SlideShare a Scribd company logo
1 of 61
Chapter 9 – Software Evolution
Chapter 9 Software Evolution 130/10/2014
Topics covered
 Evolution processes
 Legacy systems
 Software maintenance
Chapter 9 Software Evolution 230/10/2014
Software change
 Software change is inevitable
 New requirements emerge when the software is used;
 The business environment changes;
 Errors must be repaired;
 New computers and equipment is added to the system;
 The performance or reliability of the system may have to be
improved.
 A key problem for all organizations is implementing and
managing change to their existing software systems.
Chapter 9 Software Evolution 330/10/2014
Importance of evolution
 Organisations have huge investments in their software
systems - they are critical business assets.
 To maintain the value of these assets to the business,
they must be changed and updated.
 The majority of the software budget in large companies
is devoted to changing and evolving existing software
rather than developing new software.
Chapter 9 Software Evolution 430/10/2014
A spiral model of development and evolution
Chapter 9 Software Evolution 530/10/2014
Evolution and servicing
Chapter 9 Software Evolution 630/10/2014
Evolution and servicing
 Evolution
 The stage in a software system’s life cycle where it is in
operational use and is evolving as new requirements are
proposed and implemented in the system.
 Servicing
 At this stage, the software remains useful but the only changes
made are those required to keep it operational i.e. bug fixes and
changes to reflect changes in the software’s environment. No
new functionality is added.
 Phase-out
 The software may still be used but no further changes are made
to it.
Chapter 9 Software Evolution 730/10/2014
Evolution processes
Chapter 9 Software Evolution 830/10/2014
Evolution processes
 Software evolution processes depend on
 The type of software being maintained;
 The development processes used;
 The skills and experience of the people involved.
 Proposals for change are the driver for system evolution.
 Should be linked with components that are affected by the
change, thus allowing the cost and impact of the change to be
estimated.
 Change identification and evolution continues throughout
the system lifetime.
Chapter 9 Software Evolution 930/10/2014
Change identification and evolution processes
Chapter 9 Software Evolution 1030/10/2014
The software evolution process
Chapter 9 Software Evolution 1130/10/2014
Change implementation
Chapter 9 Software Evolution 1230/10/2014
Change implementation
 Iteration of the development process where the revisions
to the system are designed, implemented and tested.
 A critical difference is that the first stage of change
implementation may involve program understanding,
especially if the original system developers are not
responsible for the change implementation.
 During the program understanding phase, you have to
understand how the program is structured, how it
delivers functionality and how the proposed change
might affect the program.
Chapter 9 Software Evolution 1330/10/2014
Urgent change requests
 Urgent changes may have to be implemented without
going through all stages of the software engineering
process
 If a serious system fault has to be repaired to allow normal
operation to continue;
 If changes to the system’s environment (e.g. an OS upgrade)
have unexpected effects;
 If there are business changes that require a very rapid response
(e.g. the release of a competing product).
Chapter 9 Software Evolution 1430/10/2014
The emergency repair process
Chapter 9 Software Evolution 1530/10/2014
Agile methods and evolution
 Agile methods are based on incremental development so
the transition from development to evolution is a
seamless one.
 Evolution is simply a continuation of the development process
based on frequent system releases.
 Automated regression testing is particularly valuable
when changes are made to a system.
 Changes may be expressed as additional user stories.
Chapter 9 Software Evolution 1630/10/2014
Handover problems
 Where the development team have used an agile
approach but the evolution team is unfamiliar with agile
methods and prefer a plan-based approach.
 The evolution team may expect detailed documentation to
support evolution and this is not produced in agile processes.
 Where a plan-based approach has been used for
development but the evolution team prefer to use agile
methods.
 The evolution team may have to start from scratch developing
automated tests and the code in the system may not have been
refactored and simplified as is expected in agile development.
Chapter 9 Software Evolution 1730/10/2014
Legacy systems
Chapter 9 Software Evolution 1830/10/2014
Legacy systems
 Legacy systems are older systems that rely on
languages and technology that are no longer used for
new systems development.
 Legacy software may be dependent on older hardware,
such as mainframe computers and may have associated
legacy processes and procedures.
 Legacy systems are not just software systems but are
broader socio-technical systems that include hardware,
software, libraries and other supporting software and
business processes.
Chapter 9 Software Evolution 1930/10/2014
The elements of a legacy system
Chapter 9 Software Evolution 2030/10/2014
Legacy system components
 System hardware Legacy systems may have been
written for hardware that is no longer available.
 Support software The legacy system may rely on a
range of support software, which may be obsolete or
unsupported.
 Application software The application system that
provides the business services is usually made up of a
number of application programs.
 Application data These are data that are processed by
the application system. They may be inconsistent,
duplicated or held in different databases.
Chapter 9 Software Evolution 2130/10/2014
Legacy system components
 Business processes These are processes that are used
in the business to achieve some business objective.
 Business processes may be designed around a legacy
system and constrained by the functionality that it
provides.
 Business policies and rules These are definitions of how
the business should be carried out and constraints on
the business. Use of the legacy application system may
be embedded in these policies and rules.
Chapter 9 Software Evolution 2230/10/2014
Legacy system layers
Chapter 9 Software Evolution 2330/10/2014
Legacy system replacement
 Legacy system replacement is risky and expensive so
businesses continue to use these systems
 System replacement is risky for a number of reasons
 Lack of complete system specification
 Tight integration of system and business processes
 Undocumented business rules embedded in the legacy system
 New software development may be late and/or over budget
Chapter 9 Software Evolution 2430/10/2014
Legacy system change
 Legacy systems are expensive to change for a number
of reasons:
 No consistent programming style
 Use of obsolete programming languages with few people
available with these language skills
 Inadequate system documentation
 System structure degradation
 Program optimizations may make them hard to understand
 Data errors, duplication and inconsistency
Chapter 9 Software Evolution 2530/10/2014
Legacy system management
 Organisations that rely on legacy systems must choose
a strategy for evolving these systems
 Scrap the system completely and modify business processes so
that it is no longer required;
 Continue maintaining the system;
 Transform the system by re-engineering to improve its
