	
  greenhouse	
  gases	
  (GHGs)	
  like	
  carbon	
  dioxide	
  (CO2)	
  or	
  
refuge	
  methane	
  (C2H4)	
  to	
  use	
  the	
  SI	
  units	
  of	
  kg.	
  One	
  kilogram	
  of	
  CO2	
  is	
  a	
  very	
  abstract	
  
notion	
   for	
   most	
   people.	
   	
   One	
   study	
   by	
   the	
   Carbon	
   Trust	
   equates	
   1	
   kg	
   of	
   CO2	
   as	
   the	
  
amount	
  a	
  small	
  tree	
  is	
  able	
  to	
  sequester	
  every	
  3	
  months	
  (Canadian	
  Brewing	
  Industry	
  
Program	
  for	
  Energy	
  Conservation	
  2011	
  p140).	
  	
  	
  Another	
  way	
  to	
  visualize	
  it	
  is	
  through	
  the	
  
following	
  set	
  of	
  equations,	
  atmospheric	
  assumptions,	
  and	
  the	
  ideal	
  gas	
  law,	
  providing	
  a	
  
more	
  palpable	
  quantity	
  for	
  visualizing	
  1	
  kg	
  of	
  CO2	
  as	
  filling	
  the	
  space	
  of	
  40	
  basketballs.	
  
	
  
1	
  kg	
  =	
  (1000	
  g)(1	
  mole/44	
  g)	
  =	
  22.7	
  moles	
  
Ideal	
  gas	
  law	
  (PV	
  =	
  nRT)	
  assumptions	
  27°C	
  (300K)	
  and	
  1	
  atm	
  
Volume	
  of	
  1	
  kg	
  of	
  CO2	
  =	
  (22.7	
  moles)(.0821)(300K)/(1	
  atm)	
  =	
  559	
  liters	
  of	
  CO2	
  =	
  ~20	
  cuft	
  	
  
20	
  cuft	
  =	
  ~40	
  basketballs	
  with	
  radius	
  6”	
  
1	
  kg	
  of	
  CO2	
  =	
  ~40	
  basketballs	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   15	
  
Energy	
   comes	
   in	
   incredibly	
   elusive	
   forms	
   and	
   units.	
   	
   When	
   speaking	
   about	
  
‘primary	
  energy’	
  it	
  is	
  standard	
  practice	
  in	
  the	
  US	
  to	
  use	
  the	
  British	
  thermal	
  unit,	
  btu	
  or	
  
kbtu	
  (1000	
  btus).	
  	
  Primary	
  energy,	
  also	
  known	
  as	
  source	
  energy,	
  is	
  a	
  concept	
  of	
  total	
  raw	
  
energy	
   content	
   required	
   from	
   an	
   energy	
   source	
   (fossil	
   fuel,	
   renewable,	
   or	
   nuclear)	
  
converted	
   including	
   aggregate	
   losses	
   into	
   an	
   energy	
   carrier	
   (electricity,	
   enthalpy,	
  
mechanical,	
   etc.)	
   to	
   accomplish	
   a	
   specified	
   amount	
   of	
   work.	
   	
   This	
   work	
   is	
   called	
  
secondary	
  energy	
  and	
  is	
  what	
  is	
  recorded	
  as	
  onsite	
  energy	
  usage	
  such	
  as	
  therms	
  for	
  
natural	
   gas	
   and	
   kilowatt-­‐hours	
   (kWh)	
   for	
   electricity.	
   	
   To	
   integrate	
   upstream	
   energy	
  
losses	
   and	
   find	
   primary	
   energy	
   the	
   National	
   Renewable	
   Energy	
   Laboratory	
   (NREL)	
  
factors	
   are	
   used	
   (Deru,	
   M.,	
   P.	
   Torcellini	
   2007	
   p9).	
   	
   Power	
   demand	
   and	
   generation	
  
potential	
  is	
  expressed	
  in	
  kW	
  or	
  (k)btu/hr	
  depending	
  upon	
  the	
  context.	
  
	
  
NREL	
  Electricity	
  primary	
  energy	
  factor	
  =	
  3.365	
  
NREL	
  natural	
  gas	
  primary	
  energy	
  factor	
  =	
  1.092	
  
1	
  kWh	
  of	
  electricity	
  	
   =	
  	
   3,412	
  btu	
  (secondary)	
  	
   =	
  	
   11,481	
  btu	
  (primary)	
  
1	
  therm	
  of	
  natural	
  gas	
   =	
  	
   10,000	
  btu	
  (secondary)	
  	
   =	
  	
  	
   10,920	
  btu	
  (primary)	
  
1	
  kbtu/hr	
  =	
  	
  0.29	
  kW	
  
	
  
	
  
Frequently	
  the	
  impact	
  of	
  CO2	
  as	
  a	
  GHG	
  is	
  used	
  a	
  reference	
  for	
  how	
  equivalently	
  
additional	
  harmful	
  emissions,	
  such	
  as	
  C2H4	
  and	
  N2O,	
  are	
  or	
  as	
  a	
  unit	
  to	
  note	
  hypothetical	
  
reductions	
  in	
  global	
  warming	
  potential	
  by	
  avoided	
  emissions.	
  	
  This	
  measure	
  is	
  known	
  as	
  
a	
  carbon	
  dioxide	
  equivalency	
  (CO2e).	
  	
  NREL	
  with	
  the	
  Environmental	
  Protection	
  Agency	
  
(EPA)	
  has	
  created	
  CO2e	
  emissions	
  from	
  multiple	
  energy	
  carriers	
  which	
  take	
  into	
  account	
  
primary	
  energy,	
  fugitive	
  emissions,	
  and	
  all	
  downstream	
  losses	
  (Deru,	
  M.,	
  P.	
  Torcellini	
  
2007	
  p11	
  &	
  p21).	
  	
  The	
  near	
  ten	
  times	
  magnitude	
  difference	
  between	
  the	
  two	
  carriers	
  
for	
   roughly	
   the	
   same	
   primary	
   energy	
   is	
   fascinating	
   and	
   must	
   come	
   down	
   to	
   a	
   kWh	
  
delivering	
   substantially	
   less	
   secondary	
   energy,	
   the	
   efficient	
   combustion	
   and	
  
sequestration	
   of	
   specific	
   GHGs,	
   excluding	
   CO2,	
   in	
   generation	
   from	
   multiple	
   fuels	
   in	
  
addition	
  to	
  renewables.	
  
	
  
1	
  kWh	
  of	
  electricity	
  	
   =	
   0.69	
  kg	
  CO2e	
  	
   	
   =	
  	
   1.50	
  lbm	
  CO2e	
  
1	
  Therm	
  	
   of	
  natural	
  gas	
   =	
  	
   5.30	
  kg	
  CO2e	
  	
   	
   =	
  	
   11.7	
  lbm	
  CO2e	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   16	
  
To	
  compare	
  between	
  separate	
  breweries,	
  countries,	
  and	
  scales	
  of	
  production,	
  
and	
   the	
   energy	
   and	
   resource	
   impact	
   of	
   a	
   specific	
   process	
   or	
   conservation	
   measure,	
  
several	
   key	
   performance	
   indicators	
   (KPIs)	
   need	
   to	
   be	
   established.	
   	
   These	
   metrics	
  
essentially	
  provide	
  a	
  ratio	
  between	
  two	
  inputs,	
  products,	
  and/or	
  byproducts	
  to	
  assess	
  
the	
  efficiency/quality/intensity	
  of	
  one	
  parameter	
  as	
  determined	
  by	
  the	
  other.	
  	
  For	
  the	
  
purposes	
   of	
   this	
   investigation,	
   usually	
   quantities	
   of	
   electricity,	
   natural	
   gas,	
   brewing	
  
resources,	
   wastewater,	
   or	
   CO2e	
   will	
   be	
   compared	
   to	
   the	
   total	
   number	
   of	
   barrels	
  
produced	
   in	
   a	
   period	
   of	
   time.	
   	
   Please	
   refer	
   to	
   Appendix	
   2	
   for	
   the	
   KPIs	
   of	
   electricity,	
  
natural	
   gas,	
   water,	
   and	
   emissions	
   intensities	
   in	
   (kWh/bbl),	
   (therm/bbl),	
   (bbl	
  
wastewater/bbl	
  beer),	
  and	
  (kg	
  of	
  CO2e/bbl),	
  respectively,	
  in	
  tabular	
  form	
  as	
  reported	
  by	
  
cited	
  source.	
  	
  In	
  addition,	
  the	
  KPI	
  of	
  total	
  primary	
  energy	
  used	
  in	
  the	
  production,	
  called	
  
energy	
  use	
  intensity	
  (EUI),	
  is	
  measured	
  in	
  (kbtu/bbl).	
  	
  As	
  calculated	
  later	
  in	
  this	
  report,	
  
one	
  number	
  to	
  keep	
  in	
  mind	
  is	
  that,	
  on	
  average,	
  an	
  American	
  craft	
  brewery	
  has	
  an	
  EUI	
  
of	
  573	
  kbtu/bbl.	
  	
  	
  Frequently,	
  energy	
  efficiency	
  measures	
  will	
  produce	
  a	
  percent	
  savings	
  
or	
  better	
  yet	
  an	
  identifiable	
  potential	
  reduction	
  in	
  EUI,	
  also	
  measured	
  in	
  kbtu/bbl.	
  	
  This	
  
record	
  keeping	
  and	
  comparison	
  to	
  industry	
  benchmarks	
  or	
  private	
  goals	
  can	
  detail	
  gains	
  
or	
  losses	
  in	
  efficient	
  resource	
  and	
  byproduct	
  management.	
  
	
  
Summary	
  Table	
  of	
  Introduction	
  to	
  Research	
  
	
  
	
  
Summary	
  Table	
  1:	
  Introduction	
  to	
  Research	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   17	
  
Scope	
  of	
  Research,	
  Method	
  of	
  Analysis,	
  &	
  Barriers	
  
	
  
Waste	
  equals	
  food,	
  whether	
  it's	
  food	
  for	
  the	
  earth,	
  or	
  for	
  a	
  closed	
  industrial	
  cycle.	
  We	
  manufacture	
  products	
  that	
  go	
  
from	
  cradle	
  to	
  grave.	
  We	
  want	
  to	
  manufacture	
  them	
  from	
  cradle	
  to	
  cradle.	
  
-­‐William	
  McDonough	
  
	
  
Holistic	
  Assessment	
  
	
  
This	
   report	
   attempts	
   to	
   serve	
   as	
   a	
   guide	
   to	
   possible	
   resource	
   conservation	
  
measures	
   that	
   can	
   be	
   deployed	
   in	
   very	
   small	
   to	
   semi-­‐industrial	
   craft	
   breweries.	
   	
   The	
  
approach	
  used	
  was	
  to	
  analyze	
  the	
  entirety	
  of	
  the	
  brewing	
  process,	
  all	
  the	
  energy	
  and	
  
material	
  inputs	
  and	
  waste	
  products,	
  and	
  review	
  existing	
  literature	
  and	
  case	
  studies.	
  	
  A	
  
comprehensive	
   Lawrence	
   Berkeley	
   National	
   Laboratory	
   (LBNL)	
   study	
   into	
   brewing	
  
efficiency	
  found	
  that	
  the	
  production	
  of	
  beer	
  nationwide	
  entails	
  the	
  use	
  of	
  67	
  trillion	
  btu	
  
of	
  primary	
  energy	
  annually	
  (Galitsky	
  2003	
  p9).	
  	
  While	
  the	
  LBNL	
  study	
  is	
  a	
  great	
  source	
  of	
  
vetted	
  information,	
  it	
  is	
  good	
  to	
  remember	
  that	
  it	
  is	
  slightly	
  out	
  of	
  date	
  and	
  that	
  its	
  data	
  
includes	
  industrial	
  brewing.	
  	
  At	
  the	
  time	
  of	
  the	
  study,	
  industrial	
  brewing	
  made	
  up	
  95%	
  of	
  
the	
  market	
  and	
  is	
  notably	
  for	
  being	
  more	
  energy	
  and	
  resource	
  efficient	
  by	
  volume	
  than	
  
craft	
   brewing.	
   	
   Craft	
   brewing	
   is	
   a	
   slim	
   minority	
   of	
   this	
   67	
   trillion	
   btu;	
   however	
   it	
   is	
  
substantially	
  less	
  efficient	
  with	
  its	
  resource	
  usage	
  by	
  retail	
  volume	
  produced.	
  	
  
	
  
When	
   it	
   comes	
   to	
   systems	
   thinking	
   in	
   brewing,	
   Paul	
   Brodie,	
   a	
   mechanical	
  
engineer	
  specializing	
  in	
  brewery	
  thermodynamic	
  efficiency,	
  said	
  that	
  “[T]he	
  principles	
  
and	
  philosophy	
  of	
  Systems	
  Engineering	
  should	
  be	
  understood	
  and	
  embraced	
  to	
  allow	
  
energy	
   reduction	
   in	
   the	
   brewing	
   industry”	
   (Brodie	
   2014	
   p29).	
   	
   This	
   holistic	
   approach	
  
allows	
   for	
   streamlining	
   production,	
   closing	
   waste	
   heat	
   and	
   material	
   loops,	
   and	
   the	
  
consideration	
  of	
  upstream	
  and	
  end	
  of	
  the	
  pipe	
  solutions.	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   18	
  
Defining	
  the	
  System	
  by	
  Establishing	
  its	
  Boundaries	
  
	
  
As	
   with	
   any	
   engineering	
   or	
   physics	
   analysis,	
   an	
   internal	
   system	
   with	
   defined	
  
boundaries	
  is	
  often	
  employed	
  to	
  note	
  material	
  and	
  energy	
  flows	
  into	
  and	
  out	
  of	
  a	
  given	
  
process.	
  	
  This	
  tool	
  is	
  incredibly	
  useful	
  in	
  assessing	
  the	
  efficiency	
  of	
  the	
  brewing	
  process	
  
as	
   it	
   allows	
   isolation	
   of	
   a	
   specific	
   procedure,	
   such	
   as	
   cooling	
   boiled	
   wort	
   down	
   to	
   a	
  
fermentable	
  temperature,	
  to	
  establishing	
  the	
  extents	
  of	
  the	
  whole	
  brewing	
  process,	
  to	
  
attempting	
  a	
  full	
  life	
  cycle	
  assessment	
  (LCA).	
  This	
  point	
  was	
  addressed	
  directly	
  in	
  the	
  
conclusion	
  of	
  an	
  article	
  on	
  a	
  life	
  cycle	
  assessment	
  specifically	
  on	
  land	
  use	
  impacts	
  from	
  
the	
  beer	
  production:	
  
	
  
For	
  most	
  indicators,	
  most	
  of	
  the	
  impacts	
  were	
  caused	
  in	
  the	
  cultivation	
  [of	
  grain]	
  phase.	
  However,	
  
major	
   impacts	
   were	
   also	
   found	
   far	
   down	
   the	
   supply	
   chain	
   (e.g.,	
   wood	
   pallets	
   used	
   for	
   glass	
  
transportation).	
  As	
  is	
  common	
  in	
  LCA,	
  the	
  choice	
  of	
  system	
  boundaries	
  was	
  shown	
  to	
  influence	
  
the	
  overall	
  result	
  considerably.	
  (Matilla	
  2011	
  p285)	
  
	
  
Where	
  a	
  boundary	
  is	
  drawn	
  becomes	
  a	
  very	
  tricky	
  and	
  frequently	
  agenda	
  driven	
  choice;	
  
are	
  the	
  inputs	
  of	
  growing	
  the	
  barley	
  taken	
  into	
  account	
  or	
  is	
  a	
  boundary	
  drawn	
  around	
  
the	
  electricity	
  used	
  to	
  refrigerate	
  the	
  beer	
  after	
  bottling,	
  or	
  after	
  retail,	
  or	
  up	
  to	
  the	
  
point	
  of	
  consumption?	
  
