SlideShare a Scribd company logo
1 of 39
Caetité Uranium Production Facility Chaitanyamoy Ganguly IAEA UPSAT MISSION, 26 April 2009
Brazil – U Resources Source: INB Website, 2009 ~ 5% of world total   309, 370t 131, 870t 177, 500t 111, 300t 66, 200t TOTAL 61, 600t 61, 600t       Others 142, 500t 59, 500t 83, 000t 41, 000t 42, 000t Itataia (CE) 100, 770t 6, 770t 94, 000t 69, 800t 24,200t Lagoa Real/Caetité (BA) 4, 500t 4, 000t 500t 500t   Caldas (MG)   < 80US$/kg U Sub-Total < 80US$/kg U < 40US$/kg U Deposit/Mine TOTAL Inferred Measured and Indicated Occurrence
Caetité Uranium Mine and Mill Heap Leaching Pads 2 X 35,000 t U Liquor tanks
U in Lagoa Real ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Location mine and mill Leached ore encapsulated in Waste rock Open Pit Mine Mill
Caetit é  deposit details ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Deposit details ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Waste-rock material generated  Observed Predicted Average 2.7 times more that predicted; Av  Waste rock/ore ratio – 8.1:1 Lack of accurate delineation of ore bodies and absence of precise mining plan
Average rock composition Source: INB (1999)     0.1±0.02 V 2 O 5 0.1±0.02 Nb 2 O 5 2.4±0.4 MgO 0.094±0.001 MnO 0.35±0.009 U 3 O 8 0.0056±0.0005 Cr 2 O 3 2.4±0.4 TiO 2 0.0056±0.06 SnO 2 5.4±0.8 Fe 2 O 3 0.011±0.002 ZnO 13.8±0.8 Al 2 O 3 0.04±0.01 ZrO 2 6.8±1.1 CaO 0.16±0.05 BaO 43.1±1.3 SiO 2 Concentration (%) Oxide Concentration (%) Oxide
Heap Leach  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],7%  tertiary amine  3%  tridecanol  90% kerosene
Process Improvements already implemented ,[object Object],[object Object],[object Object],[object Object],[object Object]
Future plans ,[object Object],[object Object],[object Object],[object Object]
Water demand - supply ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Potential Impacts on environment ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Radiological characterization <0.5  10.0 ± 3.0 526 ± 176 2nd washing water (Bq l −1 ) 2.3 ± 0.6 16 ± 4.5 54840 ± 13162 1st washing water (Bq l −1 ) 6.0 ± 0.5 23.0 ± 4.0 157400 ± 30770 Leaching solution (Bq l −1 ) 75.00 ± 12 34520 ± 9512 7582 ± 3290 Leached ore (Bq kg −1 ) seco 83.0 ± 21.0 33280 ± 9549 53080 ± 11975 Ore (Bq kg −1 ) 228 Ra 226 Ra 238 U Material
Radionuclide concentrations in vegetables Bq kg−1(dry)   0.83 ± 0.62  0.45 ± 0.32 4.98 ± 0.76 0.38 ± 0.26 0.53 ± 0.18 Pasture 0.60 ± 0.46 0.73 ± 1.23 0.17 ± 0.062 0.45 ± 0.36 0.19 ± 0.19 Black beans 31.0 ± 22.0 0.028 ± 0.047 2.7 ± 1.9 5.7 ± 4.17 0.11 ± 0.07 Manioc 0.22 ± 0.16 0.051 ± 0.031 0.12 ± 0.049 0.13 ± 0.11 0.023 ± 0.017 Corn 228 Ra 232 Th 210 Pb 226 Ra 238 U Product
Calculated soil–plant transfer factors   1.01 × 10 −1   6.59 × 10 −3 1.16 × 10 −2 2.65 × 10 −2 1.82 × 10 −3 Average 1.02 × 10 −2 7.84 × 10 −3 2.88 × 10 −2 6.03 × 10 −3 2.68 × 10 −3 Pasture 7.36 × 10 −3 1.27 × 10 −2 9.80 × 10 −4 7.19 × 10 −3 2.75 × 10 −3 Black bean 3.84 × 10 −1 4.90 × 10 −3 1.57 × 10 −2 9.07 × 10 −2 1.54 × 10 −3 Manioc 2.75 × 10 −3 8.97 × 10 −4 7.06 × 10 −4 2.03 × 10 −3 3.36 × 10 −4 Corn 228 Ra 232 Th 210 Pb 226 Ra 238 U Product
Radionuclide concentrations in aerosols samples   (Inside the uranium mining and milling area)   1.0 ± 0.12  0.1 ± 0.06 2.1 ± 1.2 2.1 ± 1.7 1.90 ± 0.9 (Bq kg −1 ) × 10 4 1.06 ± 0.16 43 ± 50 4.92 ± 4.0 94 ± 35 90 ± 52 94 ± 49 INST 008 (×10 −5 Bq m −3 )   1.57 ± 0.97 1.08 ± 0.56 9.7 ± 3.0 4.4 ± 1.8 15 ± 7.4 (Bq kg −1 ) × 10 3 1.10 ± 0.23 7.40 ± 4.7 4.92 ± 2.0 44 ± 13 19 ± 9.8 68 ± 42 INST 001 (×10−5Bq m −3 ) Weight (g) 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling point