maintainability;
 Replace the system with a new system.
 The strategy chosen should depend on the system
quality and its business value.
Chapter 9 Software Evolution 2630/10/2014
Figure 9.13 An example of a legacy system
assessment
Chapter 9 Software Evolution 2730/10/2014
Legacy system categories
 Low quality, low business value
 These systems should be scrapped.
 Low-quality, high-business value
 These make an important business contribution but are
expensive to maintain. Should be re-engineered or replaced if a
suitable system is available.
 High-quality, low-business value
 Replace with COTS, scrap completely or maintain.
 High-quality, high business value
 Continue in operation using normal system maintenance.
Chapter 9 Software Evolution 2830/10/2014
Business value assessment
 Assessment should take different viewpoints into
account
 System end-users;
 Business customers;
 Line managers;
 IT managers;
 Senior managers.
 Interview different stakeholders and collate results.
Chapter 9 Software Evolution 2930/10/2014
Issues in business value assessment
 The use of the system
 If systems are only used occasionally or by a small number of
people, they may have a low business value.
 The business processes that are supported
 A system may have a low business value if it forces the use of
inefficient business processes.
 System dependability
 If a system is not dependable and the problems directly affect
business customers, the system has a low business value.
 The system outputs
 If the business depends on system outputs, then the system has
a high business value.
Chapter 9 Software Evolution 3030/10/2014
System quality assessment
 Business process assessment
 How well does the business process support the current goals of
the business?
 Environment assessment
 How effective is the system’s environment and how expensive is
it to maintain?
 Application assessment
 What is the quality of the application software system?
Chapter 9 Software Evolution 3130/10/2014
Business process assessment
 Use a viewpoint-oriented approach and seek answers
from system stakeholders
 Is there a defined process model and is it followed?
 Do different parts of the organisation use different processes for
the same function?
 How has the process been adapted?
 What are the relationships with other business processes and
are these necessary?
 Is the process effectively supported by the legacy application
software?
 Example - a travel ordering system may have a low
business value because of the widespread use of web-
based ordering.
Chapter 9 Software Evolution 3230/10/2014
Factors used in environment assessment
Factor Questions
Supplier stability Is the supplier still in existence? Is the supplier financially stable and
likely to continue in existence? If the supplier is no longer in business,
does someone else maintain the systems?
Failure rate Does the hardware have a high rate of reported failures? Does the
support software crash and force system restarts?
Age How old is the hardware and software? The older the hardware and
support software, the more obsolete it will be. It may still function
correctly but there could be significant economic and business
benefits to moving to a more modern system.
Performance Is the performance of the system adequate? Do performance
problems have a significant effect on system users?
Chapter 9 Software Evolution 3330/10/2014
Factors used in environment assessment
Factor Questions
Support requirements What local support is required by the hardware and
software? If there are high costs associated with this
support, it may be worth considering system replacement.
Maintenance costs What are the costs of hardware maintenance and support
software licences? Older hardware may have higher
maintenance costs than modern systems. Support software
may have high annual licensing costs.
Interoperability Are there problems interfacing the system to other systems?
Can compilers, for example, be used with current versions
of the operating system? Is hardware emulation required?
Chapter 9 Software Evolution 3430/10/2014
Factors used in application assessment
Factor Questions
Understandability How difficult is it to understand the source code of the current
system? How complex are the control structures that are used?
Do variables have meaningful names that reflect their function?
Documentation What system documentation is available? Is the documentation
complete, consistent, and current?
Data Is there an explicit data model for the system? To what extent is
data duplicated across files? Is the data used by the system up to
date and consistent?
Performance Is the performance of the application adequate? Do performance
problems have a significant effect on system users?
Chapter 9 Software Evolution 3530/10/2014
Factors used in application assessment
Factor Questions
Programming language Are modern compilers available for the programming
language used to develop the system? Is the programming
language still used for new system development?
Configuration
management
Are all versions of all parts of the system managed by a
configuration management system? Is there an explicit
description of the versions of components that are used in
the current system?
Test data Does test data for the system exist? Is there a record of
regression tests carried out when new features have been
added to the system?
Personnel skills Are there people available who have the skills to maintain the
application? Are there people available who have experience
with the system?
Chapter 9 Software Evolution 3630/10/2014
System measurement
 You may collect quantitative data to make an
assessment of the quality of the application system
 The number of system change requests; The higher this
accumulated value, the lower the quality of the system.
 The number of different user interfaces used by the system; The
more interfaces, the more likely it is that there will be
inconsistencies and redundancies in these interfaces.
 The volume of data used by the system. As the volume of data
(number of files, size of database, etc.) processed by the system
increases, so too do the inconsistencies and errors in that data.
 Cleaning up old data is a very expensive and time-consuming
process
Chapter 9 Software Evolution 3730/10/2014
Software maintenance
Chapter 9 Software Evolution 3830/10/2014
Software maintenance
 Modifying a program after it has been put into use.
 The term is mostly used for changing custom software.
Generic software products are said to evolve to create
new versions.
 Maintenance does not normally involve major changes to
the system’s architecture.
 Changes are implemented by modifying existing
components and adding new components to the system.
Chapter 9 Software Evolution 3930/10/2014
Types of maintenance
 Fault repairs
 Changing a system to fix bugs/vulnerabilities and correct
deficiencies in the way meets its requirements.
 Environmental adaptation
 Maintenance to adapt software to a different operating
environment
 Changing a system so that it operates in a different environment
(computer, OS, etc.) from its initial implementation.
 Functionality addition and modification
 Modifying the system to satisfy new requirements.
Chapter 9 Software Evolution 4030/10/2014
Maintenance effort distribution
Chapter 9 Software Evolution 4130/10/2014
Maintenance costs
 Usually greater than development costs (2* to
100* depending on the application).
 Affected by both technical and non-technical
factors.
 Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.