	
  
Take	
  for	
  instance	
  the	
  problem	
  of	
  trying	
  to	
  account	
  for	
  how	
  much	
  water	
  it	
  takes	
  
to	
   make	
   a	
   beer	
   and	
   the	
   multiplicative	
   effects	
   in	
   water	
   intensity	
   when	
   redefining	
  
boundaries	
  of	
  the	
  system.	
  	
  If	
  you	
  place	
  the	
  system	
  boundaries	
  on	
  the	
  fresh	
  water	
  intake	
  
and	
  sewage	
  out,	
  craft	
  brewing	
  has	
  roughly	
  a	
  10:1	
  units	
  of	
  fresh	
  water	
  input	
  to	
  beer	
  ratio	
  
(Galitsky	
  2003	
  p8).	
  	
  So	
  for	
  each	
  12	
  ounce	
  can	
  or	
  bottle	
  there	
  is	
  roughly	
  120	
  ounces,	
  a	
  
little	
  less	
  than	
  one	
  gallon,	
  of	
  water	
  used	
  to	
  clean	
  the	
  brewhouse	
  equipment,	
  containers,	
  
and	
  lost	
  through	
  evaporation	
  and	
  unintentional	
  runoff.	
  	
  But	
  look	
  upstream	
  and	
  draw	
  a	
  
system	
  boundary	
  around	
  beer’s	
  primary	
  ingredient,	
  barley.	
  	
  Consider	
  the	
  water	
  used	
  to	
  
irrigate	
  the	
  barley	
  fields.	
  	
  While	
  no	
  easy	
  feat,	
  The	
  Water	
  Footprint	
  Network	
  estimated	
  it	
  
takes	
  an	
  astounding	
  298:1	
  units	
  of	
  fresh	
  water	
  exclusively	
  for	
  agriculture	
  for	
  one	
  unit	
  of	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   19	
  
produced	
  beer	
  (Patterson	
  2014	
  p111).	
  	
  With	
  this	
  shift	
  in	
  the	
  system	
  parameters,	
  that	
  
single	
   innocuous	
   12	
   ounce	
   microbrew	
   has	
   over	
   28	
   gallons	
   of	
   embodied	
   fresh	
   water.	
  	
  
This	
  same	
  compounding	
  effect	
  applies	
  to	
  energy	
  used	
  on	
  site,	
  embodied	
  energy	
  in	
  the	
  
material	
  inputs,	
  upstream	
  and	
  downstream	
  emissions,	
  wastewater,	
  and	
  other	
  streams	
  
when	
  the	
  boundaries	
  of	
  the	
  system	
  are	
  redefined.	
  
	
  
This	
   is	
   the	
   concept	
   of	
   embodiment.	
   	
   It	
   is	
   an	
   abstract	
   KPI	
   which	
   attempts	
   to	
  
describe	
  the	
  total	
  amount	
  of	
  a	
  valuable	
  input	
  resource	
  or	
  byproduct	
  that	
  goes	
  into	
  or	
  
results	
  from	
  the	
  creation	
  of	
  the	
  desired	
  product.	
  	
  For	
  example,	
  digging	
  a	
  hole	
  to	
  plant	
  
several	
   post	
   in	
   concrete	
   might	
   appear	
   like	
   a	
   minimal	
   amount	
   of	
   expended	
   manual	
  
energy;	
  the	
  official	
  unit	
  of	
  manual	
  work	
  is	
  ‘elbow	
  grease.’	
  	
  But	
  that	
  80	
  lbm	
  (36.4	
  kg)	
  bag	
  
of	
  dry	
  Portland	
  cement	
  started	
  off	
  as	
  mined	
  lime	
  stone,	
  was	
  transported,	
  pulverized,	
  run	
  
through	
  an	
  intensely	
  hot	
  fossil	
  fuel	
  fired	
  kiln	
  where	
  it	
  was	
  reduced	
  to	
  lime,	
  then	
  finally	
  
packaged	
  and	
  shipped	
  for	
  retail.	
  	
  That	
  unexceptional	
  bag	
  of	
  cement	
  had	
  over	
  38,000	
  
btus	
  of	
  embodied	
  energy	
  and	
  also	
  has	
  the	
  embodied	
  emissions	
  of	
  5.8	
  kg	
  CO2e	
  (Building	
  
Green	
  2014	
  p1-­‐14).	
  	
  It’s	
  easy	
  to	
  look	
  at	
  everyday	
  products,	
  including	
  a	
  nice	
  cold	
  brew,	
  
and	
  fail	
  to	
  see	
  the	
  staggering	
  amount	
  of	
  resources	
  involved	
  in	
  their	
  production.	
  
	
  
Conventional	
  System	
  Energy	
  Inputs	
  
	
  
When	
  talking	
  about	
  energy	
  transformation	
  within	
  a	
  process	
  of	
  the	
  whole	
  system	
  
of	
  brewing	
  it	
  is	
  appropriate	
  to	
  review	
  types	
  of	
  energy,	
  their	
  usefulness	
  or	
  quality,	
  and	
  
their	
  environmental	
  impact.	
  	
  Traditionally,	
  two	
  energy	
  carriers	
  come	
  into	
  the	
  system,	
  
electricity	
  and	
  refined	
  natural	
  gas,	
  but	
  in	
  much	
  unorthodox	
  cases	
  fuel	
  oil	
  is	
  also	
  used.	
  	
  
Electricity	
   is	
   high	
   grade	
   energy	
   able	
   to	
   convert	
   the	
   vast	
   majority	
   of	
   its	
   potential	
   into	
  
useful	
   work	
   when	
   using	
   efficient	
   devices.	
   	
   Natural	
   gas	
   is	
   a	
   mixture	
   of	
   hydrocarbons	
  
containing	
   medium	
   grade	
   chemical	
   energy	
   when	
   combusted	
   releasing	
   high	
  
temperatures	
  of	
  roughly	
  3,600°F	
  depending	
  upon	
  application	
  and	
  has	
  more	
  substantial	
  
losses.	
  	
  Lastly	
  due	
  to	
  the	
  Second	
  Law	
  of	
  Thermodynamic,	
  as	
  a	
  result	
  of	
  any	
  useful	
  work	
  
or	
  change	
  in	
  enthalpy	
  due	
  to	
  electricity	
  or	
  combustion	
  of	
  natural	
  gas	
  within	
  a	
  brewery,	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   20	
  
there	
  is	
  a	
  secondary	
  byproduct	
  which	
  is	
  residual	
  or	
  rejected	
  heat.	
  	
  These	
  distinctions	
  are	
  
important	
   because	
   when	
   it	
   comes	
   to	
   finding	
   cost	
   effective	
   opportunities	
   for	
   energy	
  
efficiency	
  it	
  often	
  comes	
  down	
  to	
  making	
  the	
  most	
  effective	
  use	
  of	
  high	
  quality	
  energies	
  
and	
   efficient	
   extraction	
   of	
   heat	
   from	
   medium	
   grade	
   sources	
   before	
   considering	
   low	
  
grade	
  heat.	
  
	
  
In	
  addition	
  to	
  considering	
  the	
  quality	
  of	
  electricity	
  and	
  natural	
  gas,	
  economics	
  
much	
  also	
  be	
  taken	
  into	
  account.	
  	
  While	
  natural	
  gas	
  combustion	
  is	
  a	
  medium	
  quality	
  
energy	
  source,	
  it	
  is	
  able	
  to	
  deliver	
  roughly	
  three	
  times	
  as	
  much	
  energy	
  for	
  the	
  same	
  
price	
  with	
  the	
  general	
  assumption	
  of	
  $0.10/kwh	
  and	
  $1/therm.	
  	
  Thus	
  it	
  is	
  standard	
  to	
  
use	
  natural	
  gas	
  and	
  not	
  electricity	
  in	
  simple	
  heating	
  operations.	
  	
  It	
  should	
  be	
  noted	
  that	
  
the	
  price	
  of	
  electricity	
  has	
  been	
  increasing	
  over	
  the	
  past	
  decade	
  and	
  that	
  the	
  cost	
  of	
  
natural	
  gas	
  is	
  highly	
  volatile	
  due	
  to	
  mismatches	
  in	
  supply	
  and	
  demand.	
  
	
  
1	
  kWh	
  of	
  electricity	
  	
  	
  /	
  	
  	
  $0.10	
  	
   	
   =	
   	
   	
  	
  34,121	
  btu	
  	
  	
  /	
  	
  	
  $1.00	
  
1	
  Therm	
  	
   of	
  natural	
  gas	
  	
  	
  /	
  	
  	
  $1.00	
   	
   =	
  	
   	
   100,000	
  btu	
  	
  /	
  	
  	
  $1.00	
  
	
  
Integrating	
  Conservation	
  into	
  a	
  Business	
  Model	
  
	
  
When	
   looking	
   at	
   the	
   system	
   of	
   energy	
   and	
   material	
   input	
   and	
   waste	
   outputs	
  
from	
  the	
  brewing	
  process,	
  it	
  is	
  critical	
  to	
  think	
  of	
  sustainability	
  as	
  reduction	
  and	
  reuse	
  of	
  
each	
   stream.	
   	
   In	
   many	
   cases	
   the	
   concept	
   of	
   looped	
   circuits	
   within	
   the	
   system	
   is	
   an	
  
effective	
  way	
  of	
  taking	
  an	
  output	
  arrow	
  and	
  plugging	
  it	
  back	
  into	
  the	
  inputs	
  thereby	
  
reducing	
  both	
  demand	
  and	
  waste.	
  	
  Every	
  brewery	
  purchases	
  material	
  inputs	
  at	
  cost	
  and	
  
on	
  the	
  far	
  end	
  pays	
  to	
  dispense	
  of	
  liquid	
  and	
  material	
  waste;	
  what	
  if	
  the	
  expenditures	
  
and	
  energy	
  of	
  purchased	
  items	
  were	
  supplanted	
  with	
  production	
  outputs?	
  	
  
	
  
The	
   vast	
   majority	
   of	
   breweries	
   purchase	
   food	
   grade	
   compressed	
   CO2	
   for	
  
carbonation,	
  anti-­‐oxidation,	
  and	
  cleaning	
  despite	
  onsite	
  fermentation	
  itself	
  producing	
  
near	
  food-­‐grade	
  CO2	
  that	
  is	
  vented	
  into	
  the	
  atmosphere.	
  	
  There	
  are	
  breweries	
  in	
  more	
  
remote	
   locations	
   that	
   instead	
   of	
   using	
   spent	
   grain	
   to	
   feed	
   livestock,	
   the	
   more	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   21	
  
conventional	
   reuse	
   option,	
   process	
   it	
   onsite	
   and	
   create	
   a	
   biofuel	
   or	
   gas	
   that	
   is	
  
compatible	
   with	
   their	
   existing	
   heat	
   source	
   boiler.	
   	
   Heat	
   exchangers	
   are	
   readily	
  
deployable	
  to	
  extract	
  heat	
  from	
  a	
  cooling	
  process	
  and	
  use	
  it	
  to	
  preheat	
  in	
  inlet	
  stream.	
  	
  
This	
  method	
  of	
  analysis,	
  while	
  intuitive,	
  does	
  often	
  require	
  research	
  into	
  ROI,	
  precedent	
  
or	
   pilot	
   programs,	
   and	
   an	
   upfront	
   capital	
   investment.	
   	
   Closing	
   loops	
   can	
   hold	
   great	
  
financial	
  gains	
  by	
  potentially	
  eliminating	
  both	
  a	
  purchase	
  and	
  disposal	
  cost.	
  
	
  
As	
   a	
   way	
   of	
   integrating	
   an	
   intent	
   towards	
   sustainability	
   while	
   also	
   remaining	
  
profitable,	
   some	
   small	
   breweries	
   are	
   creating	
   business	
   models	
   based	
   on	
   the	
   Triple	
  
Bottom	
  Line	
  concept	
  as	
  seen	
  in	
  Figure	
  2.	
  	
  In	
  this	
  system	
  an	
  enterprise’s	
  financial	
  bottom	
  
line	
  isn’t	
  the	
  only	
  definition	
  of	
  success.	
  	
  The	
  two	
  other	
  parameters	
  are	
  social	
  equitability	
  
and	
   environmental	
   impact.	
   	
   A	
   business	
   following	
   the	
   Triple	
   Bottom	
   Line	
   is	
   therefore	
  
prompted	
   to	
   make	
   choices	
   that	
   do	
   not	
   incur	
   detrimental	
   impacts	
   to	
   society	
   and	
  
environment	
   in	
   the	
   name	
   of	
   profit.	
   	
   In	
   this	
   system	
   there	
   are	
   not	
   shareholders,	
   not	
  
stakeholders,	
  which	
  creates	
  greater	
  accountability	
  and	
  implies	
  interests	
  beyond	
  profit	
  
margins.	
  
	
  
	
  
Figure	
  2:	
  Ven	
  Diagram	
  of	
  the	
  Triple	
  Bottom	
  Line	
  Model	
  
<http://upload.wikimedia.org/wikipedia/commons/2/2a/Triple_Bottom_Line_graphic.jpg>	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   22	
  
Summary	
  Table	
  of	
  Scope	
  of	
  Research	
  &	
  Method	
  of	
  Analysis	
  
	
  
	
  
Summary	
  Table	
  2:	
  Scope	
  of	
  Research	
  &	
  Method	
  of	
  Analysis	
  
	
  
	
  
	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   23	
  
Brewing	
  Process	
  
	
  
Mother's	
  in	
  the	
  kitchen	
  washing	
  out	
  the	
  jugs,	
  
Sister's	
  in	
  the	
  pantry	
  bottling	
  the	
  suds,	
  
Father's	
  in	
  the	
  cellar	
  mixing	
  up	
  the	
  hops,	
  
Johnny's	
  on	
  the	
  front	
  porch	
  watching	
  for	
  the	
  cops.	
  
-­‐Prohibition	
  Song	
  
	
  
Scale	
  of	
  Production	
  
	
  
When	
   talking	
   about	
   craft	
   breweries	
   it’s	
   critical	
   to	
   understand	
   two	
   key	
   words:	
  
capacity	
   and	
   production.	
   	
   Capacity	
   is	
   a	
   volumetric	
   measurement	
   in	
   barrels	
   (bbl)	
   of	
   a	
  
brewery’s	
  maximum	
  batch	
  size.	
  	
  This	
  is	
  often	
  determined	
  by	
  the	
  brewing	
  vessels	
  which	
  
act	
  as	
  a	
  volumetric	
  bottleneck,	
  usually	
  the	
  gross	
  volume	
  of	
  mash	
  tons	
  or	
  brew	
  kettles.	
  	
  
Production	
   is	
   indicated	
   by	
   how	
   much	
   volume	
   of	
   beer	
   is	
   produced	
   per	
   year	
   (bbl/yr).	
  	
  
According	
  to	
  the	
  Institute	
  of	
  Brewing	
  there	
  are	
  four	
  designations	
  of	
  craft	
  breweries	
  by	
  
capacity:	
  Brewpubs,	
  Microbreweries,	
  Regional	
  Brewers,	
  and	
  Large	
  Brewers.	
  
	
  
”Brewpubs”	
  offer	
  onsite	
  consumption	
  only.	
  	
  These	
  outfits	
  are	
  generally	
  small	
  and	
  
run	
   by	
   one	
   or	
   two	
   dedicated	
   individuals.	
   	
   Facilities	
   are	
   generally	
   minimal.	
   	
   If	
   they	
  
distribute	
   via	
   kegs	
   to	
   local	
   restaurants	
   and	
   bars	
   they	
   might	
   be	
   classified	
   as	
   a	
  
“nanobrewery.”	
  	
  A	
  local	
  example	
  of	
  a	
  Brewpub	
  is	
  Wild	
  Woods	
  based	
  in	
  Boulder.	
  
	
  
“Microbreweries”	
  are	
  categorized	
  by	
  production	
  of	
  less	
  than	
  15,000	
  bbl/yr.	
  	
  They	
  
make	
  up	
  the	
  most	
  number	
  of	
  craft	
  breweries	
  but	
  not	
  the	
  most	
  grossing	
  sales	
  category.	
  	