Radionuclide concentrations in aerosols samples (Outside the mining plant) (x10 5  Bq m -3 ) 0.62  22 0.63 0.28 0.48 3.67 AERO 042 (ESE) 5–10 km 3 27 6.56 3.28 3.65 8.1 AERO 013 (W) 0–5 km 1.08 27 2.61 5.49 0.75 11.7 AERO 010 (WNW) 0–5 km 1.86 27 1.47 1.11 1.23 3.04 AERO 008 (WSW) 0–5 km 1.03 22 0.94 0.45 0.68 3.53 AERO 001 (WSW) 10–15 km Particulate (g) 210 Pb 228 Ra 226 Ra 232 Th 238 U Sampling points
Radon concentration  (Inside the uranium mining and milling area) IAEA – BSS Guidelines Dwellings – 200 – 600 Bq m -3 Workplaces – 1000 Bq m -3 Typical average concentrations in mining and processing of uranium ore: 500 – 700 Bq m -3 135 ± 71  Open pit, ore body 3 Rn 011 (n = 8) 116 ± 60 Open pit, ore body 1 Rn 010 (n = 8) 104 ± 82 250 m away from the leaching platform Rn 009 (n = 8) 118 ± 61 Ponds with sub-aerial drains Rn 008 (n = 8) 627 ± 238 Leached ore piles Rn 004 (n = 20) 102 ± 50 Waste-rock piles Rn 003 (n = 8) 90 ± 71 Milling plant Rn 001 (n = 8) Bq m −3 Description Sampling station
Radon concentration (Outside the uranium mining and milling area) 44  SE AERO 042 (n = 4) 73 WNW AERO 013 (n = 4) 77 WNW AERO 010 (n = 4) 57 WSW AERO 008 (n = 4) 109 W AERO 001 (n = 4) Bq m −3 Sector Sampling station
Activity concentrations in groundwater (Bq l −1 )   n = 210  n = 358 n = 210   0.009–0.98 0.001–3.79 <1.2 × 10 −4 −0.093   0.04 0.014 0.015 Results from Brazilian groundwater 0.1 0.75 0.15 ASUB211 (n = 3) 0.086 0.039 0.09 ASUB276 (n = 12) 0.13 0.064 12.3 ASUB279 (n = 12) 0.2 0.42 7.3 ASUB001 (n = 12) 210 Pb 226 Ra 238 U Well
Average radionuclide activity concentrations in mine pit waters (Bq l −1 )   7.84 ± 0.40  0.23 ± 0.25 0.21 ± 0.25 0.22 ± 0.16 2.03 ± 1.29 57 ± 6.4 or 4.70 ppm Area body 03 (n = 22) 8.27 ± 0.66 0.05 ± 0.10 0.04 ± 0.08 0.05 ± 0.03 0.15 ± 0.16 4.95 ± 5.5 or 0.41 ppm Area body 01 (n = 16) pH 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
Suggested measures ,[object Object],[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object],[object Object]
Suggested Queries ,[object Object],[object Object],[object Object]
Thank you
Geological Setting - Lagoa Real U mineralisation - Metasomatic type
Site topography Waste rock Mine Mill
Drainage management  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Unforeseen discharges  - Need for alternate drainage management Total- 110 000 m 3
Radioecological characterization
Radionuclide activity concentrations in soil (TC - total concentration; RAC -readily available concentration; in Bq kg−1) 13 5 3 8 7 RAC 98 92.9 203 53.2 70.5 TC B10 11 4 4 5 4 RAC 62.5 84.8 154 41.1 41.9 TC B1 22 9 7 5 9 RAC 87.6 – 158 43.4 46.5 TC A2 23 10 3 18 28 RAC 99.4 – 156 143 180 TC A1 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
284 ± 97.6  359 ± 85.6 135 ± 101 148 ± 103 184 ± 107 Pocos de Caldas 17 ± 5.0 8.0 ± 15 4.0 ± 1.0 8.0 ± 4.0 9.0 ± 8.0 RAC 80.8 ± 19.6 87.7 ± 10.8 173 ± 42.4 62.6 ± 32.6 68.7 ± 45.0 TC AVG 12 3 3 5 5 RAC 59.6 – 175 47 48.3 TC E2 14 3 3 6 4 RAC 82 – 149 48.3 41.6 TC E1 20 2 3 6 5 RAC 89.7 99 204 50 53 TC D 22 48 4 9 10 RAC 75.6 74 140 87 68.4 TC 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
Chemical characterization of underground waters 4.8  6.75 6.6 pH 0.36 – – Al 3+ 9.9 194 288 HCO 3 − 425 173 107 Cl − 0.37 1.77 2.13 F − 20 11 2.4 SO 4 0.05 0.03 0.04 PO 4 98 62 57 SiO 2 0.53 1.79 1.13 Fe 0.67 0.19 0.77 Mn 6.19 0.09 0.32 Ba 27 52 81 Ca 12.9 7.33 10.8 Mg 6.33 7.67 7.67 K 176 107 100 Na ASUB211 ASUB279 ASUB001 Chemical species  (mg l −1 )
Permissible limits of U ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