 Ageing software can have high support costs
(e.g. old languages, compilers etc.).
Chapter 9 Software Evolution 4230/10/2014
Maintenance costs
 It is usually more expensive to add new features to a
system during maintenance than it is to add the same
features during development
 A new team has to understand the programs being maintained
 Separating maintenance and development means there is no
incentive for the development team to write maintainable
software
 Program maintenance work is unpopular
• Maintenance staff are often inexperienced and have limited domain
knowledge.
 As programs age, their structure degrades and they become
harder to change
Chapter 9 Software Evolution 4330/10/2014
Maintenance prediction
 Maintenance prediction is concerned with assessing
which parts of the system may cause problems and have
high maintenance costs
 Change acceptance depends on the maintainability of the
components affected by the change;
 Implementing changes degrades the system and reduces its
maintainability;
 Maintenance costs depend on the number of changes and costs
of change depend on maintainability.
Chapter 9 Software Evolution 4430/10/2014
Maintenance prediction
Chapter 9 Software Evolution 4530/10/2014
Change prediction
 Predicting the number of changes requires and
understanding of the relationships between a system
and its environment.
 Tightly coupled systems require changes whenever the
environment is changed.
 Factors influencing this relationship are
 Number and complexity of system interfaces;
 Number of inherently volatile system requirements;
 The business processes where the system is used.
Chapter 9 Software Evolution 4630/10/2014
Complexity metrics
 Predictions of maintainability can be made by assessing
the complexity of system components.
 Studies have shown that most maintenance effort is
spent on a relatively small number of system
components.
 Complexity depends on
 Complexity of control structures;
 Complexity of data structures;
 Object, method (procedure) and module size.
Chapter 9 Software Evolution 4730/10/2014
Process metrics
 Process metrics may be used to assess maintainability
 Number of requests for corrective maintenance;
 Average time required for impact analysis;
 Average time taken to implement a change request;
 Number of outstanding change requests.
 If any or all of these is increasing, this may indicate a
decline in maintainability.
Chapter 9 Software Evolution 4830/10/2014
Software reengineering
 Restructuring or rewriting part or all of a
legacy system without changing its
functionality.
 Applicable where some but not all sub-systems
of a larger system require frequent
maintenance.
 Reengineering involves adding effort to make
them easier to maintain. The system may be re-
structured and re-documented.
Chapter 9 Software Evolution 4930/10/2014
Advantages of reengineering
 Reduced risk
 There is a high risk in new software development. There may be
development problems, staffing problems and specification
problems.
 Reduced cost
 The cost of re-engineering is often significantly less than the
costs of developing new software.
Chapter 9 Software Evolution 5030/10/2014
The reengineering process
Chapter 9 Software Evolution 5130/10/2014
Reengineering process activities
 Source code translation
 Convert code to a new language.
 Reverse engineering
 Analyse the program to understand it;
 Program structure improvement
 Restructure automatically for understandability;
 Program modularisation
 Reorganise the program structure;
 Data reengineering
 Clean-up and restructure system data.
Chapter 9 Software Evolution 5230/10/2014
Reengineering approaches
Chapter 9 Software Evolution 5330/10/2014
Reengineering cost factors
 The quality of the software to be reengineered.
 The tool support available for reengineering.
 The extent of the data conversion which is required.
 The availability of expert staff for reengineering.
 This can be a problem with old systems based on technology
that is no longer widely used.
Chapter 9 Software Evolution 5430/10/2014
Refactoring
 Refactoring is the process of making improvements to a
program to slow down degradation through change.
 You can think of refactoring as ‘preventative
maintenance’ that reduces the problems of future
change.
 Refactoring involves modifying a program to improve its
structure, reduce its complexity or make it easier to
understand.
 When you refactor a program, you should not add
functionality but rather concentrate on program
improvement.
Chapter 9 Software Evolution 5530/10/2014
Refactoring and reengineering
 Re-engineering takes place after a system has been
maintained for some time and maintenance costs are
increasing. You use automated tools to process and re-
engineer a legacy system to create a new system that is
more maintainable.
 Refactoring is a continuous process of improvement
throughout the development and evolution process. It is
intended to avoid the structure and code degradation
that increases the costs and difficulties of maintaining a
system.
Chapter 9 Software Evolution 5630/10/2014
‘Bad smells’ in program code
 Duplicate code
 The same or very similar code may be included at different
places in a program. This can be removed and implemented as a
single method or function that is called as required.
 Long methods
 If a method is too long, it should be redesigned as a number of
shorter methods.
 Switch (case) statements
 These often involve duplication, where the switch depends on
the type of a value. The switch statements may be scattered
around a program. In object-oriented languages, you can often
use polymorphism to achieve the same thing.
Chapter 9 Software Evolution 5730/10/2014
‘Bad smells’ in program code
 Data clumping
 Data clumps occur when the same group of data items (fields in
classes, parameters in methods) re-occur in several places in a
program. These can often be replaced with an object that
encapsulates all of the data.
 Speculative generality
 This occurs when developers include generality in a program in
case it is required in the future. This can often simply be
removed.
Chapter 9 Software Evolution 5830/10/2014
Key points
 Software development and evolution can be thought of
as an integrated, iterative process that can be
represented using a spiral model.
 For custom systems, the costs of software maintenance
usually exceed the software development costs.
 The process of software evolution is driven by requests
for changes and includes change impact analysis,
release planning and change implementation.
 Legacy systems are older software systems, developed
using obsolete software and hardware technologies, that
remain useful for a business.
Chapter 9 Software Evolution 5930/10/2014
Key points
 It is often cheaper and less risky to maintain a legacy
system than to develop a replacement system using
modern technology.
 The business value of a legacy system and the quality of
the application should be assessed to help decide if a
system should be replaced, transformed or maintained.
 There are 3 types of software maintenance, namely bug
fixing, modifying software to work in a new environment,
and implementing new or changed requirements.
Chapter 9 Software Evolution 6030/10/2014
Key points
 Software re-engineering is concerned with re-structuring
and re-documenting software to make it easier to
understand and change.
 Refactoring, making program changes that preserve
functionality, is a form of preventative maintenance.
Chapter 9 Software Evolution 6130/10/2014