  
They	
   distribute	
   statewide	
   and	
   might	
   own	
   their	
   own	
   canning	
   or	
   bottling	
   line.	
   	
   A	
   local	
  
example	
  of	
  a	
  microbrewery	
  is	
  Dry	
  Dock	
  Brewing	
  Company	
  (~12,000	
  bbl/yr)	
  located	
  in	
  
Aurora.	
  
	
  
“Regional	
   Breweries”	
   are	
   the	
   largest	
   craft	
   brewery	
   producers	
   and	
   range	
   from	
  
15,000	
   –	
   500,000	
   bbl/yr.	
   	
   These	
   breweries	
   have	
   higher-­‐end	
   facilities	
   which	
   likely	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   24	
  
includes	
   a	
   bottling	
   or	
   canning	
   line.	
   	
   They	
   distribute	
   to	
   surrounding	
   states	
   with	
   some	
  
minimal	
  retail	
  in	
  distant	
  states.	
  	
  A	
  local	
  example	
  of	
  a	
  regional	
  brewer	
  is	
  Great	
  Divide	
  
Brewing	
  Company	
  (~40,000	
  bbl/yr)	
  out	
  of	
  Denver.	
  
	
  
“Large	
  Breweries”	
  are	
  the	
  outfits	
  producing	
  more	
  than	
  500,000	
  bbl/yr.	
  	
  These	
  are	
  the	
  
most	
   established	
   brands	
   and	
   are	
   more	
   likely	
   to	
   be	
   distributed	
   nationally,	
   possibly	
   by	
  
constructing	
  a	
  second	
  brewery	
  in	
  a	
  distant	
  state.	
  	
  Their	
  facilities	
  are	
  industrial.	
  	
  These	
  
breweries	
  dominate	
  in	
  gross	
  craft	
  brew	
  sales.	
  	
  A	
  local	
  example	
  of	
  a	
  large	
  brewer	
  would	
  
be	
  New	
  Belgium	
  (~950,000	
  bbl/yr)	
  in	
  Fort	
  Collins.	
  
	
  
Off	
  Site	
  Inputs	
  Brewery	
  Inputs	
  
	
  
On	
  April	
  23,	
  1516,	
  the	
  Reinheitsgebot	
  was	
  decreed	
  to	
  be	
  the	
  law	
  of	
  the	
  land	
  in	
  
Bavaria,	
  Germany.	
  	
  Also	
  known	
  as	
  the	
  Bavarian	
  or	
  German	
  Purity	
  Laws,	
  this	
  law	
  dictated	
  
that	
  beer	
  could	
  only	
  be	
  brewed	
  from	
  April	
  23	
  through	
  September	
  29	
  and	
  was	
  restricted	
  
to	
  being	
  comprised	
  of	
  only	
  three	
  ingredients:	
  barley,	
  hops,	
  and	
  water	
  (Buck	
  2014	
  p26).	
  	
  
The	
  intent	
  of	
  the	
  law	
  was	
  to	
  exclude	
  other	
  grains,	
  like	
  wheat	
  and	
  rye,	
  from	
  being	
  turned	
  
into	
  beer,	
  a	
  process	
  that	
  had	
  historically	
  created	
  bread	
  shortages	
  in	
  the	
  winter	
  months.	
  	
  
In	
   essence	
   this	
   first	
   piece	
   of	
   brewery	
   related	
   legislation	
   was	
   an	
   attempt	
   to	
   maintain	
  
social	
  sustainability	
  500	
  years	
  before	
  the	
  concept	
  was	
  coined.	
  
	
  
The	
   following	
   section	
   will	
   attempt	
   to	
   outline	
   each	
   step	
   of	
   the	
   modern	
   day	
  
conventional	
  craft	
  brewing	
  process.	
  	
  This	
  includes	
  any	
  mechanical	
  equipment	
  involved,	
  
material	
   and	
   energy	
   inputs,	
   duration,	
   state	
   of	
   the	
   production,	
   and	
   specific	
   potential	
  
impacts	
  by	
  process.	
  	
  While	
  the	
  mechanics	
  of	
  the	
  apparatus	
  change	
  depending	
  upon	
  the	
  
sale	
  of	
  production,	
  the	
  sequencing	
  is	
  fairly	
  regimented.	
  To	
  help	
  map	
  out	
  the	
  brewing	
  
sequence,	
   Figure	
   3	
   depicts	
   a	
   simplified	
   series	
   of	
   pieces	
   of	
   equipment	
   and	
   associated	
  
processes	
   with	
   each	
   stage:	
   hot	
   water	
   and	
   crushed	
   grain	
   are	
   steeped,	
   filtered	
   then	
  
boiled,	
  and	
  finally	
  cooled,	
  fermented,	
  and	
  packaged.	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   25	
  
	
  
Figure	
  3:	
  Simplified	
  Brewing	
  System	
  
<http://www.jwsweetman.ie/img/brewingprocess.png>	
  
	
  
Water,	
  so	
  frequently	
  overlooked,	
  is	
  the	
  primary	
  ingredient	
  in	
  beer.	
  It	
  provides	
  
the	
   solution	
   within	
   which	
   carbohydrates	
   and	
   proteins	
   dissolve,	
   passive	
   enzymatic	
  
reactions	
   occur,	
   and	
   an	
   ecosystem	
   of	
   yeast	
   flourishes	
   then	
   collapses.	
   	
   Most	
   craft	
  
breweries	
  are	
  within	
  a	
  municipality’s	
  infrastructure	
  and	
  thus	
  are	
  using	
  pretreated	
  fresh	
  
water	
   in	
   their	
   beer	
   production	
   that	
   then	
   indicates	
   the	
   likely	
   use	
   of	
   municipal	
  
wastewater	
  as	
  well.	
  	
  Other	
  breweries	
  outside	
  a	
  city’s	
  limits	
  will	
  be	
  on	
  regulated	
  well	
  
water	
  that	
  likely	
  implies	
  the	
  use	
  of	
  an	
  onsite	
  septic	
  system.	
  	
  Some	
  larger	
  breweries	
  use	
  
reverse	
  osmosis	
  and/carbon	
  filtering	
  to	
  remove	
  impurities	
  or	
  additives	
  like	
  fluoride	
  or	
  
chlorine,	
  which	
  can	
  affect	
  flavor	
  and	
  the	
  health	
  of	
  the	
  yeast.	
  	
  These	
  more	
  volatile	
  ions	
  
can	
  also	
  be	
  vented	
  off	
  in	
  a	
  boiling	
  process.	
  	
  Additionally,	
  sometimes	
  the	
  brewer	
  adds	
  
mineral	
  components	
  to	
  mimic	
  a	
  certain	
  regional	
  style	
  with	
  a	
  particular	
  water	
  structure.	
  
	
  
The	
  most	
  notable	
  ingredient	
  in	
  craft	
  beer	
  is	
  of	
  course	
  barley	
  and	
  other	
  grains	
  
that	
  are	
  the	
  source	
  of	
  the	
  requisite	
  carbohydrates.	
  	
  While	
  corn	
  is	
  the	
  most	
  frequently	
  
used	
  grain	
  in	
  industrial	
  scale	
  brewing	
  in	
  the	
  US	
  and	
  rice	
  elsewhere	
  in	
  the	
  world,	
  craft	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   26	
  
breweries	
   stick	
   to	
   the	
   time-­‐honored	
   use	
   of	
   barley	
   as	
   the	
   foundational	
   grain	
   in	
   beer.	
  	
  
Craft	
   breweries	
   pride	
   themselves	
   in	
   making	
   a	
   range	
   of	
   unique,	
   high	
   quality,	
   and	
  
distinctive	
  brews.	
  	
  What	
  makes	
  a	
  pilsner	
  different	
  than	
  a	
  porter	
  is	
  largely	
  attributed	
  to	
  
the	
   grain	
   bill,	
   a	
   ratio	
   of	
   barley,	
   wheat,	
   rye,	
   oats	
   and	
   others,	
   and	
   how	
   each	
   type	
   is	
  
processed	
   prior,	
   such	
   as	
   hulled,	
   malted,	
   roasted,	
   or	
   smoked.	
   	
   As	
   with	
   all	
   industrial	
  
agriculture,	
   barley	
   cultivation	
   has	
   a	
   substantial	
   carbon	
   footprint	
   and	
   water	
   appetite.	
  	
  
The	
  Food	
  Climate	
  Research	
  Network	
  report	
  states,	
  
	
  
Carbon	
  dioxide	
  emissions	
  from	
  barley	
  production	
  will	
  arise	
  from	
  the	
  use	
  of	
  energy	
  to	
  drive	
  on-­‐
farm	
  machinery	
  and	
  for	
  the	
  production	
  and	
  transport	
  of	
  fertilisers	
  [sic],	
  seeds	
  and	
  other	
  inputs.	
  
Nitrous	
  oxide	
  is	
  also	
  emitted	
  both	
  during	
  the	
  fertilisers	
  [sic]	
  manufacturing	
  process	
  and	
  through	
  
natural	
   soil	
   processes.”	
   (Garnett	
   2007	
   p28).	
   	
   The	
   report	
   then	
   goes	
   on	
   to	
   say	
   that	
   the	
  
manufacturing	
  of	
  fertilizer	
  and	
  its	
  byproduct	
  N20	
  contribute	
  roughly	
  1%	
  of	
  total	
  GHG	
  emission	
  in	
  
the	
  UK.	
  (Garnett	
  2007	
  p29)	
  
	
  
While	
  dependent	
  upon	
  recipe	
  and	
  desired	
  final	
  specific	
  gravity,	
  which	
  indicates	
  likely	
  
final	
  ethanol	
  content,	
  generally	
  between	
  1-­‐4	
  lbm	
  of	
  barley	
  is	
  used	
  per	
  gallon	
  of	
  beer	
  
with	
  an	
  alcohol	
  by	
  volume	
  (ABV)	
  of	
  between	
  3-­‐13%.	
  	
  With	
  anywhere	
  from	
  75-­‐120	
  lbm	
  of	
  
barley	
  are	
  used	
  per	
  barrel	
  of	
  craft	
  beer,	
  it	
  easy	
  to	
  see	
  the	
  water	
  used	
  for	
  irrigation,	
  the	
  
fossil	
  fuels	
  used	
  for	
  industrial	
  farming	
  equipment,	
  and	
  the	
  applications	
  of	
  energy	
  and	
  
emissions	
  intensive	
  nitrogen-­‐rich	
  fertilizers	
  quickly	
  adding	
  up.	
  
	
  
After	
   the	
   grain	
   in	
   harvested,	
   it	
   is	
   frequently	
   malted	
   at	
   an	
   offsite,	
   usually	
  
industrial,	
  location.	
  	
  This	
  purpose	
  is	
  to	
  unlock	
  the	
  bundle	
  of	
  potential	
  chemical	
  energy,	
  
largely	
  in	
  the	
  form	
  of	
  proteins,	
  which	
  make	
  up	
  raw	
  grain.	
  	
  Malting	
  is	
  the	
  process	
  by	
  
which	
   grain	
   germinates	
   with	
   water.	
   The	
   seed’s	
   own	
   biological	
   mechanisms	
   then	
  
transform	
   the	
   complex	
   endosperm	
   into	
   more	
   simple	
   carbohydrates,	
   starches,	
   and	
  
enzymes	
   used	
   to	
   sprout	
   and	
   create	
   a	
   seedling.	
   	
   This	
   process	
   is	
   interrupted	
   prior	
   to	
  
sprouting	
  via	
  heat,	
  leaving	
  a	
  large	
  portion	
  of	
  the	
  non-­‐fermentable	
  proteins	
  transformed	
  
into	
  carbohydrates,	
  including	
  both	
  fermentable	
  monosaccharides,	
  such	
  as	
  maltose,	
  and	
  
non-­‐fermentable	
  polysaccharides,	
  such	
  as	
  starches.	
  	
  The	
  grain	
  is	
  then	
  put	
  through	
  a	
  kiln	
  
where	
  the	
  water	
  content	
  is	
  reduced.	
  	
  This	
  process	
  can	
  be	
  continued	
  to	
  roast	
  the	
  grain,	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   27	
  
producing	
  more	
  useable	
  carbohydrates	
  and	
  creating	
  a	
  darker,	
  more	
  malty	
  and	
  complex	
  
flavor	
  profile	
  used	
  in	
  such	
  beers	
  as	
  stouts	
  and	
  porters.	
  	
  Energy	
  inputs	
  and	
  emissions	
  vary	
  
dramatically	
  in	
  this	
  process.	
  	
  The	
  United	
  Kingdom	
  Food	
  Climate	
  Research	
  Network	
  study	
  
shows	
  that	
  the	
  malting	
  of	
  grain	
  for	
  beer	
  in	
  the	
  UK	
  accounts	
  for	
  .055%	
  of	
  total	
  national	
  
GHG	
  emissions	
  (Garnett	
  2007,	
  p31).	
  	
  	
  
	
  
The	
  malted	
  grain	
  is	
  then	
  shipped	
  via	
  the	
  black	
  box	
  of	
  transportation	
  networks	
  
and	
  eventually	
  is	
  delivered	
  to	
  the	
  brewery.	
  	
  Here	
  the	
  barley	
  is	
  loaded	
  directly	
  into	
  grain	
  
silos	
  using	
  conveyors	
  or	
  grain	
  elevators	
  in	
  larger	
  craft	
  breweries	
  or	
  left	
  packaged	
  in	
  50	
  
lbm	
  sacks	
  for	
  smaller	
  set	
  ups	
  or	
  specialty	
  grains.	
  	
  It	
  is	
  static	
  at	
  this	
  point	
  and	
  stable	
  until	
  
brewing	
  begins.	
  
	
  
The	
  Brewhouse	
  
	
  
The	
  brewhouse	
  is	
  the	
  facility	
  where	
  water,	
  grain,	
  hops,	
  heat	
  and	
  its	
  extraction,	
  
and	
   yeast	
   are	
   combined	
   to	
   ferment	
   and	
   create	
   the	
   final	
   product,	
   craft	
   beer.	
   	
   Large	
  
breweries	
  can	
  have	
  around	
  the	
  clock	
  operations,	
  while	
  regional	
  breweries	
  might	
  brew	
  
every	
   working	
   day	
   and	
   micro	
   and	
   nanobreweries	
   have	
   specific	
   brewing	
   days.	
   	
   These	
  
three	
   scales	
   of	
   brewing	
   imply	
   very	
   different	
   systems	
   with	
   the	
   largest	
   potentially	
  
replicating	
  a	
  near	
  steady	
  state	
  series	
  of	
  processes	
  and	
  the	
  smaller	
  breweries	
  defined	
  by	
  
a	
  linear	
  start	
  to	
  stop	
  frame.	
  	
  As	
  with	
  most	
  engineered	
  processes,	
  the	
  less	
  starting	
  and	
  
stopping	
   thus	
   more	
   continuous	
   in	
   operation,	
   the	
   more	
   efficient	
   the	
   plant	
   and	
   thus	
  
energy	
  economies	
  of	
  scale	
  are	
  uncovered.	
  	
  The	
  brewing	
  process	
  can	
  be	
  expressed	
  as	
  a	
  
series	
  of	
  thermodynamic	
  processes	
  performed	
  on	
  a	
  fluid	
  which	
  take	
  place	
  in	
  multiple	
  
containment	
  vessels	
  where	
  heat	
  is	
  generally	
  added	
  or	
  extracted.	
  	
  The	
  most	
  common	
  
type	
  of	
  vessel	
  in	
  the	
  brewing	
  industry	
  is	
  the	
  iconic,	
  stainless	
  steel,	
  conical-­‐base	
  tank,	
  
which	
  usually	
  has	
  an	
  integrated	
  double	
  skin,	
  known	
  as	
  a	
  jacket,	
  or	
  an	
  internal	
  coil	
  by	
  
which	
  the	
  fluid	
  is	
  heated	
  or	
  cooled.	
  	