Similar to Caetité

Characterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadCharacterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadSoil and Water Conservation Society
 
Building Soil Carbon: Benefits, Possibilities, and Modeling
Building Soil Carbon: Benefits, Possibilities, and ModelingBuilding Soil Carbon: Benefits, Possibilities, and Modeling
Building Soil Carbon: Benefits, Possibilities, and ModelingCarbon Coalition
 
Environmental Impact mining Jiu Romania
Environmental Impact mining Jiu RomaniaEnvironmental Impact mining Jiu Romania
Environmental Impact mining Jiu RomaniaRemco van Ek
 
Edoardo Costantini-Impact of climate change and management of soil characteri...
Edoardo Costantini-Impact of climate change and management of soil characteri...Edoardo Costantini-Impact of climate change and management of soil characteri...
Edoardo Costantini-Impact of climate change and management of soil characteri...Fundación Ramón Areces
 
Ex-ante modeling analysis of maize yield responses to nutrient management opt...
Ex-ante modeling analysis of maize yield responses to nutrient management opt...Ex-ante modeling analysis of maize yield responses to nutrient management opt...
Ex-ante modeling analysis of maize yield responses to nutrient management opt...africa-rising
 
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...Raymond Brennan
 
6 akmal karimov - uzbekistan
6 akmal karimov - uzbekistan6 akmal karimov - uzbekistan
6 akmal karimov - uzbekistangroundwatercop
 
Assessment of heavy metal pollution in the cultivated area around mining. Tun...
Assessment of heavy metal pollution in the cultivated area around mining. Tun...Assessment of heavy metal pollution in the cultivated area around mining. Tun...
Assessment of heavy metal pollution in the cultivated area around mining. Tun...ExternalEvents
 
Feasibility and Economic Design of Pumped Storage Hydropower Station
Feasibility and Economic Design of Pumped Storage Hydropower StationFeasibility and Economic Design of Pumped Storage Hydropower Station
Feasibility and Economic Design of Pumped Storage Hydropower StationAwais Marwat
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydratesstalnaker
 
Seunguk-Lee-converted.pptx
Seunguk-Lee-converted.pptxSeunguk-Lee-converted.pptx
Seunguk-Lee-converted.pptxAmnaIqbal93
 
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...Daniel Eyde
 

Similar to Caetité (20)

Characterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadCharacterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment load
 
Building Soil Carbon: Benefits, Possibilities, and Modeling
Building Soil Carbon: Benefits, Possibilities, and ModelingBuilding Soil Carbon: Benefits, Possibilities, and Modeling
Building Soil Carbon: Benefits, Possibilities, and Modeling
 