More Related Content

What's hot

What's hot (20)

Ch10 dependable systems
Ch10 dependable systemsCh10 dependable systems
Ch10 dependable systems
 
Ch15 software reuse
Ch15 software reuseCh15 software reuse
Ch15 software reuse
 
Ch3. agile sw dev
Ch3. agile sw devCh3. agile sw dev
Ch3. agile sw dev
 
Ch22 project management
Ch22 project managementCh22 project management
Ch22 project management
 
Ch7-Software Engineering 9
Ch7-Software Engineering 9Ch7-Software Engineering 9
Ch7-Software Engineering 9
 
Ch9-Software Engineering 9
Ch9-Software Engineering 9Ch9-Software Engineering 9
Ch9-Software Engineering 9
 
Ch4-Software Engineering 9
Ch4-Software Engineering 9Ch4-Software Engineering 9
Ch4-Software Engineering 9
 
Ch23 project planning
Ch23 project planningCh23 project planning
Ch23 project planning
 
Ch21 real time software engineering
Ch21 real time software engineeringCh21 real time software engineering
Ch21 real time software engineering
 
Ch11-Software Engineering 9
Ch11-Software Engineering 9Ch11-Software Engineering 9
Ch11-Software Engineering 9
 
Ian Sommerville, Software Engineering, 9th EditionCh 8
Ian Sommerville,  Software Engineering, 9th EditionCh 8Ian Sommerville,  Software Engineering, 9th EditionCh 8
Ian Sommerville, Software Engineering, 9th EditionCh 8
 
Ch2 - SW Processes
Ch2 - SW ProcessesCh2 - SW Processes
Ch2 - SW Processes
 
Ch3-Software Engineering 9
Ch3-Software Engineering 9Ch3-Software Engineering 9
Ch3-Software Engineering 9
 
Ch5- Software Engineering 9
Ch5- Software Engineering 9Ch5- Software Engineering 9
Ch5- Software Engineering 9
 
Ch6-Software Engineering 9
Ch6-Software Engineering 9Ch6-Software Engineering 9
Ch6-Software Engineering 9
 
Ch4 req eng
Ch4 req engCh4 req eng
Ch4 req eng
 
Ian Sommerville, Software Engineering, 9th Edition Ch2
Ian Sommerville,  Software Engineering, 9th Edition Ch2Ian Sommerville,  Software Engineering, 9th Edition Ch2
Ian Sommerville, Software Engineering, 9th Edition Ch2
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
 
Ch17 distributed software engineering
Ch17 distributed software engineeringCh17 distributed software engineering
Ch17 distributed software engineering
 
Ch7 - Implementation
Ch7 - ImplementationCh7 - Implementation
Ch7 - Implementation
 

Viewers also liked (8)

Ch12 safety engineering
Ch12 safety engineeringCh12 safety engineering
Ch12 safety engineering
 
Ch16 component based software engineering
Ch16 component based software engineeringCh16 component based software engineering
Ch16 component based software engineering
 
Ch14 resilience engineering
Ch14 resilience engineeringCh14 resilience engineering
Ch14 resilience engineering
 
Ch20 systems of systems
Ch20 systems of systemsCh20 systems of systems
Ch20 systems of systems
 
Ch13 security engineering
Ch13 security engineeringCh13 security engineering
Ch13 security engineering
 
Ch18 service oriented software engineering
Ch18 service oriented software engineeringCh18 service oriented software engineering
Ch18 service oriented software engineering
 
Ch19 systems engineering
Ch19 systems engineeringCh19 systems engineering
Ch19 systems engineering
 
Ch2-Software Engineering 9
Ch2-Software Engineering 9Ch2-Software Engineering 9
Ch2-Software Engineering 9
 

Similar to Ch9 evolution

Lecture - 11-15.pptx
Lecture - 11-15.pptxLecture - 11-15.pptx
Lecture - 11-15.pptxFarHana74914
 
Software maintaince.pptx
Software maintaince.pptxSoftware maintaince.pptx
Software maintaince.pptxAmarYa2
 
SWE-401 - 11. Software maintenance overview
SWE-401 - 11. Software maintenance overviewSWE-401 - 11. Software maintenance overview
SWE-401 - 11. Software maintenance overviewghayour abbas
 
Bse 3105 lecture 2- software change
Bse 3105  lecture 2- software changeBse 3105  lecture 2- software change
Bse 3105 lecture 2- software changeAlonzee Tash
 
Bse 3105 lecture 2- software change
Bse 3105  lecture 2- software changeBse 3105  lecture 2- software change
Bse 3105 lecture 2- software changeAlonzee Tash
 
Ch2 software engineering and Processes.pdf
Ch2 software engineering and Processes.pdfCh2 software engineering and Processes.pdf
Ch2 software engineering and Processes.pdfahmedibrahimghnnam01
 
Chapter 2 Software Processes.pdf
Chapter 2 Software Processes.pdfChapter 2 Software Processes.pdf
Chapter 2 Software Processes.pdfHardikGupta400524
 
ch2swprocesses-150102101840-conversion-gate02.pdf
ch2swprocesses-150102101840-conversion-gate02.pdfch2swprocesses-150102101840-conversion-gate02.pdf
ch2swprocesses-150102101840-conversion-gate02.pdfabdallhelkahlout1
 
Executing Deployment & Release Strategies
Executing Deployment & Release StrategiesExecuting Deployment & Release Strategies
Executing Deployment & Release StrategiesOpenSense Labs
 
Fundamental software engineering activities
Fundamental software engineering activitiesFundamental software engineering activities
Fundamental software engineering activitiessommerville-videos
 
Software maintenance service strategies
Software maintenance service strategiesSoftware maintenance service strategies
Software maintenance service strategiesSIS Tech
 
Unleash the agile power bridging the gap between development and operations...
Unleash the agile power   bridging the gap between development and operations...Unleash the agile power   bridging the gap between development and operations...
Unleash the agile power bridging the gap between development and operations...XebiaLabs
 
Towards preventing software from becoming legacy a road map
Towards preventing software from becoming legacy a road mapTowards preventing software from becoming legacy a road map
Towards preventing software from becoming legacy a road mapIAEME Publication
 

Similar to Ch9 evolution (20)