  	
  For	
  the	
  entirety	
  of	
  the	
  brewing	
  process	
  the	
  United	
  
Kingdom	
  Food	
  Climate	
  Research	
  Network	
  study	
  shows	
  that	
  the	
  mashing,	
  lautering,	
  and	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   28	
  
fermenting	
  of	
  beer	
  accounted	
  .096%	
  of	
  total	
  UK	
  GHG	
  emissions	
  (Garnett	
  2007,	
  p41).	
  	
  
Figure	
  4	
  depicts	
  the	
  linear	
  sequence	
  of	
  processes	
  in	
  the	
  brewhouse	
  and	
  postproduction.	
  
	
  	
  	
  
	
  
Figure	
  4:	
  Linear	
  Brewing	
  Sequence	
  	
  
(Brodie	
  2014	
  p7)	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   29	
  
The	
  first	
  step	
  in	
  the	
  brewing	
  process	
  is	
  milling	
  the	
  malted	
  grain,	
  thus	
  cracking	
  
any	
  remaining	
  husks	
  and	
  the	
  outer	
  layers	
  and	
  exposing	
  the	
  carbohydrates	
  inside.	
  	
  This	
  
cracked	
  grain	
  is	
  known	
  as	
  grist.	
  	
  The	
  process	
  is	
  simply	
  grinding	
  the	
  malted	
  barley	
  and	
  
other	
  grains	
  through	
  a	
  set	
  of	
  rolling	
  pins	
  to	
  produce	
  a	
  flakey	
  and	
  coarse	
  mixture.	
  	
  Larger	
  
or	
  new	
  facilities	
  often	
  employ	
  wet	
  milling	
  to	
  eliminate	
  the	
  airborne	
  dust	
  produced	
  in	
  the	
  
process.	
  	
  Most	
  craft	
  breweries	
  use	
  a	
  traditional	
  dry	
  mill.	
  	
  This	
  grist	
  is	
  then	
  fed	
  into	
  the	
  
mash-­‐tun.	
  
	
  
The	
  mash-­‐tun	
  is	
  a	
  large	
  vessel	
  where	
  the	
  grist	
  and	
  warm	
  water	
  are	
  allowed	
  to	
  
soak,	
  creating	
  a	
  sweet	
  and	
  malty	
  liquid	
  known	
  as	
  wort.	
  	
  Prior	
  to	
  the	
  grist	
  being	
  added,	
  
the	
   mash-­‐tun	
   is	
   filled	
   with	
   warm	
   water.	
   	
   The	
   water	
   is	
   either	
   warmed	
   directly	
   in	
   the	
  
mash-­‐tun	
   via	
   a	
   conventional	
   steam	
   jacket	
   encasing	
   the	
   vessel	
   or	
   is	
   pulled	
   from	
   an	
  
unconventional	
  hot	
  liquor	
  tank,	
  which	
  acts	
  as	
  a	
  reserve	
  vessel	
  of	
  water	
  maintained	
  at	
  a	
  
certain	
   temperature	
   for	
   multiple	
   applications.	
   	
   Once	
   the	
   water	
   is	
   at	
   the	
   desired	
  
temperature,	
  the	
  grist	
  is	
  added	
  and	
  mashing	
  begins.	
  	
  There	
  are	
  three	
  different	
  methods	
  
of	
  mashing:	
  decoction,	
  involving	
  an	
  added	
  pre-­‐partial	
  mash	
  boil	
  step;	
  infusion,	
  keeping	
  
the	
   mash	
   at	
   a	
   flat	
   temperature	
   then	
   stepped,	
   slowly	
   bringing	
   the	
   mash	
   up	
   in	
  
temperature.	
  	
  Four	
  naturally	
  occurring	
  enzymes	
  in	
  malted	
  barley	
  are	
  each	
  activated	
  in	
  
different	
   temperature	
   zones	
   and	
   have	
   the	
   highly	
   desirable	
   ability	
   to	
   hydrolyze,	
  
chemically	
  break	
  down,	
  non-­‐fermentable	
  starches	
  to	
  fermentable	
  sugars.	
  	
  This	
  mixture	
  
is	
   slowly	
   churned	
   mechanically	
   and	
   kept	
   at	
   (or	
   sequenced	
   through	
   a	
   range	
   of)	
  
temperatures	
   between	
   130-­‐180°F,	
   the	
   band	
   of	
   enzymatic	
   activity,	
   for	
   30-­‐90	
   minutes	
  
depending	
  upon	
  desired	
  extraction	
  efficiency.	
  	
  According	
  to	
  the	
  LBNL	
  study,	
  decoction	
  
mashing	
  is	
  estimated	
  to	
  take	
  12-­‐13	
  kbtu/bbl	
  while	
  infusion	
  mashing,	
  keeping	
  the	
  wort	
  at	
  
single	
  lower	
  temperature	
  is	
  much	
  more	
  efficient	
  at	
  8-­‐10	
  kbtu/bbl	
  (Galitsky	
  2003	
  p5).	
  
	
  
After	
   the	
   grist	
   has	
   been	
   sufficiently	
   soaked	
   and	
   a	
   sugary	
   wort	
   has	
   been	
  
produced,	
  lautering	
  takes	
  place	
  which	
  includes	
  a	
  number	
  of	
  ways	
  to	
  separate	
  the	
  spent	
  
grain	
  from	
  the	
  work.	
  	
  In	
  larger	
  breweries,	
  this	
  takes	
  place	
  in	
  a	
  separate	
  vessel	
  known	
  as	
  
Aaron	
  Blaise	
  Treeson	
   Barley	
  to	
  Boiler	
   30	
  
a	
  lautering-­‐tun.	
  	
  In	
  smaller	
  breweries,	
  the	
  mash-­‐tun	
  has	
  been	
  integrated	
  with	
  lautering.	
  	
  
In	
  either	
  instance	
  the	
  vessel	
  has	
  a	
  false	
  bottom	
  used	
  to	
  strain	
  out	
  the	
  grain	
  from	
  the	
  
wort.	
  	
  While	
  the	
  wort	
  is	
  pumped	
  into	
  the	
  brew	
  kettle,	
  the	
  remaining	
  grain	
  is	
  often	
  rinsed	
  
a	
  single	
  time	
  or	
  recirculating	
  with	
  170°F	
  water,	
  known	
  as	
  sparging,	
  which	
  is	
  intended	
  to	
  
extract	
  any	
  residual	
  sugars	
  and	
  is	
  eventually	
  reintegrated	
  with	
  the	
  wort	
  which	
  by	
  this	
  
stage	
  is	
  liquid	
  with	
  some	
  suspended	
  grain	
  sediment.	
  
	
  
In	
  all	
  but	
  the	
  smallest	
  of	
  breweries,	
  the	
  brew	
  kettle	
  is	
  a	
  separate	
  vessel	
  used	
  to	
  
bring	
  the	
  wort	
  to	
  a	
  full	
  boil	
  for	
  an	
  extended	
  duration.	
  	
  The	
  wort	
  boiling	
  process	
  serves	
  
many	
   functions	
   from	
   sterilizing	
   the	
   wort	
   of	
   unwanted	
   microbes,	
   stopping	
   enzymatic	
  
activity,	
   vaporizing	
   unwanted	
   volatile	
   compounds,	
   coagulating	
   any	
   proteins	
   and	
  
sediment,	
  and	
  allowing	
  hops	
  additions.	
  	
  Traditionally	
  this	
  process	
  takes	
  place	
  at	
  212°F	
  
and	
   usually	
   takes	
   place	
   between	
   1-­‐2	
   hours.	
   	
   This	
   brew	
   kettle	
   brings	
   the	
   wort	
   to	
   a	
  
sustained	
  boil	
  by	
  a	
  constant	
  supply	
  of	
  heat,	
  conventionally	
  through	
  an	
  encasing	
  steam	
  
jacket	
  which	
  is	
  supplied	
  by	
  a	
  natural	
  gas	
  fueled	
  steam	
  boiler.	
  	
  The	
  boil	
  traditionally	
  lasts	
  
for	
   such	
   an	
   extended	
   period	
   of	
   time	
   to	
   remove	
   off-­‐flavors	
   and	
   integrate	
   desirable	
  
flavors.	
  	
  	
  
	
  
In	
   this	
   period	
   hops,	
   the	
   main	
   non-­‐grain	
   flavorant,	
   are	
   incorporated	
   in	
   stages.	
  	
  
Hops	
  added	
  at	
  the	
  start	
  of	
  the	
  boil	
  undergo	
  isomerization,	
  the	
  transformation	
  of	
  one	
  
molecule	
   into	
   another	
   via	
   heat,	
   resulting	
   in	
   soluble	
   alpha	
   acids	
   which	
   are	
   bittering	
  
agents.	
   	
   Hops	
   added	
   near	
   the	
   end	
   of	
   the	
   boil	
   do	
   not	
   undergo	
   this	
   process	
   and	
   are	
  
intended	
  to	
  contribute	
  to	
  a	
  beer’s	
  aroma.	
  	
  Additionally	
  the	
  surface	
  of	
  the	
  brew	
  kettle	
  is	
  
at	
  a	
  much	
  higher	
  temperature	
  than	
  212°F	
  which	
  allows	
  the	
  Maillard	
  reaction	
  to	
  convert	
  
simple	
   sugars	
   and	
   amino	
   acids	
   into	
   melanoidin	
   polymers,	
   creating	
   non-­‐fermentable	
  
malty	
   flavor	
   and	
   color	
   (Wallaert	
   2004	
   p16).	
   	
   While	
   hops	
   and	
   melanoidins	
   are	
   impart	
  
desirable	
  flavors	
  in	
  the	
  beer,	
  a	
  wide	
  variety	
  of	
  volatile	
  organic	
  compounds	
  (VOCs)	
  that	
  
have	
  been	
  formed	
  in	
  the	
  wort	
  are	
  vented	
  via	
  a	
  long	
  duration	
  boil.	
  	
  These	
  VOCs	
  include	
  S-­‐
methylmethionine	
   (SMM),	
   dimethylsulphide	
   (DSS),	
   2-­‐acetylthiazole,	
   myrcene,	
  
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis
Barley to Boiler, Masters Thesis

More Related Content

Similar to Barley to Boiler, Masters Thesis

A final year research project -part 2 (Pre..)
A final year research project -part 2 (Pre..)A final year research project -part 2 (Pre..)
A final year research project -part 2 (Pre..)Genesis Akau
 
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...An overview of the toxic effect of potential human carcinogen Microcystin-LR ...
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...rkkoiri
 
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...abrhsh abadi
 
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...Arpy Kasparian
 
Hold the Beef: Why America Must Reduce its Beef Consumption
Hold the Beef: Why America Must Reduce its Beef Consumption Hold the Beef: Why America Must Reduce its Beef Consumption
Hold the Beef: Why America Must Reduce its Beef Consumption Jamie Hanson
 
Still Alice Essay
Still Alice EssayStill Alice Essay
Still Alice EssayLori Jones
 
Scholarship Essay Titles
Scholarship Essay TitlesScholarship Essay Titles
Scholarship Essay TitlesErica Robertson
 
Scholarship Essay Titles.pdf
Scholarship Essay Titles.pdfScholarship Essay Titles.pdf
Scholarship Essay Titles.pdfStacy Marshall
 
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...jason_seagle
 
UWA.EWBChallenge.Sem1
UWA.EWBChallenge.Sem1UWA.EWBChallenge.Sem1
UWA.EWBChallenge.Sem1oaksoe nathan
 
Shahrukh_S M Hassan_201508_M.Sc.
Shahrukh_S M Hassan_201508_M.Sc.Shahrukh_S M Hassan_201508_M.Sc.
Shahrukh_S M Hassan_201508_M.Sc.Hassan Shahrukh
 
De-Centralised Energy Production with Vegetable Oil Cars
De-Centralised Energy Production with Vegetable Oil Cars  De-Centralised Energy Production with Vegetable Oil Cars
De-Centralised Energy Production with Vegetable Oil Cars X3X
 
Cow Power_finalwlinks
Cow Power_finalwlinksCow Power_finalwlinks
Cow Power_finalwlinksMichele Melio
 
Micro-Scale Biogas Production: A Beginner's Guide
Micro-Scale Biogas Production: A Beginner's GuideMicro-Scale Biogas Production: A Beginner's Guide
Micro-Scale Biogas Production: A Beginner's GuideGardening
 
Cornell cea lettuce handbook
Cornell cea lettuce handbook Cornell cea lettuce handbook
Cornell cea lettuce handbook Alan Romnei
 
HBCU_Green_Report_2014
HBCU_Green_Report_2014HBCU_Green_Report_2014
HBCU_Green_Report_2014Kerra Bolton
 

Similar to Barley to Boiler, Masters Thesis (20)

A final year research project -part 2 (Pre..)
A final year research project -part 2 (Pre..)A final year research project -part 2 (Pre..)
A final year research project -part 2 (Pre..)
 
Bioh2pritam
Bioh2pritamBioh2pritam
Bioh2pritam
 
Personal Carbon Allowances
Personal Carbon AllowancesPersonal Carbon Allowances
Personal Carbon Allowances
 
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...An overview of the toxic effect of potential human carcinogen Microcystin-LR ...
An overview of the toxic effect of potential human carcinogen Microcystin-LR ...
 
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...
Navodita Bhatnagar_ Navodita Bhatnagar (editor) - Bio-based plastics _ materi...
 
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...
KASPARIAN_MSRS THESIS_Suitabiltiy Analysis of Almond Production under a Chang...
 
Hold the Beef: Why America Must Reduce its Beef Consumption
Hold the Beef: Why America Must Reduce its Beef Consumption Hold the Beef: Why America Must Reduce its Beef Consumption
Hold the Beef: Why America Must Reduce its Beef Consumption
 
Still Alice Essay
Still Alice EssayStill Alice Essay
Still Alice Essay
 
Scholarship Essay Titles
Scholarship Essay TitlesScholarship Essay Titles
Scholarship Essay Titles
 
Scholarship Essay Titles.pdf
Scholarship Essay Titles.pdfScholarship Essay Titles.pdf
Scholarship Essay Titles.pdf
 
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...
AGRICULTURAL CERTIFICATIONS AND BEEKEEPING: LESSONS FROM AN APICULTURAL COOPE...
 
UWA.EWBChallenge.Sem1
UWA.EWBChallenge.Sem1UWA.EWBChallenge.Sem1
UWA.EWBChallenge.Sem1
 
Shahrukh_S M Hassan_201508_M.Sc.
Shahrukh_S M Hassan_201508_M.Sc.Shahrukh_S M Hassan_201508_M.Sc.
Shahrukh_S M Hassan_201508_M.Sc.
 