Sewer sediment halcrow apr08
Sewer sediment halcrow apr08Sewer sediment halcrow apr08
Sewer sediment halcrow apr08
 
Mattias von Brömsse - Targetting safe aquifers
Mattias von Brömsse - Targetting safe aquifersMattias von Brömsse - Targetting safe aquifers
Mattias von Brömsse - Targetting safe aquifers
 
Environmental Impact mining Jiu Romania
Environmental Impact mining Jiu RomaniaEnvironmental Impact mining Jiu Romania
Environmental Impact mining Jiu Romania
 
Edoardo Costantini-Impact of climate change and management of soil characteri...
Edoardo Costantini-Impact of climate change and management of soil characteri...Edoardo Costantini-Impact of climate change and management of soil characteri...
Edoardo Costantini-Impact of climate change and management of soil characteri...
 
Evaluation of nutrient reductions
Evaluation of nutrient reductionsEvaluation of nutrient reductions
Evaluation of nutrient reductions
 
Ex-ante modeling analysis of maize yield responses to nutrient management opt...
Ex-ante modeling analysis of maize yield responses to nutrient management opt...Ex-ante modeling analysis of maize yield responses to nutrient management opt...
Ex-ante modeling analysis of maize yield responses to nutrient management opt...
 
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
 
6 akmal karimov - uzbekistan
6 akmal karimov - uzbekistan6 akmal karimov - uzbekistan
6 akmal karimov - uzbekistan
 
Assessment of heavy metal pollution in the cultivated area around mining. Tun...
Assessment of heavy metal pollution in the cultivated area around mining. Tun...Assessment of heavy metal pollution in the cultivated area around mining. Tun...
Assessment of heavy metal pollution in the cultivated area around mining. Tun...
 
Lone Pine Molybdenum Project
Lone Pine Molybdenum ProjectLone Pine Molybdenum Project
Lone Pine Molybdenum Project
 
Poster Eurosoil
Poster EurosoilPoster Eurosoil
Poster Eurosoil
 
Poster Eurosoil
Poster EurosoilPoster Eurosoil
Poster Eurosoil
 
Poster
PosterPoster
Poster
 
Crop Residue Removal and Cover Crop Impact
Crop Residue Removal and Cover Crop ImpactCrop Residue Removal and Cover Crop Impact
Crop Residue Removal and Cover Crop Impact
 
Feasibility and Economic Design of Pumped Storage Hydropower Station
Feasibility and Economic Design of Pumped Storage Hydropower StationFeasibility and Economic Design of Pumped Storage Hydropower Station
Feasibility and Economic Design of Pumped Storage Hydropower Station
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
 
Seunguk-Lee-converted.pptx
Seunguk-Lee-converted.pptxSeunguk-Lee-converted.pptx
Seunguk-Lee-converted.pptx
 
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...
A Review of Zeolite Based Treatment Water Systems and Thier Applicability in ...
 