Ch9 - Evolution
Ch9 - EvolutionCh9 - Evolution
Ch9 - Evolution
 
Ch9
Ch9Ch9
Ch9
 
SE2013_10.ppt
SE2013_10.pptSE2013_10.ppt
SE2013_10.ppt
 
Software maintenance
Software maintenanceSoftware maintenance
Software maintenance
 
Lecture - 11-15.pptx
Lecture - 11-15.pptxLecture - 11-15.pptx
Lecture - 11-15.pptx
 
Software Evolution
Software EvolutionSoftware Evolution
Software Evolution
 
Software maintaince.pptx
Software maintaince.pptxSoftware maintaince.pptx
Software maintaince.pptx
 
SWE-401 - 11. Software maintenance overview
SWE-401 - 11. Software maintenance overviewSWE-401 - 11. Software maintenance overview
SWE-401 - 11. Software maintenance overview
 
Bse 3105 lecture 2- software change
Bse 3105  lecture 2- software changeBse 3105  lecture 2- software change
Bse 3105 lecture 2- software change
 
Bse 3105 lecture 2- software change
Bse 3105  lecture 2- software changeBse 3105  lecture 2- software change
Bse 3105 lecture 2- software change
 
Ch2 software engineering and Processes.pdf
Ch2 software engineering and Processes.pdfCh2 software engineering and Processes.pdf
Ch2 software engineering and Processes.pdf
 
Chapter 2 Software Processes.pdf
Chapter 2 Software Processes.pdfChapter 2 Software Processes.pdf
Chapter 2 Software Processes.pdf
 
ch2swprocesses-150102101840-conversion-gate02.pdf
ch2swprocesses-150102101840-conversion-gate02.pdfch2swprocesses-150102101840-conversion-gate02.pdf
ch2swprocesses-150102101840-conversion-gate02.pdf
 
Ch21
Ch21Ch21
Ch21
 
Executing Deployment & Release Strategies
Executing Deployment & Release StrategiesExecuting Deployment & Release Strategies
Executing Deployment & Release Strategies
 
Fundamental software engineering activities
Fundamental software engineering activitiesFundamental software engineering activities
Fundamental software engineering activities
 
Software maintenance service strategies
Software maintenance service strategiesSoftware maintenance service strategies
Software maintenance service strategies
 
Unleash the agile power bridging the gap between development and operations...
Unleash the agile power   bridging the gap between development and operations...Unleash the agile power   bridging the gap between development and operations...
Unleash the agile power bridging the gap between development and operations...
 
Software process
Software processSoftware process
Software process
 
Towards preventing software from becoming legacy a road map
Towards preventing software from becoming legacy a road mapTowards preventing software from becoming legacy a road map
Towards preventing software from becoming legacy a road map
 

More from software-engineering-book

Engineering Software Products: 10. Devops and code management
Engineering Software Products: 10. Devops and code managementEngineering Software Products: 10. Devops and code management
Engineering Software Products: 10. Devops and code managementsoftware-engineering-book
 
Engineering Software Products: 8. Reliable programming
Engineering Software Products: 8. Reliable programmingEngineering Software Products: 8. Reliable programming
Engineering Software Products: 8. Reliable programmingsoftware-engineering-book
 
Engineering Software Products: 7. security and privacy
Engineering Software Products: 7. security and privacyEngineering Software Products: 7. security and privacy
Engineering Software Products: 7. security and privacysoftware-engineering-book
 
Engineering Software Products: 6. microservices architecture
Engineering Software Products: 6. microservices architectureEngineering Software Products: 6. microservices architecture
Engineering Software Products: 6. microservices architecturesoftware-engineering-book
 
Engineering Software Products: 5. cloud based software
Engineering Software Products: 5. cloud based softwareEngineering Software Products: 5. cloud based software
Engineering Software Products: 5. cloud based softwaresoftware-engineering-book
 
Engineering Software Products: 4. software architecture
Engineering Software Products: 4. software architectureEngineering Software Products: 4. software architecture
Engineering Software Products: 4. software architecturesoftware-engineering-book
 
Engineering Software Products: 3. features, scenarios and stories
Engineering Software Products: 3. features, scenarios and storiesEngineering Software Products: 3. features, scenarios and stories
Engineering Software Products: 3. features, scenarios and storiessoftware-engineering-book
 
Engineering Software Products: 2. agile software engineering
Engineering Software Products: 2. agile software engineeringEngineering Software Products: 2. agile software engineering
Engineering Software Products: 2. agile software engineeringsoftware-engineering-book
 
Engineering Software Products: 1. software products
Engineering Software Products: 1. software productsEngineering Software Products: 1. software products
Engineering Software Products: 1. software productssoftware-engineering-book
 

More from software-engineering-book (10)

Engineering Software Products: 10. Devops and code management
Engineering Software Products: 10. Devops and code managementEngineering Software Products: 10. Devops and code management
Engineering Software Products: 10. Devops and code management
 
Engineering Software Products: 9. testing
Engineering Software Products: 9. testingEngineering Software Products: 9. testing
Engineering Software Products: 9. testing
 
Engineering Software Products: 8. Reliable programming
Engineering Software Products: 8. Reliable programmingEngineering Software Products: 8. Reliable programming
Engineering Software Products: 8. Reliable programming
 
Engineering Software Products: 7. security and privacy
Engineering Software Products: 7. security and privacyEngineering Software Products: 7. security and privacy
Engineering Software Products: 7. security and privacy
 
Engineering Software Products: 6. microservices architecture
Engineering Software Products: 6. microservices architectureEngineering Software Products: 6. microservices architecture
Engineering Software Products: 6. microservices architecture
 
Engineering Software Products: 5. cloud based software
Engineering Software Products: 5. cloud based softwareEngineering Software Products: 5. cloud based software
Engineering Software Products: 5. cloud based software
 
Engineering Software Products: 4. software architecture
Engineering Software Products: 4. software architectureEngineering Software Products: 4. software architecture
Engineering Software Products: 4. software architecture
 
Engineering Software Products: 3. features, scenarios and stories
Engineering Software Products: 3. features, scenarios and storiesEngineering Software Products: 3. features, scenarios and stories
Engineering Software Products: 3. features, scenarios and stories
 