De-Centralised Energy Production with Vegetable Oil Cars
De-Centralised Energy Production with Vegetable Oil Cars  De-Centralised Energy Production with Vegetable Oil Cars
De-Centralised Energy Production with Vegetable Oil Cars
 
Leonard - Final Paper
Leonard - Final PaperLeonard - Final Paper
Leonard - Final Paper
 
Cow Power_finalwlinks
Cow Power_finalwlinksCow Power_finalwlinks
Cow Power_finalwlinks
 
Micro-Scale Biogas Production: A Beginner's Guide
Micro-Scale Biogas Production: A Beginner's GuideMicro-Scale Biogas Production: A Beginner's Guide
Micro-Scale Biogas Production: A Beginner's Guide
 
Cornell cea lettuce handbook
Cornell cea lettuce handbook Cornell cea lettuce handbook
Cornell cea lettuce handbook
 
HBCU_Green_Report_2014
HBCU_Green_Report_2014HBCU_Green_Report_2014
HBCU_Green_Report_2014
 
Wholesystem_Eitai
Wholesystem_EitaiWholesystem_Eitai
Wholesystem_Eitai
 

Barley to Boiler, Masters Thesis

  • 1.               BARLEY  TO  BOILER   Energy  and  Resource  Conservation  within  Craft  Brewing                     Aaron  Blaise  Treeson   CVEN  6960  Building  Systems  Engineering  Masters  Report   Monday,  July  20,  2015     Masters  Project  Advisor   Moncef  Krarti  PhD       Master’s  Defense  Panel   Moncef  Krarti  PhD   Jon  Zhai  PhD   Paul  Komor  PhD    
  • 2. Aaron  Blaise  Treeson   Barley  to  Boiler   2  
  • 3. Aaron  Blaise  Treeson   Barley  to  Boiler   3   Abstract     Touch  the  earth  lightly,   use  the  earth  gently,   nourish  the  life  of  the  world  in  our  care:   gift  of  great  wonder,   ours  to  surrender,   trust  for  the  children  tomorrow  will  bear.   -­‐Shirley  E.  Murray     There  appears  to  be  a  contradiction  within  our  society;  we  consume  products  at   higher  rates  and  generally  demand  increased  quality  and  yet  there  is  greater  awareness   of  the  finite  resources  on  this  planet  and  the  impact  to  the  air,  water,  and  land  that  is   incurred  by  our  quality  of  life.    The  burgeoning  craft  brewing  industry  exemplifies  this   dichotomy.     The   growing   list   of   over   3,500   microbrewers   increases   in   sales,   annually   acquiring  an  additional  one  percent  of  the  market  share  for  the  past  couple  years  of   total  malt  beverage  sales.    At  the  same  time,  consumers  associate  the  concept  of  ‘craft’   as  having  an  implicit  social  and  environmental  component.    While  this  is  often  not  the   case;   the   following   report   details   the   brewing   process   specifically   from   a   thermodynamic   analysis.     The   report   describes   the   process   of   defining   systems   boundaries  to  account  for  primary  and  secondary  energies  usage,  as  well  as  associated   greenhouse  gas  emissions  and  wastewater  disposal.    This  research  is  supplemented  with   a  primary  case  study  of  resource  usage  and  proposed  conservation  measures  for  Diebolt   Brewing  Company  in  Denver,  CO.    With  the  efficient  used  of  onsite  heat  generation  and   extraction,  reductions  in  systemic  internal  resistances,  possible  heat  recovery  or  power   generation,   byproduct   reuse   and   upcycling,   and   a   list   of   other   best   practices,   a   craft   brewery   can   continue   to   make   high   quality   microbrews   while   enhancing   their   community,   conserving   resources   and   thereby   minimizing   their   impact   on   the   environment,  and  spearheading  the  revolution  of  sustainable  brewing.  
  • 4. Aaron  Blaise  Treeson   Barley  to  Boiler   4   Statement  of  Authorship     Remember,  the  best  beer  in  the  world  is  the  one  you  brewed.   -­‐Charlie  Papazian       I,  Aaron  Blaise  Treeson,  have  produced  this  document  on  my  own  accord  in  full   compliance  with  the  Honor  Code  and  Student  Bylaws  of  the  University  of  Colorado  of   Boulder.  The  intention  of  this  document  is  to  act  as  a  consolidated  source  of  information   on  resource  conservation  in  the  craft  brewing  process.    While  scholarly  researched  and   empirically  corroborated,  it  is  intended  to  also  be  accessible  to  the  layman  within  the   field.           ________________________________________________________________________                                         Aaron      Blaise      Treeson   Monday,  July  20,  2015         abtreeson@gmail.com   505.918.7071   Master  of  Sciences:  Building  Systems  Engineering,  2015  Pending   The  University  of  Colorado  in  Boulder   Graduate  Energy  Certificate,  2014   The  Renewable  and  Sustainable  Energy  Institute  &     The  National  Renewable  Energy  Laboratory Master  of  Architecture,  2012   The  University  of  New  Mexico   Bachelors  of  Fine  Arts,  2007   Colorado  College              
  • 5. Aaron  Blaise  Treeson   Barley  to  Boiler   5   Table  of  Contents   Abstract  ..................................................................................................................................  3   Statement  of  Authorship  .........................................................................................................  4   List  of  Figures  ..........................................................................................................................  7   Summary  Tables  of  Each  Section  .............................................................................................  9   Introduction  to  Research  ........................................................................................................  10   Craft  Brewing  Milieu,  Impacts  &  Impetus  ................................................................................  10   Specifications,  Units,  &  Factors  ...............................................................................................  14   Summary  Table  of  Introduction  to  Research  ...........................................................................  16   Scope  of  Research,  Method  of  Analysis,  &  Barriers  .................................................................  17   Holistic  Assessment  .................................................................................................................  17   Defining  the  System  by  Establishing  its  Boundaries  ................................................................  18   Conventional  System  Energy  Inputs  ........................................................................................  19   Integrating  Conservation  into  a  Business  Model  .....................................................................  20   Summary  Table  of  Scope  of  Research  &  Method  of  Analysis  ..................................................  22   Brewing  Process  .....................................................................................................................  23   Scale  of  Production  ..................................................................................................................  23   Off  Site  Inputs  Brewery  Inputs  .................................................................................................  24   The  Brewhouse  ........................................................................................................................  27   Final  Production  &  Packaging  ..................................................................................................  33   Summary  Table  of  the  Brewing  Process  ..................................................................................  36   The  Impact  of  Craft  Brewing  &  Key  Performance  Indicators  ....................................................  37   Secondary  Energy  ....................................................................................................................  37   Onsite  Electricity  Consumption  ...............................................................................................  37   Onsite  Natural  Gas  Consumption  ............................................................................................  39   Primary  Energy  Use  Intensity  ...................................................................................................  41   Emissions  Breakdown  ..............................................................................................................  42   Water  Intensity:  Use  /  Production  ...........................................................................................  44   Summary  Table  of  the  Impact  of  Craft  Brewing  &  Key  Performance  Indicators  ......................  46   Brewhouse  Energy  Conservation  Opportunities  ......................................................................  47   Energy  Conservation  Opportunities  in  the  Brewhouse  ...........................................................  47   Steam  Boiler  &  Heat  Distribution  ............................................................................................  49   Chillers  &  Heat  Extraction  ........................................................................................................  51   Compressed  Air  ........................................................................................................................  54   Motors  &  Driving  Systems  .......................................................................................................  54   Heat  Exchangers,  Recovery,  &  Storage  ....................................................................................  56   Brewing  Automation  Systems  ..................................................................................................  64   Brew  Kettle  &  Related  Vessels  .................................................................................................  65   Good  Housekeeping  &  Ancillary  Systems  ................................................................................  69   Summary  Table  of  Brewhouse  Conservation  Opportunities  ...................................................  70   Conservation  Opportunities  Outside  the  Brewing  Process  ......................................................  71   Reduction,  Generation,  &  Coproduction:  Down,  Up  and  Lateral  Cycling  ................................  71  
  • 6. Aaron  Blaise  Treeson   Barley  to  Boiler   6   Utility  Programs  and  the  Direct  Purchase  of  Offsets  ...............................................................  72   Solar  Power  ..............................................................................................................................  73   Water  Management  ................................................................................................................  75   Reductions  in  Craft  Beer  Fresh  Water  Intensity  through  Brewhouse  Losses  ..........................  76   Effluence  Management  ............................................................................................................  76   Treat  and  Release  Effluence  ....................................................................................................  77   Anaerobic  Effluence  Digestion  and  Combined  Heat  and  Power  ..............................................  79   Spent  Grain  &  Other  Coproducts  .............................................................................................  81   On  Site  Gas  Management  System  ............................................................................................  83   Summary  Table  of  Brewhouse  Conservation  Opportunities  ...................................................  85   Barriers  ..................................................................................................................................  86   Diebolt  Brewing  Company:  A  Case  Study  ................................................................................  88   Introduction  to  Diebolt  Brewing  ..............................................................................................  88   Brewhouse  Schedule,  Set  Up,  &  Energy  Systems  ....................................................................  90   Dan  and  Jack  Diebolt:  Systems  Experience  &  Thoughts  on  Conservation  ...............................  94   Energy  &  Resource  Use  in  Diebolt  Brewing  Company  .............................................................  95   Beer  Production  at  Diebolt  Brewing  Company  ......................................................................  101   Current  Energy  and  Resource  Use  Intensity  at  Diebolt  Brewing  Company  ...........................  103   Conservation  Measures  Already  in  Place  ...............................................................................  105   Summary  Table  of  Diebolt  Brewery  Company’s  Existing  Brewhouse  ....................................  109   Potential  Energy,  Resource  &  Expense  Conservation  Opportunities  for  Diebolt  Brewing   Company  ..............................................................................................................................  110   Utility  Rate  Schedule  Change:  Rooftop  Photovoltaics  &  Demand  Side  Management  ...........  110   Heat  Transfer  Exchanger  Redesign  ........................................................................................  124   Lighting  Retrofit  in  Brewhouse  ..............................................................................................  132   Recommendations  &  Concussions  for  Diebolt  Brewing  Company  ........................................  138   Summary  Table  of  Diebolt  Brewing  Company’s  Proposed  ECOs  ...........................................  141   Conclusion  ............................................................................................................................  142   Appendix  1:  Glossary  &  Abbreviations  ..................................................................................  145   Appendix  2  :  Intensities  &  Citations  ......................................................................................  147   Works  Cited  ..........................................................................................................................  149    
  • 7. Aaron  Blaise  Treeson   Barley  to  Boiler   7   List  of  Figures     This  is  neither  beer  nor  glass  on  the  page,  nor  is  there  a  damp  and  icy  film.    I  feel  certain  visual  stimuli,  colors,  spatial   relationships,  incidences  of  light  and  I  coordinate  them  into  a  given  perceptual  structure.    The  same  thing  happens   when  I  look  at  an  actual  glass  of  beer;  I  connect  together  some  stimuli  coming  from  an  as  yet  unstructured  field  and  I   produce  a  perceptum  based  on  a  previously  acquired  experience.   -­‐Umberto  Eco,  Theory  of  Sign  Production     Figure  1:  Profit  Increase  from  Energy  Savings  ..................................................................................................................  13   Figure  2:  Ven  Diagram  of  the  Triple  Bottom  Line  Model  .................................................................................................  21   Figure  3:  Simplified  Brewing  System  ................................................................................................................................  25   Figure  4:  Linear  Brewing  Sequence  ..................................................................................................................................  28   Figure  5:  Bar  Graph  of  Electricity  Intensity  Range  ............................................................................................................  38   Figure  6:  Bar  Graph  of  Natural  Gas  Intensity  Range  ........................................................................................................  40   Figure  7:  Bar  Graph  of  Green  House  Gas  Emissions  Intensity  Range  ...............................................................................  44   Figure  8:  Bar  Graph  of  Water  Intensity  Range  .................................................................................................................  45   Figure  9:  Boiler  and  Steam  ECOs  ......................................................................................................................................  51   Figure  10:  Refrigeration  and  Cooling  ECOs  ......................................................................................................................  53   Figure  11:  Drives  and  Motors  ECOs  ..................................................................................................................................  56   Figure  12:  Heat  Exchanger  Network  with  Thermal  Storage  and  Vapor  Condensers  ........................................................  60   Figure  13:  Pinch  Analysis  of  Streams,  Potential  Heat  Recovery,  and  Minimum  Load  ......................................................  62   Figure  14:  Pinch  Analysis  of  the  Industrial  Green  Brewery  Concept  ................................................................................  63   Figure  15:  Dynamic  Low  Pressure  Boiling  Process  ...........................................................................................................  67   Figure  16:  Merlin  Brew  Kettle  ..........................................................................................................................................  68   Figure  17:  Brew  Kettle  ECOs  .............................................................................................................................................  69   Figure  18:  Assorted  Other  ECOs  .......................................................................................................................................  69   Figure  19:  Wastewater  Treat  and  Release  Process  ..........................................................................................................  