Caetité

  • 1. Caetité Uranium Production Facility Chaitanyamoy Ganguly IAEA UPSAT MISSION, 26 April 2009
  • 2. Brazil – U Resources Source: INB Website, 2009 ~ 5% of world total 309, 370t 131, 870t 177, 500t 111, 300t 66, 200t TOTAL 61, 600t 61, 600t       Others 142, 500t 59, 500t 83, 000t 41, 000t 42, 000t Itataia (CE) 100, 770t 6, 770t 94, 000t 69, 800t 24,200t Lagoa Real/Caetité (BA) 4, 500t 4, 000t 500t 500t   Caldas (MG)   < 80US$/kg U Sub-Total < 80US$/kg U < 40US$/kg U Deposit/Mine TOTAL Inferred Measured and Indicated Occurrence
  • 3. Caetité Uranium Mine and Mill Heap Leaching Pads 2 X 35,000 t U Liquor tanks
  • 4.
  • 5. Location mine and mill Leached ore encapsulated in Waste rock Open Pit Mine Mill
  • 6.
  • 7.
  • 8. Waste-rock material generated Observed Predicted Average 2.7 times more that predicted; Av Waste rock/ore ratio – 8.1:1 Lack of accurate delineation of ore bodies and absence of precise mining plan
  • 9. Average rock composition Source: INB (1999)     0.1±0.02 V 2 O 5 0.1±0.02 Nb 2 O 5 2.4±0.4 MgO 0.094±0.001 MnO 0.35±0.009 U 3 O 8 0.0056±0.0005 Cr 2 O 3 2.4±0.4 TiO 2 0.0056±0.06 SnO 2 5.4±0.8 Fe 2 O 3 0.011±0.002 ZnO 13.8±0.8 Al 2 O 3 0.04±0.01 ZrO 2 6.8±1.1 CaO 0.16±0.05 BaO 43.1±1.3 SiO 2 Concentration (%) Oxide Concentration (%) Oxide
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15. Radiological characterization <0.5 10.0 ± 3.0 526 ± 176 2nd washing water (Bq l −1 ) 2.3 ± 0.6 16 ± 4.5 54840 ± 13162 1st washing water (Bq l −1 ) 6.0 ± 0.5 23.0 ± 4.0 157400 ± 30770 Leaching solution (Bq l −1 ) 75.00 ± 12 34520 ± 9512 7582 ± 3290 Leached ore (Bq kg −1 ) seco 83.0 ± 21.0 33280 ± 9549 53080 ± 11975 Ore (Bq kg −1 ) 228 Ra 226 Ra 238 U Material
  • 16. Radionuclide concentrations in vegetables Bq kg−1(dry) 0.83 ± 0.62 0.45 ± 0.32 4.98 ± 0.76 0.38 ± 0.26 0.53 ± 0.18 Pasture 0.60 ± 0.46 0.73 ± 1.23 0.17 ± 0.062 0.45 ± 0.36 0.19 ± 0.19 Black beans 31.0 ± 22.0 0.028 ± 0.047 2.7 ± 1.9 5.7 ± 4.17 0.11 ± 0.07 Manioc 0.22 ± 0.16 0.051 ± 0.031 0.12 ± 0.049 0.13 ± 0.11 0.023 ± 0.017 Corn 228 Ra 232 Th 210 Pb 226 Ra 238 U Product
  • 17. Calculated soil–plant transfer factors 1.01 × 10 −1 6.59 × 10 −3 1.16 × 10 −2 2.65 × 10 −2 1.82 × 10 −3 Average 1.02 × 10 −2 7.84 × 10 −3 2.88 × 10 −2 6.03 × 10 −3 2.68 × 10 −3 Pasture 7.36 × 10 −3 1.27 × 10 −2 9.80 × 10 −4 7.19 × 10 −3 2.75 × 10 −3 Black bean 3.84 × 10 −1 4.90 × 10 −3 1.57 × 10 −2 9.07 × 10 −2 1.54 × 10 −3 Manioc 2.75 × 10 −3 8.97 × 10 −4 7.06 × 10 −4 2.03 × 10 −3 3.36 × 10 −4 Corn 228 Ra 232 Th 210 Pb 226 Ra 238 U Product
  • 18. Radionuclide concentrations in aerosols samples (Inside the uranium mining and milling area)   1.0 ± 0.12 0.1 ± 0.06 2.1 ± 1.2 2.1 ± 1.7 1.90 ± 0.9 (Bq kg −1 ) × 10 4 1.06 ± 0.16 43 ± 50 4.92 ± 4.0 94 ± 35 90 ± 52 94 ± 49 INST 008 (×10 −5 Bq m −3 )   1.57 ± 0.97 1.08 ± 0.56 9.7 ± 3.0 4.4 ± 1.8 15 ± 7.4 (Bq kg −1 ) × 10 3 1.10 ± 0.23 7.40 ± 4.7 4.92 ± 2.0 44 ± 13 19 ± 9.8 68 ± 42 INST 001 (×10−5Bq m −3 ) Weight (g) 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling point