Engineering Software Products: 2. agile software engineering
Engineering Software Products: 2. agile software engineeringEngineering Software Products: 2. agile software engineering
Engineering Software Products: 2. agile software engineering
 
Engineering Software Products: 1. software products
Engineering Software Products: 1. software productsEngineering Software Products: 1. software products
Engineering Software Products: 1. software products
 

Recently uploaded

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 

Recently uploaded (20)

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 

Ch9 evolution

  • 1. Chapter 9 – Software Evolution Chapter 9 Software Evolution 130/10/2014
  • 2. Topics covered  Evolution processes  Legacy systems  Software maintenance Chapter 9 Software Evolution 230/10/2014
  • 3. Software change  Software change is inevitable  New requirements emerge when the software is used;  The business environment changes;  Errors must be repaired;  New computers and equipment is added to the system;  The performance or reliability of the system may have to be improved.  A key problem for all organizations is implementing and managing change to their existing software systems. Chapter 9 Software Evolution 330/10/2014
  • 4. Importance of evolution  Organisations have huge investments in their software systems - they are critical business assets.  To maintain the value of these assets to the business, they must be changed and updated.  The majority of the software budget in large companies is devoted to changing and evolving existing software rather than developing new software. Chapter 9 Software Evolution 430/10/2014
  • 5. A spiral model of development and evolution Chapter 9 Software Evolution 530/10/2014
  • 6. Evolution and servicing Chapter 9 Software Evolution 630/10/2014
  • 7. Evolution and servicing  Evolution  The stage in a software system’s life cycle where it is in operational use and is evolving as new requirements are proposed and implemented in the system.  Servicing  At this stage, the software remains useful but the only changes made are those required to keep it operational i.e. bug fixes and changes to reflect changes in the software’s environment. No new functionality is added.  Phase-out  The software may still be used but no further changes are made to it. Chapter 9 Software Evolution 730/10/2014
  • 8. Evolution processes Chapter 9 Software Evolution 830/10/2014
  • 9. Evolution processes  Software evolution processes depend on  The type of software being maintained;  The development processes used;  The skills and experience of the people involved.  Proposals for change are the driver for system evolution.  Should be linked with components that are affected by the change, thus allowing the cost and impact of the change to be estimated.  Change identification and evolution continues throughout the system lifetime. Chapter 9 Software Evolution 930/10/2014
  • 10. Change identification and evolution processes Chapter 9 Software Evolution 1030/10/2014
  • 11. The software evolution process Chapter 9 Software Evolution 1130/10/2014
  • 12. Change implementation Chapter 9 Software Evolution 1230/10/2014
  • 13. Change implementation  Iteration of the development process where the revisions to the system are designed, implemented and tested.  A critical difference is that the first stage of change implementation may involve program understanding, especially if the original system developers are not responsible for the change implementation.  During the program understanding phase, you have to understand how the program is structured, how it delivers functionality and how the proposed change might affect the program. Chapter 9 Software Evolution 1330/10/2014
  • 14. Urgent change requests  Urgent changes may have to be implemented without going through all stages of the software engineering process  If a serious system fault has to be repaired to allow normal operation to continue;  If changes to the system’s environment (e.g. an OS upgrade) have unexpected effects;  If there are business changes that require a very rapid response (e.g. the release of a competing product). Chapter 9 Software Evolution 1430/10/2014
  • 15. The emergency repair process Chapter 9 Software Evolution 1530/10/2014
  • 16. Agile methods and evolution  Agile methods are based on incremental development so the transition from development to evolution is a seamless one.  Evolution is simply a continuation of the development process based on frequent system releases.  Automated regression testing is particularly valuable when changes are made to a system.  Changes may be expressed as additional user stories. Chapter 9 Software Evolution 1630/10/2014
  • 17. Handover problems  Where the development team have used an agile approach but the evolution team is unfamiliar with agile methods and prefer a plan-based approach.  The evolution team may expect detailed documentation to support evolution and this is not produced in agile processes.  Where a plan-based approach has been used for development but the evolution team prefer to use agile methods.  The evolution team may have to start from scratch developing automated tests and the code in the system may not have been refactored and simplified as is expected in agile development. Chapter 9 Software Evolution 1730/10/2014
  • 18. Legacy systems Chapter 9 Software Evolution 1830/10/2014
  • 19. Legacy systems  Legacy systems are older systems that rely on languages and technology that are no longer used for new systems development.  Legacy software may be dependent on older hardware, such as mainframe computers and may have associated legacy processes and procedures.  Legacy systems are not just software systems but are broader socio-technical systems that include hardware, software, libraries and other supporting software and business processes. Chapter 9 Software Evolution 1930/10/2014
  • 20. The elements of a legacy system Chapter 9 Software Evolution 2030/10/2014
  • 21. Legacy system components  System hardware Legacy systems may have been written for hardware that is no longer available.  Support software The legacy system may rely on a range of support software, which may be obsolete or unsupported.  Application software The application system that provides the business services is usually made up of a number of application programs.  Application data These are data that are processed by the application system. They may be inconsistent, duplicated or held in different databases. Chapter 9 Software Evolution 2130/10/2014
  • 22. Legacy system components  Business processes These are processes that are used in the business to achieve some business objective.  Business processes may be designed around a legacy system and constrained by the functionality that it provides.  Business policies and rules These are definitions of how the business should be carried out and constraints on the business. Use of the legacy application system may be embedded in these policies and rules. Chapter 9 Software Evolution 2230/10/2014
  • 23. Legacy system layers Chapter 9 Software Evolution 2330/10/2014
  • 24. Legacy system replacement  Legacy system replacement is risky and expensive so businesses continue to use these systems  System replacement is risky for a number of reasons  Lack of complete system specification  Tight integration of system and business processes  Undocumented business rules embedded in the legacy system  New software development may be late and/or over budget Chapter 9 Software Evolution 2430/10/2014
  • 25. Legacy system change  Legacy systems are expensive to change for a number of reasons:  No consistent programming style  Use of obsolete programming languages with few people available with these language skills  Inadequate system documentation  System structure degradation  Program optimizations may make them hard to understand  Data errors, duplication and inconsistency Chapter 9 Software Evolution 2530/10/2014