78   Figure  20:  Anaerobic  Digester  &  Power  Generation  Process  ...........................................................................................  80   Figure  21:  Process  of  Recovering  Carbon  Dioxide  ............................................................................................................  84   Figure  22:  Diebolt  Brewing  Company  ...............................................................................................................................  89   Figure  23:  Nameplate  on  Wort  to  Fresh  Water  and  Glycol  Two  Stage  Heat  Exchanger  ..................................................  91   Figure  24:  Grain  Mill  in  Far  Back  Middle,  Grist  Hopper  on  Left,  &  Mash/Lauter  Tun  on  Right  ........................................  92   Figure  25:  Mash/Lauter  Tun  on  Left,  Brew  Kettle  in  Middle,  &  Hot  Liquor  Tank  on  Right  ..............................................  92   Figure  26:  The  Four  Fermentation  &  Crash  Chill  Tanks  ....................................................................................................  93   Figure  27:  Diebolt  Brewing  Company’s  Gross  Electricity  Consumption  in  kWh/month  ..................................................  96   Figure  28:  Diebolt  Brewing  Company’s  Billable  Power  Demand  in  kW/month  ...............................................................  96   Figure  29:  Diebolt  Brewing  Company’s  Gross  Natural  Gas  Consumption  in  therms/month  ...........................................  96   Figure  30:  Diebolt  Brewing  Company’s  Gross  Fresh  Water  Consumption  in  bbl/month  .................................................  97   Figure  31:  Diebolt  Brewing  Company’s  Gross  Sewage  Disposal  in  bbl/month  ................................................................  97   Figure  32:  Diebolt  Brewing  Company’s  Levelized  Gross  Carbon  Dioxide  Consumption  in  kg/month  ..............................  97   Figure  33:  Diebolt  Brewing  Company's  Monthly  Accumulated  Brewing  Related  Costs  ...................................................  99   Figure  34:  Monthly  Beer  Production  at  Diebolt  Brewing  Company  ...............................................................................  102   Figure  35:  Quarterly  Beer  Production  at  Diebolt  Brewing  Company  .............................................................................  102   Figure  36:  Diebolt's  Production  over  the  Past  9  Months  ...............................................................................................  103   Figure  37:  Diebolt  Brewing  Company  Source  Energy  Use  Intensity  Calculation  ............................................................  104   Figure  38:  Bought  Carbon  Dioxide  and  Fresh  Water  Intensities  at  Diebolt  Brewing  Company  .....................................  105   Figure  39:  Diebolt  Taphouse  Lighting  and  Air  Management  ..........................................................................................  106   Figure  40:  VFD  for  Wort  Pump  in  Action  as  Wort  is  Pumped  from  the  Mash/Lauter  Tun  to  the  Brew  Kettle  ...............  107   Figure  41:  Mash  Rake  inside  Mash/Lauter  Tun  ..............................................................................................................  108   Figure  42:  VFD  connect  Mash  Rake  Drive  in  Blue  &  VFD  connected  Pump  on  the  Ground  with  Silver  Casing  ..............  108   Figure  43:  Xcel  Shift  in  Rate  Schedule  Received  on  July  2013  and  Enacted  on  September  2013  ..................................  110   Figure  44:  Comparison  of  C  &  SG  Rate  Structures  .........................................................................................................  111   Figure  45:  An  Schematic  Example  of  DSM  assisted  Load  Shifting  ..................................................................................  113   Figure  46:  NREL  System  Advisor  Model  of  10  kW  PV  Array  in  Denver  Colorado  ...........................................................  114   Figure  47:  Scenario  A  -­‐  Peak  Demand  Impacted  by  Varying  PV  Capacity  on  an  Average  and  Clear  Day  .......................  115  
  • 8. Aaron  Blaise  Treeson   Barley  to  Boiler   8   Figure  48:  Scenario  B  -­‐  Peak  Demand  Impacted  by  Varying  PV  Capacity  on  a  High  Demand  and  Sunny  Day  ...............  115   Figure  49:  Scenario  C  -­‐  Peak  Demand  Impacted  by  Varying  PV  Capacity  on  an  Off-­‐and-­‐On  Cloudy  Day  .......................  115   Figure  50:  Annual  Savings  for  Diebolt  between  Iterations  (I)  Current  Schedule  SG  &  (II)  Schedule  C  with  PV  &  DSM  ..  118   Figure  51:  Assumptions  &  Abbreviations  in  Further  Financial  Analysis  with  Citations  ..................................................  119   Figure  52:  Annual  Accounting  of  BAU  vs.  PV  &  DSM  with  Notations  made  at  8  Years,  15  Years,  &  25  Years  ...............  120   Figure  53:  BAU  vs.  PV  &  DSM  :  Net  Projected  Costs,  Net  Projected  Costs,  &  Savings  ...................................................  121   Figure  54:  Total  Cost:  BAU  vs.  PV  &  DSM  Savings  at  Intervals  .......................................................................................  122   Figure  55:  Net  Present  Cost:  BAU  vs.  PV  &  DSM  ............................................................................................................  122   Figure  56:  BAU  vs.  PV  &  DSM:  Percent  Reductions  in  Gross  Future  and  Net  Future-­‐Discounted  Costs  ........................  123   Figure  57:  Two  Stage  Heat  Exchanger  with  15  bbl  Hot  Liquor  Tank  in  Upper  Right  Corner  ..........................................  125   Figure  58:  Brewer's  Notes  on  Heat  Transfer  Process  After  Boiling  Wort  .......................................................................  125   Figure  60:  Calculation  for  Single  Stage  Heat  Exchanger  and  Filtration  for  Diebolt  I  ......................................................  129   Figure  61:  Calculation  for  Single  Stage  Heat  Exchanger  and  Filtration  for  Diebolt  II  .....................................................  130   Figure  62:  Financial  Analysis  of  Heat  Exchanger  and  Filtration  Retrofit  ........................................................................  131   Figure  63:  Illuminating  Engineer  Society  Recommended  Foot-­‐Candle  Ranges  ..............................................................  133   Figure  64:  Diebolt  Brewing  Company  Proposed  Lighting  Retrofits  ................................................................................  134   Figure  65:  Diebolt  Lighting  Retrofit:  Impact  on  Power  Demand  and  Energy  Consumption  ...........................................  135   Figure  66:  Diebolt  Lighting  Retrofit:  Savings  with  Utility  Schedule  C  vs.  SG  ..................................................................  136   Figure  67:  NPV  NURB  Surface  of  Lighting  Retrofit  Increments  for  Diebolt  Brewhouse  .................................................  137   Figure  68:  Final  Impact  on  Diebolt  Brewing  Company's  EUI  with  Proposed  ECOs  .........................................................  139            
  • 9. Aaron  Blaise  Treeson   Barley  to  Boiler   9   Summary  Tables  of  Each  Section     I  am  a  firm  believer  in  the  people.  If  given  the  truth,  they  can  be  depended  upon  to  meet  any   national  crisis.  The  great  point  is  to  bring  them  the  real  facts,  and  beer.   -­‐Abraham  Lincoln       Summary  Table  1:  Introduction  to  Research  ....................................................................................................................  16   Summary  Table  2:  Scope  of  Research  &  Method  of  Analysis  ...........................................................................................  22   Summary  Table  3:  Brewing  Processes  ..............................................................................................................................  36   Summary  Table  4:  Impact  of  Craft  Brewing  &  Key  Performance  Indicators  ....................................................................  46   Summary  Table  5:  Brewhouse  Conservation  Opportunities  ............................................................................................  70   Summary  Table  6:  Brewhouse  Conservation  Opportunities  ............................................................................................  85   Summary  Table  7:  Conservation  Opportunities  outside  of  the  Brewhouse  ...................................................................  109   Summary  Table  8:  Diebolt  Brewing  Company’s  Proposed  Conservation  Opportunities  ...............................................  141            
  • 10. Aaron  Blaise  Treeson   Barley  to  Boiler   10   Introduction  to  Research     People  who  drink  light  'beer'  don't  like  the  taste  of  beer;  they  just  like  to  pee  a  lot.   -­‐  Ed  Janus,  Capital  Brewery     Craft  Brewing  Milieu,  Impacts  &  Impetus     During  the  past  several  decades  there  have  been  dramatic  shifts  in  the  brewing   industry  as  craft  brewing  has  gained  a  market  share,  introduced  the  consuming  public  to   higher   quality   and   greater   variation   in   beer,   and   presented   an   opportunity   for   innovative  engineering  to  increase  the  energy  and  resource  efficiency  of  these  smaller   production  facilities.    There  are  currently  over  3,500  craft  breweries  licensed  in  the  US,   producing  over  470  million  gallons  of  craft  beer  per  year.    The  gross  sales  of  craft  beer,  a   term   used   interchangeably   with   microbrew,   totals   $14.5   billion   annually   (Brewers   Association   2015).     Within   the   craft   brewery   movement   there   is   currently   a   shift   in   zeitgeist  towards  increased  awareness  of  sustainability,  value  engineering,  and  resource   conservation.     Microbreweries   do   not   have   access   to   the   economies   of   scale   and   efficiency  engineering  of  their  industrial  competitors  and  thus  produce  a  more  resource   intensive  product,  including  their  use  of  electricity,  fossil  fuel,  water  and  other  material   inputs.    With  access  to  research  into  efficient  brewing  processes,  the  evolving  market   will   demand   more   environmentally   friendly   products,   and   integrated   systems   engineering,   craft   brewing   will   be   able   to   reduce   its   resource   impact   and   carbon   footprint  while  maintaining  a  high  quality  product.    Craft  beer  producers  in  the  forefront   of   these   changes   will   see   reel   opportunities   for   substantial   fiscal   savings   by   reducing   energy  and  water  demand.     Craft  brewing  now  makes  up  7.8%  of  total  beer  sales  in  the  US  and  is  currently   increasing  this  share  by  roughly  20%  annually  with  no  signs  of  hitting  a  ceiling  (Brewers   Association   2014).   However,   it   has   not   always   been   this   way.     Prohibition,   post-­‐ prohibition  industrial  scale  brewing,  and  corporate  mergers  and  acquisitions  resulted  in  
  • 11. Aaron  Blaise  Treeson   Barley  to  Boiler   11   a   homogenized   market   for   beer   with   only   a   handful   of   large   American   breweries   producing  drinkable  lagers  in  addition  to  some  European  imports.    Beginning  in  the  late   1970s  and  continuing  through  the  1980s,  small  breweries,  some  of  which  now  have  very   recognizable   brands   such   as   Samuel   Adams   Brewing   Company   and   Sierra   Nevada   Brewing  Company,  began  making  a  different  style  of  beer,  something  that  would  come   to  be  known  as  craft  beer  or  microbrew.    These  new  varieties  of  beer  were  fermented   using  diverse  and  flavorful  ale  yeasts,  increasing  the  alcohol  content,  and  introducing  a   palate   of   flavors   not   found   in   generic   beer   through   new   grains,   hops,   and   brewing   techniques.    The  craft  brewery  movement  was  notably  different  due  to  its  small-­‐scale   production,  non-­‐industrial  process,  and  consumption  largely  by  a  local  market.     As   popularity   and   demand   rose,   microbreweries   were   able   to   increase   production   and   grow   in   number.     This   also   brought   about   ever-­‐escalating   electricity,   natural  gas,  water,  and  sewage  use  and  expense.    With  onsite  utility  bills  making  up  only   3-­‐8%  of  a  craft  brewer’s  monthly  expenses,  there  is  not  yet  a  strong  financial  incentive   to   install   energy   efficiency   upgrades   and   conserve   what   is   presently   a   cheap,   but   ultimately  finite,  fossil  fuel  resource  which  composes  the  vast  majority  of  a  brewery’s   onsite  and  upstream  energy  generation  (Olajira  2012  p7  &  Lacey  2010  p8).         Craft  brewing  is  now  poised  for  a  sustainability  transformation  due  to  the  shift  in   climate  consciousness,  trickle  down  technology  and  energy  conservation  controls  from   industrial  scale  enterprises,  and  changing  market  forces.  Indeed,  increased  sustainability   measures   may   present   a   way   for   craft   breweries   to   distinguish   themselves   in   the   growing  market:     Sustainable  breweries…  while  growing,  still  represent  a  small  slice  of  the  total  market,  a  position   that  seems  to  foster  a  healthy  mix  of  solidarity  and  fierce  competition.  To  expand  their  market   share,  they  have  to  work  together;  to  distinguish  themselves  within  the  small  pack,  they  have  to   be  creative.  (Buck  2014  p28).     A   simultaneous   shift   of   producer   objectives   and   consumer   demand   is   pushing   the   market  niche  of  craft  beer  towards  an  ever-­‐increasing  awareness  of  creating  a  greener  
  • 12. Aaron  Blaise  Treeson   Barley  to  Boiler   12   product.    Marketing  around  many  products  revolves  around  “conspicuous  consumption”   of  name  brand  products.    In  some  sectors  this  mode  of  branding  in  beginning  to  change   and   now   portions   of   the   market   are   gravitating   towards   a   new   force,   christened   “conspicuous   conservation,”   as   exemplified   by   the   Prius   Effect,   in   which   a   product   accrues  social  cachet  and  added  value  due  to  the  perception  of  increased  sustainability.   Craft  breweries  have  been  successful  in  marketing  specific  microbrews  as  “sustainable,”   despite  the  ignorance  or  omission  of  much  higher  usages  of  energy,  water,  and  other   resources  by  volume,  with  consumers  preferring  beer  that  is  organic,  locally  sourced,   and  produced  with  renewable  energy.     What  is  it  that  makes  a  craft  brewery?    According  to  the  Brewers  Association,  a   craft  brewery  is  small  in  scale  when  compared  to  name  brand  large  corporate  rivals,   producing   less   than   6   million   barrels   of   microbrew   per   year.     Ownership   is   largely   privately  held,  such  as  in  a  limited  liability  company,  amongst  one  or  more  individuals,   usually  giving  primary  ownership  to  the  head  brewer.    Some  craft  brewers  are  pursuing   different  business  models  with  varying  tax  implications,  such  as  employee-­‐ownership  B   Corporations  and  member-­‐owned  for-­‐profit  cooperatives.     It  is  in  the  craft  brewing  sector’s  on  to  promote  sustainable  business  models  and   production  in  order  to  improve  microbreweries’  bottom  line,  invest  in  their  consumer’s   communities,   and   embody   the   value   of   resource   conservation.     From   a   financial   perspective,  the  vast  majority  of  a  brewery’s  energy  goes  into  the  thermally  intensive   process  of  bringing  large  volumes  of  a  sweet  malted  barley  and  water  mixture,  known  as   wort,  to  a  sustained  boil.    A  smaller  portion  of  the  brewing  site’s  energy  takes  the  form   of   costlier   electricity,   largely   used   in   refrigeration   and   mechanized   drives.     A   more   effective   use   of   existing   systems   and   the   installation   of   new   energy   conservation   equipment   holds   large   potential   savings.     For   instance,   it   could   reduce   a   brewery’s   monthly  utility  bills  and  decrease  its  exposure  to  the  price  volatility  of  input  resources  or  
  • 13. Aaron  Blaise  Treeson   Barley  to  Boiler   13   potential   penalization   due   to   discharged   byproducts.   Figure   1   from   the   Brewers   Association  of  Canada  shows  the  increase  of  profits  relative  to  percent  energy  savings.       Figure  1:  Profit  Increase  from  Energy  Savings       (Brewers  Association  of  Canada  2010  p54)     In   addition   to   the   possible   financial   savings   from   implementing   sustainability   measures,  a  potentially  more  important  outcome  for  the  brewery  is  that  a  “greener”   product  and  at  the  price  an  affluent  and  informed  consumer  will  pay  for  it.    In  recent   history  growing  numbers  of  the  American  public  have  become  conscientious  consumers   and  seek  green  commodities  in  an  attempt  to  support  a  more  sustainable  society.    An   identifiably   environmentally   friendly   craft   beer   can   integrate   with   a   conscientious   consumer’s  identity  and  therefore  can  command  a  higher  price  point  and  provide  an   ideological  and  economic  justification  for  upgrades  and  efficiency  within  the  brewery.     This  statement  of  sustainability,  even  if  incremental,  is  a  powerful  marketing  tool.    It’s   not   a   binary   choice,   there’s   a   spectrum   of   technologies   to   promote   conservationism   within   a   craft   brewery   while   also   increasing   the   bottom   line   and   engaging   in   social   responsibility.      