  • 19. Radionuclide concentrations in aerosols samples (Outside the mining plant) (x10 5 Bq m -3 ) 0.62 22 0.63 0.28 0.48 3.67 AERO 042 (ESE) 5–10 km 3 27 6.56 3.28 3.65 8.1 AERO 013 (W) 0–5 km 1.08 27 2.61 5.49 0.75 11.7 AERO 010 (WNW) 0–5 km 1.86 27 1.47 1.11 1.23 3.04 AERO 008 (WSW) 0–5 km 1.03 22 0.94 0.45 0.68 3.53 AERO 001 (WSW) 10–15 km Particulate (g) 210 Pb 228 Ra 226 Ra 232 Th 238 U Sampling points
  • 20. Radon concentration (Inside the uranium mining and milling area) IAEA – BSS Guidelines Dwellings – 200 – 600 Bq m -3 Workplaces – 1000 Bq m -3 Typical average concentrations in mining and processing of uranium ore: 500 – 700 Bq m -3 135 ± 71 Open pit, ore body 3 Rn 011 (n = 8) 116 ± 60 Open pit, ore body 1 Rn 010 (n = 8) 104 ± 82 250 m away from the leaching platform Rn 009 (n = 8) 118 ± 61 Ponds with sub-aerial drains Rn 008 (n = 8) 627 ± 238 Leached ore piles Rn 004 (n = 20) 102 ± 50 Waste-rock piles Rn 003 (n = 8) 90 ± 71 Milling plant Rn 001 (n = 8) Bq m −3 Description Sampling station
  • 21. Radon concentration (Outside the uranium mining and milling area) 44 SE AERO 042 (n = 4) 73 WNW AERO 013 (n = 4) 77 WNW AERO 010 (n = 4) 57 WSW AERO 008 (n = 4) 109 W AERO 001 (n = 4) Bq m −3 Sector Sampling station
  • 22. Activity concentrations in groundwater (Bq l −1 ) n = 210 n = 358 n = 210   0.009–0.98 0.001–3.79 <1.2 × 10 −4 −0.093   0.04 0.014 0.015 Results from Brazilian groundwater 0.1 0.75 0.15 ASUB211 (n = 3) 0.086 0.039 0.09 ASUB276 (n = 12) 0.13 0.064 12.3 ASUB279 (n = 12) 0.2 0.42 7.3 ASUB001 (n = 12) 210 Pb 226 Ra 238 U Well
  • 23. Average radionuclide activity concentrations in mine pit waters (Bq l −1 ) 7.84 ± 0.40 0.23 ± 0.25 0.21 ± 0.25 0.22 ± 0.16 2.03 ± 1.29 57 ± 6.4 or 4.70 ppm Area body 03 (n = 22) 8.27 ± 0.66 0.05 ± 0.10 0.04 ± 0.08 0.05 ± 0.03 0.15 ± 0.16 4.95 ± 5.5 or 0.41 ppm Area body 01 (n = 16) pH 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 32. Geological Setting - Lagoa Real U mineralisation - Metasomatic type
  • 33. Site topography Waste rock Mine Mill
  • 34.
  • 36. Radionuclide activity concentrations in soil (TC - total concentration; RAC -readily available concentration; in Bq kg−1) 13 5 3 8 7 RAC 98 92.9 203 53.2 70.5 TC B10 11 4 4 5 4 RAC 62.5 84.8 154 41.1 41.9 TC B1 22 9 7 5 9 RAC 87.6 – 158 43.4 46.5 TC A2 23 10 3 18 28 RAC 99.4 – 156 143 180 TC A1 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
  • 37. 284 ± 97.6 359 ± 85.6 135 ± 101 148 ± 103 184 ± 107 Pocos de Caldas 17 ± 5.0 8.0 ± 15 4.0 ± 1.0 8.0 ± 4.0 9.0 ± 8.0 RAC 80.8 ± 19.6 87.7 ± 10.8 173 ± 42.4 62.6 ± 32.6 68.7 ± 45.0 TC AVG 12 3 3 5 5 RAC 59.6 – 175 47 48.3 TC E2 14 3 3 6 4 RAC 82 – 149 48.3 41.6 TC E1 20 2 3 6 5 RAC 89.7 99 204 50 53 TC D 22 48 4 9 10 RAC 75.6 74 140 87 68.4 TC 228 Ra 232 Th 210 Pb 226 Ra 238 U Sampling station
  • 38. Chemical characterization of underground waters 4.8 6.75 6.6 pH 0.36 – – Al 3+ 9.9 194 288 HCO 3 − 425 173 107 Cl − 0.37 1.77 2.13 F − 20 11 2.4 SO 4 0.05 0.03 0.04 PO 4 98 62 57 SiO 2 0.53 1.79 1.13 Fe 0.67 0.19 0.77 Mn 6.19 0.09 0.32 Ba 27 52 81 Ca 12.9 7.33 10.8 Mg 6.33 7.67 7.67 K 176 107 100 Na ASUB211 ASUB279 ASUB001 Chemical species (mg l −1 )
  • 39.