  • 26. Legacy system management  Organisations that rely on legacy systems must choose a strategy for evolving these systems  Scrap the system completely and modify business processes so that it is no longer required;  Continue maintaining the system;  Transform the system by re-engineering to improve its maintainability;  Replace the system with a new system.  The strategy chosen should depend on the system quality and its business value. Chapter 9 Software Evolution 2630/10/2014
  • 27. Figure 9.13 An example of a legacy system assessment Chapter 9 Software Evolution 2730/10/2014
  • 28. Legacy system categories  Low quality, low business value  These systems should be scrapped.  Low-quality, high-business value  These make an important business contribution but are expensive to maintain. Should be re-engineered or replaced if a suitable system is available.  High-quality, low-business value  Replace with COTS, scrap completely or maintain.  High-quality, high business value  Continue in operation using normal system maintenance. Chapter 9 Software Evolution 2830/10/2014
  • 29. Business value assessment  Assessment should take different viewpoints into account  System end-users;  Business customers;  Line managers;  IT managers;  Senior managers.  Interview different stakeholders and collate results. Chapter 9 Software Evolution 2930/10/2014
  • 30. Issues in business value assessment  The use of the system  If systems are only used occasionally or by a small number of people, they may have a low business value.  The business processes that are supported  A system may have a low business value if it forces the use of inefficient business processes.  System dependability  If a system is not dependable and the problems directly affect business customers, the system has a low business value.  The system outputs  If the business depends on system outputs, then the system has a high business value. Chapter 9 Software Evolution 3030/10/2014
  • 31. System quality assessment  Business process assessment  How well does the business process support the current goals of the business?  Environment assessment  How effective is the system’s environment and how expensive is it to maintain?  Application assessment  What is the quality of the application software system? Chapter 9 Software Evolution 3130/10/2014
  • 32. Business process assessment  Use a viewpoint-oriented approach and seek answers from system stakeholders  Is there a defined process model and is it followed?  Do different parts of the organisation use different processes for the same function?  How has the process been adapted?  What are the relationships with other business processes and are these necessary?  Is the process effectively supported by the legacy application software?  Example - a travel ordering system may have a low business value because of the widespread use of web- based ordering. Chapter 9 Software Evolution 3230/10/2014
  • 33. Factors used in environment assessment Factor Questions Supplier stability Is the supplier still in existence? Is the supplier financially stable and likely to continue in existence? If the supplier is no longer in business, does someone else maintain the systems? Failure rate Does the hardware have a high rate of reported failures? Does the support software crash and force system restarts? Age How old is the hardware and software? The older the hardware and support software, the more obsolete it will be. It may still function correctly but there could be significant economic and business benefits to moving to a more modern system. Performance Is the performance of the system adequate? Do performance problems have a significant effect on system users? Chapter 9 Software Evolution 3330/10/2014
  • 34. Factors used in environment assessment Factor Questions Support requirements What local support is required by the hardware and software? If there are high costs associated with this support, it may be worth considering system replacement. Maintenance costs What are the costs of hardware maintenance and support software licences? Older hardware may have higher maintenance costs than modern systems. Support software may have high annual licensing costs. Interoperability Are there problems interfacing the system to other systems? Can compilers, for example, be used with current versions of the operating system? Is hardware emulation required? Chapter 9 Software Evolution 3430/10/2014
  • 35. Factors used in application assessment Factor Questions Understandability How difficult is it to understand the source code of the current system? How complex are the control structures that are used? Do variables have meaningful names that reflect their function? Documentation What system documentation is available? Is the documentation complete, consistent, and current? Data Is there an explicit data model for the system? To what extent is data duplicated across files? Is the data used by the system up to date and consistent? Performance Is the performance of the application adequate? Do performance problems have a significant effect on system users? Chapter 9 Software Evolution 3530/10/2014
  • 36. Factors used in application assessment Factor Questions Programming language Are modern compilers available for the programming language used to develop the system? Is the programming language still used for new system development? Configuration management Are all versions of all parts of the system managed by a configuration management system? Is there an explicit description of the versions of components that are used in the current system? Test data Does test data for the system exist? Is there a record of regression tests carried out when new features have been added to the system? Personnel skills Are there people available who have the skills to maintain the application? Are there people available who have experience with the system? Chapter 9 Software Evolution 3630/10/2014
  • 37. System measurement  You may collect quantitative data to make an assessment of the quality of the application system  The number of system change requests; The higher this accumulated value, the lower the quality of the system.  The number of different user interfaces used by the system; The more interfaces, the more likely it is that there will be inconsistencies and redundancies in these interfaces.  The volume of data used by the system. As the volume of data (number of files, size of database, etc.) processed by the system increases, so too do the inconsistencies and errors in that data.  Cleaning up old data is a very expensive and time-consuming process Chapter 9 Software Evolution 3730/10/2014
  • 38. Software maintenance Chapter 9 Software Evolution 3830/10/2014
  • 39. Software maintenance  Modifying a program after it has been put into use.  The term is mostly used for changing custom software. Generic software products are said to evolve to create new versions.  Maintenance does not normally involve major changes to the system’s architecture.  Changes are implemented by modifying existing components and adding new components to the system. Chapter 9 Software Evolution 3930/10/2014
  • 40. Types of maintenance  Fault repairs  Changing a system to fix bugs/vulnerabilities and correct deficiencies in the way meets its requirements.  Environmental adaptation  Maintenance to adapt software to a different operating environment  Changing a system so that it operates in a different environment (computer, OS, etc.) from its initial implementation.  Functionality addition and modification  Modifying the system to satisfy new requirements. Chapter 9 Software Evolution 4030/10/2014
  • 41. Maintenance effort distribution Chapter 9 Software Evolution 4130/10/2014