  • 14. Aaron  Blaise  Treeson   Barley  to  Boiler   14   Specifications,  Units,  &  Factors     Within   the   following   text   many   acronyms   and   units   will   be   used   standardly.     Please  refer  to  Appendix  1  for  a  full  term  glossary.    The  following  should  help  clarify   brewing  industry  standards  and  establish  a  system  of  units  to  this  publication.    The  beer   US   industry   standard   when   speaking   of   liquid   volume   is   barrels   (bbl).     Most   other   nations  use  the  SI  unit  hectoliters  (hl).     1  bbl  =  31.5  gallons  (frequently  1.5  -­‐  0.5  gallons  are  left  off  due  to  assumed  post  production  losses)   1  bbl  =  2  standard  kegs   1  bbl  =  330  standard  12  ounce  cans/bottles   1  bbl  =  1.17  hl     Flows  are  indicated  in  a  number  of  ways.    Liquid  volumetric  flows,  like  from  a   pump,  are  noted  as  gallons  per  minute  (gpm)  and  gaseous  volumetric  flows,  like  from  a   fan,   are   noted   as   cubic   feet   per   minute   (cfm).     Steam,   like   from   a   boiler,   is   typically   measured   in   a   mass   flow   of   pounds   mass   of   steam   per   hour   (lbm/hr)   at   a   specified   temperature  (F)  and/or  pressure  (psi)  thus  it  is  actually  a  unit  of  energy  transfer  over   time  or  power,  which  is  elucidated  in  several  paragraphs.     Mass   will   almost   always   be   expressed   in   pounds   mass   (lbm).     However   it   is   a   global  standard  when  speaking  of  greenhouse  gases  (GHGs)  like  carbon  dioxide  (CO2)  or   refuge  methane  (C2H4)  to  use  the  SI  units  of  kg.  One  kilogram  of  CO2  is  a  very  abstract   notion   for   most   people.     One   study   by   the   Carbon   Trust   equates   1   kg   of   CO2   as   the   amount  a  small  tree  is  able  to  sequester  every  3  months  (Canadian  Brewing  Industry   Program  for  Energy  Conservation  2011  p140).      Another  way  to  visualize  it  is  through  the   following  set  of  equations,  atmospheric  assumptions,  and  the  ideal  gas  law,  providing  a   more  palpable  quantity  for  visualizing  1  kg  of  CO2  as  filling  the  space  of  40  basketballs.     1  kg  =  (1000  g)(1  mole/44  g)  =  22.7  moles   Ideal  gas  law  (PV  =  nRT)  assumptions  27°C  (300K)  and  1  atm   Volume  of  1  kg  of  CO2  =  (22.7  moles)(.0821)(300K)/(1  atm)  =  559  liters  of  CO2  =  ~20  cuft     20  cuft  =  ~40  basketballs  with  radius  6”   1  kg  of  CO2  =  ~40  basketballs    
  • 15. Aaron  Blaise  Treeson   Barley  to  Boiler   15   Energy   comes   in   incredibly   elusive   forms   and   units.     When   speaking   about   ‘primary  energy’  it  is  standard  practice  in  the  US  to  use  the  British  thermal  unit,  btu  or   kbtu  (1000  btus).    Primary  energy,  also  known  as  source  energy,  is  a  concept  of  total  raw   energy   content   required   from   an   energy   source   (fossil   fuel,   renewable,   or   nuclear)   converted   including   aggregate   losses   into   an   energy   carrier   (electricity,   enthalpy,   mechanical,   etc.)   to   accomplish   a   specified   amount   of   work.     This   work   is   called   secondary  energy  and  is  what  is  recorded  as  onsite  energy  usage  such  as  therms  for   natural   gas   and   kilowatt-­‐hours   (kWh)   for   electricity.     To   integrate   upstream   energy   losses   and   find   primary   energy   the   National   Renewable   Energy   Laboratory   (NREL)   factors   are   used   (Deru,   M.,   P.   Torcellini   2007   p9).     Power   demand   and   generation   potential  is  expressed  in  kW  or  (k)btu/hr  depending  upon  the  context.     NREL  Electricity  primary  energy  factor  =  3.365   NREL  natural  gas  primary  energy  factor  =  1.092   1  kWh  of  electricity     =     3,412  btu  (secondary)     =     11,481  btu  (primary)   1  therm  of  natural  gas   =     10,000  btu  (secondary)     =       10,920  btu  (primary)   1  kbtu/hr  =    0.29  kW       Frequently  the  impact  of  CO2  as  a  GHG  is  used  a  reference  for  how  equivalently   additional  harmful  emissions,  such  as  C2H4  and  N2O,  are  or  as  a  unit  to  note  hypothetical   reductions  in  global  warming  potential  by  avoided  emissions.    This  measure  is  known  as   a  carbon  dioxide  equivalency  (CO2e).    NREL  with  the  Environmental  Protection  Agency   (EPA)  has  created  CO2e  emissions  from  multiple  energy  carriers  which  take  into  account   primary  energy,  fugitive  emissions,  and  all  downstream  losses  (Deru,  M.,  P.  Torcellini   2007  p11  &  p21).    The  near  ten  times  magnitude  difference  between  the  two  carriers   for   roughly   the   same   primary   energy   is   fascinating   and   must   come   down   to   a   kWh   delivering   substantially   less   secondary   energy,   the   efficient   combustion   and   sequestration   of   specific   GHGs,   excluding   CO2,   in   generation   from   multiple   fuels   in   addition  to  renewables.     1  kWh  of  electricity     =   0.69  kg  CO2e       =     1.50  lbm  CO2e   1  Therm     of  natural  gas   =     5.30  kg  CO2e       =     11.7  lbm  CO2e    
  • 16. Aaron  Blaise  Treeson   Barley  to  Boiler   16   To  compare  between  separate  breweries,  countries,  and  scales  of  production,   and   the   energy   and   resource   impact   of   a   specific   process   or   conservation   measure,   several   key   performance   indicators   (KPIs)   need   to   be   established.     These   metrics   essentially  provide  a  ratio  between  two  inputs,  products,  and/or  byproducts  to  assess   the  efficiency/quality/intensity  of  one  parameter  as  determined  by  the  other.    For  the   purposes   of   this   investigation,   usually   quantities   of   electricity,   natural   gas,   brewing   resources,   wastewater,   or   CO2e   will   be   compared   to   the   total   number   of   barrels   produced   in   a   period   of   time.     Please   refer   to   Appendix   2   for   the   KPIs   of   electricity,   natural   gas,   water,   and   emissions   intensities   in   (kWh/bbl),   (therm/bbl),   (bbl   wastewater/bbl  beer),  and  (kg  of  CO2e/bbl),  respectively,  in  tabular  form  as  reported  by   cited  source.    In  addition,  the  KPI  of  total  primary  energy  used  in  the  production,  called   energy  use  intensity  (EUI),  is  measured  in  (kbtu/bbl).    As  calculated  later  in  this  report,   one  number  to  keep  in  mind  is  that,  on  average,  an  American  craft  brewery  has  an  EUI   of  573  kbtu/bbl.      Frequently,  energy  efficiency  measures  will  produce  a  percent  savings   or  better  yet  an  identifiable  potential  reduction  in  EUI,  also  measured  in  kbtu/bbl.    This   record  keeping  and  comparison  to  industry  benchmarks  or  private  goals  can  detail  gains   or  losses  in  efficient  resource  and  byproduct  management.     Summary  Table  of  Introduction  to  Research       Summary  Table  1:  Introduction  to  Research    
  • 17. Aaron  Blaise  Treeson   Barley  to  Boiler   17   Scope  of  Research,  Method  of  Analysis,  &  Barriers     Waste  equals  food,  whether  it's  food  for  the  earth,  or  for  a  closed  industrial  cycle.  We  manufacture  products  that  go   from  cradle  to  grave.  We  want  to  manufacture  them  from  cradle  to  cradle.   -­‐William  McDonough     Holistic  Assessment     This   report   attempts   to   serve   as   a   guide   to   possible   resource   conservation   measures   that   can   be   deployed   in   very   small   to   semi-­‐industrial   craft   breweries.     The   approach  used  was  to  analyze  the  entirety  of  the  brewing  process,  all  the  energy  and   material  inputs  and  waste  products,  and  review  existing  literature  and  case  studies.    A   comprehensive   Lawrence   Berkeley   National   Laboratory   (LBNL)   study   into   brewing   efficiency  found  that  the  production  of  beer  nationwide  entails  the  use  of  67  trillion  btu   of  primary  energy  annually  (Galitsky  2003  p9).    While  the  LBNL  study  is  a  great  source  of   vetted  information,  it  is  good  to  remember  that  it  is  slightly  out  of  date  and  that  its  data   includes  industrial  brewing.    At  the  time  of  the  study,  industrial  brewing  made  up  95%  of   the  market  and  is  notably  for  being  more  energy  and  resource  efficient  by  volume  than   craft   brewing.     Craft   brewing   is   a   slim   minority   of   this   67   trillion   btu;   however   it   is   substantially  less  efficient  with  its  resource  usage  by  retail  volume  produced.       When   it   comes   to   systems   thinking   in   brewing,   Paul   Brodie,   a   mechanical   engineer  specializing  in  brewery  thermodynamic  efficiency,  said  that  “[T]he  principles   and  philosophy  of  Systems  Engineering  should  be  understood  and  embraced  to  allow   energy   reduction   in   the   brewing   industry”   (Brodie   2014   p29).     This   holistic   approach   allows   for   streamlining   production,   closing   waste   heat   and   material   loops,   and   the   consideration  of  upstream  and  end  of  the  pipe  solutions.    
  • 18. Aaron  Blaise  Treeson   Barley  to  Boiler   18   Defining  the  System  by  Establishing  its  Boundaries     As   with   any   engineering   or   physics   analysis,   an   internal   system   with   defined   boundaries  is  often  employed  to  note  material  and  energy  flows  into  and  out  of  a  given   process.    This  tool  is  incredibly  useful  in  assessing  the  efficiency  of  the  brewing  process   as   it   allows   isolation   of   a   specific   procedure,   such   as   cooling   boiled   wort   down   to   a   fermentable  temperature,  to  establishing  the  extents  of  the  whole  brewing  process,  to   attempting  a  full  life  cycle  assessment  (LCA).  This  point  was  addressed  directly  in  the   conclusion  of  an  article  on  a  life  cycle  assessment  specifically  on  land  use  impacts  from   the  beer  production:     For  most  indicators,  most  of  the  impacts  were  caused  in  the  cultivation  [of  grain]  phase.  However,   major   impacts   were   also   found   far   down   the   supply   chain   (e.g.,   wood   pallets   used   for   glass   transportation).  As  is  common  in  LCA,  the  choice  of  system  boundaries  was  shown  to  influence   the  overall  result  considerably.  (Matilla  2011  p285)     Where  a  boundary  is  drawn  becomes  a  very  tricky  and  frequently  agenda  driven  choice;   are  the  inputs  of  growing  the  barley  taken  into  account  or  is  a  boundary  drawn  around   the  electricity  used  to  refrigerate  the  beer  after  bottling,  or  after  retail,  or  up  to  the   point  of  consumption?     Take  for  instance  the  problem  of  trying  to  account  for  how  much  water  it  takes   to   make   a   beer   and   the   multiplicative   effects   in   water   intensity   when   redefining   boundaries  of  the  system.    If  you  place  the  system  boundaries  on  the  fresh  water  intake   and  sewage  out,  craft  brewing  has  roughly  a  10:1  units  of  fresh  water  input  to  beer  ratio   (Galitsky  2003  p8).    So  for  each  12  ounce  can  or  bottle  there  is  roughly  120  ounces,  a   little  less  than  one  gallon,  of  water  used  to  clean  the  brewhouse  equipment,  containers,   and  lost  through  evaporation  and  unintentional  runoff.    But  look  upstream  and  draw  a   system  boundary  around  beer’s  primary  ingredient,  barley.    Consider  the  water  used  to   irrigate  the  barley  fields.    While  no  easy  feat,  The  Water  Footprint  Network  estimated  it   takes  an  astounding  298:1  units  of  fresh  water  exclusively  for  agriculture  for  one  unit  of  
  • 19. Aaron  Blaise  Treeson   Barley  to  Boiler   19   produced  beer  (Patterson  2014  p111).    With  this  shift  in  the  system  parameters,  that   single   innocuous   12   ounce   microbrew   has   over   28   gallons   of   embodied   fresh   water.     This  same  compounding  effect  applies  to  energy  used  on  site,  embodied  energy  in  the   material  inputs,  upstream  and  downstream  emissions,  wastewater,  and  other  streams   when  the  boundaries  of  the  system  are  redefined.     This   is   the   concept   of   embodiment.     It   is   an   abstract   KPI   which   attempts   to   describe  the  total  amount  of  a  valuable  input  resource  or  byproduct  that  goes  into  or   results  from  the  creation  of  the  desired  product.    For  example,  digging  a  hole  to  plant   several   post   in   concrete   might   appear   like   a   minimal   amount   of   expended   manual   energy;  the  official  unit  of  manual  work  is  ‘elbow  grease.’    But  that  80  lbm  (36.4  kg)  bag   of  dry  Portland  cement  started  off  as  mined  lime  stone,  was  transported,  pulverized,  run   through  an  intensely  hot  fossil  fuel  fired  kiln  where  it  was  reduced  to  lime,  then  finally   packaged  and  shipped  for  retail.    That  unexceptional  bag  of  cement  had  over  38,000   btus  of  embodied  energy  and  also  has  the  embodied  emissions  of  5.8  kg  CO2e  (Building   Green  2014  p1-­‐14).    It’s  easy  to  look  at  everyday  products,  including  a  nice  cold  brew,   and  fail  to  see  the  staggering  amount  of  resources  involved  in  their  production.     Conventional  System  Energy  Inputs     When  talking  about  energy  transformation  within  a  process  of  the  whole  system   of  brewing  it  is  appropriate  to  review  types  of  energy,  their  usefulness  or  quality,  and   their  environmental  impact.    Traditionally,  two  energy  carriers  come  into  the  system,   electricity  and  refined  natural  gas,  but  in  much  unorthodox  cases  fuel  oil  is  also  used.     Electricity   is   high   grade   energy   able   to   convert   the   vast   majority   of   its   potential   into   useful   work   when   using   efficient   devices.     Natural   gas   is   a   mixture   of   hydrocarbons   containing   medium   grade   chemical   energy   when   combusted   releasing   high   temperatures  of  roughly  3,600°F  depending  upon  application  and  has  more  substantial   losses.    Lastly  due  to  the  Second  Law  of  Thermodynamic,  as  a  result  of  any  useful  work   or  change  in  enthalpy  due  to  electricity  or  combustion  of  natural  gas  within  a  brewery,  
  • 20. Aaron  Blaise  Treeson   Barley  to  Boiler   20   there  is  a  secondary  byproduct  which  is  residual  or  rejected  heat.    These  distinctions  are   important   because   when   it   comes   to   finding   cost   effective   opportunities   for   energy   efficiency  it  often  comes  down  to  making  the  most  effective  use  of  high  quality  energies   and   efficient   extraction   of   heat   from   medium   grade   sources   before   considering   low   grade  heat.     In  addition  to  considering  the  quality  of  electricity  and  natural  gas,  economics   much  also  be  taken  into  account.    While  natural  gas  combustion  is  a  medium  quality   energy  source,  it  is  able  to  deliver  roughly  three  times  as  much  energy  for  the  same   price  with  the  general  assumption  of  $0.10/kwh  and  $1/therm.    Thus  it  is  standard  to   use  natural  gas  and  not  electricity  in  simple  heating  operations.    It  should  be  noted  that   the  price  of  electricity  has  been  increasing  over  the  past  decade  and  that  the  cost  of   natural  gas  is  highly  volatile  due  to  mismatches  in  supply  and  demand.     1  kWh  of  electricity      /      $0.10       =        34,121  btu      /      $1.00   1  Therm     of  natural  gas      /      $1.00     =       100,000  btu    /      $1.00     Integrating  Conservation  into  a  Business  Model     When   looking   at   the   system   of   energy   and   material   input   and   waste   outputs   from  the  brewing  process,  it  is  critical  to  think  of  sustainability  as  reduction  and  reuse  of   each   stream.     In   many   cases   the   concept   of   looped   circuits   within   the   system   is   an   effective  way  of  taking  an  output  arrow  and  plugging  it  back  into  the  inputs  thereby   reducing  both  demand  and  waste.    Every  brewery  purchases  material  inputs  at  cost  and   on  the  far  end  pays  to  dispense  of  liquid  and  material  waste;  what  if  the  expenditures   and  energy  of  purchased  items  were  supplanted  with  production  outputs?       The   vast   majority   of   breweries   purchase   food   grade   compressed   CO2   for   carbonation,  anti-­‐oxidation,  and  cleaning  despite  onsite  fermentation  itself  producing   near  food-­‐grade  CO2  that  is  vented  into  the  atmosphere.    There  are  breweries  in  more   remote   locations   that   instead   of   using   spent   grain   to   feed   livestock,   the   more  
  • 21. Aaron  Blaise  Treeson   Barley  to  Boiler   21   conventional   reuse   option,   process   it   onsite   and   create   a   biofuel   or   gas   that   is   compatible   with   their   existing   heat   source   boiler.     Heat   exchangers   are   readily   deployable  to  extract  heat  from  a  cooling  process  and  use  it  to  preheat  in  inlet  stream.     This  method  of  analysis,  while  intuitive,  does  often  require  research  into  ROI,  precedent   or   pilot   programs,   and   an   upfront   capital   investment.     Closing   loops   can   hold   great   financial  gains  by  potentially  eliminating  both  a  purchase  and  disposal  cost.     As   a   way   of   integrating   an   intent   towards   sustainability   while   also   remaining   profitable,   some   small   breweries   are   creating   business   models   based   on   the   Triple   Bottom  Line  concept  as  seen  in  Figure  2.    In  this  system  an  enterprise’s  financial  bottom   line  isn’t  the  only  definition  of  success.    The  two  other  parameters  are  social  equitability   and   environmental   impact.     A   business   following   the   Triple   Bottom   Line   is   therefore   prompted   to   make   choices   that   do   not   incur   detrimental   impacts   to   society   and   environment   in   the   name   of   profit.     In   this   system   there   are   not   shareholders,   not   stakeholders,  which  creates  greater  accountability  and  implies  interests  beyond  profit   margins.       Figure  2:  Ven  Diagram  of  the  Triple  Bottom  Line  Model   <http://upload.wikimedia.org/wikipedia/commons/2/2a/Triple_Bottom_Line_graphic.jpg>  
  • 22. Aaron  Blaise  Treeson   Barley  to  Boiler   22   Summary  Table  of  Scope  of  Research  &  Method  of  Analysis       Summary  Table  2:  Scope  of  Research  &  Method  of  Analysis        
  • 23. Aaron  Blaise  Treeson   Barley  to  Boiler   23   Brewing  Process     Mother's  in  the  kitchen  washing  out  the  jugs,   Sister's  in  the  pantry  bottling  the  suds,   Father's  in  the  cellar  mixing  up  the  hops,   Johnny's  on  the  front  porch  watching  for  the  cops.   -­‐Prohibition  Song     Scale  of  Production     When   talking   about   craft   breweries   it’s   critical   to   understand   two   key   words:   capacity   and   production.     Capacity   is   a   volumetric   measurement   in   barrels   (bbl)   of   a   brewery’s  maximum  batch  size.    This  is  often  determined  by  the  brewing  vessels  which   act  as  a  volumetric  bottleneck,  usually  the  gross  volume  of  mash  tons  or  brew  kettles.     Production   is   indicated   by   how   much   volume   of   beer   is   produced   per   year   (bbl/yr).     According  to  the  Institute  of  Brewing  there  are  four  designations  of  craft  breweries  by   capacity:  Brewpubs,  Microbreweries,  Regional  Brewers,  and  Large  Brewers.     ”Brewpubs”  offer  onsite  consumption  only.    These  outfits  are  generally  small  and   run   by   one   or   two   dedicated   individuals.     Facilities   are   generally   minimal.     If   they   distribute   via   kegs   to   local   restaurants   and   bars   they   might   be   classified   as   a   “nanobrewery.”    A  local  example  of  a  Brewpub  is  Wild  Woods  based  in  Boulder.     “Microbreweries”  are  categorized  by  production  of  less  than  15,000  bbl/yr.    They   make  up  the  most  number  of  craft  breweries  but  not  the  most  grossing  sales  category.     They   distribute   statewide   and   might   own   their   own   canning   or   bottling   line.     A   local   example  of  a  microbrewery  is  Dry  Dock  Brewing  Company  (~12,000  bbl/yr)  located  in   Aurora.     “Regional   Breweries”   are   the   largest   craft   brewery   producers   and   range   from   15,000   –   500,000   bbl/yr.     These   breweries   have   higher-­‐end   facilities   which   likely  
  • 24. Aaron  Blaise  Treeson   Barley  to  Boiler   24   includes   a   bottling   or   canning   line.     They   distribute   to   surrounding   states   with   some   minimal  retail  in  distant  states.    A  local  example  of  a  regional  brewer  is  Great  Divide   Brewing  Company  (~40,000  bbl/yr)  out  of  Denver.     “Large  Breweries”  are  the  outfits  producing  more  than  500,000  bbl/yr.    These  are  the   most   established   brands   and   are   more   likely   to   be   distributed   nationally,   possibly   by   constructing  a  second  brewery  in  a  distant  state.    Their  facilities  are  industrial.    These   breweries  dominate  in  gross  craft  brew  sales.    A  local  example  of  a  large  brewer  would   be  New  Belgium  (~950,000  bbl/yr)  in  Fort  Collins.     Off  Site  Inputs  Brewery  Inputs     On  April  23,  1516,  the  Reinheitsgebot  was  decreed  to  be  the  law  of  the  land  in   Bavaria,  Germany.    Also  known  as  the  Bavarian  or  German  Purity  Laws,  this  law  dictated   that  beer  could  only  be  brewed  from  April  23  through  September  29  and  was  restricted   to  being  comprised  of  only  three  ingredients:  barley,  hops,  and  water  (Buck  2014  p26).     The  intent  of  the  law  was  to  exclude  other  grains,  like  wheat  and  rye,  from  being  turned   into  beer,  a  process  that  had  historically  created  bread  shortages  in  the  winter  months.     In   essence   this   first   piece   of   brewery   related   legislation   was   an   attempt   to   maintain   social  sustainability  500  years  before  the  concept  was  coined.     The   following   section   will   attempt   to   outline   each   step   of   the   modern   day   conventional  craft  brewing  process.    This  includes  any  mechanical  equipment  involved,   material   and   energy   inputs,   duration,   state   of   the   production,   and   specific   potential   impacts  by  process.    While  the  mechanics  of  the  apparatus  change  depending  upon  the   sale  of  production,  the  sequencing  is  fairly  regimented.  To  help  map  out  the  brewing   sequence,   Figure   3   depicts   a   simplified   series   of   pieces   of   equipment   and   associated   processes   with   each   stage:   hot   water   and   crushed   grain   are   steeped,   filtered   then   boiled,  and  finally  cooled,  fermented,  and  packaged.  
  • 25. Aaron  Blaise  Treeson   Barley  to  Boiler   25     Figure  3:  Simplified  Brewing  System   <http://www.jwsweetman.ie/img/brewingprocess.png>     Water,  so  frequently  overlooked,  is  the  primary  ingredient  in  beer.  It  provides   the   solution   within   which   carbohydrates   and   proteins   dissolve,   passive   enzymatic   reactions   occur,   and   an   ecosystem   of   yeast   flourishes   then   collapses.     Most   craft   breweries  are  within  a  municipality’s  infrastructure  and  thus  are  using  pretreated  fresh   water   in   their   beer   production   that   then   indicates   the   likely   use   of   municipal   wastewater  as  well.    Other  breweries  outside  a  city’s  limits  will  be  on  regulated  well   water  that  likely  implies  the  use  of  an  onsite  septic  system.    Some  larger  breweries  use   reverse  osmosis  and/carbon  filtering  to  remove  impurities  or  additives  like  fluoride  or   chlorine,  which  can  affect  flavor  and  the  health  of  the  yeast.    These  more  volatile  ions   can  also  be  vented  off  in  a  boiling  process.    Additionally,  sometimes  the  brewer  adds   mineral  components  to  mimic  a  certain  regional  style  with  a  particular  water  structure.     The  most  notable  ingredient  in  craft  beer  is  of  course  barley  and  other  grains   that  are  the  source  of  the  requisite  carbohydrates.    While  corn  is  the  most  frequently   used  grain  in  industrial  scale  brewing  in  the  US  and  rice  elsewhere  in  the  world,  craft  
  • 26. Aaron  Blaise  Treeson   Barley  to  Boiler   26   breweries   stick   to   the   time-­‐honored   use   of   barley   as   the   foundational   grain   in   beer.     Craft   breweries   pride   themselves   in   making   a   range   of   unique,   high   quality,   and   distinctive  brews.    What  makes  a  pilsner  different  than  a  porter  is  largely  attributed  to   the   grain   bill,   a   ratio   of   barley,   wheat,   rye,   oats   and   others,   and   how   each   type   is   processed   prior,   such   as   hulled,   malted,   roasted,   or   smoked.     As   with   all   industrial   agriculture,   barley   cultivation   has   a   substantial   carbon   footprint   and   water   appetite.     The  Food  Climate  Research  Network  report  states,     Carbon  dioxide  emissions  from  barley  production  will  arise  from  the  use  of  energy  to  drive  on-­‐ farm  machinery  and  for  the  production  and  transport  of  fertilisers  [sic],  seeds  and  other  inputs.   Nitrous  oxide  is  also  emitted  both  during  the  fertilisers  [sic]  manufacturing  process  and  through   natural   soil   processes.”   (Garnett   2007   p28).     The   report   then   goes   on   to   say   that   the   manufacturing  of  fertilizer  and  its  byproduct  N20  contribute  roughly  1%  of  total  GHG  emission  in   the  UK.  (Garnett  2007  p29)     While  dependent  upon  recipe  and  desired  final  specific  gravity,  which  indicates  likely   final  ethanol  content,  generally  between  1-­‐4  lbm  of  barley  is  used  per  gallon  of  beer   with  an  alcohol  by  volume  (ABV)  of  between  3-­‐13%.    With  anywhere  from  75-­‐120  lbm  of   barley  are  used  per  barrel  of  craft  beer,  it  easy  to  see  the  water  used  for  irrigation,  the   fossil  fuels  used  for  industrial  farming  equipment,  and  the  applications  of  energy  and   emissions  intensive  nitrogen-­‐rich  fertilizers  quickly  adding  up.     After   the   grain   in   harvested,   it   is   frequently   malted   at   an   offsite,   usually   industrial,  location.    This  purpose  is  to  unlock  the  bundle  of  potential  chemical  energy,   largely  in  the  form  of  proteins,  which  make  up  raw  grain.    Malting  is  the  process  by   which   grain   germinates   with   water.   The   seed’s   own   biological   mechanisms   then   transform   the   complex   endosperm   into   more   simple   carbohydrates,   starches,   and   enzymes   used   to   sprout   and   create   a   seedling.     This   process   is   interrupted   prior   to   sprouting  via  heat,  leaving  a  large  portion  of  the  non-­‐fermentable  proteins  transformed   into  carbohydrates,  including  both  fermentable  monosaccharides,  such  as  maltose,  and   non-­‐fermentable  polysaccharides,  such  as  starches.    The  grain  is  then  put  through  a  kiln   where  the  water  content  is  reduced.    This  process  can  be  continued  to  roast  the  grain,  
  • 27. Aaron  Blaise  Treeson   Barley  to  Boiler   27   producing  more  useable  carbohydrates  and  creating  a  darker,  more  malty  and  complex   flavor  profile  used  in  such  beers  as  stouts  and  porters.    Energy  inputs  and  emissions  vary   dramatically  in  this  process.    The  United  Kingdom  Food  Climate  Research  Network  study   shows  that  the  malting  of  grain  for  beer  in  the  UK  accounts  for  .055%  of  total  national   GHG  emissions  (Garnett  2007,  p31).         The  malted  grain  is  then  shipped  via  the  black  box  of  transportation  networks   and  eventually  is  delivered  to  the  brewery.    Here  the  barley  is  loaded  directly  into  grain   silos  using  conveyors  or  grain  elevators  in  larger  craft  breweries  or  left  packaged  in  50   lbm  sacks  for  smaller  set  ups  or  specialty  grains.    It  is  static  at  this  point  and  stable  until   brewing  begins.     The  Brewhouse     The  brewhouse  is  the  facility  where  water,  grain,  hops,  heat  and  its  extraction,   and   yeast   are   combined   to   ferment   and   create   the   final   product,   craft   beer.     Large   breweries  can  have  around  the  clock  operations,  while  regional  breweries  might  brew   every   working   day   and   micro   and   nanobreweries   have   specific   brewing   days.     These   three   scales   of   brewing   imply   very   different   systems   with   the   largest   potentially   replicating  a  near  steady  state  series  of  processes  and  the  smaller  breweries  defined  by   a  linear  start  to  stop  frame.    As  with  most  engineered  processes,  the  less  starting  and   stopping   thus   more   continuous   in   operation,   the   more   efficient   the   plant   and   thus   energy  economies  of  scale  are  uncovered.    The  brewing  process  can  be  expressed  as  a   series  of  thermodynamic  processes  performed  on  a  fluid  which  take  place  in  multiple   containment  vessels  where  heat  is  generally  added  or  extracted.    The  most  common   type  of  vessel  in  the  brewing  industry  is  the  iconic,  stainless  steel,  conical-­‐base  tank,   which  usually  has  an  integrated  double  skin,  known  as  a  jacket,  or  an  internal  coil  by   which  the  fluid  is  heated  or  cooled.      For  the  entirety  of  the  brewing  process  the  United   Kingdom  Food  Climate  Research  Network  study  shows  that  the  mashing,  lautering,  and  
  • 28. Aaron  Blaise  Treeson   Barley  to  Boiler   28   fermenting  of  beer  accounted  .096%  of  total  UK  GHG  emissions  (Garnett  2007,  p41).     Figure  4  depicts  the  linear  sequence  of  processes  in  the  brewhouse  and  postproduction.           Figure  4:  Linear  Brewing  Sequence     (Brodie  2014  p7)  
  • 29. Aaron  Blaise  Treeson   Barley  to  Boiler   29   The  first  step  in  the  brewing  process  is  milling  the  malted  grain,  thus  cracking   any  remaining  husks  and  the  outer  layers  and  exposing  the  carbohydrates  inside.    This   cracked  grain  is  known  as  grist.    The  process  is  simply  grinding  the  malted  barley  and   other  grains  through  a  set  of  rolling  pins  to  produce  a  flakey  and  coarse  mixture.    Larger   or  new  facilities  often  employ  wet  milling  to  eliminate  the  airborne  dust  produced  in  the   process.    Most  craft  breweries  use  a  traditional  dry  mill.    This  grist  is  then  fed  into  the   mash-­‐tun.     The  mash-­‐tun  is  a  large  vessel  where  the  grist  and  warm  water  are  allowed  to   soak,  creating  a  sweet  and  malty  liquid  known  as  wort.    Prior  to  the  grist  being  added,   the   mash-­‐tun   is   filled   with   warm   water.     The   water   is   either   warmed   directly   in   the   mash-­‐tun   via   a   conventional   steam   jacket   encasing   the   vessel   or   is   pulled   from   an   unconventional  hot  liquor  tank,  which  acts  as  a  reserve  vessel  of  water  maintained  at  a   certain   temperature   for   multiple   applications.     Once   the   water   is   at   the   desired   temperature,  the  grist  is  added  and  mashing  begins.    There  are  three  different  methods   of  mashing:  decoction,  involving  an  added  pre-­‐partial  mash  boil  step;  infusion,  keeping   the   mash   at   a   flat   temperature   then   stepped,   slowly   bringing   the   mash   up   in   temperature.    Four  naturally  occurring  enzymes  in  malted  barley  are  each  activated  in   different   temperature   zones   and   have   the   highly   desirable   ability   to   hydrolyze,   chemically  break  down,  non-­‐fermentable  starches  to  fermentable  sugars.    This  mixture   is   slowly   churned   mechanically   and   kept   at   (or   sequenced   through   a   range   of)   temperatures   between   130-­‐180°F,   the   band   of   enzymatic   activity,   for   30-­‐90   minutes   depending  upon  desired  extraction  efficiency.    According  to  the  LBNL  study,  decoction   mashing  is  estimated  to  take  12-­‐13  kbtu/bbl  while  infusion  mashing,  keeping  the  wort  at   single  lower  temperature  is  much  more  efficient  at  8-­‐10  kbtu/bbl  (Galitsky  2003  p5).     After   the   grist   has   been   sufficiently   soaked   and   a   sugary   wort   has   been   produced,  lautering  takes  place  which  includes  a  number  of  ways  to  separate  the  spent   grain  from  the  work.    In  larger  breweries,  this  takes  place  in  a  separate  vessel  known  as  
  • 30. Aaron  Blaise  Treeson   Barley  to  Boiler   30   a  lautering-­‐tun.    In  smaller  breweries,  the  mash-­‐tun  has  been  integrated  with  lautering.     In  either  instance  the  vessel  has  a  false  bottom  used  to  strain  out  the  grain  from  the   wort.    While  the  wort  is  pumped  into  the  brew  kettle,  the  remaining  grain  is  often  rinsed   a  single  time  or  recirculating  with  170°F  water,  known  as  sparging,  which  is  intended  to   extract  any  residual  sugars  and  is  eventually  reintegrated  with  the  wort  which  by  this   stage  is  liquid  with  some  suspended  grain  sediment.     In  all  but  the  smallest  of  breweries,  the  brew  kettle  is  a  separate  vessel  used  to   bring  the  wort  to  a  full  boil  for  an  extended  duration.    The  wort  boiling  process  serves   many   functions   from   sterilizing   the   wort   of   unwanted   microbes,   stopping   enzymatic   activity,   vaporizing   unwanted   volatile   compounds,   coagulating   any   proteins   and   sediment,  and  allowing  hops  additions.    Traditionally  this  process  takes  place  at  212°F   and   usually   takes   place   between   1-­‐2   hours.     This   brew   kettle   brings   the   wort   to   a   sustained  boil  by  a  constant  supply  of  heat,  conventionally  through  an  encasing  steam   jacket  which  is  supplied  by  a  natural  gas  fueled  steam  boiler.    The  boil  traditionally  lasts   for   such   an   extended   period   of   time   to   remove   off-­‐flavors   and   integrate   desirable   flavors.         In   this   period   hops,   the   main   non-­‐grain   flavorant,   are   incorporated   in   stages.     Hops  added  at  the  start  of  the  boil  undergo  isomerization,  the  transformation  of  one   molecule   into   another   via   heat,   resulting   in   soluble   alpha   acids   which   are   bittering   agents.     Hops   added   near   the   end   of   the   boil   do   not   undergo   this   process   and   are   intended  to  contribute  to  a  beer’s  aroma.    Additionally  the  surface  of  the  brew  kettle  is   at  a  much  higher  temperature  than  212°F  which  allows  the  Maillard  reaction  to  convert   simple   sugars   and   amino   acids   into   melanoidin   polymers,   creating   non-­‐fermentable   malty   flavor   and   color   (Wallaert   2004   p16).     While   hops   and   melanoidins   are   impart   desirable  flavors  in  the  beer,  a  wide  variety  of  volatile  organic  compounds  (VOCs)  that   have  been  formed  in  the  wort  are  vented  via  a  long  duration  boil.    These  VOCs  include  S-­‐ methylmethionine   (SMM),   dimethylsulphide   (DSS),   2-­‐acetylthiazole,   myrcene,