  • 42. Maintenance costs  Usually greater than development costs (2* to 100* depending on the application).  Affected by both technical and non-technical factors.  Increases as software is maintained. Maintenance corrupts the software structure so makes further maintenance more difficult.  Ageing software can have high support costs (e.g. old languages, compilers etc.). Chapter 9 Software Evolution 4230/10/2014
  • 43. Maintenance costs  It is usually more expensive to add new features to a system during maintenance than it is to add the same features during development  A new team has to understand the programs being maintained  Separating maintenance and development means there is no incentive for the development team to write maintainable software  Program maintenance work is unpopular • Maintenance staff are often inexperienced and have limited domain knowledge.  As programs age, their structure degrades and they become harder to change Chapter 9 Software Evolution 4330/10/2014
  • 44. Maintenance prediction  Maintenance prediction is concerned with assessing which parts of the system may cause problems and have high maintenance costs  Change acceptance depends on the maintainability of the components affected by the change;  Implementing changes degrades the system and reduces its maintainability;  Maintenance costs depend on the number of changes and costs of change depend on maintainability. Chapter 9 Software Evolution 4430/10/2014
  • 45. Maintenance prediction Chapter 9 Software Evolution 4530/10/2014
  • 46. Change prediction  Predicting the number of changes requires and understanding of the relationships between a system and its environment.  Tightly coupled systems require changes whenever the environment is changed.  Factors influencing this relationship are  Number and complexity of system interfaces;  Number of inherently volatile system requirements;  The business processes where the system is used. Chapter 9 Software Evolution 4630/10/2014
  • 47. Complexity metrics  Predictions of maintainability can be made by assessing the complexity of system components.  Studies have shown that most maintenance effort is spent on a relatively small number of system components.  Complexity depends on  Complexity of control structures;  Complexity of data structures;  Object, method (procedure) and module size. Chapter 9 Software Evolution 4730/10/2014
  • 48. Process metrics  Process metrics may be used to assess maintainability  Number of requests for corrective maintenance;  Average time required for impact analysis;  Average time taken to implement a change request;  Number of outstanding change requests.  If any or all of these is increasing, this may indicate a decline in maintainability. Chapter 9 Software Evolution 4830/10/2014
  • 49. Software reengineering  Restructuring or rewriting part or all of a legacy system without changing its functionality.  Applicable where some but not all sub-systems of a larger system require frequent maintenance.  Reengineering involves adding effort to make them easier to maintain. The system may be re- structured and re-documented. Chapter 9 Software Evolution 4930/10/2014
  • 50. Advantages of reengineering  Reduced risk  There is a high risk in new software development. There may be development problems, staffing problems and specification problems.  Reduced cost  The cost of re-engineering is often significantly less than the costs of developing new software. Chapter 9 Software Evolution 5030/10/2014
  • 51. The reengineering process Chapter 9 Software Evolution 5130/10/2014
  • 52. Reengineering process activities  Source code translation  Convert code to a new language.  Reverse engineering  Analyse the program to understand it;  Program structure improvement  Restructure automatically for understandability;  Program modularisation  Reorganise the program structure;  Data reengineering  Clean-up and restructure system data. Chapter 9 Software Evolution 5230/10/2014
  • 53. Reengineering approaches Chapter 9 Software Evolution 5330/10/2014
  • 54. Reengineering cost factors  The quality of the software to be reengineered.  The tool support available for reengineering.  The extent of the data conversion which is required.  The availability of expert staff for reengineering.  This can be a problem with old systems based on technology that is no longer widely used. Chapter 9 Software Evolution 5430/10/2014
  • 55. Refactoring  Refactoring is the process of making improvements to a program to slow down degradation through change.  You can think of refactoring as ‘preventative maintenance’ that reduces the problems of future change.  Refactoring involves modifying a program to improve its structure, reduce its complexity or make it easier to understand.  When you refactor a program, you should not add functionality but rather concentrate on program improvement. Chapter 9 Software Evolution 5530/10/2014
  • 56. Refactoring and reengineering  Re-engineering takes place after a system has been maintained for some time and maintenance costs are increasing. You use automated tools to process and re- engineer a legacy system to create a new system that is more maintainable.  Refactoring is a continuous process of improvement throughout the development and evolution process. It is intended to avoid the structure and code degradation that increases the costs and difficulties of maintaining a system. Chapter 9 Software Evolution 5630/10/2014
  • 57. ‘Bad smells’ in program code  Duplicate code  The same or very similar code may be included at different places in a program. This can be removed and implemented as a single method or function that is called as required.  Long methods  If a method is too long, it should be redesigned as a number of shorter methods.  Switch (case) statements  These often involve duplication, where the switch depends on the type of a value. The switch statements may be scattered around a program. In object-oriented languages, you can often use polymorphism to achieve the same thing. Chapter 9 Software Evolution 5730/10/2014
  • 58. ‘Bad smells’ in program code  Data clumping  Data clumps occur when the same group of data items (fields in classes, parameters in methods) re-occur in several places in a program. These can often be replaced with an object that encapsulates all of the data.  Speculative generality  This occurs when developers include generality in a program in case it is required in the future. This can often simply be removed. Chapter 9 Software Evolution 5830/10/2014
  • 59. Key points  Software development and evolution can be thought of as an integrated, iterative process that can be represented using a spiral model.  For custom systems, the costs of software maintenance usually exceed the software development costs.  The process of software evolution is driven by requests for changes and includes change impact analysis, release planning and change implementation.  Legacy systems are older software systems, developed using obsolete software and hardware technologies, that remain useful for a business. Chapter 9 Software Evolution 5930/10/2014
  • 60. Key points  It is often cheaper and less risky to maintain a legacy system than to develop a replacement system using modern technology.  The business value of a legacy system and the quality of the application should be assessed to help decide if a system should be replaced, transformed or maintained.  There are 3 types of software maintenance, namely bug fixing, modifying software to work in a new environment, and implementing new or changed requirements. Chapter 9 Software Evolution 6030/10/2014
  • 61. Key points  Software re-engineering is concerned with re-structuring and re-documenting software to make it easier to understand and change.  Refactoring, making program changes that preserve functionality, is a form of preventative maintenance. Chapter 9 Software Evolution 6130/10/2014